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1 Introduction 

 

Procedures aggregating individual preferences into a collective choice differ in their 

vulnerability to manipulation. We say that manipulation can occur if any voter can achieve a 

better voting result for himself by misrepresenting his preferences. Gibbard (1973) and 

Satterthwaite (1975) started detailed research into the problem of manipulability. They proved 

that any non-dictatorial social choice rule with at least three possible outcomes is manipulable. 

Satterthwaite provided the definition of a strategy-proof procedure, explaining that it is a voting 

scheme in which no manipulation can occur. These studies have given rise to a number of 

extensions and generalizations of the Gibbard-Satterthwaite theorem. 

Following Gibbard and Satterthwaite, Barbera (1977) later studied the possibility of 

constructing a satisfactory social choice procedure, proving that a social choice rule that satisfies 

the unanimity condition and does not leave “too much” to chance must be either uniformly 

manipulable or dictatorial. 

The problem of manipulability was widely investigated by J. Kelly. In Kelly (1977) it 

was proved that, without an assumption of single-valuedness, rules that satisfy both non-

dictatorship and strategy-proofness could exist. However, Duggan and Schwartz (2000) proved 

that, assuming three or more alternatives, non-manipulability and non-dictatorship are 

inconsistent with citizens' sovereignty and residual resoluteness. Citizens' sovereignty means that 

the social choice rule could produce any alternative as a result. Residual resoluteness assumes 

that a rule does not produce ties if all preferences are the same (say, x above y) or if just one 

voter deviates (putting y above x). 

The next problem in studying manipulability was to compare social choice procedures in 

their vulnerability to manipulation. The first approach is measuring the probability that in a 

randomly chosen preference profile manipulation is possible. Since it was introduced in Nitzan 

(1985) and Kelly (1988), we call this measure the Nitzan-Kelly’s index. The latter also considers 

an approach that takes into account the number of profiles where manipulation is very unlikely to 

occur, although still possible. In Kelly (1993) the first method was developed and supported by 

computational results on the relative manipulability of social choice rules. 

Aleskerov and Kurbanov (1999) and Aleskerov et al (2011) continued this line of 

research. The first paper contains the results of computational experiments that reveal the degree 

of manipulability of social choice rules. In addition, the authors introduced some new indexes for 

evaluating manipulability. In Aleskerov et al (2011), which is fundamental to this study, 

manipulability is studied in two ways. It extends the number of voters in the computational 

experiment and uses different methods of expanding preferences. 
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All the listed articles focus on individual manipulations under impartial culture 

assumption. The impartial culture model was introduced in Guilbaud (1952). This model 

assumes that a set of all preference profiles is used for generating voters’ preferences. Another 

important probabilistic model is the impartial anonymous culture model (IAC), first described in 

Kuga and Nagatani (1974) and Gehrlein and Fishburn (1976). The question of manipulability of 

social choice rules in the IAC model was thoroughly investigated by Pritchard and Wilson 

(2007), Lepelley and Valognes (2002), Favardin and Lepelley (2006), and Slinko (2006). These 

four publications are devoted to the study of coalitional manipulations. 

 In this paper, we consider the impartial anonymous and neutral culture model (IANC), in 

which both names of voters and names of alternatives do not matter. In this model, some 

preference profiles are regarded as equivalent in terms of permutations of individuals and 

alternatives. Therefore, the set of all preference profiles splits up into equivalence classes. The 

first investigation of this model was started in Egecioglu (2005) and extended in Egecioglu and 

Giritligil (2009). They introduced a way of calculating the number of anonymous and neutral 

equivalence classes and an algorithm for their uniform random generation. However, this model 

has not been thoroughly analyzed yet. Particularly, a way of analyzing the difference of indexes 

in IC and IANC without conducting a computational experiment has not been investigated in the 

literature. 

In the IC model, the Nitzan-Kelly’s index is a proportion of manipulated profiles in the 

set of all preference profiles. In the IANC model we consider not profiles, but equivalence 

classes, and the Nitzan-Kelly’s index in IANC is a proportion of manipulated equivalence 

classes. The reason why we consider such a difficult model as IANC is that every sensible social 

choice rule satisfies both anonymity and neutrality, it means that any two preference profiles that 

differ in permutation of voters and (or) names of alternatives will be both either manipulable or 

not with respect to those rules. We can regard an equivalence class as a type of group preference, 

so, considering only representatives of equivalence classes, we do not count preference profiles 

of the same type twice. 

