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1. Introduction

Applications of Generalized Nash equilibria concepts is
increasing steadily in the past 50 years. In general the objects
of research are real-world applications or games with some
additional mathematical structure (Facchinei and Kanzow,
2007). In this paper we propose new generalization of Nash
equilibrium which introduce an additional criteria of security.
We define the notion of threat and the notion of secure strategy
which are the basis of the model of cautious behavior. In many
practical situations the security considerations are indeed no less
important than increasing profit. For example rational players
do not break the rules if the expected penalty exceeds the
profit from breaking the rules. In a similar way we assume that
cautious player refuses from increasing his profit if it creates
threat to lose more. He would rather prefer the greatest possible
secure profit at a given strategies of other players. Taking into
account this logic of behavior one can discover equilibrium
positions which sometimes can not be revealed by standard
logic of best responses. These equilibria positions we call
Equilibria in Secure Strategies (EinSS). The first formulation
of EinSS was published in Iskakov (2005). In this paper we
present a reformulation of the concept and discuss all its aspects
in detail. Generally speaking, the EinSS is realized when all
players maximize their profits under the condition to avoid all
threats from other players. We prove that any Nash-Cournot
equilibrium is an Equilibrium in Secure Strategies. However,
the EinSS can exist in games that fail to have Nash-Cournot
equilibria as will be demonstrated by examples in this paper.

The concept of the EinSS creates natural associations with
the concept of objections and counter objections developed
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by Aumann and Maschler (1961) for the cooperative games.
Therefore we first of all compare our concept with the solution
in objections and counter objections which is formulated as an
imitation of the logic of Aumann and Maschler for the non-
cooperative games. This logic implies that any threat existing
in the profile shall be effectively contained by the counter threat
of other players. This concept is obviously different from the
EinSS where no threats in the profile allowed at all. In fact the
EinSS describes more cautious behavior of players when they
want to insure themselves against all threats whereas solution
in objections and counter objections is a more risky approach.
This difference can be clearly seen in the classic Hotelling’s
price game (1929) with the linear transport costs. Eaton and
Lipsey (1978) assumed that undercutting through the whole
market in this game shall be always contained by some counter
threat which corresponds to the solution in objections and
counter objections. In the EinSS approach players do assume
that they can be driven out of the market and therefore keep
their prices sufficiently low to secure themselves against such
undercutting. As shown in M.Iskakov and A.Iskakov (2012)
the EinSS approach results in the equilibrium solution of the
Hotelling’s price game with lower prices as compared with the
solution based on the assumption of Eaton and Lipsey.

Our following step is to investigate the concept of the best
secure response (BSR). The Nash equilibrium is the profile
in which the strategy of each player is the best response. In
a similar way the strategy of each player in the EinSS turns
out to be the best secure response. However, the set of profiles
of best secure responses (or BSR-profiles) may be larger than
the set of EinSS. An additional condition defined as stability
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makes the two coincide. Thereby we prove that a BSR-profile is
an Equilibrium in Secure Strategies if and only if it is stable.
This property provides a practical method for finding the
EinSS. First, all BSR-profiles are to be found, then the unstable
BSR-profiles are to be excluded.

The concept of the EinSS assumes that players make
conjectures about the threats of other players. Implicitly
this implies that players may choose their actions non-
simultaneously. Therefore it would be interesting to find the
game with minimal elements of dynamics which would mimic
the reasoning of the players in a similar way to the EinSS.
This investigation resulted in the concept of a game with an
uncertain insider. Briefly it can be formulated in the following
way. All players simultaneously choose their strategies in the
original game and after that an ”insider” is chosen randomly
among them and has an opportunity to change his strategy.
Nobody knows beforehand who is going to be the insider (even
the insider himself). We prove that the EinSS in the game is the
Nash equilibrium of the corresponding game with an uncertain
insider, if all players resolve the uncertainty by the maximin
criterion. However the set of equilibria in the game with an
uncertain insider is wider than the set of Equilibria in Secure
Strategies.

In order to illustrate the practical value and adequacy of the
proposed concept we consider in this paper two classic games
that fail to have Nash equilibria without using mixed strategies
as was suggested by Dasgupta and Maskin (1986). The first
one is the Hotelling’s price game with a restricted reservation
price and linear transportation costs (1929) on an infinite line.
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We obtain solution in secure strategies for arbitrary distance
between two players. The second model is the Tullock Contest
(Tullock 1967, 1980) of two players. The EinSS for arbitrary
values of the power parameter can be found. Depending on the
power parameter there are three types of equilibria. Either it
coincides with the Nash equilibrium found by Tullock (1980) or
it corresponds to the newly discovered monopolistic solution or
it represents an intermediate case of equilibrium of unequal or
limited access.

The organization of the paper is as follows. In the next section
the definitions of the EinSS are given. In Section 3 we compare
the EinSS with the solution in objections and counter objections.
In Section 4 we introduce the concept of the best secure response
profile and investigate its relation to the EinSS. In Section
5 we introduce the concept of the game with an uncertain
insider. In Section 6 we provide the modification of EinSS which
allows to take into account the possibility of simultaneous and
independent threats from many players. Finally in Sections 7
and 8 we consider the Hotelling’s price game on an infinite line
and the Tullock Contest of two players.

2. Equilibrium in Secure Strategies

We consider n-person non-cooperative game in the normal
form G = (i ∈ N, si ∈ Si, ui ∈ R). The concept of equilibria
is based on the notion of threat and on the notion of secure
strategy.

Definition 1. A threat of player j to player i at strategy
profile s is a pair of strategy profiles {s, (s′j, s−j)} such that
uj(s

′
j, s−j) > uj(s) and ui(s′j, s−j) < ui(s). The strategy profile s
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is said to pose a threat from player j to player i.

Definition 2. A strategy si of player i is a secure strategy
for player i at given strategies s−i of all other players if profile
s poses no threats to player i. A strategy profile s is a secure
profile if all strategies are secure.

In other words a threat means that it is profitable for one
player to worsen the situation of another. A secure profile is one
where no one gains from worsening the situation of other players.

Definition 3. A secure deviation of player i with respect
to s is a strategy s′i such that ui(s

′
i, s−i) > ui(s) and

ui(s
′
i, s
′
j, s−ij) > ui(s) for any threat {(s′i, s−i), (s′i, s′j, s−ij)}

of player j 6= i to player i.

There are two conditions in the definition. In the first
place a secure deviation increases the profit of the player.
In the second place his gain at a secure deviation covers
losses which could appear from retaliatory threats of other
players. It is important to note that secure deviation does
not necessarily mean deviation into secure profile. After the
deviation the profile (s′i, s−i) can pose threats to player i.
However these threats can not make his or her profit less than in
the initial profile s. We assume that the player with incentive to
maximize his or her profit securely will look for secure deviations.

Definition 4. A secure strategy profile is an Equilibrium in
Secure Strategies (EinSS) if no player has a secure deviation.

There are two conditions in the definition of EiSS. There
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are no threats in the profile and there are no profitable
secure deviations1. The second condition implicitly implies
maximization over the set of secure strategies.

Let us now formulate the first important property of the
EinSS concept.

Proposition 1. Any Nash-Cournot equilibrium is an
Equilibrium in Secure Strategies.

Proof. Since Nash-Cournot equilibrium poses no threats so it
is a secure profile. And no player in Nash-Cournot equilibrium
can improve his or her profit using whatever deviation. Both
conditions of the EinSS are fulfilled. �

First this means that a Nash equilibrium is always secure
profile in terms of the proposed definitions. Second, the existence
results can not be worse for EinSS than for Nash equilibrium.
Whenever a Nash equilibrium exists an EinSS also exists.
However for some practically important problems without Nash
equilibrium (such as Hotelling’s model and Tullock Contest
which will be considered in this paper) the EinSS exists and
provides an interesting interpretation.

