

NATIONAL RESEARCH UNIVERSITY HIGHER SCHOOL OF ECONOMICS

Israel Marques, Eugenia Nazrullaeva, Andrei Yakovlev

FROM COMPETITION TO DOMINANCE: POLITICAL DETERMINATIONS OF FEDERAL TRANSFERS IN THE RUSSIAN FEDERATION

BASIC RESEARCH PROGRAM

WORKING PAPERS

SERIES: ECONOMICS WP BRP 12/EC/2011

This Working Paper is an output of a research project implemented as part of the Basic Research Program at the National Research University Higher School of Economics (HSE). Any opinions or claims contained in this Working Paper do not necessarily reflect the views of HSE.

FROM COMPETITION TO DOMINANCE: POLITICAL DETERMINANTS OF FEDERAL TRANSFERS IN THE RUSSIAN FEDERATION⁴

Draft: 29/03/2012

The recent uprisings in the Middle East have cast doubt on the degree to which existing theories of autocracy can correctly identify which groups threaten the autocrats rule at any given time. As a result, these theories are unable to predict fundamental upheavals in established autocracies. Who is the biggest threat to the autocrat, though, the elite or the populations as a whole? In this paper, we evaluate how autocrats respond to perceived threats from the population and elites. We advance the argument that elites with autonomous power resources - economic assets, connections to regional elite networks, etc. – and swing voters, who are easily co-opted to cause problems for the regime, are likely perceived as the greatest threats. We also argue that to the extent that economic growth generates support for the incumbent, in this case the autocrat, actors in areas with high growth will, all else equal, be perceived as posing less of a threat to the autocrat than those in slow growth areas. We assume autocrats put their money where their mouths are and test our argument using the combination of data on federal-regional transfers in the Russian federation between 2001 and 2008 and a novel dataset of regional executive level characteristics. We find limited support for our arguments. On the one hand, transfers do go to politically powerful governors, while growth diminishes the impact of measures of voters preferences on transfers. On the other hand, we find evidence that transfers were aimed towards core, not swing voters, and that powerful regional elites tended to get more transfers, not less, in fast growing regions.

Key words: competitive autocracy, dominant party systems, regional elites, elite cooptation, federal transfers, Russia

JEL codes: D72, H77, R50

¹ Research fellow of ICSID, PhD student at Columbia University, <u>im2219@columbia.edu</u>

² Research fellow of ICSID, senior lecturer at the HSE Faculty of economics, <u>enazrullaeva@hse.ru</u>

³ Director of HSE Institute for Industrial and Market Studies, <u>ayakovlev@hse.ru</u>

⁴ This paper is based on results of a research project carried out in HSE International Center for Studies of Institutions and Development (ICSID) with support of HSE Basic Research Program. The authors are grateful to Natalia Zubarevich, Natalia Golovanova, Vladimir Gimpelson, Vladimir Nazarov, Scott Gehlbach, David Szakonyi, and John Reuter for valuable comments, as well as to Sergei Rozhkov for his support in data collection.

Recent uprisings in Tunisia, Egypt, and other seemingly stable autocracies across the world exposed many previously hidden tensions in these dominant party systems. Recent scholarship on dominant party systems in political science have primarily focused attention on the elite nature of the system – highlighting elite solidarity as the key problem of regime maintenance (Haber et al. 2003; Brownlee 2007; Haber 2007; Robertson 2010).⁵ In these models, elites can be paid of to insure that they do not stage coups and help the regime to control the population. In several of the Arab Spring uprisings, however, elite defections and the erosion of elite power were not the cause but the consequence of popular challenges. Only once popular protest became firmly entrenched did established elites begin affiliating with, or defecting to, the side of the populace.⁶ The relative surprise of these events, despite predictions of medium term stability for major Arab Spring countries such as Egypt, implies that existing accounts may have thought of the problem of regime maintenance too narrowly (Blaydes 2010). Conversly, however, many papers focusing on the role of the populace fail to account for the real threats faced by elites (Acemoglu and Robinson 2005; Ghandhi 2008) Who should autocrats fear more - the people or the elite? When, and to what extent, do autocrats have to make tradeoffs between regime maintenance strategies to appease these groups? Do these tradeoffs ultimately degrade regime stability by opening up the way for new threats?

In this paper, we touch on these questions but focus more narrowly on the use of transfers and economic growth as tools to maintain authoritarian regimes. In particular, we focus on who authoritarians perceive as threats and, assuming autocrats put their money where their mouths are, how they target transfers to mitigate these threats. We contributes to the literature on regime maintenance by expanding on recent work that emphasizes elite actors as the primary threat to autocratic regimes to include consideration of simultaneous popular threats (Smith 2005; Lust-Okar 2005, 2006; Magaloni 2006). In these models, the populace is often relegated to a sufficient condition for revolution, while elites – first movers and, via their defections, signals of regime weakness – are necessary conditions.⁷ We argue that while autocrats may underestimate the possibility that the populace can solve it's collective action problems spontaneously and without the interference of elites, they are accutely aware of the possibilities and of the difficulty in predicting such events (Kuran 1991). As a consequence, even in elite-centric systems, rational autocrats should always expend resources to insure that their populations are quiescent: whether in the form of public goods such as growth, transfers, or outright repression (Bellin 2002). In this

⁵ Although for important exceptions see Acemoglu and Robinson 2005 and Gandhi 2008.

⁶ Cite

⁷ Although for an important exception in this trend, *see* Magaloni 2006. She argues that while elite defection is critical for the collapse of dominant parties, elite splits occur because of signals sent by the populace during elections that the dominant party is not nearly as hegemonic as it appears. Also notable are Acemoglu and Robinson 2006 and Gandhi 2008, whose models focus instead on the populace itself with a small role for mediating elites.

paper, we explore what types of elites and which segments of the populace are granted transfers, as well as how alternative means of garnering popular support – economic growth – effects the transfers calculous.

In this paper, we also ask how the autocrat's perceptions of threats change based on the use institutional tools to mitigate the threats posed by elites or the populace. We focus our attention on "hybrid" regimes, an important category of autocracies where rulers hold multiparty elections but rule through a dominant party.⁸ In particular, we are interested in how centralization and party building exercises influence the evolution of strategies of threat mitigation in these environments. While numerous studies have argued that the degree to which elites, on the one hand, and the populace, on the other, threaten the autocrat shifts over time, most studies have tended to focus on describing autocratic stability at specific moments in the life cycle of a regime (Geddes 1999; Smith 2005; Blaydes 2010). Few have concretely studied these differences and how the evolving regime maintenance strategies of autocrats shape and are shaped by the threats the autocrat faces.⁹ We argue that while autocratic strategies are indeed endogenous – mitigating the threat posed by some actors while simultaneously increasing the threat posed by others – the concrete effect of this on autocratic strategies is rather slow. Autocratic strategy tends to be sticky, even in the face of shifts to better address those viewed as most threatening, because of the uncertainty noted above.

To construct our case, we primarily draw evidence from Russia from 2001 to 2008, during the period of initial formation and institutionalization of the Putin regime. We motivate our theory with a qualitative discussions of the Putin administration's strategy vis-à-vis the populace and elites during this period. Assuming that autocrats face a tradeoff in channeling money towards their personal rents or using it to co-opt other actors, we assume that autocrats put their money where their mouths are when it comes to transfers. Consequently we test our argument statistically using data on Russian Federal-Regional transfers from 2001 to 2008 and a novel data set of Russian Regional Executives.

We select Russia, because we believe that it is important to control for country and regime specific factors in regime maintenance strategies and whether they focus on the elite or the population. Russia allows us to do this, but also provides a federal structure, which provides us meaningful variation on our variables of interest. In addition, Russia is a representative example of a particular category of electoral, competitive, or dominant party authoritarianism (depending on the study consulted) that is increasingly common worldwide and is one of the frontiers of the study of authoritarianism (Magaloni 2008; Cheibub et al. 2009; Levitsky and

⁸ One could also call these regimes Competitive authoritarian (Leveitsy and Way 2010) or Hybrid regimes

⁽Diamond 2002).

⁹ For important exceptions, *see* Brownlee 2007 and Robertson 2010.

Way 2010). Because this category is so common, yet less well studied than traditional categories of authoritarian regimes such as military dictatorships, monarchies, or legislature-less single party systems, we argue that it an especially important category for study.

We begin by outlying the hypotheses we test briefly in the following section. In the third section of this paper, we illustrate our theory and provide some context for our empirics using a discussion Russian history in the 2000's. In the fourth section, we provide a modest empirical test of our theory using data on fiscal transfers from Russia's federal center to the regions from 2001-2008 and a novel data set of the characteristics of Russian Regional executives during that time period. The fifth section concludes.

Regime Maintenance, Tradeoffs, and Authoritarian Rule

Faced with the need to retain office and limited resources, we argue in this paper that autocrats must be simultaneously wary of both elites and the populace. Information problems vis-à-vis one's subjects – both elites and the populace – are perhaps one of the most critical constraints on autocrats: even seemingly well-behaved subjects may hide their true preferences out of fear of reprisal and may revolt at any time (Wintrobe 1990; 1998). To date, however, existing work on autocratic regime maintenance has tended to make simplifying assumptions in order to guide model construction and empirical testing. As a consequence, there has been a deep divide between studies that focus on threats, and how they can be mitigated, that emminate from elite sources and those that focus on popular threats.

Empirically, elites have tended to be more of a problem for autocrats than the masses. Of all autocratic leaders that ruled for at least one day between 1945 and 2002, Svolik (2009) finds that 67% were removed from office via internal coup. Existing work argues elites serve as threats through one of two channels: their integral position in and control of the regime's resources, which enables them to stage coups (Svolik 2009), or their role as key intermediaries and mobilizers of the population (Lust-okar 2005, 2006; Robertson 2010). The later explanation for the degree of threat posed by elites implicitly acknowledges the power of the population render it unable to mobilize on its own. As a consequence, in these models some action on the part of the elite – internal splits that degrade coercive capacity or outright defection – are required for revolutionary moments. The elites that most threaten the dictator are those with access to autonomous power resources – independent regional clientelist or economic networks, administrative resources, independent coercive capacity, or difficult-to-tax assets – which can

help stage internal coups or to to mobilize mass groups against the autocrat (haber et al. 2003; Haber 2007; Reuter 2010; Sjoberg 2011). Consequently, one would predict that:

 H_1 : Elites with autonomous power resources are regarded as threats to the regime and receive transfers.

The literature on popular threats to the regime, while acknowledging the potential collective action problems to popular revolution, argues that two situations make it more likely that the population will pose a significicant threat to the autocrat. In the first, the country suffers an exogenous shock that increases payoffs of successful revolt, the costs of staging such a revolt (usually in the form of the autocrat's coercive capacity), provides better information about elite capabilities, or that lowers the costs of collective action (Haggard and Kauffman 1997; Acemoglu and Robinson 2005; Tucker 2007; Bunce and Wolchik 2011). In the second, the population is a threat, because it can serve as a signaling mechanism to co-opted elites of the (lack of) power of the regime through mechanisms such as elections. Where elites participate in autocratic institutions out of lack of viable (or equally profitable) alternatives, such signals can cause elites to reevaluate their perceptions of the regime's hegemony and of the costs of defection. In such systems, massive demonstrations or disastrous election results for the autocrat's party are enough to encourage elite defection and seriously threaten the system (Magaloni 2006; Robertson 2010). Notice, however, that despite the importance of elites in this second story, the actual first movers are the population. As a consequence, a rational autocrat would want to placate or repress the population sufficiently to insure that it is never willing to risk the autocrat's displeasure and send signals to elites to defect. Finally, the populace can also pose a threat to the autocrat if its cooperation is necessary for the generation of autocratic rents or if autocratic coercive capacity is too weak to significantly increase the costs to the population of engaging in collective action (Gandhi and Przeworski 2006; Gandhi 2008).

How to target transfers to placate the populace is, however, somewhat tricky. Building on the literature on voting, one perspective emphasizes the need for the autocrat to target transfers towards swing groups, those that will alter their votes based on rewards (Lindbeck and Weibull 1978). Such a strategy is rational if one assumes that a voter's valence, ideology or assessments of politicians based on performance, is fixed, since one's supporters will vote for one regardless of material rewards (Dixit and Londregan 1996; Stokes 2006; Magaloni 2006). On the other hand, this view assumes that one's supporters will remain so, even if they receive no material benefits from association. Knowing that it is irrational for politicians to give benefits to those that unconditionally support them, why would rational voters forgo benefits by giving unconditional support? This critique leads to the second perspective, that one should target transfers to one's core supporters. In core-voter models, risk averse politicians do whatever is necessary to maximize their share of votes. Doing so amongst supporters is easier than other parts of the population, because politicians understand their supporter's preferences quite well and can use transfers to motivate them to turn out (Cox and MCubbins 1986; Cox 2010). Transfers are less like pay-offs for voting properly and more like investments in clientalistic machines, enabling politicians to insure future, long-term support for themselves (Diaz-Cayeros et al. 2012). These perspectives lead to two-competing predictions:

 H_2 : Swing voters are regarded as threats to the regime and should receive transfers.

 H_3 : Core voters are regarded as threats to the regime and should receive transfers.

Changing Threats and Strategic Trade-offs

So far in this paper, we have primarily focused on how transfers alone are targeted, but autocrats have other regime maintenance tools at their disposal: provision of growth and repression. To what extent can the use of these strategies lead to trade offs in the extent to which the autocrat needs to make transfers to particular threats? One way to think about how these tradeoffs function, is to understand what drives the dynamic and changing nature of autocrats' threat perceptions

Earlier, we mentioned that one of the goals of this paper is to understand how autocrats' perceptions of which groups are threats shift over time. Rationally, as the degree of percieved threat from a particular group waxes or wanes over time, the amount of resources spent to mitigate the threat posed by that group should do likewise. We argue that perceptions can shift in two ways. First, exogenous shocks such as economic crisis, geopolitical shifts, disasters, wars, and other unexpected events can alter the autocrat's perceptions of threats. As we discussed above, such shocks may decrease (or increase) the cost of collective action on the part of the population, thus decreasing (increasing) the extent to which the autocrat perceives a threat of popular revolt and, consequently, the extent of transfers aimed at appeasing this group. Similarly, such events might alter the capabilities of either the state or elites, shifting the balance vis-à-vis these two actors, and triggering a reevaluation of the degree of transfers needed to retain elite cooperation.

