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1 Introduction

Motivated by the application to telephone call centers and more general customer contact

centers, this paper focuses on the queueing systems with impatient customers. Recently

there has been great interest in multiserver queueing systems with impatient customer,

see [27], [29]. Most call centers can be classified into two types: revenue-generating and

service-oriented. The revenue-generating call centers typically perform sales functions. For

example, they may take customer orders, and have the opportunity to sell customers more

goods. In contrast, the service-oriented call centers typically provide customer service, and

generate only minimal revenue. For example, they may provide technical support. An

important aspect for modeling of service-oriented call centers is the impatience behavior of

the customers. Two common modes in which customers display their impatience are balking

and reneging. A call in customer who cannot be helped immediately by a human server might

be told how long a wait or how many people he/she faces before an operator is available.

Then the customer might hang up (i.e., balk) or decide to hold. This is the balking behavior:

a customer refuses to enter the queue if the wait is too long or the queue is too big. On the

other hand, a customer who is waiting for an operator might hang up (i.e., renege) before

getting served if the wait in line becomes too long. This is the reneging behavior. Of course,

there can be a combination of the two. It is acknowledged that customers impatience is

significant in practice and modeling call centers (cf. [18], [12], [26]).

Queuing systems with balking and reneging have been studied by many researchers, e.g.,

see the review [24] and literature survey in [17]). For Markovian multichannel queueing

systems M |M |r+M with heterogeneous servers different basic characteristics of the system

have been analyzed, such as stationary distribution of the number of customers in the system,

the mean number of abandoned customers on a fixed period of time and other, e.g., see [6],

[20], [8] ,[5]. For the non-Markovian multichannel systems M |GI|r+D and M |GI|r+GI with

identical servers stationary distribution of the virtual queueing time and workload, the mean

time for system to be idle, probability for customer to abandon and other characteristics

have been obtained, e.g., see [28], [17], [19], [9]. In the paper [27] the system GI|GI|r +

GI is approximated by a fluid model as r → ∞. On the one hand, this fluid system yields

quite accurate approximation for basic model if it is overloaded. On the other hand, for

the fluid system it is easier to obtain basic characteristics and provide numerical examples.

In [15] the mean waiting time of service have been investigated for system GI|GI|r + GI

if the system is overloaded and r → ∞. In [10] for the system G|GI|r + GI have been

established convergence of the normalized queue length process and abandonment process

to the diffusion processes as r →∞ and relationship between them in Halfin-Whitt regime

was obtained. In [14] the multidimensional diffusion processes was exploited to approximate

the dynamics of a queue with customer reneging served by many parallel servers. One of the

main features of all mentioned investigated systems is their unconditional stable behavior
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because of construction of balking and reneging.

In the present paper we focus on the multichannel queueing system with r heterogeneous

servers regenerative input flow and balking. Service times of the servers are generally dis-

tributed. If a new customer encountering j other customers in the system stays for service

with probability fj and gets rejection with probability 1− fj. We suppose that fj → f and

f ≥ 0. Such multichannel system with identical servers have been studied in [7] and there

have been established necessary and sufficient condition of its ergodicity. The same system

with single server have been analyzed in [2], where was obtained an convergence of the sta-

tionary distribution of number of customers in the system and virtual waiting time to the

exponential distribution in a critically loaded regime.

Firstly, in the paper a system is established which is likely to be not ergodic if f >

0 and necessary and sufficient ergodic condition is obtained. Secondly, functional heavy

traffic limit theorems are provided in a critically loaded (ρ ↑ 1) and overloaded systems

(ρ ≥ 1). In order to prove these theorems we introduce some majorizing systems that

bound the number of customer in the basic system both above and below. Then we prove

that difference between these majorizing processes is stochastically bounded. Moreover, the

behavior of these processes is close to the one of the classical systems (fj = 1 for all j) and

we can employ some previous results [3], [16] and [25].

The article is organised as follows. In the second section we provide definition of the

regeneration flow and discuss its properties. In the third section we describe the model in

detail. The next section is devoted to the two lemmas, which are useful for the following

section but has there own interest as well. Basing on these lemmas we establish necessary

and sufficient condition of the system ergodicity in the fifth section. In the final section we

obtain functional heavy traffic limits both if the system overloaded and critically loaded.

2 Regenerative flow and its properties

Assume an integer-valued stochastic process {X(t), t ≥ 0} to be defined on the probability

space (Ω,F, P ). The process has non-decreasing right-continuous trajectories and X(0) =

0. Such a process is called a stochastic flow. Usually such a flow describes the number of

customers arriving at a queueing system during the time interval [0; t]. We follow [2] to

define the regeneration flow.