For some games the reverse of Proposition 1 is true. For
instance for strictly competitive games any EinSS is the Nash
equilibrium. Indeed, suppose there is an EinSS in the strictly
competitive game which is not a Nash equilibrium. Then there
is at least one player who can increase his profit and there is

1Some details on previously used form of definitions are included in an
Appendix for interested readers.
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at least one player who will decrease his profit. Therefore the
profile is not secure and can not be EinSS.

Let us now consider a simple matrix game example having no
Nash equilibrium in order to illustrate the definitions introduced
above:

t1 t2
s1 (1,1) (2,0)
s2 (2,2) (0,3)

One can find all threats in the game. First, the strategy
profile (s2, t1) poses a threat to player 1 as we move from payoffs
(2, 2) to payoffs (0, 3). Second, the strategy profile (s1, t2) poses
a threat to player 1 as we move from payoffs (2, 0) to payoffs
(1, 1). And finally profile (s2, t2) poses a threat of player 1 to
player 2 as we move from payoffs (0, 3) to payoffs (2, 0). In all
three cases one player can make himself better off and another
player worse off. These threats in the game can be visualized
graphically in the following way:

(1,1) ← (2,0)
↑

(2,2) → (0,3)

The only secure profile in the game (which is secure for
both players) is the profile (s1, t1) with payoffs (1, 1). If players
were choosing best responses sequentially in the game they
would end up in an infinite cycle so that there is no Nash
equilibrium. This situation can change if we take into account
the considerations of security. The profiles with payoffs (2, 2),
(0, 3) and (2, 0) can not be an equilibrium in secure strategies
because they pose threats. The profile (s1, t1) is the only secure
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profile in the game. The second player can not increase his profit
by any deviation from it. There is a profitable deviation for the
first player from this profile into the profile (s2, t1) with payoffs
(2, 2). However it is not a secure deviation since the first player
can lose more after the response deviation of the second player
from the profile (s2, t1) with payoffs (2, 2) into the profile (s2, t2)
with payoffs (0, 3). Therefore no player has in the profile (s1, t1)
a secure deviation and this profile is an EinSS. This means that
a cautious player would prefer the guaranteed payment of 1 in
the (s1, t1) to the possibility of gaining 2 in (s2, t1) accompanied
by a high-risk to get zero in (s2, t2).

Let us now add additional row and column to the matrix of
the previous game.

t1 t2 t3
s1 (1,1) (2,0) (-1,-1)
s2 (2,2) (0,3) (-1,-1)
s3 (-1,-1) (-1,-1) (0,0)

Now we have a Nash equilibrium with payoffs (0, 0) (perhaps,
not a very good one!). It is also an EinSS according to
Proposition 1. Threats in this game are the same as in the
previous example. All newly added profiles are secure. Profiles
with payoffs (−1,−1) are secure only because they are the worst
for both players, so they can not be EinSS. Equilibtium (s3, t3)
with payoffs (0, 0) is Pareto dominated by all other profiles of
the game. However there is a profile (s1, t1) which is still an
EinSS and dominates (s3, t3). This example shows that there
may be games with Nash equilibrium which nevertheless have
another more reasonable solution given by an Equilibrium in
Secure Strategies.
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3. Solution in Objections and Counter Objections

Perhaps the most famous concept of ”safety” applied to
coalitions was developed by Aumann and Maschler (1961) for
the cooperative games. The payoff configuration in cooperative
game was called stable if any objection of one group of players
against the other group can be answered by counter objection
of the second group against the first one. Therefore the new
concept of ”security” raises a natural question: is the EinSS can
be formulated in a way which somehow similar to the concept
of objections and counter objections developed by Aumann and
Maschler?

The concepts of the cooperative and non-cooperative games
are very different by themselves in order to employ the approach
of Aumann and Mashler for the non-cooperative games directly.
An ”objection” in cooperative game is an objection to a game
profile whereas in our approach the ”threat” is directed against
a particular player. However it is possible to apply general
logic of objections and counter objections to non-cooperative
games. An ”objection” to an equilibrium profile would be then a
deviation of certain player which increases his profit. A ”counter
objection” would be a ”counter deviation” of another player
which effectively ”punishes” the first player making his profit
less than he had in the initial position. To define the ”counter
objection” more rigorously we introduce the following definition
(which in a sense is opposite to the Definition 3).

Definition 5. The deviation s′i of player i from the profile s
such that ui(s′i, s−i) > ui(s) is a contained deviation if there is
a threat {(s′i, s−i), (s′i, s′j, s−ij)} such that ui(s′i, s′j, s−ij) < ui(s).
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This threat is a counter threat of player j to deviation s′i from
the profile s.

There are several specific features of this definition worth
a mention. First of all like in Definition 3 a counter threat is
defined only with respect to the particular profile. This implies
that profile (s′i, s−i) by itself may pose threats to player i which
are not counter threats if ui(s′i, s′j, s−ij) > ui(s). Therefore
profile (s′i, s−i) without counter threats is not necessarily secure
profile. Secondly, a counter threat is understood as an answer
to a deviation which may or may not be a threat in the initial
profile s. And finally note that a counter threat (like a threat) is
directed from one particular player to another particular player
rather than being directed against a strategy profile.
Now we are ready to provide two equivalent formulations of a
threatening-proof profile:

Definition 6. A strategy profile is a threatening-proof
profile if any deviation from it that increases the profit of some
player is contained by a counter threat.

Definition 6′. A strategy profile is a threatening-proof
profile if no player can make a secure deviation.

Implicitly the last definition implies maximization over the
set of secure strategies. However to obtain more meaningful
concept of equilibrium it would be better to maximize the
utility functions over the set of the threatening-proof profiles
themselves. Let now M be a set of all threatening-proof profiles
in the game.
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Definition 7. A profile s∗ is a solution in objections and
counter objections

if s∗ ∈M and for all i : ui(s
∗) = max

(si,s∗−i)∈M
ui(si, s

∗
−i).

The comparison of Definitions 4, 6′ and 7 immediately
identifies the following relationship between the EinSS and the
solution in objections and counter objections.

Proposition 2. Any Equilibrium in Secure Strategies is a
threatening-proof profile. Any Nash-Cournot equilibrium is a
solution in objections and counter objections

The difference however can be clearly seen from the
comparison of Definitions 4 and 6′. An EinSS is a secure profile,
i.e. there are no threats in it. In a threatening-proof profile
threats are allowed, however they are not secure deviations. In
other words these threats are contained by counter threats which
is reflected in the term of the solution in objections and counter
objections. Let us consider the following matrix game example.

t1 t2 t3
s1 (2,2) (3,3) (8,0)
s2 (3,3) (4,4) (5,5)
s3 (0,8) (5,5) (6,6)

There are no Nash equilibria in the game. In all profiles with
s3 or t3 it is profitable for one player to worsen the situation of
another. So these profiles are insecure. All other profiles do not
pose threats. Therefore they are secure. The profile (s1, t1) with
payoffs (2, 2) allows secure deviations into profiles with payoffs
(3, 3) which in turn allow secure deviation into profile (s2, t2)
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with payoffs (4, 4). There are profitable deviations from (s2, t2)
into profiles with payoffs (5, 5). However they are not secure
deviations since players lose more after the response deviation
of the competitor into the profile (s3, t1) or (s1, t3) with payoffs
(0, 8) and (8, 0) correspondingly. Therefore the profile (s2, t2)
is an EinSS. The threat of deviations into profiles (s1, t3) and
(s3, t1) prevent cautious players from choosing profile (s3, t3)
with the highest possible mutual payoffs (6, 6). However these
deviations by themselves are contained by counter threats.
The deviation from (s3, t3) into (s1, t3) is contained by the
counter threat to deviate into (s1, t2) and deviation into (s3, t1)
is contained by the counter threat to deviate into (s2, t1).
Therefore profile (s3, t3) with payoffs (6, 6) is a threatening-
proof profile and a solution in objections and counter objections.
This solution in objections and counter objections is different
from the EinSS profile (s2, t2) with payoffs (4, 4). The concept
of EinSS describes more cautious behavior of players when they
want to insure themselves against all threats. Whereas solution
in objections and counter objections is more risky and ignores
the threats which are contained by counter threats.