The difficulty is that computational experiments in the IANC model have rather high 

complexity, and the number of equivalence classes is still very large (see Tab. 1 below). The 

algorithm for generating representatives of equivalence classes was introduced in Egecioglu 

(2005). However, we should know whether the results of computational experiments in IANC 

would differ from those in the basic IC model. Then, if this difference is not zero, could it 

significantly influence the relative manipulability of social choice rules? 

Using combinatorial methods and elements of group theory, we derive the difference of 

indexes in IANC and IC models. We study properties of equivalence classes with maximal and 
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minimal number of elements and evaluate the maximal difference of probabilistic measures for 

the number of voters and alternatives up to 10.  

 

Tab. 1. The number of anonymous and neutral equivalence classes (first row of each cell) 

and the number of preference profiles (second row) 

 The number of voters 

3 4 5 6 7 8 

T
h

e 
n

u
m

b
er

 o
f 

a
lt

er
n

a
ti

v
es

 

3 10 24 42 83 132 222 

216 1296 7776 46656 279936 1679616 

4 111 762 4095 19941 84825 329214 

13824 331776 7962624 191102976 4.586*10
9 

1.1*10
11 

5 2467 76044 1876255 39096565 703593825 1.117*10
10 

1728000 2.073*10
8 

2.488*10
10 

2.986*10
12 

3.583*10
14 

4.3*10
16 

 

 We show that for an exact number of voters and alternatives this difference is almost zero 

and, consequently, any probabilistic measure in the IANC model will be equal to those in the IC 

model. At the same time, this difference could be large enough to cause changes in the relative 

manipulability of social choice rules. We provide an example of such a situation and compute 

the manipulability indexes for four social choice rules in IC and IANC for the case of three 

alternatives. We compare the relative manipulability of these rules and the difference of indexes 

for each rule in both models. After that, we explain it in terms of the anonymous and neutral 

culture model. 

 

2 Definitions, notions, and theoretical basis 

 

In this paper we use the notions for the impartial anonymous and neutral culture model 

introduced in Egecioglu (2005). First, there is a set of alternatives A , consisting of m  elements, 

and a set of individuals (or voters) {1,2,..., }N n  with n  elements. A preference profile is 

defined as a matrix consisting of n vectors that represent voters’ preferences by ordering m 

alternatives. The preference profile is 1 2{ , ,..., }nP P P P , and preference of the i-th individual is 

iP , a linear order.  

The total number of different preference profiles is ( !)nm . Impartial culture model 

assumes that each voter selects his or her preferences out of !m  possible linear orders and each 

of ( !)nm  preference profiles is equally likely. The set of all preference profiles with n voters and 

m alternatives is denoted by  (m, n). 
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As mentioned above, in the impartial anonymous and neutral culture model there is no 

difference between voters and between the names of alternatives. For example, in this model the 

following three profiles are considered as the same representation of preferences: 

1 2P P

y y

P x z

z x


      

1 2' '

'

P P

x x

P y z

z y


     

1 2'' ''

''

P P

y y

P z x

x z


. 

 Therefore, we have a partition of  (m, n) into anonymous and neutral equivalence 

classes (ANECs). Any preference profile from a given ANEC can be taken as the representative 

profile (or root). In other words, ANEC is a set of preference profiles that can be generated from 

each other by permuting voters’ preferences and renaming alternatives.  

 The permutation of voters (or columns) is denoted as  , an element of a symmetric 

group nS , and the permutation on the set of alternatives is mS  . The pair of permutations   

and   is denoted by ( , )g   . n mG S S   is the group of all permutations ( , )g   , and it 

acts on the set of all preference profiles. There are !n  permutations of voters and !m  

permutations of alternatives and, therefore, the number of permutations ( , )g    is 

| | ! !G n m . 

 A partition   of n is defined as a weakly decreasing sequence of positive integers 

1 2 3( ... )z         , such that 1 2 ... n      , where i  is called a part of  . For 

example, (3,2,1,1) is a partition of 7 into 4 parts. The type of partition is denoted by 1 21 2 ... nn
  , 

which means that a partition   has i  parts of size i for each i from 1 to n. 

 Each permutation can be represented via cycle decomposition. Therefore,   defines a 

partition   of n, and   defines a partition   of m in such a way that parts of partitions   and 

  are the lengths of cycles in   and  , respectively. The sum 1 2 ...      is the total 

number of cycles in permutation  . For any partition   we define a number  

1 2

1 21 2 ... ! !... !.n

nz n
 

     

 The set of all permutations of a given cycle type 1 21 2 ... nn
 

, is called a conjugacy class. 

Thus, the number of permutations in a conjugacy class is evaluated as 

1 !z n

 . 

 The image of a profile P  under the permutation ( , )g    is denoted by gP . 