Definition 1. A stochastic flow X(t) is regenerative if there is an increasing sequence of

the random variables {θi, i ≥ 0}, θ0 = 0 such that the sequence {κi}∞i=1 = {X(θi−1 + t) −
X(θi−1), θi− θi−1, t ∈ [0, θi− θi−1)}∞i=1 consists of independent identically distributed random

elements on (Ω,F, P ).

The random variable θi is ith regeneration moment of the X(t) and τi = θi − θi−1 is its

ith regeneration period (i = 1, 2, . . .). Let ξi = X(θi)−X(θi−1) be the number of customers
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arrived at the system during the ith regeneration period. Assume that τ = Eτi < ∞, a =

Eξi < ∞. Therefore there is a limit λ = limt→∞
X(t)
t

= a
τ

a.s. and λ is the input flow

intensity.

The class of regenerative processes is quite broad and it includes all fundamental flows

which are exploited in queueing theory. Firstly, the doubly stochastic Poisson process [13]

with stochastic regenerative intensity is the regenerative one. There are many other examples

of the regenerative flows e.g. semi-markovian, Markov-modulated, Markov-arrival processes

and others [4]. Some of them are in general not doubly stochastic Poisson processes. Note

that definition 1 does not imply the regeneration points θi to be arrival moments. Thus

definition 1 is more general then the one is given in [21].

The regenerative flow has several fundamental properties and we provide some of them

that we use later.

1. If Eξ2+δ1 <∞, Eτ 2+δ1 <∞ for some δ > 0, then the normalized process

X̂(t) =
X(tT )− λtT

σX
√
T

(2.1)

C-converges (e.g. see [1]) on any finite interval [0, v] as T →∞ to a Brownian motion.

Here

σ2
X =

σ2
ξ

τ
+
a2σ2

τ

τ 3
− 2arξτ

τ 2
, (2.2)

σ2
ξ = Dξ1, σ2

τ = Dτ1, rξτ = cov(ξ1, τ1).

Moreover there is C-convergence (X(tT )− λtT )T−1 → 0 as T →∞.

2. Let p ∈ (0, 1] and Xp(t) is a process constructed from X(t) by thinning. For the

ordinary flow X(t) this means that every its jump independently of each other with

probability p is the jump of Xp(t). If X(t) has a jump of size m at any moment then

the jump of Xp(t) at this moment has binomial distribution with parameters m and

p. It is quite obvious that if X(t) is a regenerative flow then Xp(t) is a regenerative

one as well and moments of there regeneration are coincide. Moreover

σ2
Xp =

p(1− p)a+ p2σ2
ξ

τ
+

(pa)2σ2
τ

τ 3
− 2ap2rξτ

τ 2
.

3 Multichannel System with Balking

Let S be a queueing system with r servers and regenerative input flow X(t). Arriving

customer directs to any idle server if it exists according to the non-idling, work-conserving,

non-preemptive3 service discipline. Service times are independent random variables that do

3This means that when a customer arrives at the server then the server works with the customer without
interruption
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not depend on input flow. The service time ηin of the n-th customer by the i-th server has

distribution function Bi(x) with finite mean β−1i , (i = 1, r). Let us denote β =
∑r

i=1 βi.

Let {fj}∞j=0, fj ∈ [0, 1] be the non-increasing sequence. If a new customer encountering

j other customers in the system stays for service with probability fj and gets rejection with

probability 1 − fj. If all servers are occupied then customer joins the common queue with

infinite capacity. Note if fj = 1 as j ≤ m for some m and fj = 0 as j > m then it is a

system with finite capacity but if m = 0 it is a system with abandonment. In case of fj = 1

for all j ≥ 0 it is a classical multichannel queueing model with infinite capacity. We assume

the following conditions to be fulfilled

Condition 1. For some i = 1, r

P{ξ1 = 0}+ P{ξ1 = 1, τ1 − t1 > ηi1} > 0. (3.1)

Condition 2. The distribution of the regeneration period τn of the input flow has absolutely

continuous component.

Condition 3. The sequence fj and its limit f ≥ 0 satisfy the following inequality

∞∑
j=0

(fj − f) <∞. (3.2)

Let Q(t) be a number of customers in the system S at time t. We consider an embedded

process Qn = Q(θn−0) with discrete time. The Condition 1 provides a return of the process

Qn to zero state from any bounded set with non-zero probability, i.e. for any j > 0 there

exists m(j) ≥ 0 such that P{Qn+m(j) = 0|Qn ≤ j} > 0. This condition is a sufficient one

for aperiodicity of the Qn as well , i.e. P{Qn+1 = 0|Qn = 0} > 0. Thus the processes Q(t)

and Qn are regenerative and we are justified to exploit Smith’s stability theorem [22]. The

regeneration points of the Q(t) are the moments of regeneration of the input flow {θi}∞i=1

which satisfy the equality Q(θi − 0) = 0. Let us denote these points by {θαk
}∞k=1. So the

regenerative points of the process Qn form the sequence {αk}∞k=1.