In this paper, we set aside international signals, disasters, etc. and focus primarily on how changing growth outcomes can shift percpetions of threat.¹⁰ With respect to the population, the provision of economic growth is a potentially powerful tool of generating support, even for autocrats. The link between economic growth and public support has been well-documented and

¹⁰ While we recognize that growth is not exogenous to transfers, we treat it as such theoretically, since individual members of the population have no direct control over it. Nonetheless, in our empirical section, we make sure to account for the effects of transfers on future growth by instrumenting the later.

theorized in a variety of institutional settings (di Palma 1991; Lewis-Beck 1988, 2002; Lewisbeck and Stegmaier 2000; Duch and Stevenson 2006; Treisman 2011). Similarly, numerous scholars have connected economic decline and the advent of serious problems for autocrats, especially stemming from popular dissatisfaction (Gasiorowski 2003; Magaloni 2006; Reuter and Gandhi 2011). In terms of strategic trade-offs, then autocrats should be able to decrease transfers in fast-growing areas, since they can count on the additional support generated by fastgrowth to tamp down the degree of threat from the population. Moreover, if one believes that elites are less of a threat to the autocrat without popular support, then the provision of growth might be helpful in reorienting the populace away from elites and towards the autocrat, increasing her power and mitigating the elite threat. Thus, changing growth outcomes serve as a source of dynamic shifts in the nature of the autocrats' threat perceptions. This suggests:

*H*₄: *The population receives fewer transfers in fast growing regions.*

*H*₅: *Elites receive fewer transfers in fast growing regions.*

The second way perceptions of threats shift is through the efforts of rulers themselves. Regime maintenance strategies neither exist in a void nor have a neutral effect on the threats they are designed to mitigate. Consider the use of repressive strategies: curtailment of civil liberties, killings, or any other strategy that raises the cost of defiance to the regime. These alter the capabilities of those whom they target, potentially depriving them of the ability to constitute a threat in the future (Davenport 2007). Elites, for example, can be rendered harmless to the autocrat with sufficiently high levels of repression aimed at stripping them of their autonomous power resources – economic resources or the ability to address the public safely. To the extent the autocrat succeeds, opposition threats become less credible and the autocrat may, decrease the magnitude of resources spent on cooptation. Consequently, in the wake of repression, transfers to the group being repressed should diminish or decrease. The effects of repression on the other group, however, are hard to predict. On the one hand, repression of elites might also cow a threatening populace or further cow a non-threatening one, while repressing the populace might deprive elites of groups to mobilize against the autocrat. In these cases, transfers to both groups should decrease or remain at a low level. On the other hand, repressing elites may also remove an important check on the ability of the population to mobilize or provoke popular backlash. Similarly, massive repression of the population may send signals to the elite that the regime is weak. In these cases, repressing one group may magnify the threat of the other, leading to a necessary increase in transfers. This leads to two mutually contradictory hypotheses:

*H*₆:*Immediately after a repressive episode against the elite (populace), transfers to the elite decrease (increase) and transfers to the populace increase (decrease).*

In the following section we provide a limited illustration of some of the mechanics discussed here drawing on the case of Russia from 2001 to 2008. We use the case to discuss relative perceptions of threat by Russia's president, Vladimir Putin, as well as how repressive strategies caused shifts in the overall pattern of transfers. In the section after that, we provide some preliminary tests of our predictions relating to the targeting of transfers, as well as of how growth alters this calculus. Unfortunately, data limitations and our analytical method limit our ability to test our predictions about the nature of trade-offs between repression and transfers. Nevertheless, to the extent that we have results from earlier studies of Russia at earlier periods and that our period of study comes immediately after an incident of major repression against elites (discussed below) we can speculate as to these effects. We hope future versions of this paper will expand available data enough to provide a direct test.

Autocratic Strategies: Evidence from the Russia Case

Russian in the 1990's was beset by a deep economic crisis brought on by its transition to a market economy. In combination with the general lack of state capacity in this period, declines in the population's living standards reduced public support for Boris Eltsin's government. Both of these factors led to the opportunity for powerful regional elites to emerge and to contest the central government for power. The consequence of this competition was an intense period of bargaining and a series of compromises between the federal center and the regions. The former bargained to keep the latter formally within the federation and to retain some degree of crossregional uniformity in federal laws and services, whereas the latter simply sought to extract rents and benefits (Fillipov et al. 2004). An important element of this bargaining relationship from the very beginning was the system of federal transfers, which gave the center a tool with which to elicit cooperation from the electoral machines of powerful governors (Popov 2004; Robertson 2010). The broad autonomy granted to regions allowed those regions with politically strong local elites, especially the national republics, to set their own effective tax rates and to extract relatively generous transfers from the federal center (Treisman 1996, 1998).

This bargaining situation changed significantly after the August 1998 financial crisis. The devaluation of ruble coupled with the pragmatic economic policy of the new left-wing government, provided conditions for a quick economic recovery between 1999 and 2000. This growth, combined with deft handling of major domestic political events gave the newly elected president, Vladimir Putin, a major advantage in his subsequent negotiations with regional elites. Indeed his popularity climbed quickly above international averages for chief executives and remained incredibly high for his entire period in office as Russian president (Treisman 2011).

These high levels of popularity gave Putin an important instrument that Eltsin had lacked in his disputes with regional elites – the ability to field a loyal party that could leverage Putin's popularity to win elections against local political machines. Indeed, Putin's Edinstvo (Unity) party, created shortly before the Duma elections in 1999, was able to win resounding victories against OVR, a coalition party constructed by many of the most popular and powerful regional governors.

During this period, the elite remained the primary threat to the regime, however Putin's popularity mitigated that threat somewhat by disrupting the ability of regional elites to mobilize voters directly (Robertson 2010). Given this imbalance, our hypotheses would suggest that transfers to elites would diminish in magnitude. If we look at the structure of transfers, this is indeed what happened. On the one hand, while transfers continued to be disproportionately targeted at those regions with politically strong governors (Jarocińska 2010), the structure of transfers began to shift. Table 1, which shows the total amount of FFSR (a federal equalization grant) in total transfers, illustrates one of the consequences of this. Unlike grants, subsidies, and subventions, which can be used for any purpose and assigned discretionally, FFSR grants are earmarked for specific social expenditures and are given out according to need based criteria. Those regions which are relatively poorer, controlling for tax capacity and local price differences, should receive more transfers according to official formula. Consequently, we argue that by moving to a large share of FFSR in total transfers, Putin pursued a long-term strategy of limiting the discretion of regional elites to spend monies in ways that provided them with rents or shored up their support (see also Figure 1). In doing so, he further consolidated the regime and hastened the disruption of the regional elites' independent power bases. On the other hand, as we show below in our regression results, the presence of powerful elites remained a good predictor of both total transfers and the non-FFSR portion of transfers. Although theory would expect a swing voter logic, our results below instead demonstrate that the regions with more pro-United Russia and Putin voters got more resources. We speculate more on this dynamic below.

In addition to attacking the fiscal autonomy of strong regional elites, the federal government also moved to increase its power relative to other groups in society by attacking economic elites (the so called 'oligarchs'). Putin specifically targeted natural resource rents for nationalization, which would eliminate a key potential resource pool for the elites and provide the federal center with much needed funds to maintain social stability and continue coopting the population (Yakovlev, 2006). In 2003-2004, this struggle culminated in the Yukos affair, where a clear "selective application" of the law was applied to Yukos' owner, Mikhail Khodorkovsky, depriving him of his business and subordinating Yukos directly to the central government. The direct consequences of the Yukos Affair were to wrest control of resource rents away from

private hands, providing the center with much needed revenue. It's indirect consequence, however, was to firmly establish the limits of political participation and meddling on the part of businesses in Russia, thus subordinating the business community to Putin's federal center. In doing so, not only did Putin eliminate a key source of opposition, but also eliminated an important potential ally to regional elites in their struggles with the center.

Perhaps just as importantly, however, the center's solution to the Yukos Conflict also helped cement the strong popular support that Putin and his allies already enjoyed, insuring a particularly strong showing in the subsequent parliamentary elections of December 2003 and the presidential elections in March 2004.¹¹ Combined with strong economic growth, the Yukos affair, further degraded the ability of regional elites to use one of their most potent tools against the central government: the mobilization of the masses. Not only did the Center's newfound ability to intervene between regional elites and their popular bases give the federal government more leverage in negotiations, but it played a key role in helping to convince regional elites of the futility of opposing the federal center (Robertson 2011). As a result of this and the resources and support gained from his subordination of business, Putin was able to establish a new delineation of responsibilities between the federal center and the regions. This reform, carried out by the Kozak commission, resulted in withdrawal of residual rights to a substantial fraction of revenues from regional and local authorities, along with imposition of the majority of previous liabilities on them. Although carried out in the name of reform, this action was effectively a successful, repressive attack on major sources of fiscal autonomy for regional elites.

Although Putin severely damaged regional authorities, it would be a mistake to think that centralization proceeded only through the use of sticks and transfers. On the one hand, a pure repression strategy against regional elites would have been costly. On the other hand, a strategy of pure transfer oriented co-optation would not have been credible, since centralization would have alienated elites from their power bases and left them vulnerable to reneging on the part of Putin's government. What was needed was a way to co-opt elites into the political system and expand their time horizons. Putin's decision to develop an encompassing single party, which could help to overcome the center's commitment problems, was therefore a key element to the removal of regional elites as a direct threat to the regime and to further centralization of power (Reuter and Remington 2009).

Formed by co-opting the OVR party, a vehicle used by powerful regional officials in the 1999 election to oppose Putin, and incorporating it into Putin's Unity party, United Russia allowed the regime to co-opt regional elites and remove them as threats through two

¹¹ This public support for repressions against Khodorkovsky and populist anti-oligarch rhetoric can be explained by broad dissatisfaction with the results of privatization, which were considered by most in Russian society to be unfair.

mechanisms. First, it allowed Putin to credibly commit that regional elites would continue to reap benefits and transfers from allegiance to the federal center, even if the system became more centralized. Second, in combination with elements of the Kozak reforms which thoroughly subordinated municipal officials to regional ones, it allowed Putin to credibly commit to respecting and abetting regional monopolies of power held by regional elites (Reuter 2010).¹²

Regardless of methods, if we can consider 2000-2004 as a time of strong competition between elites – federal, regional and business – then it is clear that by the end of this period the federal elite (represented by "siloviki" and liberal technocrats) had won a clear-cut victory over business "oligarchs" and regional elites. Starting from 2005, a different system of interactions between the federal center and regional elites in Russia came into being; one characterized by the federal government's dominance over regional elites, instead of competition between these two groups. This was made possible by the gains of the federal center and the reforms instituted in the previous period.

This newfound predominance freed the government to pursue slightly different goals with transfers, since the elimination of regional elites as a threat meant that transfers no longer had to be paid to independently powerful regional elites. Under these new conditions, the federal government declared a "modernization leap" policy and began building a developmental state in Russia (mostly drawing upon South Korea experience of the 1960s and 1980s).¹³ This process was exemplified by the establishment of a Development bank, special economic zones, state corporations and other development institutions, along with the drafting and adoption of development strategies for several key industries and the launching of infrastructure development projects using the Federal Investment Fund (including preparation for APEC Summit in Vladivostok in 2012 and 2014 Winter Olympic Games in Sochi).

The implementation of all of these measures was strongly affected by the nature of the ruling coalition's interaction with different elite groups – including regional elites, however. First, the federal center started to use its newfound powers to appoint new governors loyal to the Kremlin. Some strong governors remained, but they agreed to further losses of power by having their offices converted into appointed positions. Powerful regional officials consented to the changes, because of the Kremlin's success in curtailing their power and in disrupting their roles as traditional intermediaries to the masses in their regions. At the same time, the change was attractive, because it allowed them to get around term limits and, in conjunction with the party mechanism discussed above, guaranteed that they could retain regional power (Reuter and

 ¹² For more on the specific mechanisms by which dominant parties are able to co-opt and unify elites, as well as on how they establish credible commitment, *see* Gehlbach and Keefer 2011 and Magaloni 2006, 2008
¹³ David Lane described this process as a turn from the "chaotic" capitalism of 1990s to the "state-led" capitalism of the 2000's

¹³ David Lane described this process as a turn from the "chaotic" capitalism of 1990s to the "state-led" capitalism of the 2000's (Lane, 2008).

Robertson 2011). Moreover, we find some weak evidence below that transfers continued to be targeted towards particularly strong governors in certain types of regions.

Second, a governor performance measurement system based on a longer list of formal indicators was introduced by the Kremlin in order to govern the appointment process. Since providing growth is a cheaper way to insure that the population continues to support the authorities than attempting to provide targeted transfers to voters, elites may have been rewarded for generating good economic outcomes, which in turn reinforced the Center's support amongst voters (Magaloni 2006; Treisman 2011). Third, the renewal of the gubernatorial corps was accompanied by a marked increase in federal transfers to regions and especially in the nonformalized part of these transfers. We can assume that originally, authorities developed FFSR in order to deprive regional officials of discretion over the use of funds and a potential source of rents. Once control over these elites had been established, however, authorities realized that incentives were needed to insure elites would continue to work to provide good economic outcomes and to insure loyalty. Since discretionary transfers were an excellent means by which regional elites could generate rents (and therefore be encouraged to work hard to accomplish the regime's agenda), federal authorities began decreasing the relative share of FFSR in regional transfer over time, allowing for more discretionary transfers. Figure 1 shows that the relative relationship between total transfers and share of FFSR grants to the regions, in nominal prices vs. 2000 prices (deflated by CPI) is negative. The relative share of total transfers began climbing relative to FFSR after 2004. Table 1 also illustrates this dynamic, showing that the share of FFSR in total transfers decreased during the 2004-2008 period.

While this qualitative discussion is helpful in understanding the Russian context, it is difficult to systematically test predictions about the nature of transfers to elites and the population using it. We now turn to a formal statistical treatment.