Anonymous and neutral equivalence class 
P

  can be defined as a subset of  : { | }gP g G . 

Profiles 1 2,P P  are regarded as equivalent if there exists a permutation g G  such that 1 2

gP P . 
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 If for a given permutation g there exists a profile P , such that gP P  then P  is called a 

fixed-point of g. The set of all fixed points for g is  

{ | }g

gF P P P   . 

For a given profile P  a set of all permutations that do not change P  is a subgroup of G  

and is called a stabilizer of P . This set is defined as 

{ | }g

P
G g G P P   . 

 The number of elements in the orbit of P  (or its equivalence class) can be evaluated as a 

ratio 

/
P P

G G  . 

 An indicator function ( )S  of statement S is defined as follows 

1, ,
( )

0, .

if S is True
S

if S is False



 


 

 ( )GDC   is the greatest common divisor of the parts of  , ( )LCM   is a least common 

multiple of the parts of  . The number of anonymous and neutral equivalence classes for n 

voters and m alternatives was found in Egecioglu (2005). It is given by 

1

!
1

( , )
!

1

n m

d d
R m n z

m

d






 
  

  
  
 

 , 

where ( )d LCM   and binomial coefficient for an integer k , 0 k x   is defined as 

!
, ,

!( )!

0, .

k

x

x
xx

k x kС
k

x


  

   
   

 

 For n  and !m  being relatively prime the number of equivalence classes 

! 11
( , )

! 1!

n m
R m n

mm

  
  

 
. 

In addition, we give some definitions on manipulability. The preference profile where all 

individuals express their true preferences except the i-th individual is denoted by 

1 1 1{ ,..., , ', ,..., }i i i i nP P P P P P   . 'iP  is the deviation of the i-th individual from his true 

preferences iP . 

The social choice (or the outcome of aggregating procedure) with respect to the profile P  

is denoted by ( )C P . As in Aleskerov et al. (2010), the case of multiple choice is considered. 

That means that the result of an aggregating procedure might consist of several elements. 
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Consider a preference profile ''P  from the example provided above. How can one decide, what 

is better for the first individual: the set { , , }x y z  or { }z ? To answer this question, several methods 

of expanding preferences are proposed. In this study, Leximin and Leximax, two lexicographic 

methods introduced in Pattanaik (1978), are considered. 

On the basis of a linear order representing voter’s preferences on the set of alternatives, 

expanded preferences order all the subsets of A . In the Leximin method, the worst alternatives of 

two sets are compared, and the set where the better alternative is contained is considered as the 

better set. If they are the same, then the second-worst alternatives are compared and so on. In the 

Leximax method of expanding preferences, the best alternatives are compared, then the second-

best alternatives and so on. iEP  denotes the expanded preferences of individual i.  

For example, if voter i  prefers alternative x  to alternative y  and alternative y  to 

alternative z, then, according to the Leximin method,  

{ } { , } { } { , } { , , } { , } { }i i i i i ix EP x y EP y EP x z EP x y z EP y z EP z . 

According to Leximax 

{ } { , } { , , } { , } { } { , } { }i i i i i ix EP x y EP x y z EP x z EP y EP y z EP z . 

In the case of multiple choice manipulation is defined as follows: if for individual i 

( ) ( )i iC P EPC P , then manipulation takes place. 

The Nitzan-Kelly’s index of manipulability is the ratio 

0

( !)n

d
NK

m
 , 

where 0d  is the number of profiles in which manipulation is possible. 

 In the IANC model this index is calculated over the set of roots of equivalence classes 

0

( , )
IANC

r
NK

R m n
 , 

where 0r  is the number of roots in which manipulation is possible, and ( , )R m n  is the total 

number of roots. 

 

3 Anonymous and neutral equivalence classes 

 

 In this section, we reveal some properties of anonymous and neutral equivalence classes 

in order to evaluate the maximal difference of indexes in the IC and IANC models. We discuss 

the problem of difference in terms of manipulability, but all these results are applicable to the 

study of any other probability in the IC and IANC models. First, we consider what properties 
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cause this difference. Let us consider a hypothetical example of a set   consisting of ten 

preference profiles. Assume that there are four ANECs: two classes of cardinality 2, one class of 

cardinality 5, and the last one has only one preference profile.  

 

 

Fig. 1. A hypothetical example of four equivalence classes. 

 

We can assume that only profiles from the biggest equivalence class are manipulable. 

Consequently, the manipulability index in the IC model is 0.5, while in the IANC model this 

index is equal to 0.25 because only 1 of 4 equivalence classes is manipulable. So, we can see that 

this difference results from an inequality of equivalence classes. In the IANC model all 

equivalence classes are equally likely. 