Note if f > 0 then some new arriving customers always justified to join the system even

when the queue is large. Thus if the intensity of the input flow is high this system may

be not ergodic. The aim of the research is to ascertain necessary and sufficient condition

for the system to be ergodic and establish behaviour of the processes Qn and Q(t) if the

system overloaded and critically loaded. In order to achieve it we need to prove an auxiliary

lemmas, but we believe they represent their own interest as well.
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4 Majorizing lemma

We consider an auxiliary system S+ with the same input flow and servers but it differ

from S by the additional service rule. We divide arriving customers at the systems S+ into

two types. If a new customer encountering j other customers in the system then it joins the

single queue and settle to be the first type customer with probability f and the second type

customer with probability fj − f . It does not join the queue with probability 1− fj. Let us

assume not to serve second type customers in the S+ but they form the queue and do not

make barrier for first type customers. Denote Q+
i (t) to be the number of customers of ith

type at the moment t in the system S+ (i = 1, 2).

Lemma 1. If Q(0) = Q+
1 (0) and Q+

2 (0) = 0 then the following stochastic inequality is

fulfilled for every t > 0

Q+
1 (t)− r ≤ Q(t) ≤ Q+

1 (t) +Q+
2 (t) + r. (4.1)

Proof. We prove only the second inequality of the lemma, because the first one is proved

by the same way.

We organize operating of the systems in such a way that inequality (4.1) is fulfilled

for all trajectories and stochastic properties of the processes Q+
1 (t), Q+

2 (t) (i.e. their finite

dimensional distributions) are preserved. Such an approach is generally called a unique

probability space approach. Namely, we construct a probability space, where S and S+

operate according to the following rules.

(a) The rule of arrival. Systems S and S+ deal with the common realization of the input

X(t). When there is a jump of X(t) the customer directs to both systems.

(b) The rule of joining. Let {vn}∞n=1 be a sequence of independent random variables

uniformly distributed in [0, 1]. Let the nth customer encountered j(k) other customers in

the system S(S+) at the arriving moment. If vn ≤ fj then it joins the system S and balks

otherwise. In case of vn ≤ f this customer joins the system S+ and called first type customer.

If f < vn ≤ fk then it joins the system S+ and called the second type customer and in the

case of vn > fk it gets rejection from the S+.

(c) The rule of service. For every k (k = 1, r) there are two independent sequences

{ekm}∞m=1 and {êkm}∞m=1 of independent identically distributed random variables with distri-

bution function Bk(x). The service time is assigned when the customer arrives at a server

(not in the system) for both systems. For the system S service time is chosen only from

{ekm}∞m=1 if customer is served by kth server. For the system S+ service time of the customer

which is served by the kth server is chosen according to the following rules

• If customers arrive at the servers k simultaneously in both systems S and S+ then

their service times are the same and they are an element from {ekm}∞m=1.

7



• If at arriving moment of customer to the kth server of the system S+ there is a customer

in the kth server of the system S with service time ekm then the service time of the

arrived customer in S+ equals ekm .

• If at arriving moment of customer to the kth server of the S+ there is no customer in

the kth server of the S then the service time of the arrived customer equals an ordered

element from sequence {êkm}∞m=1.

Every customer in S that have the same service time as a customer in S+ corresponding

to some element from {ekm}∞m=1(k = 1, r) is called a coupled customer. The corresponding

customer from S+ is said to be a coupler.

By ζ(t) and ζ+(t) denote the number of occupied servers in S and S+ at the moment t

respectively. Let γ(t) be the number of coupled customers at time t in S. We assume that

the described processes have right-continuous trajectories. Introduce the process

Y (t) =
(
Q(t), Q+(t), δ(t)

)
,

where

δ(t) = [ζ(t)− ζ+(t)]+ + γ(t). (4.2)

Obviously δ(t) ≤ r. Actually in case of ζ(t) < ζ+(t) we have δ(t) = η(t) ≤ r. Note that

number of coupled customers is not exceeding ζ+(t). Therefore if ζ(t) ≥ ζ+(t) then we

obtain δ(t) ≤ ζ(t) ≤ r.

