
 

 

 

 

 

 

 

 

 

 

 

Victor Domansky, Victoria Kreps 
 

GAME-THEORETIC MODEL  
OF FINANCIAL MARKETS  
WITH TWO RISKY ASSETS 

 
 

BASIC RESEARCH PROGRAM 
 

WORKING PAPERS 
 

SERIES: ECONOMICS 
WP BRP 16/EC/2012 

 

 

 

 

 

 

 

 

 

 

This Working Paper is an output of a research project implemented  

at the National Research University Higher School of Economics (HSE). Any opinions or claims contained  

in this Working Paper do not necessarily reflect the views of HSE. 



GAME-THEORETIC MODEL OF FINANCIAL

MARKETS WITH TWO RISKY ASSETS∗

Victor Domansky, Victoria Kreps†

Abstract

We consider multistage bidding models where two types of risky assets (shares) are

traded between two agents that have different information on the liquidation prices of

traded assets. These prices are random integer variables that are determined by the initial

chance move according to a probability distribution p over the two-dimensional integer

lattice that is known to both players. Player 1 is informed on the prices of both types of

shares, but Player 2 is not. The bids may take any integer value.

The model of n-stage bidding is reduced to a zero-sum repeated game with lack of

information on one side. We show that, if liquidation prices of shares have finite variances,

then the sequence of values of n-step games is bounded. This makes it reasonable to

consider the bidding of unlimited duration that is reduced to the infinite game G∞(p).

We offer the solutions for these games.

We begin with constructing solutions for these games with distributions p having two-

and three-point supports. Next, we build the optimal strategies of Player 1 for bidding

games G∞(p) with arbitrary distributions p as convex combinations of his optimal strate-

gies for such games with distributions having two- and three-point supports. To do this we

construct the symmetric representation of probability distributions with fixed integer ex-

pectation vectors as a convex combination of distributions with not more than three-point

supports and with the same expectation vectors.
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1 Introduction. Modeling financial markets by repeated

games with asymmetric information

Random fluctuations in stock market prices are usually explained by the effect from multiple

exogenous factors subjected to accidental variations. The work of De Meyer and Saley (2002)

proposes a different strategic motivation for these phenomena. The authors assert that the

Brownian component in the evolution of prices on the stock market may originate from the

asymmetric information of stockbrokers on events determining market prices. ”Insiders” are

not interested in the immediate revelation of their private information. This forces them to

randomize their actions and results in the appearance of an oscillatory component in price

evolution.

De Meyer and Saley demonstrate this idea on a model of multistage bidding between two

agents for one-type risky assets (shares). The liquidation price of a share depends on a random

”state of nature” Before the bidding starts a chance move determines the ”state of nature” and

therefore the liquidation value of shares once and for all. Player 1 is informed on the ”state of

nature”, but Player 2 is not. Both players know the probability of a chance move. Player 2

knows that Player 1 is an insider.

At each subsequent step t = 1, 2, ..., n both players simultaneously propose their prices for

one share. The maximal bid wins and one share is transacted at this price. If the bids are equal,

no transaction occurs. Each player aims to maximize the value of his final portfolio (money

plus the liquidation value of obtained shares).

In this model the uninformed Player 2 should use informed Player 1’s history of moves to

update his beliefs about the state of nature. In fact, at each step Player 2 may use the Bayes rule

to re-estimate the posterior probabilities of a chance move outcome, or, at least, the posterior

expectations of a liquidation price per share. Player 1 could control these posterior probabilities.

Thus Player 1 faces a problem of how to best use his private information without revealing

it to Player 2. Using a myopic policy – in which a high bid is posted if the liquidation price is

high and a low bid is posted if this price is low – is not optimal for Player 1, because it fully

reveals the state of nature to Player 2. On the other hand, a strategy that does not depend on

the state of nature, while revealing no information to Player 2, does not allow Player 1 to take

advantage of his superior knowledge. Thus Player 1 must maintain a delicate balance between

taking advantage of his private information and concealing it from Player 2.

De Meyer and Saley consider a model where a share’s liquidation price takes only two values

and players may make arbitrary bids. They reduce this model to a zero-sum repeated game

with lack of information on one side, as introduced by Aumann and Maschler (1995), but with

continual action sets. De Meyer and Saley show that these n-stage games have values (i.e. the
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guaranteed gains of Player 1 are equal to the guaranteed losses of Player 2) in finding these

values and the optimal strategies of players. De Meyer and Saley demonstrate that as n tends to

infinity, the values infinitely increase with rate
√
n. It is shown that Brownian Motion appears

in the asymptotics of transaction prices generated by these strategies.

It is more natural to assume that players may assign only discrete bids proportional to a

minimal currency unit. In our papers (Domansky, 2007), (Domansky and Kreps, 2007) we

investigate a model with two possible values fpr liquidation price and discrete admissible bids.

We show that, unlike De Meyer and Saley’s (2002) model as n approches ∞, the sequence

of guaranteed gains of the insider is bounded from above and converges. It is reasonable to

consider bidding with an infinite number of steps. We construct the optimal strategies for

corresponding infinite games. We write out explicitly the random process formed by the prices

of transactions at sequential steps. The transaction prices perform a symmetric random walk

over the admissible bids between two possible values of liquidation price with absorbing extreme

points. The absorption of transaction prices reveals the true share’s price by Player 2.

In our works (Domansky and Kreps, 2009), (Domansky and Kreps, 20011) we consider a

model where any integer non-negative bids are admissible. The liquidation price of share Cp

may take any nonnegative integer values k = 0, 1, 2, . . . according to a probability distribution

p = (p0, p1, p2, . . .).This n-stage model is described by a zero-sum repeated game Gn(p) with

incomplete information for Player 2 and with countable state and action spaces. For constructing

the optimal strategy of Player 1 (the insider) with an arbitrary liquidation price per share

that has finite variance, we use the symmetric representation of distributions over an integer

lattice with fixed integer mean values that are convex combinations of distributions with two-

point supports and that have the same mean values. The solutions for games with two-point

distributions were obtained by Domansky (2007).

We show that if the random variable Cp, determining the liquidation price of a share has

a finite mathematical expectation E[Cp], then the values Vn(p) of n-stage games Gn(p) exist

(i.e. the guaranteed gain of Player 1 is equal to the guaranteed loss of Player 2). If the variance

D[Cp] is infinite, then, as n approaches ∞, the sequence Vn(p) diverges.

On the contrary, if the variance D[Cp] is finite, then, as n approaches ∞, the sequence of

values Vn(p) for the games Gn(p) is bounded from above and converges. So it is reasonable to

consider the games G∞(p) with an infinite number of steps. We explicitly construct the optimal

strategies for these games. It is shown that the insider optimal strategy generates a symmetric

random walk of posterior mathematical expectations over the set of positive integer numbers

with absorption.

In section 2 we introduce the model of multistage bidding where two types of risky assets

(shares) are traded between two agents having different information on the liquidation prices
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of traded assets. These prices are integer random variables that are determined by the initial

chance move for the whole period of bidding according to a probability distribution p ∈ ∆(Z2)

over two-dimensional integer lattice that is known to both players . Player 1 knows the prices

of both types of shares. Player 2 does not have this information, but does know, that Player 1

is an insider.

At each step of bidding both players simultaneously make their integer bids, i.e. they post

their prices for each type of shares. The player who posts the larger price for a share of a

given type buys one share of this type from his opponent at this price. Any integer bids are

admissible. Players aim to maximize the values of their final portfolios, calculated as money

plus obtained shares evaluated by their liquidation prices.