Therefore, the manipulability index in IC exceeds the index in IANC if the average 

cardinality of equivalence classes that are manipulable exceeds the average cardinality of all 

equivalence classes. On the contrary, the manipulability index is less in IC than in IANC, if the 

average cardinality of equivalence classes that are manipulable is less than the average 

cardinality of all equivalence classes. 

To start with, we consider equivalence classes that have the least and the greatest 

cardinality. 

 

Theorem 1 (Anonymous and neutral equivalence class with the minimal number of elements) 

The minimal number of elements in an anonymous and neutral equivalence class is !m . This 

class is unique for the case of 3n  . 

 

Next, we determine the cardinality of maximal equivalence class. For any preference 

profile belonging to this class, the number of stabilizing permutations is minimal. For some m 

and n, there exist preference profiles that have a stabilizer consisting only of an identity 

permutation. 

 

Theorem 2 (Anonymous and neutral equivalence class with the maximal number of elements) If 

!m n , then the maximal number of elements in an anonymous and neutral equivalence class is 

! !m n . 
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 In contrast to minimal equivalence classes, there could be more than one maximal 

equivalence class. Evaluating the exact number of such classes is a rather difficult computational 

and combinatorial problem and requires some specific calculations in most cases. However, we 

can estimate this number by an interval, which is, surprisingly, not only rather small, but also 

tends to zero as m and n grow. 

 First, let us denote the set of preference profiles consisting of different columns by  . 

The number of equivalence classes on this set is denoted by ( , )R m n . Finally, gF  is a set of fixed 

points P  from  ,  

{ | }g

gF P P P   . 

 

Lemma 3 The number of fixed-points from   for some permutation ( , )g    is equal to 

1 2

0

( ! ), ... ,

0, .

jg

m j t if t
F

otherwise



  



     

 




 

where ( )t LCM  . 

 

 Since the preference profiles in a maximal equivalence class in the case !m n  always 

consist of different columns, our next step is to evaluate the number of ANECs on  . 

 

Theorem 4 For any m and n such that !m n , the number of equivalence classes on   is equal 

to 

1
1 1

0

( , ) ( ( , )) ( ! )
j

R m n z z S m j t


 
 

  


 



    , 

where 1 2( , ) ( ... )S t         . 

 

 Theorem 4 allows us to make an important corollary concerning maximal equivalence 

classes. 

 

Corollary 5 For any m and n such that !m n  a), the number of maximal ANEC satisfies the 

following inequality 

max

2( ! 1)!
( , ) ( , ) ( , )

( ! )! !

m
R m n R m n R m n

m n n


  


. 
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b) If m and n are such that n m  and n is a prime number, then the number of maximal ANEC is 

equal to ( , )R m n . 

 

4 Evaluating the difference of the Nitzan-Kelly’s index 

 

In this section we apply theoretical results to the problem of evaluating the maximal 

difference of manipulability indexes. As mentioned earlier, the inequality of ANECs’ cardinality 

causes this difference. We illustrate this in the following diagram. On the x-axis are 24 ANECs 

for a case with 3 alternatives and 4 voters. The value on the y-axis corresponds to the number of 

elements in the ANEC. The line on this figure displays the average number of elements in the 

classes.  

 

0

50

100

150

The number of elements in ANEC, less than avarage

The number of elements in ANEC, more than avarage

The avarage cardinality of ANEC

 

Fig. 2. The set of ANEC for 3 alternatives and 4 voters. 

  

 We have already concluded that the manipulability index in IC exceeds the index in 

IANC when the average cardinality of equivalence classes that are manipulable exceeds the 

average cardinality of all equivalence classes. On the other hand, the difference between the 

index in the IC and IANC models is negative when the average cardinality of equivalence classes 

that are manipulable is less than the average cardinality of all equivalence classes. Consequently, 

the absolute value of difference is maximal when all the classes  , such that | | | |av  , and only 

they are either manipulable or not manipulable. 

 In general, the maximal difference between manipulability indexes in the IC and IANC 

models is calculated as follows 

* *

max
( !) ( , )

IANC n

d r

m R m n
   , 
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where *d  is the number of profiles in all equivalences classes  , such that | | | |av   (or 

| | | |av  ), and *r  is the number of such classes. 

 We continue to consider the case of !m n  and suggest evaluating this difference by 

calculating the number of classes with cardinality that exceeds the average. This approach is 

justified by the fact that for small n  the only classes such that | | | |av   are the classes with a 

maximal number of elements. Thus, the difference is calculated as 

max max( , ) ( , ) ! !
max

( , ) ( !)
IANC n

R m n R m n m n

R m n m


   . 