Data and methodology

In this paper, we assume that autocrats desire rents and therefore put their money where their mouths are. Transfers should only be awarded based on political criteria – e.g. to the populace or elites – to the extent that they are perceived as threats. In order to empirically examine how the degree of threat posed by voters and elites influences transfers, we employ high-quality data on transfers from the federal center to 78 regions in the Russian Federation between 2001 and 2008.¹⁴ We select this time period for two reasons. First, we wish to capture

¹⁴ As is common for studies of Russia's regions, we omit Chechnya and Ingushentia from our panels. In our case, the decision is even more justified, because data collection in these regions was patchy during the period of the Second Chechen War, leaving large amounts of missing data for the early period. We also had to drop Nenets

both the period of initial autocratic regime formation and a period of relative consolidation in our analysis. The 2001 to 2008 period allows us to do this, while also allowing us to understand how the effect of repression (in the case the Kozaks reforms) alters the balance between elite and popular targeting of spending. Secondly, our argument has so far steered clear of the effects of exogenous shocks on the relative balance between elite and populace targeted spending, aside from noting that exogenous shocks tend to bias spending towards the population. Should we include data after 2008 into the sample, we would be capturing the effects of the financial crisis in our analysis. While the effects of crisis on the targeting of transfers is an interesting question, here we prefer to focus on "normal times" to produce more generalizable inferences.¹⁵

We use two main dependent variables in this paper, which we collected from the Russian Federal Treasury and data published by the Center for Fiscal Policy in partnership with Moscow State university. The first dependent variable is a measure of total per capita transfers between the federal center and the regions in thousands of rubbles (2000 prices).¹⁶ Although somewhat coarse, once one controls for demographic and economic considerations - shares of pensioners, GDP per capita, etc. – this dependent variable is a useful measure of co-optation, because it incorporates both transfers that go to elites and those that go towards the populace. As a consequence, one can compare how indicators of the threat posed by both elites and the populace influence overall distribution. More importantly, the use of total transfers as the dependent variable insures comparability over time. Because the Russian budgetary system has undergone numerous changes in the names and even budgetary categories of programs over the time period, it would be almost impossible to construct comparable spending data without rather heroic assumptions about the classification of spending and the purposes of programs. Even choosing a shorter time frame, 2004 to 2008, for example, would not resolve this difficulty. We argue that although coarse, any bias induced by the use of this data would bias against finding any political indicators of transfers, since programs created to provide transfers to elites or the masses would be lumped in with each other and programs with more objective, economic purposes.

As an alternative, supplemental dependent variable, we use a measure of discretionary transfers per capita as a dependent variable, which we calculate as total transfers minus FFSR.

Autonomous Okrug, Yamalo-Nenets Autonomous Okrug, and Khanty-Mansi Autonomous Okrug, because of data availability problems. In addition, because the number of Oblasts changed over time due to the merger or creation of new regions, we had to make some assumptions in order to insure a roughly balanced panel. We assume that Chita Oblast is equivalent to Zabaikalskiy Krai, Perm Oblast – to Perm Krai, and Kamchatka Oblast to Kamchatka Krai. We also consider Irkutsk Oblast and Kransoyarsk Krai as each being one comparable region for the entire period, even though they merge with their Autonomous Okrugss.

¹⁵ Nonetheless, this is a fruitful avenue of research, which we intend to explore in subsequent papers.

¹⁶ We deflate using an official Consumer Price Index. In two cases, Moscow City (20001-2004, 2007), and St. Petersburg (2004), we observe negative total transfers in the raw data. This would seem to violate both the accounting standards of the Ministry of Finance according to interviews conducted with Russian Budgetary experts. We dealt with this by replacing initial values with zeros where negative transfers are observed.

Because only FFSR grants follow a specific, economically determined, grant formula, the discretionary nature of the remainder of transfers means that the federal center can target these funds almost at will. As a consequence, we believe that this sum of money encapsulates the component of transfers that is channeled for political purposes. While less coarse than the total transfers measure, we argue that this data is more favorable for our argument; therefore, we use this variable only as a supplement and robustness check.

Because transfers are likely to be highly endogenous to the political variables of interest in this paper, we estimate our model using a panel-adapted two-step generalized method of moments technique with cluster-robust estimators for the standard errors [Baum and Schaffer 2007; Baum, Schaffer, Stillman 2010]. ¹⁷ This technique allows us to use both internal (lagged values of our regressors) and standard external instruments in our specification, allowing us to mitigate the serious endogeneity concerns in our research design. We formulate the following model for the dynamics of total transfers:

$$\Delta y_{it} = \alpha z_{it-1} + \gamma z_{it-1} \omega_{it-1} + x'_{it-1} \beta + c_i + \theta_t + \varepsilon_{it}$$
(1)

Where Δy_{it} is the first difference of our dependent variables, z_{it-1} represents the main independent measures of interest, ω_{it-1} is the growth rate in gross regional product (GRP), *gdpgrowth*, measured using a GRP index of physical volume, and x'_{it-1} is a vector of regional level controls. Because we wish to test the trade-off between the provision of a key type of public good, economic growth, and measures of elite strength and voter opinion, we also include the interaction term $z_{it-1}\omega_{it-1}$. In addition, ε_{it} represents a heteroskedastic, idiosyncratic error term correlated serially and across regions, c_i is a vector of region fixed effected, and θ_i is a vector of time fixed effects. We discuss our independent variables in the following subsections.

In our analysis, we use first differences of the dependent variable for two reasons. First, empirically, the Russian budgetary process takes the level of transfers to each region in the previous year as the base from which to set the current years transfers. In general, budget funds always increase from the previous year's level, all the variation in the degree of budget growth varies across regions. As a consequence of this, we argue that a comparison of the degree of budget growth in transfers per capita in the regions is the most useful way to understand how regime maintenance considerations influence overall transfers.¹⁸ Statistically, the use of a

¹⁷ Stock and Watson (2006) show that for panel data models with fixed effects, small finite T and first-order serial correlation the cluster-robust variance-covariance matrix estimator gives better results than HAC estimators, in terms of asymptotic unbiasedness.

¹⁸ This discussion is based on feedback from the experts at the Center for Fiscal policy, a seminar held at the International Center for the Study of Institutions and Democracy in September 2011, and personal contacts between the authors and Ministries of Finance and Economic Development.

differenced dependent variable allows us to resolve stationarity problems in the data, which would violate some of the core assumptions for the Arellano-Bond (1991) framework for dynamic panels (and alternative method). Due to our use of this first difference, our results describe the relative year-on-year growth in transfers given to regions, not overall transfers. We believe this does not overly change the specification of our hypotheses.

Measuring Elite Strength and Popular Opposition

Because the total size of transfers for a given year is set in the previous year, we take the lag of all of our independent variables. We argue that this somewhat mitigates the risk of endogeneity among some of our independent variables, although the internal and external instruments we include in our specification do a better job. In order to measure the degree of threat posed by voters, we follow previous literature in using vote shares for the party of power in the most recent election as a measure of the degree of popular support for the incumbent (Treisman 1996, 1998; Popov 2004; Magaloni 2006; Blavdes 2010).¹⁹ We use both data on the vote share for the party in power (urvote) and share of votes for Vladimir Putin (wpshare) in the most recent election.²⁰ In addition, we also include the vote share of the most prominent opposition party, the Communist Party of the Russian Federation (KPRF). Because simple vote shares can be misleading in highly fragmented systems, we also check the margin of victory for the party of power over the runner up in the election (margind). As many analysts consider most Russian Parties to be captured by United Russia, the simple margin of victory may not be informative, as the second place party may be in United Russia's pocket. Consequently, we also include the margin of victory of United Russia over the KPRF (opdom duma). We recognize the serious problem of endogeneity with using this data, so we instrument for vote shares using a measure of the percentage of agricultural employees in total regional employment, an instrument which has been found to be highly correlated with vote shares (especially those for the KPRF, *kdshare*) in previous research (Hale 2003; Reuter 2012).

In order to measure the strength of the elite, we make use of a novel dataset of biographical data on all Russian governors, Vice-governors, and prominent ministers from 1991 -2011, which was constructed by the International Center for the Study of Institutions and Development. As noted in the previous section, we mostly concentrate on governors in the

¹⁹ We recognize that vote shares in a hegemonic party system such as Russia's are subject to manipulation and may, in fact, be a proxy for governor's political machines. Nonetheless, we argue that even if there is some degree of manipulation, these vote shares roughly reflect reality. Moreover, for other reasons previously discussed, we have already removed the cases of Chechnya and Ingushentia, which are the two regions known for the most egregious vote manipulation. Unfortuantely, we do not have enough observed elections to calculate better measures of the risk of using elections, which would be more appropriate here (Diaz-Cayeros 2008)

²⁰ Here we define the party of power as votes for United Russia after the party formed in 2003. As mentioned earlier, United Russia formed out of two existing parties, Unity and Fatherland All-Russia (OVR) in 2001. Consequently, we assume that the vote total for United Russia prior to its formation would have been the combined vote total of these two parties.

version of the paper, because most accounts of Russian politics focus on them as the major regional threats to the center (Treisman 1996, 1998; Jarocińska 2010; Robertson 2010).²¹ As mentioned in section two of this paper, we expect that the elites that pose a threat to the regime are those who have autonomous power resources – independent economic assets, established connections to their regions and the population there, or strong political machines. In order to test these hypotheses, we use three distinct measures from the dataset.

The first is a measure of the Governor's popularity in the region (*share bad*) constructed from yearly surveys conducted by the Georating Agency in 65 regions, which we believe proxies for the general level of support for regional elites.²² We expect high unfavorable ratings to be an indication of the governor's lack of connections to the populace and general weakness. Our second measure is a proxy for the general connections of governors to their regions and to economic actors – the number of years that the governor worked in a region.²³ We construct this variable using the work history of individual governors and determining whether their places of employment – both private and public sector – are located in the region in which they serve. Our expectation is that governors who worked for long periods of time in their regions will have deeper connections to regional elites and to the population as a whole. Finally, we use a measure that captures whether governors had experience serving in their region's executive branch. We argue that past connections to the regional executive imply that the individual is well integrated and connected to the region's political elite and can likely count on its cooperation in confrontations – elite solidarity is an important autonomous power resource. In addition, these individuals are likely more apt at manipulating levers of power in order to obtain what they desire from the populace. This variable is a dummy variable coded 1 if the governor has worked for the regional executive at any time prior to becoming governor.

In addition to these variables, we also include economic growth as a control variable and the interaction between the variables for degree of voter and elite threat as an independent variable of interest. This variable is calculated using the GRP index of physical volume. We recognize that both this variable and one of our control, level of economic development, are enogenous to transfers. To deal with this, we construct a matrix of instruments which uses growth in transfers at time t-2, average temperature per capita in January (Mikhailova 2005), a

²¹ In subsequent versions of this paper, we will test vice-governor characteristics, as they are much more accurate measures of regional elite characteristics. Unfortunately, this data was unavailable in time for inclusion in this draft. ²² This variable is constructed using the question: "How do you rate the work of the governor of your region?" with

four response categories: good, bad, don't know, no response. We use the share of respondents who answered "bad" for each region to construct the variable.

²³ We are currently gathering data on the companies governor's worked for/owned. In the next draft of this paper, we hope to use map this data to data on Gross Regional Product contributions and tax contributions by discrete sectors to regional totals. We think that this data will be a better measure of whether the governor has autonomous power resources. For now, however, we use the simple measures.

standardized coefficient of working age male mortality, and, for the specifications with interaction terms, the interaction between the growth rate of the dependent variable at time t-2 and the variable of interest. These variables are relatively well correlated with both economic growth and level of economic development and clearly satisfy the exclusion restriction on instruments.²⁴

We use the Angrist-Pischke cluster-robust first stage F statistic to test the relevance of every single endogenous regressor. These first-stage statistics seem to be lower than 10, indicating weak instruments (Stock, Staiger 1997). According to the Anderson-Rubin test (an LM test) for weak instruments robust inference, however, the instruments we are using are relevant. The Stock-Wright test (a GMM distance test), in turn, suggests that our instruments are relevant at the 5 to 10% confidence level. The Hansen test for overidentifying restrictions says that additional moment conditions are correctly specified, especially in the specifications with the interaction term (Baum, Schaffer, Stillman 2010). Overall, we believe that while the Angrist-Pischke F-statistic indicates problems with our instrument, the other two tests provide reasonable evidence that the instruments are valid.

We also control for level of economic development (deflated regional GRP per capita, $reg_grpcapdefl$), the percentage of pensioners ($reg_sharepens$) and children under the age of 18 ($reg_sharebefl8$), the degree of urbanization (urbaniz), percentage of education and health workers in total employment ($reg_heductoempd$)²⁵. These controls should account for the portion of central government transfers made due to economic and social considerations. In addition, we also control for the share of people working in the bureaucratic structure per 1000 square kilometers of regional territory (*bureaucrats*). We include this variable, because we want to control for the lobbying power of regions in the analysis but have no direct measures. We argue that larger bureaucracies are more likely to be able to produce the written reports and petitions critical to lobbying the federal government.

Results and Discussion

We begin by examining the influence of voter shares on year-on-year growth in transfers. Recall from the second section of this paper that we are interested in whether there appears to be a swing voter or core voter dynaic to transfers. Table 2 presents the results. Interestingly, the signs on the main effects of our political variables – United Russia vote share, United Russia's

²⁴ The level of growth in transfers per capita in time t-2 meets the exclusion restriction because we control for autocorrelation in \mathcal{E}_{ii} .

²⁵ We exclude percentage of education and health workers in total employment to avoid multicollinearity (see Appendix 1 for the correlation matrix)

margin of victory, Putin's vote share, and United Russia's margin ov victory over the KPRF vote share were all negative, giving evidence of a swing voting dynamic. Conversely, the variable for KPRF vote share is positive. In these specifications, however, the variables are all insignificant at conventional levels (Columns 1,3,5,7,9). In general we would expect that economic growth would have a negative effect on overall growth in transfers. This prediction is born out, although growth is insignificant at conventional levels in these specifications. In general, most of the control variables behave as expected in these specifications, although only number of bureaucrats per sq. 1000 kilometer is significant at conventional levels.

Moving to specifications with an interaction between the political variable of interest and growth, however, alters things substantially.²⁶ In these specifications (Columns 2,4,6,8, and 10) the main effect of the political variables of interest are now positive and significant in all specifications, which is consistent with a general core voting effect. Conversely, KPRF's vote share is now negative. Growth is again significant and positive, although the net effect is negative overall when we take into account the interaction term. The interaction term itself between growth and the political variables (again except KPRF, which has the opposite sign) is significant and negative.