The described model of n-stage bidding is reduced to the zero-sum repeated game Gn(p)

with lack of information on one side and with two-dimensional one-step actions with components

corresponding to bids for each type of assets.

It is easy to show that if the expectations of share prices are finite, then the values Vn(p)

of n-stage bidding games Gn(p) exist. The value of such a game does not exceed the sum of

values of games modeling the bidding with one-type shares. This means that a simultaneous

bidding of two types of risky assets is less profitable for the insider than separate bidding of

one-type shares. This is explained by the fact that the simultaneous bidding leads to revealing

more insider information, because the bids for shares of each type provide information on shares

of the other type.

In section 3 we show that if both share prices have finite variances, then the values Vn(p) of

n-stage bidding games do not exceed the function H(p) which is the smallest piecewise linear

function equal to the one half of the sum of share price variances for distributions with integer

expectations of both share prices.

To prove this we define the set of strategies τ ∗(p) for Player 2 that ensure these upper bounds.

The strategy τ ∗(p) is a direct combination of Player 2’ optimal strategies for the games with

one-type risky asset. The initial bids are the integer parts of expectations for corresponding

liquidation prices. At step t > 1, the bid for a given type of share depends on the result of

bidding for this share type at the previous step. If the buyer was Player 1, then the next bid

increases for one unit; if the buyer was Player 2, then the next bid decreases for one unit; if

there was a tie, then the next bid remains the same.

This makes it reasonable to consider the bidding of unlimited duration without an artificial

restriction given beforehand for number of steps. This bidding model is reduced to the infinite

game G∞(p). We show that this game terminates naturally when the posterior expectations of

both liquidation prices come close enough to their real values. We further show that the value

V∞(p) coincides with H(p). It is observed that H(p) is the sum of values for infinite games
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with one-type assets studied in (Domansky and Kreps, 2009).

In section 4 we construct optimal strategies σ∗ for Player 1 that ensure H(p) for games

G∞(p) with two states. We base this on the results for games with one-type assets and with

two states obtained by Domansky (2007).

The defined strategy σ∗ of Player 1 generates an asymmetric random walk of posterior

probabilities by adjacent points of the lattice formed with those probabilities where at least

one of the price expectations is an integer value. The probabilities of jumps provide martingale

characteristics of posterior probabilities and with absorption at extreme points.

In section 5 we construct optimal strategies σ∗ of Player 1 that ensure H(p) for games

G∞(p) with three states. The martingale of posterior mathematical expectations generated

by the optimal strategy of Player 1 for the game with the three-point support distribution

represents a symmetric random walk over points of integer lattice lying within the triangle

spanned across the support points of distribution. The symmetry is broken the moment that

the walk hits the triangle boundary. From this moment, the game turn into one of games with

distributions having two-point supports.

Further we consider the games G∞(p) with prices given by arbitrary probability distributions

p ∈ ∆(Z2). We get the solution for the games G∞(p) as combinations of the solutions to games

with two and three states obtained in sections 4 and 5. To realize the idea in sections 6 and

7 we construct symmetric representations of distributions over R2 with given mean values as

convex combinations of distributions with supports containing not more than three points and

with the same mean values.

These representations are two-dimensional analogs of the following easily verified formula

for distributions p over R1 with a mean value u:

p =

∫ ∞

x=u−
p(dx)

∫ u+

y=−∞

x− y∫ ∞
t=u

(t− u) · p(dt)
· pux,y · p(dy),

where, for y < u < x, distributions pux,y = ((x − u) · δy + (u − y) · δx)/(x − y), δx is the

degenerate distribution with the single-point support x, and pux,u = puu,y = δu/2. A draft of this

construction can be seen in (Domansky, 2011).

In section 8 we construct Player 1’ optimal strategy in a bidding game for two types of

shares with an arbitrary distribution having an integer expectation vector (k, l), as a convex

combination of his optimal strategies for such games with distributions having not more than

three-point supports. If the state chosen by chance move is (k, l), then Player 1 stops the game.

In this case he cannot receive any profit from his informational advantage.

If the state chosen by the chance move is (x, y) 6= (k, l), then he chooses one or two comple-

mentary points by means of the lottery with the conditional probabilities of these complements.
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He then plays his optimal strategy for the state (x, y) in a game with a distribution having

either two- or three-point support that is the state (x, y) and the chosen complement.

We get the solutions for infinite games with arbitrary probability distributions over a two-

dimensional integer lattice with finite component variances. Both players have optimal strate-

gies. The optimal strategy for Player 2 is a direct combination of his optimal strategies for the

games with one-type of risky asset. The value of such game is equal to the sum of values for

corresponding games with one risky asset. Thus, the profit that Player 2 gets under simulta-

neous n-step bidding in comparison with separate bidding for each type of shares disappears in

the game of unbounded duration.

As for the case with one-type of risky assets the appearance of a random walk of transaction

prices is demonstrated. But the symmetry of this random walk is broken at the final stages of

the game.

2 Repeated games with one-sided information modeling

multistage bidding with two types of risky assets

We consider repeated games Gn(p) with incomplete information on one side (Aumann and

Maschler, 1995) modeling the bidding with two types of risky assets described in the introduc-

tion.

Two players with opposite interests have money and two types of shares. The liquidation

prices of both share types may take any integer values x and y.

At stage 0 a chance move determines the ”state of nature” s and therefore the liquidation

prices of shares (s1, s2) for the whole period of bidding n according to the probability distribution

p over Z2 known to both Players. Player 1 is informed about the result of chance move z, Player

2 is not. Player 2 knows that Player 1 is an insider.

At each subsequent stage t = 1, . . . , n both Players simultaneously propose their bids, mean-

ing prices for one share of each type, (i1t , i
2
t ) ∈ Z2 for Player 1 and (j1

t , j
2
t ) ∈ Z2 for Player 2.

The bids are announced to both Players before proceeding to the next stage. The maximal bid

wins and one share is transacted at this price. Therefore, if iet > jet , Player 1 gets one share of

type e = 1, 2 from Player 2 and Player 2 receives the sum of money iet from Player 1. If iet < jet ,

Player 2 gets one share of type e from Player 1 and Player 1 receives the sum jet from Player

2. If iet = jet , then no transaction of shares of type e occurs. Each player aims to maximize the

value of his final portfolio (money plus liquidation value of obtained shares).

This n-stage model is described by a zero-sum repeated game Gn(p) with incomplete infor-

mation for Player 2 and with countable state space S = Z2 and with countable action spaces
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I = Z2 and J = Z2. The one-step gain a(s, i, j) of Player 1 corresponding to the state s = (s1, s2)

and the actions i = (i1, i2) and j = (j1, j2) is given with the sum
∑2

e=1 a
e(se, ie, je), where

ae(se, ie, je) =


je − se, for ie < je;

0, for ie = je;

−ie + se, for ie > je.

At the end of the game Player 2 pays to Player 1 the sum

n∑
t=1

a(s, it, jt),

where s is the result of a chance move. This description is a common knowledge of both Players.

At the step t it is enough for both Players to take into account the sequence (i1, . . . , it−1)

of Player 1’s previous actions only. Thus, a mixed behavioral strategy σ for Player 1, who is

informed on the state, is a sequence of moves

σ = (σ1, . . . , σt, . . .),

where the move σt = (σt(s))s∈S and σt(s) : I t−1 → ∆(I) is the probability distribution used by

Player 1 to select his action at stage t, given the state s and previous observations. Here ∆(·)
is the set of probability distributions over (·).

A strategy τ for uninformed Player 2 is a sequence of moves

τ = (τ1, . . . , τt, . . .),

where τt : I t−1 → ∆(J).