 However, for a certain value of n  the second maximal cardinality of ANECs also begins 

to exceed the average. To evaluate this value, we can use the following approximation. For 

simplicity, the number of equivalence classes is calculated as in the case of n  and !m  being 

relatively prime 

! 11
( , )

! 1!

n m
R m n

mm

  
  

 
. 

 Then the average number of elements in ANEC is 

( !)

! 11

! ! 1

nm

n m

m m

  
 

 

. 

 The number of elements in ANEC, which is k  times less than the maximal class, is  

! !m n

k
. 

 Such n  that satisfies the inequality 

( !) ! !

! 11

! ! 1

nm m n

n m k

m m


  

 
 

, 

which is simplified to 

( ! 1)!
( !)

( ! 1)!

n n m
k m

m

 
 


, 

is denoted by kn . In other words, kn  is the number of voters for which the cardinality of ANEC 

that is k  times less than the maximal class begins to exceed the average cardinality of 

equivalence classes. 

 For example, if 3m  , then 2 4n  ; if 4m  , then 2 7n  ; if 5m  , then 2 14n  ; and if 

26, 33m n  . Thus, when 2n n , it is enough to know the cardinality and the number of 

maximal ANEC to evaluate the maximal difference of manipulability indexes in IC and IANC. 



 13 

 Using Corollary 5, we get the difference in the case of !m n  estimated by the interval 

1 1

2( ! 1)! 1 ! 1 !
( , ) max ( , )

( ! )! ! ( , ) ( !) ( , ) ( !)
d IANC dn n

m n n
R m n R m n

m n n R m n m R m n m 

 
        

 
. 

 And an exact value of the maximal difference for m and n such that n m  and n is a 

prime number 

max 1

1 !
max ( , )

( , ) ( !)
IANC n

n
R m n

R m n m 
    . 

The following figures illustrate the behavior of the difference for the number of 

alternatives from 3 to 10 and the same number of voters. For the case of three and four 

alternatives, this difference is large enough to cause changes in the relative manipulability of 

social choice rules. At the same time, for the case of six or more alternatives, it becomes so small 

and insignificant that we can take indexes in the IC model equal to those in the IANC model. 

However, we should also take into account that this difference increases up to a certain value, 

which is to be calculated in future research. 

0

0,1

0,2

0,3

0,4

0,5

0,6

3 4 5 6 7 8 9 10

Number of voters, n

m=3 m=4 m=5 m=6

m=7 m=8 m=9 m=10

  

Fig. 3. Maximal difference of indexes in the IC and IANC models. 

0,0000001

0,000001

0,00001

0,0001

0,001

0,01

0,1

1

3 4 5 6 7 8 9 10

Number of voters, n

m=3 m=4 m=5 m=6

m=7 m=8 m=9 m=10

 

Fig. 4. Maximal difference of indexes in the IC and IANC models, log scale. 
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5 Manipulability of social choice rules in IC and IANC models 

 

Using the results of the theoretical study from the previous section, we calculate the 

maximal difference of the Nitzan-Kelly’s indexes in the IC and IANC models and compare it 

with the actual difference of this index for four social choice rules. First, we give a formal 

definition of these rules. 

1. Plurality Rule. This rule chooses the best alternative for the maximal number of 

voters. 

( ) [ ( , ) ( , )]a C P x A n a P n x P       

where ( , ) { | }in a P card i N y A aPy     . 

2. Approval Voting. Social choice is an alternative at the place of q  or higher in the 

preferences of the maximal number of voters. 

( ) [ ( , , ) ( , , )]a C P x A n a P q n x P q       

 where ( , ) { | }in a P card i N y A aPy     . 

3. Borda’s Rule. For each alternative in the i -th preference,s the number ( , )ir x P  is 

counted calculated as follows 

( , ) { : }i ir x P card b A xPb  . 

The sum of ( , )ir x P  over all i N  is called a Borda’s count. 

1

( , ) ( , )
n

i

i

r a P r a P


 . 

Borda’s rule chooses an alternative with the maximal Borda’s count. 

( ) [ , ( , ) ( , )]a C P b A r a P r b P     . 

 

4. Black’s procedure. Chooses a Condorset winner, if it exists, and, if it does not exist, 

the winner of Borda’s rule. 