Because of the interaction term between these variables and growth, however, the overall effect of the political variablesis a linear combination of the terms for the political variable and the interaction term and depends on the levels of its component variables. Interpreting variables in this way can be difficult, so we present Figures 2-5, which show the marginal effect of a 1 percentage point change in the vote share variable on overall growth in transfers for different levels of growth. In all of the Figures, a 1 percent increase in the vote share variables leads to a higher growth rate in transfers for the next year at growth rates below 5%, which corresponds to roughly half of our sample. When growth rates are higher than 10% (about 10% of the sample) the effect of a 1% change in vote shares is negative. These results are logical from the standpoint of our hypotheses. On the one hand, we show that vote shares matter to the ruling party in allocating transfers to the regions, indicating that there was at least some sensitivity to popular sentiment in deciding year-on-year increases in transfer allocation. That the effect was normally a core voting effect comports well with the argument that core voting is useful in areas where clientalism is the guarantor of future victory. On the other hand, we also show that the anticipated trade-off effects between vote share and growth are also true. Areas with high vote shares for United Russia, but which were growing quickly, received slower growth in their transfers per capita than loyal areas that were growing more slowly. This suggests that while

 $^{^{26}}$ We believe that the drastic difference between these specifications stems from the fact that although the political variables matter, there are non-linearities in the effect which depend on the level of growth in a given region. These are obscured in the model without interactions.

United Russia was careful to target its own supporters and not reward those voting against it, it was also conscious of the potential effects that slow growth could have on its future prospects.

As expected, the above results prove to be robust when we use the discretionary portion of transfers as the dependent variable (Table 4), as well as when we test KPRF vote share. In the latter, we would expect the signs and slope of the marginal effects to be opposite of what they were for the other voting variables, since the KPRF is the main opposition party. Columns 10 of Tables 2 and 4 bear this out, as does the slope of the marginal effect in Figure 5.

Turning to our measures of elite power (Table 3), we find that the measure of governor unfavorability is significant and negative, as one would predict, in specifications without the cross term (Column 1). Unpopular governors have a harder time securing additional growth in transfers from the center. Oddly, however, the specification with the cross-term is insignificant (Column 2). We suspect that this may be due to a selection effect in the sample, for which Georating (the source of our data) provided no clearly articulated rationale. We were unable to verify this, unfortunately. As with the measures of vote share, both of our other measures of elite strength, years that the governor worked in the region and regional executive experience, were insignificant in specifications without cross-terms. In specifications with the interaction between the elite strength variables and growth, both the main effects of the elite strength variables were negative and significant, indicating that on the whole strong elites got smaller year-on-year increases in transfers than their counterparts. The cross terms for these variables where positive, significant, and of a larger magnitude than the main effects, however, indicating that at least some powerful governors did in fact receive positive tranfers. The main effect of growth, by contrast, was negative, significant, and larger in magnitude than the cross-term.

In Figures 7 and 8, we see that the effect of a one year increase in the number of years a governor served in a region results in negative transfers for regions that grow below about 5% (about half the sample), while powerful governors who achieve a growth rate greater than about 10% (only 90% of the sample) get larger increases in their yearly transfers. In general, this contradicts our hypothesis, as we would have expected a trade-off between growth and the strength of the governor. In fact, the opposite occurred. Well-connected governors in fast growing regions, where presumably the populace was more supportive of the federal center, actually received faster growth in transfers than their equally well-connected counterparts in slower growing regions. It is unclear why this would be the case, although we can speculate that powerful governors in fast-growing regions are able to capture some of the growth as rents for themselves and the economic networks. As a consequence, it could be that these governors are developing additional power resources. Unfortunately, we are unable to test this bit of speculation in the current version of this paper, although we hope to do so in subsequent drafts.

Robustness Checks

We run several tests in order to check the robustness of our results. We tried controlling for a electoral variables in our tests of elite strength and vice versa to make sure that the mechanisms we attribute to powerful elites are not byproducts of these elites' ability to deliver votes or that electoral variables were simply correlated with strong governors. Interestingly when we control for the vote share of United Russia our measure of governor's regional executive experience becomes insignificant, indicating that regional experience effects growth in transfers only through its effect on vote shares. Unlike the variable for regional executive experience, however, the number of years a governor worked in the region remains robust to controling for electoral variables. We also controlled for the share of regional tax revenue relative to total income, and the results remained the same. In additional robustness checks we also tried excluding regions which may be considered outliers (e.g. Moscow city and St. Petersburg). Our results remain robust to all of these permutations.

We also speculated in Section 3 of this paper that there may be variation in the strategic calculus of Putin's government prior to the 2003 Kozack reforms. We recognize that doing so imperils our results, since the resulting time period of analysis is quite short. When we dropped the years prior to 2003 from the sample in order to test whether our results were robust to the exclusion of the pre-Kozacks reform time periods, we find that some results lose significance. We find robust results for the UR vote share in terms of total transfers only (see Appendix 2, Table 11). The vote margin, opposition dominance, and elites strength indicators are insignificant, however. Using our measure of discretionary transfers our results for years of work remain robust if we drop years prior to 2003, however (see Appendx 2, Table 14).

This later result is consistent with the growing role of FFSR in the total budget as a means of curtailing the power of the elite, even as discretionary transfers continued in a diminished state. Since the Kozacks reforms took place in 2003, these findings are also consistent with the notion that repression of one group (in this case elites) decreases the importance of that group in decisions to allocate future transfers. We speculate that the Kozack reforms and the repression of elite capabilities taken during and after them may have altered the strategic calculus of the center (as discussed in section 3 of the paper). If this is the case, then the co-efficients from before and after the reforms may differ, as may which indicators are significant predictors of growth in transfers. We are cautious about these results, however, due to the short time period analyzed. We hope to acquire pre-2000's data that will allow us to split our sample into appropriate sub-samples in order to analyze whether there is some period specific effect (probably related to the Kozacks reform) or simply the result of loss of consistency from too few year observations.

Conclusions

In this paper, we advance an argument and a series of predictions about the tradeoffs that autocratic regimes make between targeting transfers towards elites and the population as a whole. We argue that elites with autonomous power resources, here mostly measured as deep connections to their region and especially its executive branch, should receive transfers from the federal government, as should swing voters. We also argue that because the government can count on economic growth to help it generate passive support amongst the populace, both the threat of elite defection and of popular upheaval diminish in areas that experience high rates of economic growth. As a consequence, we predict that the influence that political considerations have on transfers in faster growing regions will be lower, in general, in areas with higher growth rates. We assume that autocrats put their money where their mouths are when it comes to threats to their rule and test these arguments using data on Russian federal-regional transfers between 2001 and 2008 and a novel dataset of regional executive characteristics.

Our statistical tests provide mixed support for our hypotheses. On the one hand, we find that for 50% of regions, there is a core voter, rather than a swing voter effect. Rather than aiming transfers at areas of voter dissatisfaction, the region instead aims transfers at its supporters amongst the population. In addition, we find that powerful regional governors are likely to get more, not fewer, transfers if they govern fast growing regions. On the other hand, we find that powerful regional governors are more likely to receive transfers, overall. Likewise, we find some evidence that the effect of transfers are attenuated by growth, since the rewards for voting for Putin or his party, United Russia, in the richest regions are much smaller than the rewards for voting for the same groups in slower growing regions.

We also advance the view that the nature of transfers should fundamentally depend on the willingness of autocrats to engage in repression, which can degrade the degree to which other actors pose a threat to the regime and thus lower expected transfers for those actors. While our sample is unfortunately too short at the moment to conduct proper tests for differences in the effects of our variables of interest before and after the Kozacks reforms, we find very limited evidence that the effect holds throughout the period. In particular, our measures of government strength are not significant for the period after 2004 for total transfers, although some of them remain so for discretionary transfers.

This study leaves a lot of questions unanswered. First, the inability to use proper period effects makes it difficult to make inferences about the effects of repression of elites, as well as to understand how institutional changes influenced subsequent decisions about the magnitude of growth in transfers. Second, although it has shed some light on the tradeoffs that autocrats face between awarding transfers to elites versus to the populace, it does so within the context of

relatively good economic times. We argue earlier in the paper that governments will feel more pressure to transfer to the populace when economic conditions are bad and it begins effecting support for the regime. Generally high economic growth and vast improvements in living standards for the majority of Russian in the 2000's means that there were few opportunities for regional elites to use economic dissatisfaction to threaten the central government. Moreover, while resources were abundant in this period, it is not clear if the Putin government would have made similar choices had resources been constrained. Consequently it is hard to test how the Russian government reacts to bad economic times. Only in 2009, during the global financial downturn, would it be possible to understand how decreased economic performance influences the center's strategies. Unfortunately the global financial crisis of 2008-2009 is too recent for much of the data required to gauge the effects of the crisis to have been released. Finally, this paper primarily focuses on a single country in order to take advantage of high quality data on transfers and regional executives, as well as to hold institutional features constant. Nevertheless, the peculiarities of the Russian system of government, as well as its relative young age, may mean that the insights gleaned here do not travel well to systems outside of a very particular type of dominant party system. Future work that could test the insights gleaned here in a crossnational setting would be a useful extension of the work.

Bibliography

- Acemoglu, D., & Robinson, J. A. (2005). Economic Origins of Dictatorship and democracy. New York: Cambridge University Press.
- Arellano M., and S. Bond. 1991. Some tests of specification for panel data: Monte Carlo evidence and an application to employment equations. Review of Economic Studies 58: 277-97.23:44
- Baum, C.F., Schaffer, M.E., & Stillman, S. (2010). ivreg2: Stata module forextended instrumental variables/2SLS, GMM and AC/HAC, LIML and k-class regression. http://ideas.repec.org/c/boc/bocode/s425401.html
- Baum, C.F., Schaffer, M.E. (2007). Enhanced routines for instrumental variables/GMM estimation and testing. Boston College Economics Working Paper No. 667. Bellin 2002
- Boix, C., & Svolik, M. (2009). The Foundations of Limited Authoritarian Government: Institutions and Power-Sharing In Dictatorships. Retrieved from Social Science Research Network: http://ssrn.com/abstract=1352065
- Blaydes. L. (2010). Elections and Distributive Politics in Mubarak's Egypt. Cambridge, Cambridge University Press.
- Blundell, R., & Bond, S. (1998). Initial conditions and moment restrictions in dynamic panel data models. Journal of Econometrics 87: 11-143.
- Boix, C. & Stokes, S.C. (2003). Endogenous Democratization. World Politics, 55 (4), 517-549.
- Bratton, M. & Van de Walle, N. (1992). Popular Protest and Political Reform in Africa. Comparative Politics, 24 (4), 419-442
- Brownlee, J. (2007). Authoritarianism in an Age of Democracy. New York: Cambridge University Press.

- Bueno de Mesquita, B., Smith, A., Siverson, R. M., & Morrow, J. D. (2003). *The Logic of Political Survival*. Cambridge: MIT Press.
- Bunce, V. & Wolchik, S.L. (2011). *Defeating Authoritarian Leaders in Postcommunist Countries*. Cambridge: Cambridge University Press.
- Cheibub, J., Jennifer G., & Vreeland J. (2009). Democracy and Dictatorship Revisited. *Public Choice*. 143, 67-101.
- Cox G. & McCubbins M. (1986). Electoral Politics in a Redistributive Game. Journal of Politics, 48, 370-89.
- Cox, G.W. (2010). "Swing voters, core voters, and distributive politics". in I. Shapiro, S. C. Stokes, E. J. Wood, & A. S. Kirshner (*Eds.*), Political representation (pp. 342-357). Cambridge, England: Cambridge University Press.
- Davenport, C. (2007). State Repression and the Tyrannical Peace. *Journal of Peace Research*, 44 (4), 485-504.
- Desai, R. M., Ologsgard, A., & Yousef, T. (2009). The Logic of Authoritarian Bargains. *Economics and Politics*, 21(1), 93-125.
- Di Palma. G. (1991) Legitimation from the Top to Civil Society: Politico-Cultural Change in Eastern Europe. World Politics, 44 (1), 49-80.
- Dixit, A. & Londregan, J. (1996). The Determinants of Success of Special Interests in Redistributive Politics. *Journal of Politics*, 58, 1132-55.
- Diamond, L. (2002) Thinking about hybrid regimes. Journal of Democracy, 13, 21-35.
- Diaz-Cayeros, A., F. Estevez, and B. Magaloni (2010). From Clientalism to Entitlements: The Politics of Social Transfers in Mexico, 1989-2006. Mimeo. Available at: www.stanford.edu/~albertod/buyingvotes/buyingvotes.html
- Diaz-Cayeros, A. (2008). Electoral Risk and Redistributive Politics in Mexico and the United States. *Studies in Comparative International Development*, 43, 129-150
- Duch, R. and Stevenson, R. (2006) Assessing the Magnitude of the Economic Vote over time and Across Nationas. *Electoral Studies*, 25, 528-47.
- Filippov, M., Ordeshook, P. C., & Shvetsova, O. (2004). *Designing Federalism: A Theory of Self-Sustainable Federal Institutions*. Cambridge: Cambridge University Press.
- Gandhi, J. (2008). *Political Institutions Under Dictatorship*. New York: Cambridge University Press.
- Gandhi, J., & Przeworski, A. (2006). Cooperation, Cooptation, and Rebellion under Dictatorships. *Economics and Politics*, 18, 1-26.
- Gasiorowski.M. (1995). Economic Crisis and Political Regime Change: An Event History Analysis. *American Political Science Review*, 89, 882-97.
- Geddess, B. (1999). What do we Know about Democratization After Twenty Years?. *Annual Review of Political Science*, 2, 115-144.
- Gehlbach, S. & Keefer, P. (2011) Investment without Democracy: Ruling-party Institutionalization and Credible Commitment in Autocracies. *Journal of Comparative Econoimcs* 39, 123-139.
- Haber, S. H. (2007). Authoritarian Regimes. In B. R. Weingast, & D. Wittman (Eds.), *The Oxford Handbook of Political Economy* (pp. 693-707). New York: Oxford University Press.
- Haber, S., Maurer, N., & Razo, A. (2003). *The Politics of Property Rights: Political Instability, Credible commitments, and Economic Growth in Mexico, 1876-1929.* Cambridge: Cambridge University Press.
- Haggard, S. & Kaufman, R.R. (1997). The Political Economy of Democratic Transitions. *Comparative Politics* 29 (3): 263-283.
- Jarocinska, E. (2010). Intergovernmental Grants in Russia: Vote-buying or Bargaining Power of Regions. *Economics of Transition*, 18 (2), 405-427.
- Kuran, T. (1991). Now out of Never: The Element of Surprise in the East European Revolution of 1989. *World Politics*, 44 (1), 7-48.

Lane, D. (2008). From chaotic to state-led capitalism. New Political Economy, 13 (2), 177-184.