Note that here we define infinite strategies fitting for games of arbitrary duration. A pair of

strategies (σ, τ) creates a probability distribution Π(σ,τ) over (I × J)∞. The payoff function of

the game Gn(p) is

Kn(p, σ, τ) =
∑
s∈S

p(s)hsn(σ, τ), (2.1)

where

hsn(σ, τ) = E(σ,τ)[
n∑
t=1

a(s, it, jt)] (2.2)

is the s-component of the n-step vector payoff hn(σ, τ) for the pair of strategies (σ, τ). Here

the expectation is taken with respect to the probability distribution Π(σ,τ). Thus we consider

n-step games Gn(p) with total (non-averaged) payoffs which differs from the classical model of

Aumann and Maschler.

We also consider the infinite games G∞(p). For certain pairs of strategies (σ, τ), the payoff

function K∞(p, σ, τ), given by the infinite series (2.1),(2.2) with n = ∞, may be indefinite. If
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we restrict the set of Player 1’s admissible strategies to strategies with nonnegative one-step

gains ∑
s∈S

p(s)E(σ1(s),j)a(s, i, j)

against any action j of Player 2, then the payoff function of the game Gm
∞(p) becomes completely

definite (may be infinite). Player 1 has many strategies, ensuring him a nonnegative one-step

gain against any action of Player 2. In fact, any reasonable strategy of Player 1 should possess

this property.

For the initial probability p, the strategy σ ensures the n-step payoff

wn(p, σ) = inf
τ
Kn(p, σ, τ).

The strategy τ ensures the n-step vector payoff hn(τ) with components

hsn(τ) = sup
σ(s)

hsn(σ(s), τ).

Now we describe the recursive structure of Gn+1(p). A strategy σ may be regarded as a

pair (σ1, (σ(i))i∈I), where σ1(i|s) is the probability over I depending on s, and σ(i) is a strategy

depending on the first action i1 = i.

Analogously, a strategy τ may be regarded as a pair (τ1, (τ(i))i∈I), where τ1 is the probability

over J .

A pair (p, σ1) induces the probability distribution π over S × I, π(s, i) = p(s)σ1(i|s). Let

q ∈ ∆(I), q(i) =
∑
S

p(s)σ1(i|s),

be the marginal distribution of π on I (total probabilities of actions), and let

p(·|i) ∈ ∆(S), p(s|i) = p(s)σ1(i|s)/q(i),

be the conditional probability on S given i1 = i (a posterior probability).

Conversely, any set of total probabilities of actions q ∈ ∆(I) and posterior probabilities

(p(·|i) ∈ ∆(S))i∈I , satisfying the equality∑
i∈I

q(i)p(·|i) = p,

define a certain random move of Player 1 for the current probability p. The posterior probabil-

ities contain all information about the previous history of the game, that is essential for Player

1. Thus, to define a strategy for Player 1, it is sufficient to define the random move of Player 1

for any current posterior probability.
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The following recursive representation for the payoff function corresponds to the recursive

representation of strategies:

Kn+1(p, σ, τ) = K1(p, σ1, τ1) +
∑
i∈I

q(i)Kn(p(·|i), σ(i), τ(i)).

Let, for all i ∈ I, the strategy σ(i) ensure the payoff wn(p(·|i), σ(i)) in the game Gn(p(·|i)).
Then the strategy σ = (σ1, (σ(i))i∈I) ensures the payoff

wn+1(p, σ) = min
j∈J

∑
i∈I

[
∑
s∈S

p(s)σ1(i|s)a(s, i, j) + q(i)wn(p(·|i), σ(i))]. (2.3)

Let, for all i ∈ I, the strategy τ(i) ensure the vector payoff hn(τ(i)). Then the strategy

τ = (τ1, (τ
n(i))i∈I) ensures the vector payoff hn+1(τ) with the components

hsn+1(τ) = max
i∈I

∑
j∈J

τ1(j)(a(s, i, j) + hsn(τ(i)) ∀s ∈ S. (2.4)

The game Gn(p), where n ∈ N ∪ {∞}, has a value Vn(p) if

inf
τ

sup
σ
Kn(p, σ, τ) = sup

σ
inf
τ
Kn(p, σ, τ) = Vn(p).

Players have optimal strategies σ∗ and τ ∗ if

Vn(p) = inf
τ
Kn(p, σ

∗, τ) = sup
σ
Kn(p, σ, τ

∗),

or, as in the notation introduced above,

Vn(p) = wn(p, σ
∗) =

∑
s∈S

p(s)hsn(τ
∗).

For n ∈ N the values Vn(p) should satisfy Bellman optimality equations:

Vn+1(p) = inf
τ1

sup
σ1

[K1(p, σ1, τ1) + q(i)Vn(p(·|i))]. (2.5)

The value V∞(p) should satisfy Bellman optimality equation:

V∞(p) = inf
τ1

sup
σ1

[K1(p, σ1, τ1) + q(i)V∞(p(·|i))]. (2.6)

For probability distributions p with finite supports, the games Gn(p), being games with

finite state and action spaces, have values Vn(p). The functions Vn are continuous and concave

in p. Both players have optimal strategies σ∗n(p) and τ ∗n(p). The value of such a game does not

exceed the sum

Vn(p
1) + Vn(p

2)
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of values for games modeling the bidding with one-type shares, where p1 and p2 are the marginal

distributions of the distribution p. This follows from the fact that Player 2 can guarantee himself

the loss that does not exceed this sum exploiting the direct combination of optimal strategies

τ ∗n(p
1) and τ ∗n(p

2) for the single asset games Gn(p
1) and Gn(p

2) as a strategy for the two asset

game Gn(p).

Consider the set M1 of probability distributions p with finite first moments

m1
1[p] =

∑
s∈Z2

s1 · p(s1, s2) <∞; m2
1[p] =

∑
s∈Z2

s2 · p(s1, s2) <∞.

For p ∈ M1, the liquidation prices of both shares have finite expectations Ep[s1] = m1
1[p],

Ep[s2] = m2
1[p]. The set M1 is a convex subset of the Banach space L1(Z2, {|s1| + |s2|}) of

mappings l : Z2 → R1 with the norm

||l||1{|s1|+|s2|} =
∑
s∈Z2

l(s1, s2) · |s1|+ |s2|.

Let p1,p2 ∈M1. Then, for ”reasonable” strategies σ and τ ,

|Kn(p1, σ, τ)−Kn(p2, σ, τ)| < n||p1 − p2||1{|s1|+|s2|}.

Therefore, the payoff of the game Gn(p) with p ∈M1 can be approximated using the payoffs of

games Gn(pk) with probability distributions pk having finite support. The next theorem follows

immediately from this fact.

Theorem 2.1. If p ∈ M1, then the games Gn(p) have values Vn(p). The values Vn(p) are

positive and do not decrease, as the number of steps n increases.

Remark 2.2. If the random variable Cp does not belong to L2, then, as n approaches ∞, the

sequence Vn(p) diverges.

3 Upper bounds for values Vn(p)

Here we consider the set M2(Z2) of probability distributions p = (p(u, v)) over the two-

dimension integer lattice Z2 with finite second moments

m2
u[p] =

∞∑
u,v=−∞

u2 · p(u, v) <∞, m2
v[p] =

∞∑
u,v=−∞

v2 · p(u, v) <∞.

The setM2 is a closed convex subset of Banach space L1(Z2, {u2+v2}) of mappings l : Z2 → R1

with the norm

||l|| =
∞∑

u,v=−∞

|l(u, v)|(u2 + v2).
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For p ∈ M2(Z2), the random variables u and v, determining the prices of shares, belong to L2

and have finite variances

Dp[u] = m2
u[p]− (m1

u[p])2, Dp[v] = m2
v[p]− (m1

v[p])2.