Here there is a general theoretical problem connected with
the different levels of reflection of threats. For instance if a threat
can be contained by a counter threat why a counter threat can
not be also contained, i.e invalid in some sense? And is the initial
threat valid in this case? In the Definition 5 we employ in fact
two-level reflection. We take into account here only threats and
counter threats.
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4. Best Secure Response

The definition of EinSS implicitly implies maximization
of payoff functions over the set of secure strategies. We can
therefore expect that the EinSS is an analogue of the Nash
equilibrium on a narrower set of strategies (the secure ones).
In this case the EinSS would be a profile in which the ”secure
strategy” of each player is the best one in the same way as the
Nash equilibrium is a profile in which strategy of each player
is the best response. In order to clarify this question let us
start with the rigorous definition of the best secure response.
Denote by Vi(s−i) the set of secure strategies of player i at given
strategies s−i of all other players. Notice that Vi(s−i) can be
empty if all strategies of player i are insecure at s−i.

Definition 8. A strategy s∗i of player i is a Best Secure
Response to strategies s∗−i of all other players if

s∗i ∈ Vi(s∗−i) and ui(s
∗) = max

si∈Vi(s∗−i)
ui(si, s

∗
−i).

A profile s∗ is the Best Secure Response profile (BSR-
profile) if all strategies are Best Secure Responses.

Let us now consider the following matrix game example.

t1 t2 t3
s1 (0,0) (2,2) (2,2)
s2 (2,2) (1,3) (3,1)
s3 (2,2) (3,1) (1,3)

There are no Nash equilibria and no EinSS in the game. The
profiles (s2, t1), (s2, t3), (s3, t1), (s3, t2) are insecure for the first
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player. The profiles (s1, t2), (s1, t3), (s2, t2), (s3, t3) are insecure
for the second player. Therefore (s1, t1) is the only and the best
secure profile in the game. Are there any secure deviations from
it? If the first player for example deviates from the profile (s1, t1)
with payoffs (0, 0) into profile (s2, t1) or (s3, t1) with payoffs (2, 2)
his new position will be subjected to threat of the second player.
However the expected loss from these threats (equal to 1) does
not exceed the gain obtained at deviation from (s1, t1) (equal
to 2). Therefore deviations from (s1, t1) are secure for players
since no threats can make their payoffs less than zero payoffs in
(s1, t1). Hence the profile (s1, t1) can not be stable situation in
the game and it is not the EinSS. Based on this example one can
establish the following relationship between the BSR-profile and
the EinSS.

Proposition 3. Any Equilibrium in Secure Strategies is a
BSR-profile. A BSR-profile may not be an Equilibrium in Secure
Strategies.

Proof. An EinSS is a secure profile by definition. And it must
be the best secure response for each player since otherwise there
is a player who can increase his profit by secure deviation.
Therefore an EinSS is a BSR-profile. The reverse is not true. In
the above example the profile (s1, t1) is a BSR-profile. However
it is not an EinSS. �

Let us now take the previous matrix game example and
increase payoffs in the profile (s1, t1) and strengthen the threats:
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t1 t2 t3
s1 (1,1) (2,2) (2,2)
s2 (2,2) (0,3) (3,0)
s3 (2,2) (3,0) (0,3)

Now the BSR-profile (s1, t1) with payoffs (1, 1) is an EinSS
since deviations from it pose threats to receive less payoffs than
in the profile (s1, t1). These examples demonstrate the property
of BSR-profiles which makes the difference. In order to be EinSS
the BSR-profile has to satisfy an additional condition which we
can define as stability. More precisely,

Definition 9. A BSR-profile is stable if there is no
player i and deviation s′i such that ui(s′i, s−i) > ui(s) and
ui(s

′
i, s
′
j, s−ij) > ui(s) for any threat {(s′i, s−i), (s′i, s′j, s−ij)} of

player j 6= i to player i.

In the unstable BSR-profile at least one player has non-secure
alternatives with threats which in all cases are more profitable
for him than staying in the initial BSR-profile. From the above
definitions 4, 8 and 9 it follows:

Proposition 4. A BSR-profile is an Equilibrium in Secure
Strategies if and only if it is stable.

Propositions 3 and 4 provide a practical method for finding
EinSS. The BSR-profile is a Generalized Nash Equilibrium
concept and all the corresponding results and algorithms of
maximization can be applied to finding BSR-profiles. When all
BSR-profiles are found, then unstable BSR-profiles are to be
excluded.
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5. Game with Uncertain Insider

Players in the EinSS make conjectures about threats of
other players. Implicitly it implies that the players may choose
their actions non-simultaneously. In Economics the assumption
of simultaneous and independent decision making by players is
indeed a very strong one. This raises natural questions about
the relationship of the EinSS concept with dynamic games
(especially if there are more than two players). Let us try to
find a game with minimal elements of dynamics which would
reproduce the reasoning of players in a similar way as in the
EinSS. Let us suppose that after the players simultaneously
choose their strategies an ”insider” is chosen randomly among
them and has an opportunity to change his strategy. Nobody
knows beforehand who is going to be the insider (even the
insider himself). Let us suppose also that players adopt a
cautious behavior with respect to the actions of the insider.

Let us provide now a rigorous formulation. Take a non-
cooperative game in the normal form G = {N = {1, ..., n}, si ∈
Si, ui(s) ∈ R}. We define an associated sequential game.
During the first stage all players select simultaneously
their strategies s = (s1, ..., sn). At the second stage Nature
chooses randomly the insider player number j0 ∈ N . Then
finally player j0 either keeps the same strategy sj0 or choose
another one that would increase his profit: his new strategy
s̃j0(s) ∈ Θj0(s) = {sj0} ∪ {s′j0 ∈ Sj0 : uj0(s

′
j0
, s−j0) > uj0(s)}.

The final payoffs of players are ui(s̃j0 , s−j0).

We assume further that all players adopt at the beginning
a cautious behavior and resolve uncertainty by the maximin
criterion so that their payoff functions can be written as
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ûi(s) = min
j∈N, j 6=i, s̃j∈Θj(s)

ui(s̃j, s−j) = min
j∈N, s̃j∈Θj(s)

ui(s̃j, s−j). This

defines a game Ĝ = {N, si ∈ Si, ûi ∈ R} that we call a game
with an uncertain insider.2 The following proposition establishes
basic relationship between an EinSS and the corresponding
game with uncertain insider.

Proposition 5. An Equilibrium in Secure Strategies of the
game G is a Nash equilibrium of the corresponding game Ĝ with
an uncertain insider.

Proof. Let s∗ be the EinSS of the game G. By the definition of
EinSS there are no threats in the profile s∗. Thus no deviation
s̃j ∈ Θj(s

∗) of player j can decrease the profit of other players,
i.e. min

j∈N, s̃j∈Θj(s∗)
ui(s̃j, s

∗
−j) > ui(s

∗). Besides s∗j ∈ Θj(s
∗) and

min
j∈N, s̃j∈Θj(s∗)

ui(s̃j, s
∗
−j) 6 ui(s

∗). Therefore for all i we have

ui(s
∗) = ûi(s

∗).
Assume there is a deviation s′i of player i such that ûi(s′i, s∗−i) >
ûi(s

∗), i.e. min
j∈N,j 6=i,s′j∈Θj

ui(s
′
i, s
′
j, s
∗
−ij) > ûi(s

∗) = ui(s
∗).