- Levitsky, S., & Way, L. (2010). Competitive Authoritarianism: Hybrid Regimes After the Cold War. New York: Cambridge University Press.
- Lewis-Beck, M. (1988). *Economics and Elections: The Major Western Democracies*. Ann Arbor: University of Michigan Press.
- Lewis-beck, M. & Stegmaier, M. (2000). "Economic Determinants of Electoral Outcomes". Annual Review of Political Science. 3: 183-219.
- Lust-Okar, E. (2006). Elections Under Authoritarianism: Preliminary Lessons from Jordan. *Democratization*, 13 (3), 456-471.
- Lust-Okar, E. (2005). Structuring Conflict in the Arab World: Incumbents, Opponents, and Institutions. New York: Cambridge University Press.
- Magaloni, B. (2006). *Voting for Autocracy: Hegemonic Party Survival and its Demis in Mexico*. New York: Cambridge University Press.
- Magaloni, B. (2008). Credible Power-Sharing and the Longevity of Authoritarian Rule. *Comparative Political Studies*, 41 (4-5), 715-741.
- Mikhailova, T. (2005). The Legacy of Soviet Location Policy in Russian Energy Consumption, Productivity, and Growth. *Mimeo*. Cambridge, MA: Davis Center for Russian and Eurasian Studies.
- Popov, V. (2004). Fiscal Federalism in Russia: Rules Versus Electoral Politics. Comparative Economic Studies, 44 (4), 515-541.
- Reuter, O. J. (2010). "The Politics of Dominant Party Formation: United Russia and Russia's Governors". *Europe-Asia Studies*, 62 (2), 293-327.
- Reuter, O.J. & Gandhi, J. (2011). Economic Performance and Elite Defection from Hegemonic Parties. *British Journal of Political Science*, 41 (1), 83-110.
- Reuter, O.J. & G. B. Robertson. (2011). Sub-national Appointments in Authoritarian Regimes: Evidence from Russian Gubernatorial Appointments. *Mimeo*.
- Reuter, O.J. & Remington, T.F. (2009). Dominant Party Regimes and the Commitment Problem: the Case of United Russia. *Comparative Political Studies*, 42 (4), 501-526.
- Robertson, G. (2010). The Politics of Protest in Hybrid Regimes: Managing Dissent in Post-Communist Russia. New York: Cambridge University Press.
- Rodman D. (2006) How to Do xtabond2: An Introduction to "Difference" and "System" GMM in Stata. WP No 103. Center for Global Development.
- Sjoberg, F. (2012). Competitive Elections in Authoritarian States: Weak States, Strong Elites, and Fractional Societies in Central Asia and Beyond. Ph.D Dissertation, Uppsala University
- Skocpol, T. (1979). States and Social Revolutions: A Comparative Analysis of France, Russia, and China. New York: Cambridge University Press.
- Smith, B. (2005). Life of the Party: The Origins of Regime Breakdown and Persistence under Single-Party Rule. *World Politics* 57 (3), 421-451.
- Stock, J.H., Watson, M.W. (2006). Heteroskedasticity-Robust Standard Errors for Fixed Effects Panel Data Regression. *NBER Technical Working Papers* 0323.
- Svolik, M. (2009). Power-Sharing and Leadership Dynamics in Authoritarian Regimes. American Journal of Political Science. 53 (2), 477-494.
- Treisman, D. (2011). "Presidential Popularity in a Hybrid Regime: Russia Under Yeltsin and Putin". *American Journal of Political Science*. 55 (3), 590-609.
- Treisman, D. (1998). Fiscal Redistribution in a Fragile Federation: Moscow and the Regions in 1994. *British Journal of Political Science*, 28, 185-222.
- Treisman, D. (1996). The Politics of Intergovernmental Transfers in Post-Soviet Russia. *British Journal of Political Science*, 26, 299-335.
- Tucker, J. (2007). Enough! Electoral Fraud, Collective Action Problems, and Post-Communist Colored Revolutions. *Perspectives on Politics*, 5 (3), 535-551.

- Weingast, B. R. (1997). The Political Foundation of Democracy and the Rule of Law. *The American Political Science Review*, 91 (2), 245-263
- Wintrobe, R. (1990). The Tinpot and the Totalitarian: An Economic Theory of Dictatorship. *American Political Science Review*, 84(3), 849-872.
- Wintrobe, R. (1998). *The Political Economy of Dictatorship*. New York: Cambridge University Press.
- Yakovlev, A, (2006). The evolution of business state interaction in Russia: From state capture to business capture? *Europe-Asia Studies* 58, 7, pp. 1033–1056.

Share of the FFSR grants in	2000 2004	2005 2008	2000
total transfers	2000-2004	2003-2008	2009
Mean	0.489	0.346	0.262
Min	0	0	0
Max	0.993	0.817	0.760
Std. dev. Overall	0.285	0.230	0.203
Std. dev. Between	0.257	0.219	0.203
Std. dev. Within	0.126	0.0731	0

Table 1: Descriptive statistics for the dynamics of the FFSR grants in total transfers

Tuble 2: Estimation resu	its for total	ti ansiti s,	2000 2000, (labies					
Dependent variable =	(1)	(2)	(2)		(\mathbf{r})		(7)	(0)	(0)	(10)
D.transtpercapita	(1)	(2)	(3)	(4)	(5)	(6)	(/)	(8)	(9)	(10)
Right-hand side variables:										
L.gdpgrowth	-42.20	218.1***	-42.04	67.54*	-43.26	66.23**	-47.53*	231.1***	-34.97	-162.7***
	(41.93)	(62.71)	(39.11)	(38.58)	(39.90)	(33.20)	(27.24)	(30.13)	(39.48)	(46.74)
L.reg_grpcapdefl	-0.632***	-0.104	-0.637***	-0.160	-0.638***	-0.108	-0.995***	0.0418	-0.668***	-0.0307
	(0.232)	(0.111)	(0.205)	(0.148)	(0.213)	(0.153)	(0.276)	(0.0608)	(0.221)	(0.111)
L.cross_term		-768.1***		-615.8***		-513.8***		-384.5***		1,042***
		(149.9)		(140.6)		(98.49)		(46.95)		(297.3)
L.urvote	-2.994	59.56***								
	(7.003)	(13.04)								
L.urbaniz	19.76	23.61	17.22	40.66	24.00	36.53	33.05	4.042	18.44	74.44
	(33.02)	(34.97)	(31.79)	(39.70)	(32.36)	(34.45)	(33.22)	(10.72)	(30.63)	(56.90)
L.reg_empbudgsect	-1.022	-1.557**	-1.057	-1.875**	-1.082	-1.463**	-1.037	-0.185	-0.778	-0.888
	(1.232)	(0.684)	(1.204)	(0.810)	(1.207)	(0.732)	(1.209)	(0.298)	(1.269)	(0.793)
L.reg_sharebef18	1.508	-0.254	1.388	-0.300	1.419	-0.371	0.779	-0.0225	1.044	-0.597
	(1.006)	(0.572)	(0.991)	(0.663)	(0.991)	(0.675)	(1.136)	(0.325)	(1.121)	(1.002)
L.reg_sharepens	4.418	1.221	4.377	1.979	4.487	1.590	5.583	-0.108	3.684	1.416
	(3.185)	(1.927)	(3.040)	(2.190)	(3.060)	(2.050)	(3.648)	(0.841)	(3.123)	(1.372)
L.bureaucrats	0.00197**	6.64e-05	0.00194**	0.000540	0.00197**	0.000179	0.00331***	-0.000194	0.00208**	-0.000150
	(0.000851)	(0.000440)	(0.000754)	(0.000476)	(0.000788)	(0.000523)	(0.000972)	(0.000220)	(0.000814)	(0.000389)
d2004	5.363**	-1.302	6.453***	-1.523	6.404**	-2.455	5.803**	-1.495***	8.026**	-3.093*
	(2.496)	(1.256)	(2.391)	(1.533)	(2.544)	(1.555)	(2.539)	(0.570)	(3.281)	(1.849)
d2005	10.42**	0.772	11.53***	0.535	11.49***	-0.651	15.26***	-0.810	12.97***	-2.316
	(4.144)	(1.784)	(3.843)	(2.170)	(4.007)	(2.185)	(5.537)	(1.128)	(4.768)	(2.454)
d2006	10.88***	-0.468	12.05***	-0.357	11.97***	-1.764	16.12***	-1.959	13.49***	-3.185
	(4.099)	(1.934)	(3.776)	(2.553)	(3.930)	(2.566)	(5.781)	(1.251)	(4.735)	(2.761)
d2007	16.46***	1.725	17.55***	2.020	17.51***	0.0862	23.54***	-0.741	19.12***	-2.500
	(5.712)	(2.575)	(5.216)	(3.228)	(5.424)	(3.279)	(7.481)	(1.595)	(6.249)	(3.506)
d2008	20.26**	4.883*	23.64***	5.012	22.62***	1.757	27.85***	-0.664	22.75***	-3.027
	(7.870)	(2.867)	(7.725)	(3.839)	(7.813)	(3.825)	(9.122)	(1.795)	(8.131)	(3.963)

Table 2: Estimation results for total transfers, 2003-2008, electoral variables

Dependent variable = D.transfpercapita	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)
Right-hand side variables:										
L.margind			-10.22	46.18***						
			(6.875)	(12.92)						
L.opdom_duma					-7.551	40.98***				
					(6.635)	(9.532)				
L.wpshare							-17.59	26.81***		
							(14.59)	(5.568)		
L.kdshare									29.71*	-73.89***
									(16.05)	(22.35)
Observations	544	539	544	539	544	539	546	541	544	539
Number of clusters	78	78	78	78	78	78	78	78	78	78
Hansen J OverID	7.010	2.505	7.133	2.121	7.196	2.229	5.339	1.417	5.792	0.763
Hansen p-value	0.00811	0.113	0.00757	0.145	0.00731	0.135	0.0209	0.234	0.0161	0.382
Anderson-Rubin Chi2 test	181.7	188.6	184.2	192.6	180.1	187.6	187.4	189.4	182.4	188.6
A-R Chi2 p-value	0	0	0	0	0	0	0	0	0	0
Stock-Wright LM S stat	5.510	10.24	5.619	9.010	5.530	11.94	4.136	5.411	5.563	8.042
LM S p-value	0.138	0.0366	0.132	0.0609	0.137	0.0178	0.247	0.248	0.135	0.0901

Cluster-robust standard errors in parentheses *** p < 0.01, ** p < 0.05, * p < 0.1. D denotes the first difference, L denotes the first lag. "e" means "*10".

Dependent variable =				or of the more	<u>, , , , , , , , , , , , , , , , , , , </u>	stress ener		12 , 0005 5Hu				
D.transfpercapita	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)
Right-hand side variables:												
L.gdpgrowth	-12.75	-6.227	-15.23	-5.550	-32.75***	-131.7***	-50.77	-185.0***	-28.58**	-69.33***	-48.95	-50.97
	(12.43)	(29.31)	(12.86)	(30.13)	(12.41)	(25.42)	(38.75)	(42.19)	(12.28)	(17.21)	(42.98)	(39.60)
L.reg_grpcapdefl	-0.319***	0.00777	-0.329***	0.0105	-0.633***	-0.0335	-0.664***	-0.0792	-0.602***	-0.155	-0.691**	-0.0144
	(0.119)	(0.0160)	(0.123)	(0.0129)	(0.147)	(0.113)	(0.221)	(0.138)	(0.140)	(0.217)	(0.270)	(0.248)
L.cross_term		53.64		50.99		14.39***		18.28***		201.7***		583.2
		(72.46)		(74.23)		(2.259)		(4.362)		(42.83)		(428.6)
L.share_bad	-2.851**	-2.927	-2.653**	-2.615								
	(1.330)	(4.128)	(1.266)	(4.192)								
L.urbaniz	30.33***	7.279	30.11***	7.007	23.52	-16.80	16.86	-31.81	26.12	-16.94	23.59	17.81
	(9.324)	(6.197)	(9.284)	(5.960)	(21.68)	(22.61)	(31.85)	(40.87)	(21.79)	(16.38)	(35.21)	(59.47)
L.reg_empbudgsect	-0.595**	-0.0385	-0.602**	-0.0213	-1.184	-1.013**	-1.085	-1.476**	-1.346*	-0.203	-1.291	1.296
	(0.289)	(0.106)	(0.289)	(0.104)	(0.832)	(0.454)	(1.240)	(0.693)	(0.765)	(0.572)	(1.364)	(1.684)
L.reg_sharebef18	0.196	0.0650	0.237	0.0963	0.637	-0.336	1.601*	-0.233	0.348	-0.0561	1.584	-1.546
	(0.184)	(0.107)	(0.172)	(0.0986)	(0.756)	(0.791)	(0.967)	(1.101)	(0.733)	(0.463)	(1.072)	(1.791)
L.reg_sharepens	3.945***	0.295	4.062***	0.266	5.151**	1.938*	4.785	2.831*	5.226**	2.885*	4.134	3.515
	(1.477)	(0.278)	(1.531)	(0.247)	(2.150)	(1.095)	(3.127)	(1.636)	(2.108)	(1.678)	(3.633)	(2.501)
L.bureaucrats	0.000836**	-0.000121**	*0.000862**	-0.000133**	*0.00197***	0.000123	0.00209**	0.000326	0.00182***	0.000370	0.00218**	-0.000690
	(0.000356)	(4.54e-05)	(0.000364)	(4.29e-05)	(0.000597)	(0.000453)	(0.000826)	(0.000558)	(0.000567)	(0.000778)	(0.000959)	(0.00134)
d2004	2.035**	-0.526**	1.863*	-0.661***	4.054***	-1.776	5.935***	-1.592	3.592**	1.183	5.687**	-0.608
	(1.019)	(0.221)	(0.972)	(0.185)	(1.400)	(1.196)	(2.296)	(2.058)	(1.404)	(1.364)	(2.731)	(2.855)
d2005	4.767***	0.103	4.709***	-0.0253	8.838***	-0.278	11.31***	0.420	8.027***	3.032	11.06**	-1.480
	(1.820)	(0.290)	(1.800)	(0.244)	(2.291)	(1.849)	(3.828)	(2.660)	(2.281)	(2.357)	(4.596)	(5.078)
d2006	5.116***	0.121	5.067***	0.000256	9.636***	-0.615	11.72***	-0.0281	8.780***	2.716	11.51**	-0.762
	(1.907)	(0.332)	(1.892)	(0.270)	(2.343)	(2.333)	(3.787)	(3.143)	(2.352)	(2.635)	(4.626)	(4.932)
d2007	7.220***	0.207	7.282***	0.0926	13.84***	-1.492	17.62***	-0.464	12.58***	4.327	17.72***	-2.483
	(2.722)	(0.466)	(2.732)	(0.393)	(3.568)	(3.189)	(5.311)	(4.264)	(3.503)	(3.937)	(6.363)	(7.543)
d2008	8.237**	-0.00325	7.610**	-0.479	16.61***	-2.599	21.78***	-2.403	15.01***	4.806	21.86**	-1.716
	(3.220)	(0.527)	(3.091)	(0.434)	(4.670)	(3.788)	(7.461)	(5.842)	(4.528)	(4.728)	(8.593)	(8.653)