 

We compute the Nitzan-Kelly’s indexes both in impartial culture and impartial 

anonymous and neutral culture model using the Leximin and Leximax method of expanding 

preferences in 3-alternatives voting. After that, we calculate the difference of these indexes 

 0 0

( !) ( , )
IANC n

d r
K

m R m n
   , 



 15 

Fig. 5. represents the differences calculated for the Leximin method (for graphs 

representing the Nitzan-Kelly’s index for the Leximax method, see Appendix B). The maximal 

difference is represented by the lowest and the highest border on figure 5. As can be seen from 

this graph, the difference is negative only for approval voting rule. This fact can be explained as 

follows: preference profiles in which manipulation is possible often belong to equivalence 

classes with a small number of elements. 

The plurality rule has the highest level of difference for 3 10n  . These two facts cause 

the changes in the relative manipulability of social choice rules. Figures 6 and 7 illustrate the 

behavior of the Nitzan-Kelly’s index in IC and IANC. The approval rule turns out to be the most 

manipulable in the IANC model, while under the IC assumption it is the second least 

manipulable rule. The relative position of the plurality rule changed in the opposite direction. 

However, Black’s procedure is the least manipulable in both cultures. 
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Fig. 5. The difference of the Nitzan-Kelly’s index in IC and IANC, Leximin 
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Fig. 6. The Nitzan-Kelly’s index for the Leximin method in the IC model 
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Fig. 7. The Nitzan-Kelly’s index for the Leximin method in the IANC model 

 

 

6 Concluding remarks 

 

Anonymity and neutrality are the basic axioms in social choice theory. The IANC model, 

based on these axioms, assumes that both names of voters and names of alternatives are 

immaterial. We introduce combinatorial instruments that allow us to study the properties of 

social choice rules under IANC assumption. Since computational experiments in this model have 

a rather high complexity, we present an alternative way of analyzing properties of anonymous 

and neutral social choice rules. 

In the IC model, the Nitzan-Kelly’s index is the probability that any preference profile 

independently drawn from the set of all preference profiles will be manipulable. In the IANC 

model, it is the same probability on the set of anonymous and neutral equivalence classes. How 

do these probabilities differ from each other? Using methods of combinatorics and group theory, 

we evaluate the number and cardinality of anonymous and neutral equivalence classes with a 

maximal and minimal number of elements. We evaluate maximal difference of any probability 

(such as the Nitzan-Kelly’s index) in the IC and IANC models. We show that for the case of 

three and four alternatives, the maximal possible difference is high enough to cause changes in 

the relative manipulability of social choice rules. For the case of six or more alternatives, this 

difference is almost zero, and all probabilities in the IC model are equal to those in the IANC 

model. This means that studying some properties of choice rules in the IANC model may not 

require complicated computational experiments. 

To illustrate how a transition from IC to IANC can change the situation, we analyze the 

actual difference of manipulability indexes of four social choice rules in the IC and IANC 

models with Leximin and Leximax extension methods. 
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Appendix A 

 

Theorem 1 The minimal number of elements in anonymous and neutral equivalence class is !m . This 

class is unique for cases where 3n  . 

 

Proof.  Firstly, we show that the maximal number of stabilizing permutations is !n . If profile P  

consists of equal columns, then the only stabilizing permutations for P  are ( , )g   , such that   is 

any permutation of voters, and   is an identity permutation. Then, let us consider a profile P  in which at 

least two voters have different preferences. If   is a permutation of voters, 1  and 2  are different 

permutations of alternatives, then both 1 1( , )g    and 2 2( , )g    cannot be stabilizing permutations 

for the same profile. Therefore, the cardinality of stabilizer cannot exceed !n  and minimal cardinality of 

the equivalence class is ! !/ ! !m n n m .   

Let us consider a preference profile with two columns. The first column is 1 2( , ,..., )ma a a , and 

the second is (1) (2) ( )( , ,..., )ma a a   , such that permutation   has an order of 2. For this profile the 

cardinality of the stabilizer group also equals 2 and the number of equivalence classes with a minimal 

number of elements is greater than 1 in this case.  

Now assume that 3n  . Suppose that there exists a profile P  in which at least two voters have 

different preferences and the stabilizer for P  has exactly !n  elements. For each permutation of voters  , 

there must exist a permutation of alternatives  , such that ( , )g    is a stabilizing permutation for P . 

Let us try to build a permutation   for such permutations  , that have a cycle ( , )i j  and a cycle ( )k  

(  fixes k -th column), where ,i j k , 1..k n . This means that corresponding permutations   should 

not permute alternatives and only profile with all identical columns could be a fixed point for such 

( , )g   . 

Since all profiles consisting of similar preferences belong to the same equivalence class, we can 

conclude that it is unique. An equivalence class with a minimal number of elements is denoted by min . 

The cardinality of such a class is 

min

! !
!

!

m n
m

n
   ■ 

 

Theorem 2 The maximal number of elements in anonymous and neutral equivalence class is ! !m n , if 

and only if !m n . 