In particular this implies that ui(s
′
i, s
∗
−i) > ui(s

∗) and
ui(s

′
i, s
′
j, s
∗
−ij) > ui(s

∗) for any threat {(s′i, s∗−i), (s′i, s′j, s∗−ij)} of
player j 6= i to player i. According to the definitions 3 and 4 the

2In our model we assume that the uncertain insider either increases his
profit or keeps the same strategy. An alternative assumption, that insider
instead would strictly maximize his profit, would reduce the number of
threats taken into account by other players. This would allow more risky
strategies. However when we model the situation of cautious behavior it
seems more natural to assume that players would insure against a wider
variety of threats rather than expecting absolutely rational behavior of the
insider.
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player i can increase his profit by secure deviation s′i and s∗ is not
the EinSS. This is a contradiction, and therefore our assumption
was wrong. ûi(s′i, s∗−i) 6 ûi(s

∗) for all i and deviations s′i, i.e. s∗ is
the Nash equilibrium of the game Ĝ with an uncertain insider. �

However the set of Nash equilibria in Ĝ is wider than the set
of EinSS in G. This can be seen if we come back to the matrix
game from the previous section (without the EinSS):

t1 t2 t3
s1 (0,0) (2,2) (2,2)
s2 (2,2) (1,3) (3,1)
s3 (2,2) (3,1) (1,3)

The profiles (s1, t2), (s1, t3), (s2, t1), (s3, t1) are Nash
Equilibria in the corresponding game Ĝ with uncertain insider
but are not even secure in the original game G. The following
proposition sets the necessary and sufficient conditions for a
profile to be an EinSS.

Proposition 6. A profile s∗ is an EinSS if and only if
(a) s∗ is a secure profile ;

(b) s∗ is a Nash equilibrium of the game Ĝ ;

(c) ∀i,∀s′i : ûi(s
′
i, s
∗
−i) = ûi(s

∗) => ui(s
′
i, s
∗
−i) = ui(s

∗)

Proof. Let s∗ be an EinSS. By definition s∗ is a secure profile.
According to Proposition 5 s∗ is a Nash equilibrium of the game
Ĝ. Let us assume there is a player i and his strategy s′i such
that ûi(s′i, s∗−i) = ûi(s

∗). Like in the previous proposition for the
secure profile s∗ we can prove that for all i: ui(s∗) = ûi(s

∗) and
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obviously ûi(s′i, s∗−i) 6 ui(s
′
i, s
∗
−i). Therefore ui(s∗) 6 ui(s

′
i, s
∗
−i)

Let us assume that ui(s∗) < ui(s
′
i, s
∗
−i). Then s′i is a secure

deviation of player i from s∗ and profile s∗ can not be EinSS.
This is a contradiction, and therefore our assumption was wrong
and ui(s∗) = ui(s

′
i, s
∗
−i). The condition (c) is proven.

Let us prove the opposite direction. Like in the previous
proposition for the secure profile s∗ we can prove that for
all i: ui(s∗) = ûi(s

∗). Let us suppose there is a deviation
s′i of player i such that ui(s′i, s∗−i) > ui(s

∗). Then from (b)
and (c) it follows that ûi(s

′
i, s
∗
−i) < ûi(s

∗) and there exist
a deviation s′j ∈ Θj(s

′
i, s
∗
−i) (obviously j 6= i) such that

ui(s
′
i, s
′
j, s
∗
−ij) < ûi(s

∗) = ui(s
∗). The pair of strategy profiles

{(s′i, s∗−i), (s′i, s′j, s∗−ij)} is a threat according to the Definition 1.
Therefore s′i is not a secure deviation according to the Definition
3. Thus no player can make in the profile s∗ a secure deviation.
The profile s∗ is an Equilibrium in Secure Strategies. �

Corollary. If a secure profile s∗ in the game G is a strict Nash
equilibrium of the game Ĝ then s∗ is an Equilibrium in Secure
Strategies in the game G.

General relationship between EinSS, BSR-profiles in the
game G and Nash equilibria in the game Ĝ with uncertain
insider can be summarized by a diagram in Fig.1.

The model of the game with uncertain insider gives another
(dynamic) approach to the concept of EinSS. The EinSS is an
equilibrium in the game of cautious players with the minimal
dynamics introduced by the possibility to change randomly the
strategy of one player, unknown in advance.
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Fig. 1: General relationship between EinSS, BSR-profiles and
Nash equilibria in the game with uncertain insider.

6. Games with more than two players

Definitions 1-4 of EinSS are based on the analysis of pairwise
interaction of players. Nevertheless the threats in the game may
take more complicated forms. This raises the question if the
EinSS can adequately describe the collective behavior of many
players.

In order to illustrate the specific effects arising in the games
with more than two players let us first consider the following
matrix game example. The first player chooses the matrix (r1 or
r2), the second chooses the row (s1 or s2) and the third chooses
the column (t1 or t2).
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r1 :
t1 t2

s1 (1,1,1) (0,0,0)
s2 (1,1,1) (0,0,0)

r2 :
t1 t2

s1 (0,0,0) (0,0,0)
s2 (2,2,0.5) (0,0,0)

There are three EinSS in the game: (r1, s1, t1), (r2, s2, t1),
(r2, s1, t2) (which are also Nash equilibria). Let us consider the
profile (r1, s1, t1). The second player can deviate from it into
(r1, s2, t1) without changing his profit. The new profile is secure
for him and he does not threaten other players. However this
deviation creates a threat of the first player to the third player
which brings the game into another Nash equilibrium (r2, s2, t1).
In comparison with the initial profile (r1, s1, t1) the first and the
second players increase their profits at the expense of the third
player. This example demonstrates the case of externality when
seemingly ”indifferent” deviation of one player creates threats
between the other players. Moreover the realization of these
threats could be profitable for ”indifferent” player. In the given
matrix game the threat ”in two moves” can be arranged by two
different players who can win at the expense of the third player.
The concept of EinSS in our current formulation obviously does
not take into account this effect properly. In fact some EinSS
positions might be considered as unstable in the result of an
appropriate consideration of these more ”complex” threats.
However in this case we shall assume that players without
any collusion are able to play such ”complex” combinations,
which implies that they can calculate the possible actions and
conjectures of each other.

The next matrix game example illustrates the case of
simultaneous and independent threats of several players to one
player. Each of this threats is small enough to be ignored but
taken together they become crucial.
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r1 :
t1 t2

s1 (0,1,0) (0,1,0)
s2 (0,4,0) (0,2,1)

r2 :
t1 t2

s1 (0,1,0) (0,1,0)
s2 (1,2,0) (1,0,1)

There are following threats in the game: (r1, s2, t1) →
(r1, s2, t2), (r1, s2, t1) → (r2, s2, t1), (r2, s2, t1) → (r2, s2, t2),
(r1, s2, t2)→ (r2, s2, t2), (r2, s2, t2)→ (r2, s1, t2). There are three
EinSS in the game: (r2, s1, t1), (r1, s1, t2) and (r2, s1, t2). But it is
interesting to consider also profile (r1, s1, t1). The second player
can deviate from it into profile (r1, s2, t1) where he is threatened
by players 1 and 3. Each of these threats taken separately can
decrease the profit of the second player but it will be still higher
than his profit in (r1, s1, t1). So profile (r1, s1, t1) is not formally
EinSS since the second player can increase his profit by a secure
deviation. However if players 1 and 3 would apply their threats
in profile (r1, s2, t1) simultaneously and bring the game into
profile (r2, s2, t2) the payoff of player 2 would be less than in
(r1, s1, t1) and his deviation into (r1, s2, t1) would not be secure.
Therefore if player 2 would take into account the possibility of
two simultaneous and independent threats from players 1 and 3
then he would consider profile (r1, s1, t1) as an equilibrium in
the generalized sense.