Table 3: Estimation results for total transfers, 2003-2008, governors' variables (with robustness check for the UR votes share)

Dependent variable =												
D.transfpercapita	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)
Right-hand side variables:									. ,		× /	
L.urvote			2.999*	1.435**			-3.434	2.673			-2.282	-10.54
			(1.675)	(0.687)			(6.963)	(5.584)			(6.776)	(12.20)
L.reg_yrswork					0.00274	-0.907***	0.0581	-1.166***				
					(0.0707)	(0.186)	(0.0960)	(0.307)				
L.reg_executive_expimmprion	r								-1.933	-14.27***	0.916	-38.19
									(1.568)	(3.203)	(2.666)	(28.16)
Observations	443	438	443	438	546	541	544	539	546	541	544	539
Number of clusters	65	65	65	65	78	78	78	78	78	78	78	78
Hansen J OverID	2.152	2.897	2.357	3.021	4.595	1.716	7.161	1.015	3.662	0.613	7.272	0.0865
Hansen p-value	0.142	0.0887	0.125	0.0822	0.0321	0.190	0.00745	0.314	0.0557	0.434	0.00700	0.769
Kleibergen-Paap UnderID	0.577	3.591	0.545	3.342	2.622	2.946	3.570	8.814	2.365	1.343	3.574	2.860
UnderID p-value	0.749	0.166	0.761	0.188	0.269	0.229	0.168	0.0122	0.306	0.511	0.167	0.239
Weak ID test	0.195	1.091	0.183	1.006	1.870	0.839	4.082	1.652	1.742	0.533	4.084	0.414
Anderson-Rubin Chi2 test	38.46	39.34	36.66	38.84	213.9	214.9	173.6	177.3	220.6	220.0	181.4	182.8
A-R Chi2 p-value	2.26e-08	5.93e-08	5.43e-08	7.51e-08	0	0	0	0	0	0	0	0
Stock-Wright LM S stat	11.95	14.67	11.65	14.85	6.057	6.618	5.611	6.365	5.508	5.424	5.452	5.532
LM S p-value	0.00756	0.00544	0.00867	0.00502	0.109	0.157	0.132	0.173	0.138	0.246	0.142	0.237

Cluster-robust standard errors in parentheses *** p < 0.01, ** p < 0.05, * p < 0.1. D denotes the first difference, L denotes the first lag. "e" means "*10".

Table 4: Estimation resu	its for discr	euonary no	on-FFSK (ra	ansiers, 200	15-2008, elec	ctoral varia	idies			
Dependent variable =	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)
Direct per cupital Direct per cupital Direct per cupital	(1)	(2)	(3)	(+)	(3)	(0)	(/)	(0)	(\mathcal{I})	(10)
Right-hand side variables.										
L.gdpgrowth	-43.78***	94.37***	-43.35***	30.71	-43.44***	35.83*	-27.22**	151.0***	-40.09***	-108.1***
	(8.893)	(31.65)	(9.349)	(19.79)	(9.111)	(19.98)	(12.38)	(16.59)	(9.785)	(14.22)
L.reg_grpcapdefl	-0.531**	-0.0513	-0.523**	-0.0849	-0.525**	-0.0584	-0.713***	0.0225	-0.460**	0.0114
	(0.207)	(0.0405)	(0.212)	(0.0534)	(0.211)	(0.0496)	(0.199)	(0.0151)	(0.205)	(0.0445)
L.cross_term		-301.6***		-228.0***		-215.9***		-239.0***		722.7***
		(58.48)		(48.40)		(43.42)		(20.78)		(180.0)
L.urvote	1.544	24.49***								
	(5.316)	(5.005)								
L.urbaniz	14.20	12.85	15.26	16.65	17.25	18.34	32.30	5.871	9.947	50.97
	(23.71)	(15.02)	(25.09)	(15.83)	(24.35)	(14.78)	(24.81)	(8.313)	(23.10)	(31.20)
L.reg empbudgsect	-1.683*	-0.749***	-1.757*	-0.907***	-1.723*	-0.770**	-1.828	-0.234*	-1.390	-0.644*
	(0.884)	(0.290)	(0.931)	(0.318)	(0.924)	(0.310)	(1.153)	(0.141)	(0.947)	(0.339)
L.reg sharebef18	0.845	-0.0503	0.860	-0.0322	0.849	-0.119	0.152	0.0590	0.697	-0.436
	(0.610)	(0.280)	(0.624)	(0.300)	(0.619)	(0.295)	(0.879)	(0.247)	(0.678)	(0.495)
L.reg_sharepens	4.912*	0.645	4.879*	1.006	4.849*	0.780	5.867	-0.234	3.698	0.313
	(2.730)	(0.867)	(2.748)	(0.916)	(2.739)	(0.842)	(3.720)	(0.357)	(2.522)	(0.555)
L.bureaucrats	0.00158**	7.32e-06	0.00152**	0.000260	0.00155**	8.04e-05	0.00220***	-0.000143	0.00134**	-0.000207
	(0.000687)	(0.000182)	(0.000701)	(0.000200)	(0.000699)	(0.000197)	(0.000600)	(0.000116)	(0.000662)	(0.000212)
d2004	4.218***	-0.789	4.756***	-0.721	4.685***	-1.304	4.265***	-0.960***	6.007***	-2.600*
	(1.070)	(0.793)	(1.168)	(0.884)	(1.202)	(0.938)	(1.617)	(0.285)	(2.047)	(1.367)
d2005	8.596***	0.391	9.098***	0.598	9.023***	-0.176	10.23***	-0.731	9.862***	-2.212
	(1.940)	(1.119)	(2.071)	(1.317)	(2.056)	(1.351)	(3.382)	(0.730)	(2.930)	(1.810)
d2006	8.918***	0.00787	9.425***	0.327	9.327***	-0.574	11.18***	-1.399**	9.928***	-3.018*
	(2.604)	(0.990)	(2.726)	(1.241)	(2.699)	(1.269)	(3.734)	(0.628)	(3.633)	(1.730)
d2007	13.20***	0.987	13.65***	1.520	13.58***	0.420	15.74***	-0.302	13.99***	-2.264
	(3.040)	(1.451)	(3.224)	(1.767)	(3.186)	(1.760)	(4.270)	(0.736)	(4.054)	(2.280)
d2008	15.02***	1.847	16.61***	2.316	16.28***	0.731	18.14***	-0.557	16.35***	-3.038
	(3.690)	(1.536)	(4.395)	(1.963)	(4.210)	(1.960)	(4.782)	(0.873)	(5.095)	(2.599)

Table 4: Estimation results for discretionary non-FFSR transfers, 2003-2008, electoral variables

Den en dent erenielele -										
Dependent variable =	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)
Right-hand side variables.	(1)	(2)	(3)	(1)	(5)	(0)	(\prime)	(0)	())	(10)
			2 522	17 00***						
L.margind			-2.523	17.89***						
			(5.175)	(4.457)						
L.opdom_duma					-1.765	17.95***				
					(4.808)	(4.113)				
L wpshare					· /	× /	-6.964	18.60***		
····F-····							(9.175)	(4.606)		
I kdshare							().175)	(4.000)	10 20*	_57 75***
L.Kushare									(11.67)	-32.23
									(11.07)	(14.70)
Observations	544	539	544	539	544	539	546	541	544	539
Number of clusters	78	78	78	78	78	78	78	78	78	78
Hansen J OverID	2.764	2.657	3.179	2.151	3.069	1.902	1.603	0.938	3.211	0.379
Hansen p-value	0.0964	0.103	0.0746	0.142	0.0798	0.168	0.205	0.333	0.0732	0.538
Anderson-Rubin Chi2 test	715.4	715.1	749.2	748.2	727.9	694.6	317.8	348.8	784.4	802.2
A-R Chi2 p-value	0	0	0	0	0	0	0	0	0	0
Stock-Wright LM S stat	5.154	5.172	5.316	8.111	5.191	8.093	3.212	3.092	5.365	5.370
LM S p-value	0.161	0.270	0.150	0.0876	0.158	0.0882	0.360	0.542	0.147	0.251

Cluster-robust standard errors in parentheses *** p<0.01, ** p<0.05, * p<0.1. D denotes the first difference, L denotes the first lag. "e" means "*10".

Table 5: Estimation results for discretionary non-FFSR transfers, 2003-2008, governors' variables (with robustness check for the UR votes share)												
Dependent variable = D.restpercapita Right-hand side variables:	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)
L.gdpgrowth	-24.48	29.04	-28.15	28.56	-14.39*	-107.0***	-42.20***	-107.8***	-10.84	-46.93***	-39.37***	-53.99*
L reg_grncandefl	(21.75) -0 396**	(28.43) -0.00792	(18.53) -0 409***	(26.12) -0.00797	(8.432) -0 557***	(22.41) 0 0499	(8.358) -0.523**	(11.74) 0.0356	(9.682) -0.546***	(9.353) 0.00810	(8.755) -0 543***	(31.07) 0.183
2	(0.177)	(0.0180)	(0.155)	(0.0159)	(0.115)	(0.0537)	(0.210)	(0.0566)	(0.103)	(0.0299)	(0.172)	(0.143)
L.cross_term		-54.38 (77.06)		-53.89 (68.23)		12.61*** (1.528)		11.11*** (2.916)		128.1*** (16.04)		505.6 (317.4)
L.share_bad	-4.526*	3.056	-4.352**	3.071				~ /		. ,		~ /
L.urbaniz	(2.429) 35.43**	(4.100) 3.307	35.26***	3.165	29.48	-15.62	14.77	-22.86	30.53	-18.92*	19.02	-3.760
L.reg empbudgsect	(14.56) -0.608	(4.374) 0.0417	(12.41) -0.607*	(4.831) 0.0427	(20.66) -1.480	(22.55) -0.785**	(24.24) -1.618*	(20.23) -0.794**	(20.68) -1.516*	(10.94) -0.0832	(23.79) -1.821**	(54.10) 1.448
	(0.414)	(0.0697)	(0.340)	(0.0712)	(0.914)	(0.397)	(0.931)	(0.370)	(0.855)	(0.249)	(0.787)	(1.335)
L.reg_snarebet18	-0.0657 (0.270)	0.112 (0.107)	-0.0266 (0.210)	(0.121) (0.0973)	0.124 (0.729)	-0.346 (0.627)	0.820 (0.614)	-0.159 (0.525)	0.00264 (0.749)	0.171 (0.377)	(0.611)	-1.010 (1.376)
L.reg_sharepens	4.688** (2.337)	0.415 (0.263)	4.794** (2.017)	0.428*	4.725* (2.651)	0.609	4.605 (2.813)	0.677 (0.713)	4.808* (2.801)	0.499 (0.480)	5.013* (2.596)	0.398
L.bureaucrats	0.00107**	-1.79e-05	0.00111**	-2.01e-05	0.00168***	-0.000159	0.00156**	-8.36e-05	0.00161***	-0.000105	0.00158***	-0.00111
d2004	(0.000518) 2.555*	(7.37e-05) -0.319*	(0.000454) 2.390**	(6.80e-05) -0.345*	(0.000367) 3.147***	(0.000314) -2.115***	(0.000690) 4.078***	(0.000302) -1.670	(0.000319) 2.939***	(0.000183) 0.355	(0.000583) 3.915***	(0.00116) -1.251
42005	(1.449) 5.770**	(0.166)	(1.185) 5 754**	(0.179)	(1.041)	(0.748)	(1.017) 8 256***	(1.227)	(1.117)	(0.601)	(0.907) 8 102***	(2.560)
42003	(2.714)	(0.370)	(2.292)	(0.350)	(1.654)	(1.084)	(1.873)	(1.634)	(1.760)	(0.827)	(1.486)	-2.008 (4.167)
d2006	5.969** (2.712)	0.326 (0.354)	5.933** (2.314)	0.304 (0.338)	7.811*** (1.877)	-1.908 (1.443)	8.630*** (2.563)	-1.352 (1.579)	7.471*** (1.952)	0.588 (0.932)	8.621*** (2.043)	-2.971 (4.156)
d2007	8.598**	0.609	8.720***	0.603	11.27***	-2.798	12.89***	-1.653	10.77***	2.032	12.74***	-4.275
d2008	(3.885) 9.522**	(0.460) 0.373	(3.330) 8.943**	(0.428) 0.242	(2.238) 13.01***	(1.823) -4.327**	(2.978) 14.80***	(2.454) -3.352	(2.269) 12.30***	(1.240) 1.612	(2.187) 14.40***	(5.728) -3.901
	(4.576)	(0.532)	(3.813)	(0.588)	(2.787)	(1.985)	(3.644)	(3.461)	(2.699)	(1.378)	(2.931)	(6.503)

L.urvote			3.129	0.471			1.204	1.991			1.771	-9.728
			(2.046)	(0.656)			(5.371)	(2.963)			(4.516)	(10.64)
L.reg_yrswork					-0.0343	-0.788***	-0.0192	-0.698***				
					(0.0777)	(0.138)	(0.0754)	(0.183)				
L.reg_executive_expimmprior									-2.796	-8.756***	-2.165	-32.13
									(2.301)	(1.371)	(2.261)	(20.86)
Observations	113	138	113	138	546	541	544	530	546	541	511	530
Observations	445	438	443	438	540	541	544	559	540	541	544	559
Number of clusters	65	65	65	65	78	78	78	78	78	78	78	78
Hansen J OverID	0.467	3.035	0.883	3.160	1.647	1.280	2.782	0.983	1.382	0.0105	2.384	0.0654
Hansen p-value	0.495	0.0815	0.347	0.0755	0.199	0.258	0.0953	0.322	0.240	0.918	0.123	0.798
Anderson-Rubin Chi2 test	12.36	16.29	12.34	14.83	618.8	619.6	714.3	721.5	528.8	525.4	709.8	731.2
A-R Chi2 p-value	0.00626	0.00266	0.00632	0.00507	0	0	0	0	0	0	0	0
Stock-Wright LM S stat	8.007	7.964	8.027	7.952	4.520	4.390	5.116	5.468	4.274	5.093	5.268	6.111
LM S p-value	0.0459	0.0929	0.0454	0.0933	0.210	0.356	0.164	0.243	0.233	0.278	0.153	0.191

Cluster-robust standard errors in parentheses *** p<0.01, ** p<0.05, * p<0.1. D denotes the first difference, L denotes the first lag. "e" means "*10".