 



 18 

Proof.  First, we show that max| | ! !m n   implies !m n . Suppose, that max| | ! !m n  , but !m n . This 

means that the number of columns in preference profile P  is greater than the number of column types 

and at least two columns in P  are the same. Consequently, the number of stabilizing permutations is 

more than one and max| | ! !m n  . On the other hand, if !m n , then the preference profile consists of all 

!m  different columns. Consider any permutation of order m , for example, (12 … m), which splits up a 

set of !m  columns into ! 1m   non-intersecting orbits. In this case, the preference profile has more than 

one stabilizing permutation. 

 Secondly, we should prove that if !m n  then max| | ! !m n  . In the case !m n  for a 

preference profile consisting of different columns there cannot be a stabilizing permutation ( , )g   , 

such that   permutes voters and   is an identity permutation. If a permutation ( , )g    renames 

alternatives, then in each row of its fixed point P  there is the same number of permuted alternatives. If 

alternatives are permuted in the same cycle, then they are repeated in each row the same number of times. 

We can always build a profile consisting of different columns that does not satisfy this property the 

following way. Take any profile consisting of different columns that has at least two stabilizing 

permutations. Then reverse the order of any two alternatives such that columns are still not repeated and 

the mentioned property is not satisfied. Thus, the only stabilizing permutation for a described profile P  

with !m n  is an identity permutation. The cardinality of equivalence class max , consisting of such 

profiles, is 

max

! !
! !

1

m n
m n     ■ 

                                                                             

Lemma 3 The number of fixed points from the set of preference profiles consisting of different columns 

for some permutation ( , )g    is equal to 

1 2

0

( ! ), ... ,

0, .

jg

m j t if t
F

otherwise



  



     

 




 

where ( )t LCM  . 

 

Proof. Suppose, for some P  holds 
gP P . Let us consider the permutation of alternatives  . The 

order of this permutation t  is equal to the least common multiple of cycle lengths, ( )t LCM  . If a 

column is 1 2( , ,..., )ma a a , then after the action of permutation   it becomes (1) (2) ( )( , ,..., )ma a a   , after 

the second action of   2 2 2(1) (2) ( )
( , ,..., )

m
a a a
  

, and so on. Finally, 1 1 1(1) (2) ( )
( , ,..., )t t t m
a a a
      becomes 

again 1 2( , ,..., )ma a a . 
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 Next, we take any cycle of permutation of voters  , 1 2( ... )ki i i . Let the 1i -th column be 

1 2( , ,..., )ma a a . Then, after the action of permutation   it becomes the column number 
2i . At the same 

time,   permutes alternatives and the column number 2i  should be equal to (1) (2) ( )( , ,..., )ma a a   , 

because the preference profile after permuting both voters and alternatives should be the same. Thus, if 

the 
2i -th column (1) (2) ( )( , ,..., )ma a a    after permuting columns becomes the 

3i -th column and 

(1) (2) ( )( , ,..., )ma a a    is mapped to 2 2 2(1) (2) ( )
( , ,..., )

m
a a a
  

 by  , then the 
3i -th column should be 

2 2 2(1) (2) ( )
( , ,..., )

m
a a a
  

, etc. Finally, the ki -th column becomes 1i -th and we conclude that should be 

equal to 1 1 1(1) (2) ( )
( , ,..., )t t t m
a a a
      in order to be mapped to 1 2( , ,..., )ma a a  by permutation  . Since 

repeated columns are not permitted, the length of the cycle 1 2( ... )ki i i , k , should be equal to 

( )t LCM  . The same result holds for any other cycle of permutation  , in other words, the length of 

all cycles in   is the same, 1 2 ...      , or ( ) ( )GCD LCM  , and equals ( )LCM  . 

 Suppose, a permutation ( , )g    is such that ( ) ( ) ( )GCD LCM LCM     and   

consists of /n t   cycles. The first column of the first cycle in   we can choose from !m  different 

columns. The rest of the columns in this cycle are determined by permutation  . Then, the first column 

of the second cycle in   can be represented by any of !m t  variants, since t  columns are already used 

in the first cycle. The first column of the third cycle can be defined ! 2m t  different ways and so on. 

Inside any cycle there cannot appear any column that is already used, because a permutation   splits up 

the set of all different columns into non-intersecting orbits of columns that can be produced one from 

another by this permutation. Columns in every cycle form one of such orbits.  