The main result of this section is that, for p ∈M2(Z2), the sequence Vn(p) of values remains

bounded as n→∞.

To prove this we define the set of infinite strategies τ (k,l) of Player 2, suitable for the games

Gn(p) with arbitrary n.

Definition 3.1. The first move τ
(k,l)
1 is the action (k, l). For t > 1, the e-th component of the

move τ
(k,l)
t , e = 1, 2, depends on the last observed pair of e-th components of actions (iet−1, j

e
t−1)

for both players:

jet =


jet−1 − 1, if iet−1 < jet−1 ;

jet−1, if iet−1 = jet−1;

jet−1 + 1, if iet−1 > jet−1.

Proposition 3.2. For the state s = (u, v) ∈ Z2 the strategy τ (k,l) ensures the payoff

max
σ

Ka,b
n (σ, τ (k,l)|(u, v)) ≤ (u− k)(u− k − 1)/2 + (v − l)(v − l − 1)/2. (2.1)

Proof. The strategy τ (k,l) prescribes that Player 2 will operate separately with each of the

assets. Hence Player 1 can do the same. Therefore the assertion follows from Proposition 1 of

Domansky and Kreps (2009). This proves Proposition 3.2.

Set

H(p) = 1/2 · (Dp[u] + Dp[v]− α(p)(1− α(p))− β(p)(1− β(p))) (3.2)

where α(p) = Ep[u] − ent[Ep[u]], β(p) = Ep[v] − ent[Ep[v]] and ent[x], x ∈ R1 is the integer

part of x.

H(p) is a continuous, concave, and piecewise linear function over M2(Z2). The domains of

linearity of function H(p) are

L(k, l) = {p : Ep[u] ∈ [k, k + 1],Ep[v] ∈ [l, l + 1]}, (k, l) ∈ Z2.

Its peak points are

Θ(k, l) = {p : Ep[u] = k,Ep[v] = l}.

Theorem 3.3. For p ∈ M2(Z2), the values Vn(p) are bounded from above by the function

H(p).
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For p ∈ L(k, l) the upper bound H is ensured with the strategy τ (k,l). For p ∈ Θ(k, l) the

upper bound H is ensured with the strategies τ (k,l), τ (k−1,l), τ (k,l−1), and τ (k−1,l−1).

Proof. It follows from Proposition 3.2 that the following upper bound for Vn(p) does not depend

on n:

Vn(p) ≤ min
(k,l)

1

2

∞∑
u,v=−∞

((u− k)(u− k − 1) + (v − l)(v − l − 1)) · p(u, v) (3.3)

Observe that, if Ep[u]− k = α, Ep[v]− l = β, then

1

2

∞∑
u,v=−∞

((u− k)(u− k − 1) + (v − l)(v − l − 1)) · p(u, v)

=
1

2
(Dp[u] + Dp[v]− α(p)(1− α(p))− β(p)(1− β(p))).

Consequently, for p ∈ L(k, l) the minimum in formula (3.3) is attained on (k, l), and the equality

(2.2) holds. In particular, for p ∈ Θ(k, l), this minimum is attained on (k, l), (k−1, l), (k, l−1),

and (k − 1, l − 1).

Corollary 3.4. The strategies τm,m = 0, 1, . . . guarantee the same upper bound H(p) for the

upper value of the infinite game G∞(p).

4 Solutions for games G∞(p) with two states

In this section we show that, for games G∞(p) with the support of distribution p containing

two states z1, z2 ∈ Z2, the value V∞(p) is equal to H(p).

A distribution with the support z1 = (x1, y1), z2 = (x2, y2) is uniquely determined with

expectations fpr coordinates. For any point w = (u, v) = z1, z2, pi ∈ [0, 1], p1 + p2 = 1, the

distribution pwz1,z2 such that Epwz1,z2
[x] = u, Epwz1,z2

[y] = v, is given with probabilities pwz1,z2(zi) =

pi.

Without loss of generality we assume that one of these points is (0, 0). Thus there are two

states 0 = (0, 0) and z = (x, y), where x and y are integers and x > 0. The distribution ppzz,0

can be depicted with a scalar parameter p ∈ [0, 1] – the probability of state z. For definiteness

set y > 0.

Observe that the function H(p) is equal to the sum of values

H(p) = V x
∞(p) + V y

∞(p) (4.1)

of one asset games Gx
∞(p) and Gy

∞(p) considered in Domansky (2007).
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The function V m
∞ (p) is a piecewise linear continuous concave function of p ∈ [0, 1]. The set of

its break points is the regular lattice {k/m, k = 0, . . . ,m} with values V m
∞ (k/m) = k(m− k)/2.

Therefore, for p ∈ [k/m, (k + 1)/m],

V m
∞ (p) = (pm− k)(k + 1)(m− k − 1)/2 + (1− pm+ k)k(m− k)/2

= k(m− k)/2 + (pm− k)(m− 2k − 1)/2. (4.2)

For p ∈ [(k − 1)/m, k/m],

V m
∞ (p) = k(m− k)/2− (k − pm)(m− 2k + 1)/2. (4.3)

Thus the function H(p) is a piecewise linear continuous concave function of p ∈ [0, 1]. The

set of its break points is the irregular lattice D(x, y) ⊂ [0, 1]:

D(x, y) = {k/x, k = 0, . . . , x} ∪ {l/y, l = 0, . . . , y}.

Further we enumerate the points of the lattice D(x, y) in ascending order D(x, y) = {pi},
i = 0, 1, . . . , I, p0 = 0, pI = 1, pi < pi+1.

According to Corollary 3.4 the optimal strategy τ ∗ guarantees to Player 2 the loss not

exceeding the function H(p). Therefore it is sufficient to show that there is an optimal strategy

σ∗ of Player 1 that guarantees him this gain at the break points of function H(p), i.e. for the

initial probability p belonging to the lattice D(x, y).

Now we present a definition of first moves for the strategy σ∗ for pi ∈ D(x, y).

Definition 4.1. For any initial probability pi the first move of the strategy σ∗ makes use of two

actions a−i and a+
i .

For pi = k/x 6= l/y, these actions are a−i = (k − 1, l) and a+
i = (k, l).

For pi = l/y 6= k/x, these actions are a−i = (k, l − 1) and a+
i = (k, l).

For pi = k/x = l/y, these actions are a−i = (k − 1, l − 1) and a+
i = (k, l).

The posterior probabilities p(z|a−i ) and p(z|a+
i ) are the left and the right adjacent points pi−1

and pi+1 of the lattice D(x, y) respectively.

Consequently the total probabilities of actions are

q(a−i ) =
pi+1 − pi
pi+1 − pi−1

, q(a+
i ) =

pi − pi−1

pi+1 − pi−1

.

This first move is realized with the following conditional probabilities of action a+
i :

f ∗(a+
i |z) =

(pi − pi−1)pi+1

(pi+1 − pi−1)pi
, f∗(a+

i |0) =
(pi − pi−1)(1− pi+1)

(pi+1 − pi−1)(1− pi)
.
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As the posterior probabilities also belong to the lattice D(x, y) this set of moves defines the

infinite strategy σ∗. The defined strategy σ∗ of Player 1 generates the asymmetric random walk

of posterior probabilities of state z by adjacent points of the irregular lattice D(x, y) with the

probabilities of jumps that provide the martingale characteristics for posterior probabilities and

with absorption at the extreme points p0 = 0 and pI = 1.

Theorem 4.2. The value V∞(p) of the game G∞(p) with two states 0 and z = (x, y), and

with the probability p of the state z is equal to the function H(p). Both players have optimal

strategies.