Figure 1. FFSR as a share of Total Transfers Per Capita in 2000–2009 (current prices vs. fixed 2000 prices, CPI deflated). Source: Roskazna, Rosstat.

Marginal effects for Tables 2-3 (see below)

Figure 2. Marginal effect for the 1 percentage point change in United Russia votes share (urvote) in Duma elections

Figure 4. Marginal effect for the 1 percentage point change in Opposition Dominance (opdom_duma) in Duma elections

Figure 6. Marginal effect for the 1 percentage point change in KPRF votes share (kdshare) in Duma elections

Figure 3. Marginal effect for the 1 percentage point change in Votes Margin (margind) in Duma elections

Figure 5. Marginal effect for the 1 percentage point change in Votes for the President (wpshare) in Presidential elections

Figure 7. Marginal effects for the 1 year change in the number of years a governor worked in a region (reg_yrswork)

Figure 8. Marginal effects for the dummy variable = 1 if a governor has a prior executive experience in a region (reg_executive_expimmprior)

Appendix 1

Table 6: Summary statistics, 2003-2008, transfers.

	mean	min	max	sd
transfpercapita restpercapita	3.355635 1.845758	0 -0.1013048*	85.33772 69.93105	6.198232 4.357949
N	780			

* FFSR transfers exceed total transfers for Moscow Oblast (2003-2004) and for Belgorod Oblast (2004).

Table 7: Summary statistics, 2002-2007 (lagged by 1 period), electoral variables.

	n	mean	min	max	sd
urvote		.407851	.0695	.96	.1526672
margind		.2470801	0	.944	.1817312
opdom_duma		.267255	0	.9428	.1825684
wpshare		.6514058	.399	.9649	.1163458
kdshare		.147552	.0172	.4213	.0662496
 N	467				

Table 8: Summary statistics, 2002-2007 (lagged by 1 period), governors' variables.

	sum	mean	min	max	sd
share_bad		0.3588231	.030303	.84	.1586185
newgov_hse	27	0.0706806	0	1	.2566267
reg_yrswork		12.38482	0	33	8.272021
reg_execut~r	63	0.1649215	0	1	.3715964
 N	382				

Table 9: Summary statistics, 2003-2008 (lagged by 1 period), the GRP growth rate and control variables.

	mean	mın	max	sd
gdpgrowth	0.0681523	-0.228	0.42	0.0501069
urbaniz	0.3054006	0	1	0.206799
reg_empbud~t	17.2086	10.9	34.9	3.218925
reg_heduct~d	22.32801	13.7	48.5	4.828375
reg_share~18	17.37666	12.3	34.9	3.646832
reg_sharep~s	19.54472	6.6	26.9	4.532479
bureaucrats	1162.232	2.250365	67455.45	6625.641
N	407			

Table 10: Correla	uon	I Matrix for	the right-han	u side variad	ies în equati	011,2002-20	107 (lagged by	/ 1 period)
		urbaniz	reg_em~t	reg_he~d	reg_s~18	reg_sh~s	bureau~s	urvote
urbaniz	-+-	1.0000						
reg_empbud~t		-0.3279*	1.0000					
reg_heduct~d		0.3749*	-0.1188*	1.0000				
reg_share~18		-0.3193*	0.6432*	-0.1487*	1.0000			
reg_sharep~s		0.3185*	-0.5055*	0.0148	-0.8075*	1.0000		
bureaucrats		0.4783*	-0.2201*	0.6097*	-0.2045*	0.1127*	1.0000	
urvote		-0.1428*	0.2372*	0.1641*	0.0523	-0.0972*	-0.0532	1.0000
margind		-0.0879*	0.2266*	0.2000*	0.0273	-0.1004*	-0.0041	0.9510*
opdom_duma		-0.1265*	0.2323*	0.1871*	0.0097	-0.1205*	-0.0061	0.9690*
wpshare		-0.0820*	0.1890*	0.1703*	-0.0378	-0.0600	0.0110	0.5579*
kdshare		0.0263	-0.0990*	-0.1290*	0.1236*	0.1444*	-0.1113*	-0.5079*
_reg_yrswork		0.2119*	-0.0348	-0.0106	-0.0783*	0.0977*	0.0192	-0.0723
		margind	opdom_~a	wpshare	kdshare	reg_yr~k		
margind		1.0000						
opdom_duma		0.9628*	1.0000					
wpshare		0.5900*	0.6210*	1.0000				
kdshare		-0.5973*	-0.6767*	-0.5515*	1.0000			
reg_yrswork **p<0.1.	Ι	-0.0631	-0.0788*	-0.0429	0.0509	1.0000		

Table 10: Correlation matrix for the right-hand side variables in equation 1, 2002-2007 (lagged by 1 period)

Appendix 2

Dependent variable = (9) D.transfpercapita (1)(2) (3) (4) (5) (6) (7) (8) (10)Right-hand side variables: L.gdpgrowth -58.92*** -59.23*** -58.82*** -63.73*** 190.3** -117 4*** 149.4 58.40 49.32 -63 98*** (19.58)(117.6)(19.58)(83.29)(19.10)(84.90)(20.06)(82.18)(20.24)(31.46)-0.499*** -0.437*** -0.499*** -0.436*** -0 494*** -0.398*** -0.512*** -0.597*** -0.487*** -0.358*** L.reg grpcapdefl (0.102)(0.137)(0.102)(0.129)(0.104)(0.128)(0.115)(0.146)(0.109)(0.111)-301.5*** -392.3** -280.7* -245.8* 833.3 L.cross term (660.4) (177.1)(145.7)(133.2)(96.71) L.urvote 3.358 41.00* (11.52)(24.64)L.urbaniz 6.750 20.96 6.949 6.719 16.15 5.404 -2.799 16.20 23.32 25.07 (35.60)(37.71)(35.80)(38.55)(35.27)(36.76)(35.65)(38.03)(33.15)(42.76)-1.630** -1.570** -1.609** -1.505** -1.608** L.reg empbudgsect -1.655** -1.659** -1.548** -1.956** -0.744(0.697)(0.720)(0.735)(0.719)(0.795)(0.750)(0.750)(0.733)(0.695)(0.770)L.reg sharebef18 0.222 0.141 0.493 0.145 0.428 0.0689 0.308 -0.0567 2.173 -0.682 (1.129)(1.368)(1.100)(1.318)(1.135)(1.374)(1.180)(1.470)(1.042)(1.579)L.reg sharepens 7.237*** 6.472** 7.226*** 7.054*** 5.715** 7.123*** 8.351** 6.633*** 5.263*** 6.378** (2.678)(3.069)(2.699)(3.004)(2.654)(2.681)(2.672)(3.268)(2.569)(1.795)0.000357 0.00133*** 0.000469 0.00129*** L.bureaucrats 0.00136*** 0.000415 0.00136*** 0.000320 0.00142*** 9.08e-05 (0.000438) (0.000405)(0.000435) (0.000392)(0.000444)(0.000376) (0.000494)(0.000447) (0.000471)(0.000313)d2004 -8.447** -9.683** -7.780* -9.329** -12.03*** -8.197** -6.594** -7.666* -5.527 -6.849 (4.572)(3.040)(5.301)(4.249)(4.816)(3.812)(4.041)(3.806)(4.469)(3.260)d2005 -3.536 -2.117 -4.310 -3.475 -5.618* -4.571 -4.497* -7.093** -4.581* -3.823 (4.245)(3.911)(3.372)(3.589)(2.608)(2.483)(4.929)(4.400)(3.131)(2.627)d2006 -5.732* -4.713** -5.020** -5.157** -2.783 -3.615 -0.749 -4.391 -2.036 -3.590 (3.061)(2.341)(4.000)(3.515)(5.050)(3.638)(4.419)(2.104)(2.331)(2.090)-0.954 d2007 -0.302 1.337 -1.068 0.0552 -2.435 -1.558 -1.235 -0.850 -1.996* (3.282)(4.097)(2.917)(3.512)(2.235)(2.618)(1.117)(1.424)(1.192)(1.392)L.margind 0.364 25.76

Dependent variable =	(1)	(2)	(2)	(4)	(5)	(6)	(7)	(8)	(0)	(10)
	(1)	(2)	(3)	(4)	(3)	(0)	()	(8)	(9)	(10)
Right-hand side variables:										
			(8.809)	(19.08)						
L.opdom_duma					-4.662	17.56				
					(6.390)	(15.75)				
L.wpshare							-4.453	22.47		
							(11.47)	(18.34)		
L.kdshare									53.92**	-22.40
									(24.10)	(60.41)
										()
Observations	390	386	390	386	390	386	390	386	390	386
Number of clusters	78	78	78	78	78	78	78	78	78	78
Hansen J OverID	1.509	1.230	1.499	1.434	1.463	2.056	1.589	0.515	1.608	2.407
Hansen p-value	0.219	0.267	0.221	0.231	0.226	0.152	0.208	0.473	0.205	0.121
Anderson-Rubin Chi2 test	599.6	730.3	588.4	752.6	599.3	756.4	580.6	674.7	578.5	636.6
A-R Chi2 p-value	0	0	0	0	0	0	0	0	0	0
Stock-Wright LM S stat	4.723	13.46	4.724	12.79	4.655	14.06	7.508	14.30	4.048	8.940
LM S p-value	0.193	0.00921	0.193	0.0123	0.199	0.00712	0.0573	0.00640	0.256	0.0626

Cluster-robust standard errors in parentheses *** p<0.01, ** p<0.05, * p<0.1. D denotes the first difference, L denotes the first lag. "e" means "*10".

Dependent variable =		<u></u>	<u> </u>									
D.transfpercapita	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)
Right-hand side variables:												
L.gdpgrowth	-43.92	-190.9	-40.29	-397.0	-58.46***	-66.81***	-59.02***	-67.78***	-57.66***	-1.606	-58.20***	-6.778
	(57.22)	(1,948)	(45.14)	(6,533)	(19.11)	(23.90)	(19.41)	(24.41)	(19.58)	(263.5)	(19.95)	(242.9)
L.reg_grpcapdefl	-0.313	2.590	-0.313	4.087	-0.496***	-0.443***	-0.498***	-0.442***	-0.498***	-0.669	-0.500***	-0.685
	(0.391)	(23.05)	(0.322)	(63.66)	(0.104)	(0.112)	(0.103)	(0.111)	(0.106)	(0.572)	(0.104)	(0.549)
L.cross_term		1,289		2,170		-0.454		-0.418		4,699		4,692
		(11,777)		(34,215)		(5.905)		(5.948)		(10,368)		(9,773)
L.share_bad	-0.584	-85.67	-0.221	-149.0								
	(1.062)	(786.7)	(0.741)	(2,355)								
L.urbaniz	35.51	-517.3	36.77	-855.6	6.606	-3.712	6.155	-4.566	7.146	260.5	6.816	254.6
	(51.88)	(4,623)	(44.37)	(13,342)	(34.09)	(34.82)	(34.12)	(34.73)	(35.60)	(581.9)	(35.69)	(544.6)
L.reg_empbudgsect	-1.296	9.145	-1.227	13.52	-1.607**	-1.625***	-1.571**	-1.584***	-1.563**	-0.315	-1.535**	-0.0168
	(1.616)	(80.85)	(1.265)	(209.7)	(0.782)	(0.580)	(0.712)	(0.542)	(0.758)	(4.716)	(0.696)	(4.855)
L.reg_sharebef18	0.0241	0.0641	0.0832	-0.743	0.168	-0.196	0.155	-0.217	0.248	-15.90	0.234	-16.05
	(0.368)	(4.989)	(0.329)	(17.62)	(1.075)	(1.570)	(1.092)	(1.562)	(1.116)	(33.65)	(1.116)	(31.88)
L.reg_sharepens	4.601	-42.03	4.731	-67.90	7.216***	6.954***	7.245***	6.964***	7.224***	-4.607	7.250***	-3.835
	(5.630)	(371.0)	(4.720)	(1,053)	(2.622)	(2.245)	(2.679)	(2.258)	(2.640)	(32.02)	(2.693)	(28.55)
L.bureaucrats	0.000830	-0.00210	0.000830	-0.00330	0.00134***	0.000399	0.00136***	0.000416	0.00135***	0.00214	0.00137***	0.00226
	(0.00109)	(0.0185)	(0.000908)	(0.0510)	(0.000454)	(0.000343)	(0.000439)	(0.000335)	(0.000457)	(0.00343)	(0.000442)	(0.00352)
d2004	-5.788	36.14	-4.423	38.68	-8.525***	-7.533**	-7.659	-6.508	-8.667***	21.79	-7.917*	32.48
	(5.888)	(333.7)	(3.533)	(622.7)	(3.151)	(3.026)	(4.716)	(3.963)	(3.085)	(63.07)	(4.505)	(85.65)
d2005	-2.836	18.80	-1.435	10.53	-4.398*	-3.853	-3.524	-2.834	-4.488*	8.417	-3.731	19.10
	(3.154)	(172.5)	(1.495)	(173.0)	(2.556)	(2.515)	(4.341)	(3.728)	(2.520)	(25.64)	(4.200)	(53.68)
d2006	-3.182	14.72	-1.659	2.666	-4.463**	-4.223*	-3.602	-3.228	-4.492**	25.84	-3.749	36.40
	(3.320)	(135.9)	(1.594)	(53.94)	(2.052)	(2.454)	(4.064)	(4.033)	(2.037)	(63.84)	(3.981)	(86.88)
d2007	-0.814	4.292	0.615	-12.65	-1.165	-1.268	-0.288	-0.282	-1.176	5.344	-0.419	15.96
	(0.936)	(39.79)	(1.194)	(197.3)	(1.094)	(1.196)	(3.309)	(2.929)	(1.093)	(9.978)	(3.284)	(40.02)
L.urvote			5.386	-73.83			3.427	3.857			2.960	40.62
			(6.496)	(1,157)			(11.55)	(8.917)			(11.62)	(132.3)
L.reg_yrswork					0.00317	0.00827	0.00421	0.00709				

Table 12: Estimation results for total transfers, 2004-2008, governors' variables. Robustness checks.