The concept of EinSS in our current formulation takes into
account only individual deviations and hence can not treat this
effect properly. Perhaps in its current formulation it also can
not describe properly games with multiple players creating small
threats which can be ignored individually but taken together
become crucial. However these threats which arise as the result
of simultaneous and independent actions of many players could
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be taken into account by an appropriate extension of the concept
of secure deviation.

Definition 3′. A secure deviation of player i with
respect to s is a strategy s′i such that ui(s′i, s−i) > ui(s) and,
whenever ul(s

′
i, s
′
l, s−il) > ul(s

′
i, s−i) for all l in some set

N ′ = {j, ..., k}, i /∈ N ′ then ui(s′i, s′j, ..., s′k, s−ij...k) > ui(s).

The Definition 3′ sets more restrictive conditions for the
secure deviation and corresponds to a more cautious behavior.
This modification reduces the number of secure deviations for a
given profile. All EinSS according to the Definitions 1− 4 would
still be EinSS after changing the Definition 3 for the Definition
3′. However some ”new” EinSS appear which correspond to
the possibility of threats from simultaneous and independent
actions of other players. It is important to notice that these
other players according to Definition 3′ do not take into account
the behavior of each other. Therefore their behavior represents
rather the behavior of a crowd than a collusion in a group of
players. Indeed the crowd behavior plays an important role
in many practical situations when analyzing security which
justifies our modification.

Let us finally consider the following slight modification of
the previous matrix game example:

r1 :
t1 t2

s1 (1,0,0) (1,0,0)
s2 (1,0,0) (1,0,0)

r2 :
t1 t2

s1 (2,0,0) (2,0,1)
s2 (2,1,0) (-1,-1,-1)

To make this example more obvious we will call it ”the
game with rescue boat at shipwreck”. The first player (the

26



boat captain) has two strategies: r1 - keep the boat for himself
and r2 - provide place in the rescue boat for other players.
Players 2 and 3 have two strategies: s1, t1 - avoid the rescue
boat and s2, t2 - try to get place in the rescue boat. The
rescue boat sinks with all players at profile (r2, s2, t2) when
all players get place in the boat. There are no threats in
the game according to a formal definition. There are three
EinSS: (r1, s2, t2), (r2, s1, t2), (r2, s2, t1) which are also Nash
equilibria. If we assume that players 2 and 3 take their actions
sequentially then the game will be set either in the equilibrium
profile (r2, s1, t2) or in the equilibrium profile (r2, s2, t1) which
implies two players on board and one player trying to save
his life by himself. Let us now consider deviation of the first
player from (r1, s1, t1) into (r2, s1, t1) as we move from payoffs
(1, 0, 0) to payoffs (2, 0, 0). Formally it is a secure deviation for
the first player since there are no individual threats of other
players to him in his new position. The profile (r1, s1, t1) is not
formally an EinSS. However if we assume that players 2 and
3 would take their actions simultaneously and independently
(which is probably the case at the shipwreck) they will end
up in the profile (r2, s2, t2) and would not only do harm to
player 1 but also to themselves. Therefore if player 1 takes
into account the possibility of simultaneous and independent
actions of players 2 and 3 then he would not consider deviation
(r1, s1, t1)→ (r2, s1, t1) as a secure one.

This example shows that in order to take into account more
”complex” threats one should make particular assumptions
about the simultaneous or sequential nature of deviations of
other players. This raises again the question of the relationship
of the proposed concept to dynamic games.
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7. EinSS in the Hotelling’s Model

To illustrate the concept of EinSS we examine the classic
model of spatial competition between two players formulated
by Hotelling (1929). The principal theoretical problem of this
model is that for a great variety of transportation cost functions
no price equilibrium exists. In particular, D’Aspremont et
al. (1979) showed that in the original Hotelling’s game with
linear transportation costs there is no price equilibrium when
duopolists choose locations too close to each other. The following
matrix game example can be considered as an illustration for
the Hotelling’s game:

t1 t2 t3
s1 (2,2) (3,3) (8,0)
s2 (3,3) (4,4) (5,5)
s3 (0,8) (5,5) (6,6)

There is no Nash equilibrium in this matrix game as well.
The incentive to maximize profits impels players to choose
strategies with a higher number. However if at least one player
chooses the third strategy it makes profitable for his competitor
to choose the first strategy and leave the first player with zero
profit. The first player can in turn choose the strategy with a
lower number and get positive profit again. The highest possible
secure profits are reached at the profile with payoffs (4, 4) which
is the EinSS.

This corresponds to the situation in the Hotelling’s price
game when one player can undercut his rival’s price and take
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away his entire business with profit to himself. However the
player pressed out of the market can decrease his price and
regain some positive profit. Although the Hotelling’s game has
no Nash price equilibrium when players choose locations too
close to each other it does have just like the above matrix
game an equilibrium in secure strategies. The solution of
the Hotelling’s price game in secure strategies in the original
setting was presented in M.Iskakov and A.Iskakov (2012). In the
particular case of the discrete Hotelling’s problem an equilibrium
concept which coincides with the EinSS was published in Shy
(2002). In this paper we provide solution in secure strategies of
the Hotelling’s price game with a restricted reservation price on
an infinite line.

On an infinite line two sellers of a homogeneous product
with zero production cost are located at the distance δ from
each other. The sellers maximize profits by setting prices p1, p2

noncooperatively. Customers are evenly distributed with a unit
density along the line. When buying from one of the sellers
the consumer bears a transportation cost which is linear in the
distance. The transportation rate is t. A customer purchases
from the seller who quotes the lower full price (including
transportation). In contrast to the original version of Hotelling’s
model we assume that the customer refrains from buying if the
full price exceeds his reservation price v. The sold quantities are
equal respectively to the lengths of intervals with the customers
choosing the corresponding seller. Therefore the profit functions
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of the firms are:

(1)

ũ1(p̃1, p̃2) =


ũI1 = 2p̃1 (v − p̃1) /t, p̃1 < p̃2 − δt
ũII1 = p̃1(v − p̃1+

+ min{v − p̃1,
δt+p̃2−p̃1

2
})/t, |p̃1 − p̃2| 6 δt

0, p̃1 > p̃2 + δt

ũ2(p̃1, p̃2) =


ũI2 = 2p̃2 (v − p̃2) /t, p̃2 < p̃1 − δt
ũII2 = p̃2(v − p̃2+

+ min{v − p̃2,
δt+p̃1−p̃2

2
})/t, |p̃1 − p̃2| 6 δt

0, p̃2 > p̃1 + δt

These expressions can be simplified if we make the following
change of variables:

(2) u = ũt/v2, p = p̃/v, d = δt/v

In the dimensionless form profit functions (1) can be written
as:

(3)

u1(p1, p2) =


uI1 = 2p1 (1− p1) , p1 < p2 − d
uII1 = p1(1− p1+

+ min{1− p1,
d+p2−p1

2
}), |p1 − p2| 6 d

0, p1 > p2 + d

u2(p1, p2) =


uI2 = 2p2 (1− p2) , p2 < p1 − d
uII2 = p2(1− p2+

+ min{1− p2,
d+p1−p2

2
}), |p1 − p2| 6 d

0, p2 > p1 + d

Dimensionless prices and payoffs depend upon only one free
parameter d instead of three parameters δ, v, t. In order to find
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equilibria in secure strategies in the dimensionless Hotelling’s
game (3) one can first analyze the threats and identify the secure
profiles. Then one can find the Best Secure Response functions,
identify BSR-profiles and select the stable ones. According to
Propositions 3 and 4 they will correspond to the Equilibria
in Secure Strategies. The obtained result is summarized in the
following proposition.