For the initial probability pi ∈ D(x, y), one of optimal strategies of Player 1 is the strategy σ∗

of Definition 4.1.

For the initial probability p ∈ (k/x, (k + 1)/x) ∩ (l/y, (l + 1)/y) a unique optimal strategy of

Player 2 is the strategy τ ∗ = τ k,l, defined in Definition 3.1. Any optimal strategy for adjacent

intervals is also optimal for points of the lattice D(x, y).

Proof. At first we show that the one-step gain of Player 1 corresponding to the first move σ∗1

combined with the optimal gain H at the points of posterior probabilities generated by this

move and weighted by total probabilities of actions satisfy Bellman optimality equations.

For pi = k/x 6= l/y, the one-step gain of Player 1 corresponding to the first move σ∗1 in the

game G∞(0, z, p) is equal to his gain in the one-asset game Gx
∞(p)

min
(k′,l′)

K1(σ
∗
1, (k

′, l′)|0, z, pi) = min
k′

Km1
1 (σ∗1, k

′|pi)

=
x(pi+1 − pi)(pi − pi−1)

pi+1 − pi−1

. (4.4)

Here the minimum in the left part is attained at (k′, l′) = (k−1, l) and (k, l), and the minimum

in the right part is attained at k′ = k − 1 k.

For this move, taking into account (4.2), (4.3), (4.4), we get

min
k′

Kx
1 (σx,y1 , k′|pi) + q(k − 1)V x

∞(pi−1) + q(k)V x
∞(pi+1)

=
x(pi+1 − pi)(pi − pi−1)

pi+1 − pi−1

+
pi+1 − pi
pi+1 − pi−1

(k(x− k)/2− x(pi − pi−1)(x− 2k + 1)/2)

+
pi − pi−1

pi+1 − pi−1

(k(x− k)/2 + x(pi+1 − pi)(x− 2k − 1)/2)

= k(x− k)/2 = V x
∞(pi). (4.5)

Thus the Bellman optimality equation is fulfilled for a one-asset game. On the other hand,

three points pi−1, pi and pi+1 are situated on the same linearity interval of function V y
∞(p), i.e.

q(k − 1)V y
∞(pi−1) + q(k)V y

∞(pi+1) = V y
∞(pi). (4.6)
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Summing (4.5) and (4.6), and also taking into account (4.1) we obtain

min
(k′,l′)

K1(σ
∗
1, (k

′, l′)|0, z, pi) + q(k − 1, l)H(pi−1) + q(k, l)H(pi+1) = H(pi), (4.7)

i.e., for pi = k/x 6= l/y and for the move σ∗1 in the game G∞(0, z, p), function H satisfies the

Bellman optimality equation.

For pi = l/y 6= k/x, the proof of this fact is analogous with replacement of x and y.

For pi = k/x = l/y, the Bellman optimality equations (4.5) are fulfilled for both one-

asset games Gx
∞(p) and Gy

∞(p). Summing these optimality equations we obtain the optimality

equation for the two-asset game G∞(p).

Thus function H satisfies the Bellman optimality equation for all initial probabilities pi ∈
D(x, y). Iterating this optimality equation and taking into account the fact that a random walk

of posterior probabilities generated by the strategy σ∗ terminates in a finite mean number of

steps, we see that, for the initial probability pi ∈ D(x, y), the strategy σ∗ guarantees Player 1

the gain of H(pi).

5 Solutions for games G∞(p) with three states

In this section we show that, for games G∞(p) with the support of distribution p containing

three states z1, z2, z3 ∈ Z2, the value V∞(p) coincides with H(p).

We assume that three points

z1 = (x1, y1), z2 = (x2, y2), z3 = (x3, y3), z1, z2, z3 ∈ Z2

are enumerated counterclockwise. It follows that, for w ∈ 4(z1, z2, z3), det[zi−w, zi+1−w] ≥ 0,

where det[zi, zi+1] = xi · yi+1 − yi · xi+1. Notice that arithmetical operations with subscripts are

fulfilled in modulo 3.

A distribution with the support z1, z2, z3 is uniquely determined with expectations of coor-

dinates. For any point w = (u, v) ∈ 4(z1, z2, z3) the distribution pwz1,z2,z3 such that

Epwz1,z2,z3
[x] = u, Epwz1,z2,z3

[y] = v,

is given with probabilities

pwz1,z2,z3(zi) =
det[zi+1 − w, zi+2 − w]∑3
j=1 det[zj − w, zj+1 − w]

. (5.1)

Observe that
∑3

j=1 det[zj − w, zj+1 − w] = det[z1 − z3, z2 − z3] does not depend on w.
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According to Corollary 3.4 the optimal strategy τ ∗ guarantees Player 2 the loss not exceeding

H(p). It follows from Theorem 3.2 that, for pwz1,z2,z3 with w = (u, v) belonging to the boundary

of the triangle 4(z1, z2, z3), the equality V∞(pwz1,z2,z3) = H(pwz1,z2,z3) holds. For other points

w = (u, v) ∈ 4(z1, z2, z3), the function H(pwz1,z2,z3) is the least concave majorant of its values at

the points pwz1,z2,z3 with w = (u, v) ∈ Z2 and at the boundary of 4(z1, z2, z3). Therefore this is

sufficient to show that there is a strategy σ∗ for Player 1 that guarantees him H(pwz1,z2,z3), for

w = (u, v) ∈ Z2.

For the point w = (u, v) ∈ Z2 that belongs to the triangle 4(z1, z2, z3)

H(pwz1,z2,z3) =
1

2
(

3∑
i=1

(x2
i + y2

i )p
w
z1,z2,z3

(zi)− (u2 + v2)). (5.2)

For pwz1,z2,z3 with w = (u, v) ∈ Z2, the first step of strategy σ∗ may efficiently use the actions

(u − 1, v − 1), (u, v − 1), (u − 1, v) and (u, v). With the help of these actions Player 1 can

perform moves such that the modulus of difference between the posterior expectations of each

coordinate and its initial expectation is not more than one.

There are several types of optimal first moves for Player 1. In particular, the first moves

σNE−SW1 (north-east – south-west), σNW−SE
1 , and their probabilistic mixtures. Denote e =

(1, 1), ē = (1,−1). The first move σNE−SW1 exploits only two actions w− e and w with posterior

expectations w− b · e and w+ a · e. The first move σNW−SE
1 makes use of actions (u− 1, v) and

(u, v − 1) with posterior expectations w − bē and w + aē.

Further we define the first move σNE−SW1 both in terms of posterior expectations and in

terms of the conditional probabilities of actions. We assume w.l.o.g. that w = 0 ∈ 4(z1, z2, z3).

The span of this move is defined with a mutual disposition of the points −e, e and the triangle

4(z1, z2, z3). If zi = k · e for some i = 1, 2, 3, k > 0, then put a = 1. If zi = k · −e for some

i = 1, 2, 3, k > 0, then put b = 1.

If zi 6= k · e, i = 1, 2, 3, k > 0, then there is a unique i = i+ such that the half-line starting

at 0 and passing through e crosses the side zi+ , zi++1 of the triangle 4(z1, z2, z3). If zi 6= k · −e,
i = 1, 2, 3, k > 0, then there is a unique i = i− 6= i+ such that the half-line starting at 0 and

passing through −e crosses the side zi− , zi−+1. Put

a = min(
det[zi+ , zi++1]

det[e, zi++1 − zi+ ]
, 1), b = min(

det[zi− , zi−+1]

det[−e, zi−+1 − zi− ]
, 1).