Finally, we get an exact formula for the number of fixed-points from   for some permutation 

( , )g     

1 2

0

( ! ), ... ,

0, .

jg

m j t if t
F

otherwise



  



     

 




 ■ 

 

 

Theorem 4 For any m and n such that !m n , the number of equivalence classes on   is equal to 

1
1 1

0

( , ) ( ( , )) ( ! )
j

R m n z z S m j t


 
 

  


 



    , 

where ( , ) ( ( ) ( ) ( ))S GCD LCM LCM       . 
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Proof. Let R  be the number of ANECs on  , and 
1 2, ,..., RP P P  be the representatives of these classes. 

For any preference profile P  holds 
P P

G G   . 

Then, take the sum of these equalities over representatives 

1

i i

R

P P
i

G R G


   , 

1

1
i i

R

P P
i

R G
G




  . 

Since k lP P
G G  if 

kP  and 
lP  belong to the same ANEC, we can rewrite 

i i i

iP

P P P
P

G G





   . 

1 1

1 1 1
i i i

iP

R R

PP P P
i i P P

R G G G
G G G


   

        

The sum of stabilizing permutations over all preference profiles from   is equal to the sum of all 

fixed-points from   for all permutations 

1 1
gP

gP
g G g G g GP P P F

G F
    

       . 

1
g

g G

R F
G 

  . 

Using Lemma 3.1 and denoting ( , ) ( ( ) ( ) ( ))S GCD LCM LCM        we get 

0

1
( , ) ( ( , )) ( ! ( ))

g G k

R m n S m k LCM
G



   
 

    . 

Since 
gF  depends only on the cycle type of permutation ( , )g   , we can take the sum over 

all partitions   and   and multiply every component by the number of permutations of n with partition 

  and the number of permutations of m with partition  , 
1 !z n


 and 

1 !z m


, respectively. 

1
1 1

0

1
( , ) ! ! ( ( , )) ( ! )

! ! j

R m n z n z m S m j t
m n



 
 

  


 



        

1
1 1

0

( ( , )) ( ! )
j

z z S m j t


 
 

  


 



    .■ 

 

Corollary 5 For any m and n such that !m n : 

a) the number of maximal ANEC satisfies the following inequality 

max

2( ! 1)!
( , ) ( , ) ( , )

( ! )! !

m
R m n R m n R m n

m n n


  


. 
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b) If m and n are such that n m  and n is a prime number, then the number of maximal ANEC is equal 

to ( , )R m n . 

 

Proof. a) The second inequality is obvious, because preference profiles from maximal equivalence class 

always consist of different columns for !m n . The total number of preference profiles consisting of 

different columns is 

( !)!
! ( ! 1) ... ( ! 1 )

( ! )!

m
m m m n

m n
      


. 

At the same time, it is the number of fixed points from   for the identity permutation. Since for 

this permutation ( , )S    is true, ( !)!/ ( ! )!m m n  is included in the sum ! ! ( , )m n R m n . The rest of the 

components of the sum, i.e. 

1
1 1

0

( !)!
! ! ( ( , )) ( ! )

( ! )!j

m
m n z z S m j t

m n



 
 

  


 



  


   

form the sum of fixed points from   for all permutations except the identity permutation. The problem is 

that the sets gF  intersect and we cannot find an exact number of preference profiles that have more than 

one stabilizing permutation. However, we can be sure that this number is not more than this sum. 

Consequently, the number of profiles having only one stabilizing permutation is not less than  

1
1 1

0

( !)! ( !)!
! ! ( ( , )) ( ! )

( ! )! ( ! )!j

m m
m n z z S m j t

m n m n



 
 

  


 



 
     

  
   

1
1 1

0

2( !)!
! ! ( ( , )) ( ! )

( ! )! j

m
m n z z S m j t

m n



 
 

  


 



   


  . 

 Dividing by the cardinality of maximal ANEC ! !m n , we get 

max

2( ! 1)!
( , ) ( , )

( ! )! !

m
R m n R m n

m n n


 


. 

b) If n is a prime number, then   either contains only one cycle of length n, or n cycles of length 

one. The first case means that the least common divisor of the   cycle lengths should also be n, but we 

assumed n m . Thus, this is impossible. The second case means that we only have an identity 

permutation in a stabilizer group of any profile from  , i.e.   consists of preference profiles from 

maximal equivalence classes, and we have only one component in the sum ( , )R m n   

max

( ! 1)!
( , ) ( , )

( ! )! !

m
R m n R m n

m n n


 


. ■ 
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Appendix B 
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Fig. 8. The difference of the Nitzan-Kelly’s index in IC and IANC, Leximin 
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Fig. 9. The Nitzan-Kelly’s index for the Leximax method in the IC model 
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Fig. 10. The Nitzan-Kelly’s index for the Leximax method in the IANC model 
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