Proposition 7. The dimensionless Hotelling’s price-setting
game {i ∈ {1, 2}, pi ∈ [0, 1], ui(p1, p2) ∈ R} on an infinite line
with a restricted reservation price and the profit functions (3)
has the following solution in secure strategies depending on the
distance d between the sellers:

when d ∈

[
0,

10
√

10− 14

67

]
≈ [0, 0.263] :(4a)

p∗1 = p∗2 = p∗ =
2 + 7d−

√
17d2 − 4d+ 4

4
,

u∗1 = u∗2 = 2(p∗ − d)(1− p∗ + d);

when d ∈

[
10
√

10− 14

67
,
6

7

]
:(4b)

p∗1 = p∗2 = p∗ =
2 + d

5
, u∗1 = u∗2 =

3

2
p∗2;

when d ∈
[

6

7
, 1

]
- multiple solutions :(4c)

max

{
1

2
,
10

7
− d
}
6 p∗1 6 min

{
4

7
,
3

2
− d
}
,

p∗2 = 2− d− p∗1, u∗i = 2p∗i (1− p∗i ), i ∈ {1, 2};
when d > 1 : p∗i = u∗i = 0.5, i ∈ {1, 2}.(4d)

Proof. See Appendix. �
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Corollary. The Hotelling’s price-setting game {i ∈ {1, 2}, p̃i ∈
[0, v], ũi(p̃1, p̃2) ∈ R} on an infinite line with a restricted
reservation price v and the profit functions (1) has the following
solution in secure strategies depending on δ, v, t:

(5) ũ(δ, v, t) =
v2

t
u

(
δt

v

)
, p̃(δ, v, t) = vp

(
δt

v

)
where u(d) and p(d) is given by (4).

Proof is given by inverse change of variables in relation to (2).�

The dependence (4) of the equilibrium prices and profits
from the distance between the stores is shown in Fig.2 for
dimensionless price game. The shaded area corresponds to the
multiple solutions. The analysis of the price competition on a line
in secure strategies allows to distinguish four qualitative cases
of interaction between competitors. When they are situated
very close (the area BC in Fig.2) both players are limited
by the threat of mill-price undercutting. The corresponding
Equilibrium in Secure Strategies (4a) can be interpreted as the
Bilateral Containment equilibrium (or BC-Equilibrium). Under
the threat of being driven out of the market by undercutting the
equilibrium prices in the BC area are much lower as compared
Hotelling price equilibrium. In the second area (the area H in
Fig.2) the Nash equilibrium (4b) found by Hotelling is realized.
One can call it the Hotelling Equilibrium (or H-Equilibrium). In
the third area (the area B in Fig.2) the competition reaches the
multiple Nash Equilibria (4c). They can be called Borderline
Equilibria or B-Equilibria and interpreted as a division of spheres
of influence on the border of the trade zones of players. And
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Fig. 2: The equilibrium secure prices (P) and profits (U) in the
price Hotelling’s game on an infinite line depending on the

distance d between the stores.
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finally in the fourth area when d > 1 the local monopoly (4d)
is realized when trade zones of players are not intersected. One
can call it the Independent Price Equilibrium (or I-Equilibrium).

Let us consider multiple price equilibria in the area B. The
full price on the border of trade zones of players reaches in
B-equilibrium exactly the reservation price. The equilibrium
payoff function can be calculated through equilibrium price
according to (4c) as u∗ = 2p∗(1 − p∗). It is not profitable for
player to raise the price and break away from trade zone of the
rival when ∂u

∂p
|p=p∗+0 = 2(1− 2p∗) < 0, i.e. when p∗ > 1

2
. It is not

profitable for player to lower the price and take market share
from the rival when ∂u

∂p
|p=p∗−0 = 4−7p

2
> 0, i.e. when p∗ 6 4

7
.

Hence inside the price interval 1
2
6 p∗ 6 4

7
we obtain multiple

price equilibrium solutions for both players.

8. EinSS in the Tullock Contest3

In the Tullock Contest n players compete for a prize and each
player exerts effort xi so as to increase his probability of winning
xi/
∑n

j=1 xj (Tullock, 1967, 1980). Scaperdas (1996) suggested
a more generalized form of the game with the expected profits
of players xαi /

∑n
j=1 x

α
j − xi, α > 0. The detailed analysis of

the game in terms of secure strategies will be provided in our
new publication (M.Iskakov, A.Iskakov, A.Zaharov, 2012). Here
we consider the Tullock Contest of two players to illustrate the
EinSS concept. The players exert efforts x1 and x2. The contest
is supposed to be fair and the payoff functions of players are

3The results of this section were obtained with participation of Alexey
Zakharov.
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taken as:

(6) u1 =
xα1

xα1 + xα2
− x1, u2 =

xα2
xα1 + xα2

− x2, α > 0

This game reaches the unique Nash equilibrium (α/4, α/4) when
α 6 2 and there is no equilibrium when α > 2.

The following matrix game example can be considered as an
illustration for the Tullock Contest of two players.

t1 t2 t3
s1 (0,0) (0,4) (0,3)
s2 (4,0) (2,2) (-1,-1)
s3 (3,0) (-1,-1) (-2,-2)

There is Nash equilibrium (s2, t2) in this game when players
get equal payoffs (2, 2). There are also two EinSS (s1, t3) and
(s3, t1) in which one player gains 3 and the other player has
to be content with zero payoff to avoid losses. Formally the
first player could deviate from (s3, t1) into (s2, t1) increasing his
payoff from 3 to 4. But he would prefer not to do it since it is
not secure deviation and the other player would in turn bring
the game into the Nash equilibrium (s2, t2) with equal payoffs
(2, 2). This example shows that even if there is a unique Nash
equilibrium (which seems to complete the study of the game)
there may be additional equilibria in secure strategies which
significantly alter the overall picture. In the given case there
are three stable profiles which have different values for players.
Which of them will be realized in the game is not predetermined
and each player is interested in the profile favorable to him (like
in the game of battle of the sexes).
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In the Tullock Contest the equilibria from the above matrix
game correspond to the EinSS of the two possible types. One
of them coincides with the Nash Equilibrium found by Tullock
(1980). The other two equilibria correspond to the monopolistic
EinSS. In these equilibria the winning monopolist fixes high
enough payment for the rent to create the entrance barrier for
the other player making him unprofitable to participate in the
competition.

The general algorithm of finding solution in secure strategies
is following. First the set of secure profiles is found as well as
the best secure responses of players. Then the BSR-profiles
are found as an intersection of the best secure responses of
players plotted in the plane of strategies (x1, x2). And finally
the conditions of the EinSS are checked for these BSR-profiles.

The best response and the best secure response of the second
player are plotted in the plane of strategies (x1, x2) in Fig.3.
The shaded (gray) area corresponds to the profiles secure for the
second player. The dashed line represents the best response and
the solid line represents the best secure response. Secure profiles,
best response and best secure response for the first player are
symmetric. The analysis of the Tullock Contest of two players in
terms of secure strategies can be summarized by the following
proposition.

Proposition 8. When 0 < α < 1 the Tullock Contest (6) of
two players reaches the following unique equilibrium in secure
strategies (which is also Nash equilibrium):

(7) {α/4, α/4}.