Definition 5.1. The first move σNE−SW1 for the game G∞(p0
z1,z2,z3

) makes use of actions −e
and 0. The posterior expectations are

Ep[z| − e] = −b · e, Ep[z|0] = a · e.

The total probabilities of actions are

q(e) = a/(b+ a), q(0) = b/(b+ a).
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This move is realized with the conditional probabilities of actions:

f ∗(−e|zi) =
a det[zi+1 + b · e, zi+2 + b · e]

(b+ a) det[zi+1, zi+2]
, i = 1, 2, 3;

f ∗(0|zi) =
b det[zi+1 − a · e, zi+2 − a · e]

(b+ a) det[zi+1, zi+2]
, i = 1, 2, 3.

Remark. The martingale of posterior expectations generated by the optimal strategy of Player

1 is a symmetric random walk over the adjacent points of the lattice Z2 disposed inside the

triangle 4(z1, z2, z3). The symmetry of this random walk is broken at the moment when it hits

the triangle boundary. Beginning from this moment the game degenerates into one of two-point

games with the distribution support being either zi+ , zi++1, or zi− , zi−+1.

If a < 1, then after observing the action 0 the next game is G∞(paezi+ ,zi++1
) with the proba-

bilities of states

p(zi+) =
det[e, zi++1]

det[e, zi++1 − zi+ ]
, p(zi++1) =

det[zi+ , e]

det[e, zi++1 − zi+ ]
.

If b < 1, then after observing the action−e the next game isG∞(p−be
zi− ,zi−+1

) with the probabilities

of states

p(zi−) =
det[e, zi−+1]

det[e, zi−+1 − zi− ]
, p(zi−+1) =

det[zi− , e]

det[e, zi−+1 − zi− ]
.

Theorem 5.2. The value V∞(p0
z1,z2,z3

) of the game G∞(p0
z1,z2,z3

) is equal to the function H(p)

given by (3.2). Both players have optimal strategies.

The optimal strategy for Player 2 is given by Definition 3.1.

For w = (u, v) ∈ Z2, one of optimal strategies of Player 1 is the strategy σ∗ of Definition 4.1.

Proof. Taking into account Corollary 3.4 and Theorem 4.2 this is sufficient to show that the

one-step gain corresponding to the first move σNE−SW1 of the optimal strategy for Player 1

combined with the gain H(p) at the points of posterior probabilities generated by this move

and weighted by total probabilities of actions satisfies Bellman optimality equations.

The best replies of Player 2 to the first move σNE−SW1 are actions 0, −e, (−1, 0), and (0,−1).

The corresponding one-step gain of Player 1 is equal to 2ab/(b+ a). In fact,

K1(σ
NE−SW
1 , 0|p0

z1,z2,z3
) = −q(−e)Ep[x+ y| − e] = 2ab/(b+ a);

K1(σ
NE−SW
1 ,−e|p0

z1,z2,z3
) = q(0)Ep[x+ y|0] = 2ab/(b+ a).

For actions (0,−1) and (−1, 0) of Player 2 the proof is analogous.

It follows from (5.1) and (5.2) that

H(p0
z1,z2,z3

) =

∑3
i=1(x

2
i + y2

i ) det[zi+1, zi+2]

2 det[z1 − z3, z2 − z3]
;
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H(paez1,z2,z3) = H(p0
z1,z2,z3

)− a

∑3
i=1(x

2
i + y2

i ) det[zi+1 − zi+2, e]

2 det[z1 − z3, z2 − z3]
− a;

H(p−be
z1,z2,z3

) = H(p0
z1,z2,z3

) + b

∑3
i=1(x

2
i + y2

i ) det[zi+1 − zi+2, e]

2 det[z1 − z3, z2 − z3]
− b.

We get

2ab/(b+ a) + q(−e)H(p−be
z1,z2,z3

) + q(0)H(paez1,z2,z3) = H(p0
z1,z2,z3

),

i.e., for p0
z1,z2,z3

and for the move σNE−SW1 in the game G∞(p0
z1,z2,z3

), functionH satisfies Bellman

optimality equation.

6 Decompositions of univariate distributions as patterns

for bivariate distributions

We now consider the games G∞(p) with prices given by arbitrary probability distributions

p ∈ ∆(Z2). We get the solution for the games G∞(p) as combinations of the solutions of games

with two and three states that were obtained in sections 4 and 5. To study this idea, in sections

6 and 7 we construct symmetric representations of distributions over R2 with the given mean

values as convex combinations of distributions with supports containing not more than three

points and with the same mean values.

We investigate the set P(R2) of probability distributions p over the plane R2 = {z = (x, y)}
with finite first absolute moments∫

R2

|x| · p(dz) <∞,

∫
R2

|y| · p(dz) <∞.

We denote mean values of the distribution p by Ep[x] and Ep[y]:

Ep[x] =

∫
R2

x · p(dz) <∞, Ep[y] =

∫
R2

y · p(dz) <∞.

We construct symmetric representations of convex sets of distributions with given mean values

Θ(u, v) = {p ∈ P(R2) : Ep[x] = u,Ep[y] = v},

as convex hulls of their extreme points, which are distributions with supports containing not

more than three points and with the same mean values. For extreme points of convex sets of

distributions with the given moments see Winkler (1988).

As a pattern we take the symmetric representation of one-dimensional probability distri-

butions over the integer lattice that was used in Domansky and Kreps (2009) for an analysis
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of bidding models with single-type asset. Let p be a probability distribution over the set of

integers Z1 with zero mean value. Then

p = p(0) · δ0 +
∞∑
k=1

∞∑
l=1

k + l∑∞
t=1 t · p(t)

p(−l)p(k) · p0
k,−l, (6.1)

where p0
k,−l is the probability distribution with the support {−l, k} and with zero mean value.

The representation (1) allows to reduce solving models with prices of assets given by arbitrary

probability distributions over Z1 to solving such models with two-point distributions.

Formula (6.1) becomes more transparent if we take into account the equality

∞∑
t=1

t · p(t) =

∑∞
s=1

∑∞
t=1(s+ t)p(−t)p(s)

1− p(0)
(6.2)

Coefficients of decomposition (6.1) take a ”symmetric” form

Pp(p0
k,−l) = (1− p(0))

(k + l)p(k)p(−l)∑∞
s=1

∑∞
t=1(s+ t)p(−t)p(s)

.

We mean just this form of coefficients saying that the representation (6.1) is symmetric. We

aim for constructing an analogous representation of bivariate probability distributions.

We treat coefficients Pp(p0
k,−l) of decomposition (6.1) as probabilities of extreme distribu-

tions with two-point supports. The probability of such distribution is proportional to the span

of its support and to the probabilities of both support points. Choosing a point in accordance

with a distribution p can be understood by means of two-step lottery: the first step chooses an

extreme distribution and the second step chooses a point in its support. This treatment allows

us to calculate the conditional probabilities of complementary points given one point −l or k

in a support of extreme distribution. We get

Pp(k| − l) =
k · p(k)∑∞
t=1 t · p(t)

, Pp(−l|k) =
l · p(−l)∑∞
t=1 t · p(t)

. (6.3)

Thus the conditional probability is the same for all given points on a half-line. It is proportional

to the point probability and to its distance from the origin. This property is characteristic for

this decomposition. In fact, if Pp(p0
k,−l) is a probability distribution such that (6.3) is fulfilled,

then

Pp(p0
k,−l ∩ {k}) = Pp(k| − l) · p(−l) = Pp(p0

k,−l)
k

k + l
,

and therefore we get (6.1). Formula (6.1) can be written as

p =
∞∑
k=0

∞∑
l=0

k + l∑∞
t=1 t · p(t)

p(−l)p(k) · p0
k,−l,

if we put p0
k,0 = p0

0,−l = δ0/2.
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This formula can be easily generalized for probability distributions over the set of real

numbers R1 with the zero mean value. Namely

p =

∫ ∞

x=0−
p(dx)

∫ ∞

y=0−

x+ y∫ ∞
t=0

t · p(dt)
· p0

x,−y · p(−dy), (6.4)

where, for x, y > 0, the distributions p0
x,−y = (x · δ−y + y · δx)/(x+ y), and p0

x,0 = p0
0,−y = δ0/2.