Dependent variable =												
D.transfpercapita	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)
Right-hand side variables:												
					(0.0694)	(0.430)	(0.0715)	(0.434)				
L.reg_executive_expimmprior	•								0.848	-410.6	0.821	-410.7
									(1.248)	(911.1)	(1.235)	(859.8)
Observations	321	317	321	317	390	386	390	386	390	386	390	386
Number of clusters	65	65	65	65	78	78	78	78	78	78	78	78
Hansen J OverID	3.671	0.00534	3.731	0.00427	1.490	2.123	1.517	2.179	1.487	0.118	1.512	0.175
Hansen p-value	0.0554	0.942	0.0534	0.948	0.222	0.145	0.218	0.140	0.223	0.732	0.219	0.676
Anderson-Rubin Chi2 test	18.94	21.00	19.46	21.57	608.1	731.5	617.9	748.2	587.5	620.8	602.7	642.1
A-R Chi2 p-value	0.000281	0.000316	0.000220	0.000244	0	0	0	0	0	0	0	0
Stock-Wright LM S stat	7.643	11.71	7.689	11.77	4.799	10.95	4.800	10.92	4.675	5.210	4.679	5.201
LM S p-value	0.0540	0.0197	0.0529	0.0191	0.187	0.0271	0.187	0.0274	0.197	0.266	0.197	0.267

Cluster-robust standard errors in parentheses *** p<0.01, ** p<0.05, * p<0.1. D denotes the first difference, L denotes the first lag. "e" means "*10".

Dependent variable =	uits for disci	ettonur y ne	<u>, , , , , , , , , , , , , , , , , , , </u>	5101 5, 2001			5 100 45 1105	, encers,		
D.restpercapita	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)
Right-hand side variables	:									
L.gdpgrowth	-41.38***	23.72	-41.04***	3.264	-42.34***	6.900	-50.68***	17.08	-46.40***	-83.47***
	(11.26)	(34.37)	(11.13)	(24.08)	(10.98)	(25.30)	(11.74)	(49.93)	(10.35)	(11.17)
L.reg_grpcapdefl	-0.198***	-0.156***	-0.198***	-0.154***	-0.196***	-0.143***	-0.192***	-0.192***	-0.186***	-0.134***
	(0.0451)	(0.0462)	(0.0453)	(0.0448)	(0.0451)	(0.0435)	(0.0449)	(0.0464)	(0.0461)	(0.0394)
L.cross_term		-128.5**		-111.0***		-110.6***		-80.95		602.5***
		(52.48)		(41.58)		(41.78)		(51.98)		(170.8)
L.urvote	-0.481	12.09								
	(5.112)	(8.565)								
L.urbaniz	-2.484	1.222	-2.607	2.341	-2.934	2.640	-5.343	-1.265	-7.410	12.34
	(14.78)	(12.96)	(14.96)	(12.90)	(14.68)	(12.34)	(14.74)	(14.29)	(13.33)	(10.50)
L.reg_empbudgsect	-0.763**	-0.720**	-0.786**	-0.710**	-0.776**	-0.657**	-0.711**	-0.843***	-0.756**	-0.223
	(0.312)	(0.290)	(0.319)	(0.285)	(0.325)	(0.272)	(0.307)	(0.311)	(0.334)	(0.227)
L.reg_sharebef18	-0.0248	-0.278	0.0163	-0.224	-0.102	-0.210	-0.378	0.0526	-0.498	-0.130
	(0.622)	(0.557)	(0.603)	(0.538)	(0.627)	(0.530)	(0.666)	(0.763)	(0.601)	(0.493)
L.reg_sharepens	2.732**	2.392**	2.754**	2.402**	2.589**	2.293***	2.414**	2.915***	2.178**	1.976***
	(1.188)	(1.020)	(1.195)	(0.973)	(1.173)	(0.880)	(1.123)	(1.079)	(1.082)	(0.602)
L.bureaucrats	0.000537***	0.000209	0.000531***	0.000173	0.000529***	0.000150	0.000559***	0.000222	0.000499***	4.09e-05
	(0.000169)	(0.000158)	(0.000169)	(0.000148)	(0.000170)	(0.000143)	(0.000178)	(0.000171)	(0.000179)	(0.000121)
d2004	-4.143**	-2.443	-4.399***	-3.072	-4.809***	-3.373**	-4.707***	-4.059***	-3.717***	-2.364**
	(1.763)	(2.130)	(1.688)	(1.923)	(1.463)	(1.477)	(1.234)	(1.369)	(1.330)	(1.002)
d2005	-2.199	-0.823	-2.431	-1.473	-2.907**	-1.823	-1.785*	-1.801	-2.091**	-1.027
	(1.612)	(2.035)	(1.543)	(1.828)	(1.241)	(1.357)	(1.018)	(1.159)	(0.986)	(0.829)
d2006	-2.738	-1.369	-2.940*	-1.824	-3.506***	-2.202	-2.812***	-2.448***	-3.019***	-1.097
	(1.672)	(2.046)	(1.562)	(1.791)	(1.256)	(1.386)	(0.805)	(0.842)	(0.817)	(0.840)
d2007	-0.604	0.373	-0.815	-0.282	-1.345	-0.759	-0.277	0.00792	-0.753	0.395
	(1.378)	(1.759)	(1.281)	(1.536)	(0.916)	(1.056)	(0.523)	(0.560)	(0.510)	(0.503)
L.margind			-1.070	8.384						
			(4.056)	(6.282)						
L.opdom_duma					-3.139	6.504				

Dependent variable =										
D.restpercapita	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)
Right-hand side variables:										
					(2.981)	(5.384)				
L.wpshare							-7.112	4.251		
							(5.539)	(9.653)		
L.kdshare									22.75**	-29.00
									(11.29)	(19.72)
Observations	390	386	390	386	390	386	390	386	390	386
Number of clusters	78	78	78	78	78	78	78	78	78	78
Hansen J OverID	3.189	0.217	3.254	0.584	3.191	0.663	2.414	0.127	3.398	0.0300
Hansen p-value	0.0741	0.641	0.0712	0.445	0.0740	0.416	0.120	0.722	0.0653	0.862
Anderson-Rubin Chi2 test	1448	1476	1421	1420	1467	1467	1385	1420	1451	1489
A-R Chi2 p-value	0	0	0	0	0	0	0	0	0	0
Stock-Wright LM S stat	4.328	11.23	4.329	11.59	4.349	12.66	4.655	6.229	4.128	5.710
LM S p-value	0.228	0.0241	0.228	0.0206	0.226	0.0131	0.199	0.183	0.248	0.222

Dependent variable =		<u>, , , , , , , , , , , , , , , , , , , </u>										
D.restpercapita	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)
Right-hand side variables:												
L.gdpgrowth	7.962	-667.6	8.153	-478.2	-41.52***	-68.43***	-41.42***	-68.73***	-40.70***	-21.00	-40.63***	-19.91
	(7.555)	(1,722)	(7.889)	(1,040)	(11.06)	(12.59)	(11.26)	(12.62)	(11.12)	(224.6)	(11.34)	(233.1)
L.reg_grpcapdefl	-0.0114	0.305	-0.0123	0.248	-0.197***	-0.136**	-0.198***	-0.135**	-0.197***	-0.213	-0.197***	-0.218
	(0.0276)	(0.866)	(0.0272)	(0.542)	(0.0454)	(0.0538)	(0.0451)	(0.0537)	(0.0458)	(0.451)	(0.0456)	(0.474)
L.cross_term		1,855		1,369		5.574*		5.646*		1,661		1,672
		(4,690)		(2,887)		(3.163)		(3.167)		(9,362)		(9,469)
L.share_bad	0.760	-126.3	0.785	-91.91								
	(0.476)	(320.8)	(0.489)	(195.2)								
L.urbaniz	5.439	-355.2	5.671	-257.0	-3.326	-24.15	-3.322	-24.46	-2.472	82.18	-2.448	82.24
	(8.018)	(907.8)	(7.990)	(551.9)	(14.68)	(16.92)	(14.66)	(16.83)	(14.68)	(536.2)	(14.67)	(539.6)
L.reg_empbudgsect	-0.0296	-0.925	-0.0289	-0.347	-0.750**	-0.507	-0.755**	-0.492	-0.728**	-0.266	-0.736**	-0.155
	(0.122)	(3.854)	(0.126)	(2.074)	(0.342)	(0.320)	(0.317)	(0.310)	(0.338)	(3.261)	(0.315)	(3.775)
L.reg_sharebef18	0.187	1.891	0.194	1.586	0.00400	0.204	0.00598	0.213	0.0547	-5.845	0.0585	-5.897
	(0.193)	(5.228)	(0.195)	(3.682)	(0.604)	(0.618)	(0.615)	(0.619)	(0.607)	(29.32)	(0.611)	(29.71)
L.reg_sharepens	0.560	-5.170	0.592	-3.572	2.719**	2.269**	2.736**	2.275**	2.773**	-1.950	2.783**	-1.791
	(0.448)	(16.51)	(0.439)	(9.842)	(1.164)	(0.921)	(1.190)	(0.927)	(1.159)	(26.50)	(1.186)	(25.60)
L.bureaucrats	-2.29e-05	-0.000262	-2.12e-05	-0.000223	0.000536***	*0.000316**	0.000536***	*0.000320**	0.000537***	0.000765	0.000536***	0.000801
	(8.12e-05)	(0.000703)	(8.17e-05)	(0.000444)	(0.000173)	(0.000159)	(0.000169)	(0.000158)	(0.000171)	(0.00261)	(0.000167)	(0.00286)
d2004	-0.930*	-1.140	-0.831	5.224	-4.094***	-2.707*	-4.205**	-2.404	-4.110***	7.490	-4.279**	11.04
	(0.483)	(8.871)	(0.520)	(10.60)	(1.310)	(1.457)	(1.828)	(1.805)	(1.243)	(55.59)	(1.748)	(80.19)
d2005	-0.0521	-2.175	0.0554	4.534	-2.126**	-0.727	-2.237	-0.425	-2.127**	3.062	-2.295	6.571
	(0.304)	(8.306)	(0.397)	(8.386)	(0.977)	(1.219)	(1.653)	(1.632)	(0.936)	(21.48)	(1.620)	(47.97)
d2006	-0.159	-3.106	-0.0396	4.092	-2.652***	-1.026	-2.760	-0.719	-2.605***	8.266	-2.771	11.84
	(0.384)	(9.552)	(0.548)	(8.097)	(0.820)	(1.151)	(1.696)	(1.638)	(0.799)	(58.24)	(1.700)	(83.07)
d2007	0.201	-0.385	0.317	5.751	-0.500	0.560	-0.610	0.854	-0.504	2.066	-0.670	5.536
	(0.181)	(2.641)	(0.382)	(11.57)	(0.467)	(0.761)	(1.386)	(1.403)	(0.457)	(9.206)	(1.407)	(35.99)
L.urvote			0.433	22.75			-0.474	1.114			-0.682	13.35
			(1.170)	(48.67)			(5.123)	(4.072)			(5.267)	(112.0)
L.reg yrswork					0.0123	-0.372*	0.0126	-0.376*				

Table 14: Estimation results for discretionary non-FFSR transfers, 2004-2008, governors' variables. Robustness checks.

Dependent variable = D.restpercapita	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)
Right-hand side variables:												
					(0.0269)	(0.225)	(0.0280)	(0.226)				
L.reg_executive_expimmprio	r								0.736	-144.9	0.749	-146.1
									(0.517)	(825.8)	(0.533)	(836.7)
Observations	321	317	321	317	390	386	390	386	390	386	390	386
Number of clusters	65	65	65	65	78	78	78	78	78	78	78	78
Hansen J OverID	3.600	0.0181	3.642	0.131	3.237	3.284	3.211	3.317	3.250	0.00351	3.226	0.00388
Hansen p-value	0.0578	0.893	0.0563	0.717	0.0720	0.0699	0.0731	0.0686	0.0714	0.953	0.0725	0.950
Anderson-Rubin Chi2 test	8.294	8.986	8.175	8.901	1426	1489	1417	1484	1473	1497	1463	1495
A-R Chi2 p-value	0.0403	0.0615	0.0425	0.0636	0	0	0	0	0	0	0	0
Stock-Wright LM S stat	5.060	9.769	5.031	9.726	4.379	6.689	4.318	6.584	4.415	5.791	4.354	5.799
LM S p-value	0.167	0.0445	0.170	0.0453	0.223	0.153	0.229	0.160	0.220	0.215	0.226	0.215

Appendix 3: List of indicators, definitions, data description

1 abit 15. Illuit	ators and Data Description
Variable: status coded	Indicator
transfpercapita	Total transfers per capita, thds rub
restpercapita	The (Total – FFSR) transfers per capita ²⁷ ,
	thds rub
share bad	Share of people which consider regional
_	administration working not well
urvote	Votes for United Russia, per cent
margind	Margin of Victory – Federal Duma elections,
_	per cent
opdom_duma	Opposition dominance, per cent
kdshare	Votes for KPRF, per cent
wpshare	Votes for the winner in Presidential elections,
-	per cent
bureaucrats	Size of regional bureaucracy
urbaniz	Urbanization measures
reg empbudgsect	Public sector employees
reg heductoempd	Percentage of workers with higher education
reg sharebef18 reg sharepens	Percentage of young per 1000 people of
	working age and Percentage of retired per
	1000 people of working age (in some models
	we use the sum of these indicators
reg_grpcapdefl	GRP per capita, in 2000 prices, thds rub
reg_yrswork	Years worked in the region (from the
	positions we collected in the governors
	database).
reg_executive_expimmprior	= 1 if the governor has experience previously
	in an executive government post after the
	Soviet collapse, or if he had such experience
	before the Soviet collapse, 0 otherwise.

Table 15: Indicators and Data Description

²⁷ Federal Fund for Support of Regions

Andrei A. Yakovlev Higher School of Economics (Moscow, Russia) Director of HSE Institute for Industrial and Market Studies E-mail: <u>ayakovlev@hse.ru</u>

Any opinions or claims contained in this Working Paper do not necessarily reflect the views of HSE.