When 1 6 α 6 2 the Tullock Contest (6) reaches the following
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Fig. 3: Secure profiles (gray area), best response (dashed line)
and best secure response (solid line) for the player 2 depending
on the parameter α: α < 1 (left), 1 6 α 6 2 (right) and α > 2

(center). β ≡ 1
α

(α− 1)
α−1
α
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equilibria in secure strategies:

{α/4, α/4} ∪ {(0, x̄)} ∪ {(x̄, 0)} ,(8)

where x̄ =
1

α
(α− 1)

α−1
α , α > 1 and x̄ = 1, α = 1

and all other equilibria in secure strategies lie on the curve:{
(x1, ξ

+(x1)) :
α− 1

α
6 x1 6

α

4

}
∪

∪
{

(ξ+(x2), x2) :
α− 1

α
6 x2 6

α

4

}
,(9)

ξ+(xi) ≡
(
xα−1
i

2

(
α− 2xi +

√
α2 − 4αxi

))1/α

,

max

{
0,
α2 − 1

4α

}
6 xi 6 α/4.

When α > 2 the Tullock Contest (6) reaches only two
monopolistic equilibria in secure strategies:

(10)
{

(0,
1

α
(α− 1)

α−1
α )

}
∪
{

(
1

α
(α− 1)

α−1
α , 0)

}
.

Proof. See in (M.Iskakov, A.Iskakov, A.Zaharov, 2012). �

Remark. Our numerical computations showed that all points on
the curve (9) are in fact multiple equilibria in secure strategies.

The concept of EinSS allows to discover new type of
equilibria in the Tullock game of the rent-seeking. In these
equilibria the player prefer to fix his or her secure monopolistic
position rather than to participate in the competition. Moreover

38



when power parameter α > 2 the monopolistic situation is the
only stable position in the game in terms of secure strategies.
The logic of the best responses can not reveal the possibility
of such kind of equilibria since it does not take into account
the security considerations and assumes the player would
choose the most profitable but insecure and possibly eventually
not-profitable for him strategy.

The power parameter α can be interpreted as the stiffness
of the competition at rent-seeking. There is an egalitarian
distribution of rent at α 6 1, i.e. the probability to win for the
player paying less is more than proportional to his contribution.
Following the classification of North, Wallis and Weingast (2009)
we can interpret the corresponding Nash equilibrium as an
equilibrium of an open access. If α > 2 then the competition
rules are strongly differentiating. The chances to win for players
contributing small payments are much less than proportional to
their contributions. The only possible equilibrium in this case
can be interpreted as an equilibrium of the privileged monopoly
which fixes access to resources or institutions to one player. In
the intermediate case of 1 6 α 6 2 the rules of competition
are weakly differentiating and there are possibilities both for the
equilibrium of an open access and for the equilibrium of the
privileged monopoly. Furthermore there are also intermediate
equilibria which could be interpreted as equilibria of unequal or
limited access.

Conclusion

The article presents a new concept of the Equilibrium in
Secure Strategies. Although it was first published in (Iskakov,
2005, 2008) here is the first time we formulate it in the
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intuitively clear way. We discuss in detail its connection with the
other closely related theoretical models such as the solution in
objections and counter objections, the profile of the best secure
responses and the game with uncertain insider. We illustrate
our concept by the set of matrix game examples. And finally
we apply it to analyze two well-known games that fail to have
Nash equilibria. In fact all sections of this paper have arisen in
the process of active discussions at the conferences and seminars
often as answers to the posed questions. The obtained results
confirm the practical value and adequacy of the proposed concept
and lay a firm ground for the future research.
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APP END IX

Comment on the definitions of EinSS

In order to keep consistency with the previously used form of
definitions of EinSS we prove here that the definitions of EinSS
1-4 are equivalent to the definitions published in (M.Iskakov and
A.Iskakov, 2012).

Proof. Below we provide the definitions of the EinSS published
in M.Iskakov and A.Iskakov (2012). The definition of threat and
the definition of secure profile are the same. The definitions 3
and 4 were formulated in the following form:

Definition 3*. A set Wi(s) of preferable strategies secured
against threats is a set of strategies s′i of player i at a given s such
that ui(s′i, s−i) > ui(s) and provided that ui(s′i, s′j, s−ij) > ui(s)
for any threat {(s′i, s−i), (s′i, s′j, s−ij)} of playerj 6= i to player i.

Definition 4*. A strategy profile s∗ is an Equilibrium in Secure
Strategies (EinSS) if and only if for all i we have that

Wi(s
∗) 6= ∅, s∗i ∈ arg max

si∈Wi(s∗)
ui(si, s

∗
−i).

Any strategy from the set Wi(s) of preferable strategies
secured against threats according to the definition 3* is either
(a) a secure strategy s′i such that ui(s′i, s−i) = ui(s) or (b)
secure deviation according to the Definition 3. If s∗ is an EinSS
according to 4* then for all i s∗i ∈ Wi(s

∗). s∗i can not be (b)
secure deviation according to the Definition 3. Therefore s∗i
must be (a), i.e a secure strategy in the profile s∗. Since all
strategies s∗i are secure then the profile s∗ is a secure profile.
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If some player can increase his profit by secure deviation then
s∗i /∈ arg maxsi∈Wi(s∗) ui(si, s

∗
−i). Therefore no player in s∗ can

make a secure deviation (according to the Definition 3). s∗ is an
EinSS according to the Definition 4. Now let s∗ is the EinSS
according to the Definition 4. As s∗ is a secure profile so for all
i s∗i ∈ Wi(s

∗) and Wi(s
∗) 6= ∅. As no player in s∗ can increase

his profit by secure deviation so s∗i ∈ arg maxsi∈Wi(s∗) ui(si, s
∗
−i).

And s∗ is an EinSS according to the definition 4*. �

Proof of the Proposition 7

We will use below the following notation according to (3).
As uIi (pi) we denote the payoff function of player i in the
domain pi < p−i − d where player i captures the whole market
and his payoff function depends only upon his own price. As
uIIi (pi, p−i) we denote the payoff function of player i in the
domain |pi − p−i| 6 d where price competition between two
players takes place. In order to find equilibria in secure strategies
in the dimensionless Hotelling’s game (3) let us first identify the
secure profiles and prove the following Lemma.

Lemma. The profile (p1, p2) in the dimensionless price-setting
game {i ∈ {1, 2}, pi ∈ [0, 1], ui(p1, p2)} with the profit functions
(3) is a secure strategy profile if and only if

1) when d < 1 :

(П.1a)
(П.1b)

(П.1c)


|p1 − p2| 6 d

pi 6 arg max
p
uIIi (p, p−i), i ∈ {1, 2}

if p−i > d, uIi (p−i − d) 6 uIIi (pi, p−i), i ∈ {1, 2}
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Fig. 4: The first player increases profit either by shifting price
in area I or in area II.

2) when d > 1 :
(П.2){
|p1 − p2| 6 d

pi 6 arg max
p
uIIi (p, p−i), i ∈ {1, 2}

∪

{
|p1 − p2| 6 d− 1

p1 + p2 > 2− d

Proof of Lemma. When p1 < p2 − d player 2 gets zero
profit and there is always a threat to player 1 that player
2 will decrease his price till p̂2 < p1 and will get positive
profit. Since the trade zones of players are in contact then
the market share and the profit of player 1 will decrease.
Therefore the profile (p1, p2) is not secure for player 1. In a
similar way when p2 < p1− d the profile (p1, p2) is not secure for
player 2. Hence all secure profiles lie in the area |p1 − p2| 6 d.
The condition (П.1a) and the first condition in (П.2) are proven.

Let us consider the existing threats to player 2 when |p1 −
p2| 6 d. According to (3) the payoff function of the first player
u1(p1) in each price area I (p1 < p2 − d) and II (|p1 − p2| 6 d)
is concave and one-picked (see Fig.4). Player 1 can increase his
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profit only in two ways: either by shifting price in the price area
I or by moving closer to the pick in the price area II. The first
situation is possible when max

p∈(0,p2−d)
uI1(p) > uII1 (p1, p2) and always

produces a threat to player 2 to be driven out of the market. The
corresponding security condition is max

p∈(0,p2−d)
uI1(p) 6 uII1 (p1, p2).