Formula (6.4) occurs in the offspring of Skorokhod representation (Skorokhod,1961) for a

sequence of sums of independent centered random variables by means of a Brownian motion

stopped at random times (see the survey of Obloj, 2004).

One of the steps of Skorohod’s proof consists of a demonstration that any centered prob-

ability distribution on the real line can be disintegrated into centered distributions supported

at two points each. Skorokhod employs another decomposition formula that works only for

distributions with continuous distribution functions. In fact, the formula (6.4) can be employed

as well.

Any centered probability distribution p on the real line can be represented as the distribution

of the random variable w(τ), where w(t), t ≥ 0, w(0) = 0 is a Brownian motion, the stopping

time τ is the minimal root of the equation (w(t) − χ)(w(t) + ψ) = 0, and the random vector

(χ, ψ) ∈ R2
+ is distributed with probabilities

P{(χ, ψ) ∈ dx× dy} =
x+ y∫ ∞

t=0
t · p(dt)

· p(dx)p(−dy).

Obloj indicates that for the first time formula (6.4) was used in this context in the works of

Hall (1968, 1969). Kallenberg attributes employing the same formula to Chung (see Kallenberg

(1997), the proof of Lemma 12.4 in Chapter 12).

7 Decompositions of bivariate centered distributions

Here we construct symmetric representations of convex sets of distributions with given mean

values

Θ(u, v) = {p ∈ P(R2) : Ep[x] = u,Ep[y] = v},

as convex hulls of their extreme points. This is sufficient to provide Decomposition for the

set Θ(0, 0) of centered distributions. Extreme points of the set Θ(0, 0) are the degenerate

distribution δ0 with the single-point support 0 = (0, 0), distributions p0
z1,z2

∈ Θ(0, 0) with two-

point supports (z1, z2), and distributions p0
z1,z2,z3

∈ Θ(0, 0) with three-point supports (z1, z2, z3).

The distribution p0
z1,z2

∈ Θ(0, 0) with the two-point support {z1, z2} such that (0, 0) belongs

to the interval (z1, z2), i.e. z1 = aeψ, z2 = −beψ where eψ is a unit vector with arg eψ = ψ,

a, b ∈ R1
+, is given by

p0
aeψ ,−beψ =

b · δaeψ + a · δ−beψ
a+ b

,
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The distribution p0
z1,z2,z3

∈ Θ(0, 0) with the support {z1, z2, z3} such that (0, 0) belongs to the

interior of the triangle 4(z1, z2, z3) is given by

p0
z1,z2,z3

=

∑3
i=1 det[zi+1, zi+2] · δzi∑3

j=1 det[zj, zj+1]
,

where det[zi, zi+1] = xi · yi+1 − yi · xi+1. All arithmetical operations with subscripts are fulfilled

modulo 3. Using polar coordinates zi = (ri, ϕi), zi+1 = (ri+1, ϕi+1) we get det[zi, zi+1] =

ri · ri+1 sin(ϕi+1−ϕi). Thus | det[zi, zi+1]| is equal to the area of the parallelogram spanned over

the vectors zi and zi+1. If the points zi, zi+1 are indexed counterclockwise, then det[zi, zi+1] ≥ 0.

Consider the set ∆0 of non-ordered triples (z1, z2, z3) that form triangles containing the point

(0, 0):

∆0 = {(z1, z2, z3), zi 6= (0, 0) : (0, 0) ∈ 4(z1, z2, z3)}.

The set ∆0 is manifold with a boundary. Its interior Int∆0 is the set of triples (z1, z2, z3) ∈ ∆0

such that (0, 0) belongs to the interior of the 4(z1, z2, z3). Its boundary ∂∆0 is the set of triples

(z1, z2, z3) ∈ ∆0 such that (0, 0) belongs to the boundary of the 4(z1, z2, z3).

If (z1, z2, z3) ∈ ∂∆0, then there is an index i such that det[zi, zi+1] = 0. In this case arg zi+1 =

arg zi+π(mod 2π), the point (0, 0) ∈ [zi, zi+1] and the distribution p0
z1,z2,z3

degenerates into the

distribution p0
zi,zi+1

with the support {zi, zi+1}.
For ψ ∈ [0, 2π), let Rψ be the half-line Rψ = {z : arg z = ψ(mod 2π)}. With each value

ψ ∈ [0, 2π) we associate the set ∆0(ψ) of non-ordered couples

∆0(ψ) = {(z1, z2), zi 6= (0, 0) : ∀z ∈ Rψ (0, 0) ∈ 4(z1, z2, z)}.

Let Int∆0(ψ) and ∂∆0(ψ) be the sets of non-ordered couples (z1, z2) such that, for z ∈ Rψ,

the triple (z1, z2, z) belongs to Int∆0 and to ∂∆0 respectively. We take, that points (z1, z2) are

indexed counterclockwise. This implies det[z1, z2] ≥ 0.

Using polar coordinates z1 = (r1, ϕ1), z2 = (r2, ϕ2) we get

Int∆0(ψ) = {((r1, ϕ1), (r2, ϕ2)) : ψ < ϕ1 < π + ψ, π + ψ < ϕ2 < π + ϕ1(mod 2π)}. (7.1)

The set ∂∆0(ψ) can be naturally represented as a conjunction of three non-intersecting sets:

∂1∆
0(ψ) = {((r1, ϕ1), (r2, ϕ2)) : ψ < ϕ1 < π + ψ, ϕ2 = π + ψ(mod 2π)}.

In other words, the set of couples such that (0, 0) belongs to the side (z2, z),

∂2∆
0(ψ) = {((r1, ϕ1), (r2, ϕ2)) : ϕ1 = π + ψ, π + ψ < ϕ2 < 2π + ψ(mod 2π)},

i.e. the set of such couples that (0, 0) belongs to the side (z1, z), and

∂3∆
0(ψ) = {((r1, ϕ1), (r2, ϕ2)) : ψ < ϕ1 < π + ψ, ϕ2 = π + ϕ1(mod 2π)},
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i.e. the set of couples such that (0, 0) belongs to the side (z1, z2) of the 4(z1, z2, z).

Now we introduce the value that plays the role of
∫ ∞
t=0

t ·p(dt), for symmetric representations

of distributions over R2. Set

Φ(p, ψ) =

∫
Int∆0(ψ)

det[z1, z2]p(dz1)p(dz2) + 1/2

∫
∂∆0(ψ)

det[z1, z2]p(dz1)p(dz2). (7.2)

Using polar coordinates z1 = (r1, ϕ1), z2 = (r2, ϕ2) and taking into account (7.1) we get

IntΦ(p, ψ) =

∫
Int∆0(ψ)

det[z1, z2]p(dz1)p(dz2)

=

∫ π+ψ−

ϕ1=ψ+

∫ ∞

r1=0+

p(dr1dϕ1)

∫ π+ϕ−1

ϕ2=π+ψ+

∫ ∞

r2=0+

r1 · r2 · sin(ϕ2 − ϕ1)p(dr2dϕ2).

Consider the term

∂Φ(p, ψ) =
1

2

∫
∂∆0(ψ)

det[z1, z2]p(dz1)p(dz2) =
1

2

3∑
i=1

∫
∂i∆0(ψ)

det[z1, z2]p(dz1)p(dz2).

For the set ∂3∆
0(ψ) the integrand is equal to zero. The integrals over the sets ∂1∆

0(ψ) and

∂2∆
0(ψ) differ from zero only if the measure p(Rψ+π) is more than zero. In this case∫

∂1∆0(ψ)

det[z1, z2]p(dz1)p(dz2) =

∫
Rψ+π

r2p(dr2) ·
∫
Hpψ

det[eψ, z1]p(dz1),

∫
∂2∆0(ψ)

det[z1, z2]p(dz1)p(dz2) =

∫
Rψ+π

r1p(dr1) ·
∫
Hpψ+π

det[z2, eψ]p(dz2),

where eψ is a unit vector with arg eψ = ψ, and Hpϕ is the half-plane

Hpϕ = {z : arg z ∈ (ϕ, ϕ+ π)(mod 2π)}.

As p ∈ Θ(0, 0) ∫
Hpψ

det[eψ, z1]p(dz1) =

∫
Hpψ+π

det[z2, eψ]p(dz2),

and ∫
∂1∆0(ψ)

det[z1, z2]p(dz1)p(dz2) =

∫
∂2∆0(ψ)

det[z1, z2]p(dz1)p(dz2).

Thus

∂Φ(p, ψ) =

∫
∂2∆0(ψ)

det[z1, z2]p(dz1)p(dz2)

=

∫
Rψ+π

r1p(dr1) ·
∫ π+ϕ−1

ϕ2=π+ψ+

∫ ∞

r2=0+

r2 · sin(ϕ2 − ψ − π)p(dr2dϕ2).

Taking this and (7.1) into account we get

Φ(p, ψ) =

∫ π+ψ+

ϕ1=ψ+

∫ ∞

r1=0+

p(dr1dϕ1)

∫ π+ϕ−1

ϕ2=π+ψ+

∫ ∞

r2=0+

r1 · r2 · sin(ϕ2 − ϕ1)p(dr2dϕ2).
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The next fact produces the base for constructing symmetric representations of distributions

over R2.

Theorem 7.1. For any distribution p ∈ Θ(0, 0) the quantity Φ(p, ψ) does not depend on ψ,

i.e. this is an invariant Φ(p) of the distribution p ∈ Θ(0, 0).

Remark 7.2. This theorem is a two-dimensional analog of the equality∫ ∞

t=0

t · p(dt) =

∫ ∞

t=0

t · p(−dt)

that holds for p ∈ Θ(0) ⊂ P(R1).

Corollary. For any distribution p ∈ Θ(0, 0) the quantity Φ(p) has the following invariant

representation that is a bivariate analog of formula (6.2):

Φ(p) =
(
∫
Int∆0 +1/2

∫
∂∆0)

∑3
j=1 det[zj, zj+1]p(dz1)p(dz2)p(dz3)

1− p(0, 0)
.

Now we will formulate the preliminary variant of the decomposition theorem for bivariate

distributions.

Proposition 7.3. Any distribution p ∈ Θ(0, 0) has the following symmetric decomposition into

a convex combination of distributions with no more than three-point supports:

p = p(0, 0) · δ0 +

∫
Int∆0

∑3
j=1 det[zj, zj+1]

Φ(p)
p0
z1,z2,z3

p(dz1)p(dz2)p(dz3)

+1/2

∫
∂∆0

∑3
j=1 det[zj, zj+1]

Φ(p)
p0
z1,z2,z3

p(dz1)p(dz2)p(dz3), (7.3)

where Φ(p) is given by (7.2).

The last term of decomposition (7.3) contains all distributions p0
zi,zi+1

with two-point sup-

ports (zi, zi+1), where zi ∈ Rψ and zi+1 ∈ Rψ+π. In order for such combination of points

to appear with nonzero probability, it is necessary that the measure p(Rψ) and the measure

p(Rψ+π) be greater than zero. This is possible for no more than a countable set Ψ(p) of values

ψ.

These considerations make possible the final formulation of the principal Theorem:

Theorem 7.4. Any probability distribution p ∈ Θ(0, 0) has the following symmetric represen-

tation as a convex combination of distributions with one-, two-, and three-point supports:

p = p(0, 0) · δ0 +

∫
Int∆0

∑3
j=1 det[zj, zj+1]

Φ(p)
p0
z1,z2,z3

p(dz1)p(dz2)p(dz3)

+
∑
Ψ(p)

∂Φ(p, ψ)

Φ(p)

∫
Rψ

∫
Rψ+π

r1 + r2∫
Rψ+π

tp(dt)
p0

(r1,ψ),(r2,ψ+π)p(dr2)p(dr1). (7.4)
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Note that the extension of this methodology to higher dimensions is absolutely straightfor-

ward for centered distributions over Rn that certainly do not include distributions with less than

(n+1)-point supports in their decomposition. These are distributions without linear subspaces

of non-zero measure, or, if there is such subspace, then this subspace has a half-subspace of zero

measure.

Any centered distribution over Rn can be reduced to this form by subtracting a distribution

that include only distributions with less than (n+ 1)-point supports in its decomposition.

8 Constructing optimal strategies for Player 1

In this section we construct optimal strategies for Player 1 making use of the decomposition for

the initial distribution p developed above.

The coefficients of decomposition may be treated as probabilities of corresponding extreme

distributions with not more than three-point supports. The choice of a point on the two-

dimensional integer lattice in accordance with the distribution p can be realized by means of

the two-step lottery: the first step chooses an extreme distribution and the second step chooses

a point in its support. This treatment allows us to calculate the conditional probabilities of

extreme distributions (i.e. one or two complementary points) given one point (x, y) 6= (k, l) in

the support of extreme distribution. These conditional probabilities turn to be the same for all

points of any ray starting at (k, l).

Consequently, the following algorithm gives the optimal strategy for Player 1:

1. If the state chosen by chance move is (0, 0), then Player 1 stops the game.

2. Let the state chosen by chance move be z 6= (0, 0), and let z = k · w, where k ∈ N
and w = (u, v) with (u, v) being a relatively prime pair of integers. Then Player 1 realize the

Bernoulli trial with probabilities

∂Φ(p, w)

Φ(p)
, 1− ∂Φ(p, w)

Φ(p)
=

IntΦ(p, w)

Φ(p)
,

to choose between two-point and three-point distributions.

c) If two-point distributions are chosen, then Player 1 chooses a point z2 = −lw by means

of lottery with probabilities
l · p(−lw)∑∞
t=1 t · p(−tw)

and plays the optimal strategy σ∗(·|z) for the state z = kw in the two-point game G(p0
kw,−lw).

d) If three-point distributions are chosen, then Player 1 chooses a pair of points z2, z3 by
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means of lottery with probabilities

det[z2, z3]p(z2)p(z3)

IntΦ(p, w)
.

and plays the optimal strategy σ∗(·|z) for the state z = z1 in the three-point game G(p0
z1,z2,z3

).

As the optimal strategies σ∗ ensure Player 1 the gains equal to one half of the sum of

component variances Dp[u] + Dp[v] in the two and three-point games with p ∈ Θ(k, l), and as

the sum of component variances is a linear function over Θ(k, l)∩M2, where M2 is the class of

distributions with finite second moment, we obtain the following result:

Theorem 8.1. For any distribution p ∈ Θ(k, l) ∩M2 the compound strategy depicted above

ensures that Player 1 will gain 1/2 · (Dp[u] + Dp[v]) in the game G(p).
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