In the second situation player 2 keeps his security in two cases.
Either the first player can not increase his profit by reducing
price, i.e. p1 6 arg max

p
uII1 (p, p2). Or he can increase his profit

by reducing price but even at maximum reduction of his price
profitable to him his trade zone will not get in contact with
the trade zone of player 2. For the profit functions (3) the last
condition can be written as 1/2 < p1 6 d− 1 + p2. Therefore the
security condition of player 2 against both types of threats can
be written as:if p2 > d, max

p∈(0,p2−d)
uI1(p) 6 uII1 (p1, p2) (1∗)

p1 6 arg max
p
uII1 (p, p2) or 1/2 < p1 6 d− 1 + p2 (2∗)

According to (1) at |p1−p2| 6 d we have uII1 (p1, p2) 6 uI1(p1)
for all p2. Then it follows from the (1∗) that max

p∈(0,p2−d)
uI1(p) 6

uI1(p1), i.e. the concave function uI1(p) reaches maximum at
p > p2 − d and therefore max

p∈(0,p2−d)
uI1(p) = uI1(p2 − d). Then

the first condition (1∗) can be written in a more convenient form
as uI1(p2− d) 6 uII1 (p1, p2). The security condition for the profile
(p1, p2) can be written then as:
|p1 − p2| 6 d

pi 6 arg max
p
uIIi (p, p−i) or 1/2 < pi 6 d− 1 + p−i, i ∈ {1, 2}

if p−i > d, uIi (p−i − d) 6 uIIi (pi, p−i), i ∈ {1, 2} (∗)
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Now let us assume that for the secure profile (p1, p2) at least
one of the conditions 1/2 < pi 6 d − 1 + p−i is satisfied. For
example 1/2 < p1 6 d − 1 + p2 which implies p2 > 3/2 − d and
p1 + p2 > p2 + (1− p1) > 2− d.
If p2 6 1/2 then 3/2− d < p2 6 1/2 => d > 1.
If p2 > 1/2 and p1 +p2 > 2−d => p2 must be on the descending
part of the function uII2 (p1, p), i.e. p2 > arg max

p
uII2 (p1, p)

=> the condition p2 6 d − 1 + p1 must be satisfied =>
p1 + p2 6 2d− 2 + p1 + p2 => d > 1.
Therefore it is proven that if d < 1 then neither of the conditions
1/2 < pi 6 d − 1 + p−i, i ∈ {1, 2} is satisfied for the secure
profile (p1, p2). Therefore the formula (П.1) is proven.

Let us prove that the (∗) is equivalent to (П.2) when d > 1.
The conditions (П.1c) and (1∗) together with the threat of mill-
price undercutting disappear when d > 1 since in this case we
have pi 6 1 6 d, i ∈ {1, 2}.
For the profiles (p1, p2) which satisfy the condition p1+p2 6 2−d
the conditions (П.2) and (∗) are obviously equivalent (since for
these profiles the second conditions in (2∗) are not satisfied).
For the profiles (p1, p2) which satisfy the condition p1 + p2 >
2− d we obtain arg max

p
uIIi (p, p−i) = min

{2+d+p−i
6

,max{2− d−

p−i, 1/2}
}

= 1
2
and the conditions (П.2) and (∗) take the following

forms:

{(p1, p2) : p1 6 1/2, p2 6 1/2} ∪ {(p1, p2) : |p1 − p2| 6 d− 1}

and


|p1 − p2| 6 d

p1 6 1/2 or 1/2 < p1 6 d− 1 + p2

p2 6 1/2 or 1/2 < p2 6 d− 1 + p1

The equivalence of these conditions at d > 1 for the profiles
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satisfying p1 + p2 > 2 − d can be proven by straightforward
verification. �

Now we are ready to prove the Proposition.
According to Lemma the set of secure strategies in the price
Hotelling’s game at d > 1 is given by (П.2). Substituting into
this system the expressions (3) for the payoff functions we obtain:

if p1 + p2 6 2− d, |p1 − p2| 6 d

if p1 + p2 > 2− d, |p1 − p2| 6 d− 1

p−i 6 min
{

2+d+pi
6

,max {2− d− pi, 1/2}
}
, i ∈ {1, 2}

The best secure responses of players at |p1 − p2| 6 d take the
following form (i ∈ {1, 2}):

p−i = max

{
1−d+pi,min

{
2 + d+ pi

6
,max {2− d− pi, 1/2}

}}
.

which has at d > 1 the unique solution (4d).

The set of secure strategies in the price Hotelling’s game
at d < 1 according to Lemma is given by the system (П.1).
Substituting into this system the expressions (1) for the payoff
functions we obtain:

|p1 − p2| 6 d (∗a)

p−i 6 min

{
2 + d+ pi

6
,max {2− d− pi, 1/2}

}
, i ∈ {1, 2} (∗b)

p−i 6 max

{
d, d+

4− pi
8
−

−

√(
d+

4− pi
8

)2

− pi
4

(2 + d− 3pi)− d(d+ 1)

}
(∗c)
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In the last inequality we take into account that (∗b) =>
5p−i 6 2 + d + pi − p−i 6 2 + 2d => p−i 6 2+2d

5
< 4+7d

9
=>

8p−i < 4 + 8d− d− p−i 6 4 + 8d− pi => p−i < d+ 4−pi
8

=> the
second branch of the solution of the quadratic inequality (∗c) is
not realized.

Under the found conditions (∗a, ∗b, ∗c) the function
uIIi (pi, p−i) increases by pi and hence the Best Secure Response
(BSR) of players at |p1 − p2| < d takes the following form
(i ∈ {1, 2}):

(∗) p−i = min

{
2 + d+ pi

6
,max {2− d− pi, 1/2} ,max

{
d,

d+
4− pi

8
−

√(
d+

4− pi
8

)2

− pi
4

(2 + d− 3pi)− d(d+ 1)

}}
.

These equations define the plots of the best secure responses of
players in the plain (p1, p2) at |p1 − p2| < d. The intersection
of these plots is the point of the BSR-profile. According to the
Proposition 3 any EinSS is the BSR-profile, i.e. it must satisfy
(∗). From the other side any solution of (∗) is the EinSS. Indeed
any deviation of player from (∗) in the direction of lower price
decreases his profit. And any deviation from (∗) in the direction
of higher price either decreases his profit or creates the threat
of being undercut throughout the whole market, i.e. no player
can increase his profit by secure deviation.

The solution of the system (∗) corresponds to the first
three cases in the Proposition 7. Indeed this solution shall be
symmetric about a line p1 = p2 and shall by of two types.
The multiple solutions of (∗) lie in the interval of the line
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p1 + p2 = 2 − d which is the common place for the BSR of
both players. Checking the limit conditions provides the solution
(4c). The solutions of (∗) of another type are located on line
p1 = p2 ≡ p. When d > 6/7 the solution is defined by the
following equation:

p = min

{
2 + d+ p

6
,max {2− d− p, 1/2}

}
,

When 6/7 6 d 6 1 this solution takes the form p1 = p2 = 1−d/2
which is a special case of the multiple solution (4c). Finally the
solution at d 6 6/7 is defined by the equation:

p = min

{
2 + d+ p

6
,max

{
d,

d+
4− p

8
−

√(
d+

4− p
8

)2

− p

4
(2 + d− 3p)− d(d+ 1)

}}
,

which gives solutions (4a) and (4b). The Proposition is proven.
�
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