Introduce the set of states

L = {(i, j, δ), i ≥ 0, j ≥ 0, 0 ≤ δ ≤ r i ≤ j + δ}.

If Y (t) ∈ L then at time t the inequality (4.1) is fulfilled. Let us show that if the process

Y (t) hits L then it stays there forever. Since Y (0) ∈ L then it proves the inequality (4.1)

for all t. Let {tn}∞n=1, t0 = 0 be the sequence of the moments of state change of Y (t). It is

sufficient to show that if Y (tn) ∈ L, then Y (tn+1) ∈ L. Table 1 shows events that lead to the

change of state of Y (t), the states that the process can be situated with positive probability,

and possible transitions from these states. Table 1 below contains only those events that

can occur with positive probability in the continuous case when interarrival intervals and

service times have absolutely continuous distribution. In the discrete case the events not

represented in Table 1 can be considered as the sequence of events that have occurred. For

definiteness we assume that all the events that lead to an exit of the customers from the

system occur before the arrival events.
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Table 1: Transitions

Event Initial state New state

Customer arrives in S and S+ 1 (i, j, δ), i ≤ j + δ (i+ 1, j + 1, δ)

(i+ 1, j + 1, δ + 1)

Customer arrives in S 2 (i, j, δ), i < j (i+ 1, j, δ)

(i+ 1, j, δ + 1)

Customer arrives in S+ 3 (i, j, δ), i > j, i ≤ j + δ (i, j + 1, δ)

(i, j + 1, δ − 1)

Customer leaves S 4 (i, j, δ), i < j + δ (i− 1, j, δ)

(i− 1, j, δ − 1)

(i− 1, j, δ − 2)

5 (i, i− δ, δ) (i− 1, i− δ, δ)
(i− 1, i− δ, δ − 1)

Customer leaves S+ 6 (i, j, δ), i < j,

ζ(tn − 0) < ζ+(tn − 0)

(i, j − 1, δ)

(i, j − 1, δ + 1)

7 (i, j, δ), i ≤ j + δ,

ζ(tn − 0) ≥ ζ+(tn − 0)

(i, j − 1, δ + 1)

Customer leaves S and S+ 8 (i, j, δ), i < j + δ (i− 1, j − 1, δ)

(i− 1, j − 1, δ − 1)

9 (i, i− δ, δ) (i− 1, i− δ − 1, δ)

We need some comments for corresponding rows of the Table 1.

1. a) Assume all servers of S and S+ are occupied. Hence new customers join the queues

in both systems and new state of the process Y (tn) = (i+ 1, j + 1, δ).

b) Consider the case when customer directs to an idle server only in the system S. Note

that the number of coupled customers does not change in this case. If ζ(tn − 0) ≥ ζ+(tn −
0), then δ(tn) = δ(tn − 0) + 1 and new state of the process Y (tn) = (i + 1, j + 1, δ + 1). If

ζ(tn − 0) < ζ+(tn − 0), then δ(tn) = δ(tn − 0) and new state Y (tn) = (i+ 1, j + 1, δ).

c) Assume a new customer directs to an idle server only in the system S+. Therefore all

servers in the S are occupied. Hence the arrived customer couple some customer in the S

and δ(tn) = δ(tn − 0). Therefore the new state of the Y (tn) = (i+ 1, j + 1, δ).

d) If new customers directs to idle servers in both systems then ζ(tn)− ζ+(tn) = ζ(tn −
0)− ζ+(tn − 0). Moreover the number of coupled customers may not change or increase to

the 1. Thus Y (tn) = (i+ 1, j + 1, δ) or Y (tn) = (i+ 1, j + 1, δ + 1).

2. Since the customer joins the system S only, so according to the rule (b) with regarding

that sequence {fn}∞n=0 is not increasing we conclude that i < j. Note that number of coupled

customers remains unchanged. Therefore δ(tn) = δ(tn− 0) + 1 if ζ(tn) > ζ+(tn) and δ(tn) =

δ(tn − 0) otherwise. Thus Y (tn) = (i + 1, j, δ + 1) or Y (tn) = (i + 1, j, δ) and the process
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Y (tn) remains in the set L because of i < j.

3. If the arriving customer is a coupler and [ζ(tn)− ζ+(tn)]+ = [ζ(tn − 0)− ζ+(tn − 0)]+

then the new state Y (tn) = (i, j + 1, δ + 1) and Y (tn) = (i, j + 1, δ) otherwise.

4. a) Assume that the departing customer is not coupled one then γ(tn) = γ(tn − 0). If

ζ(tn − 0) ≤ ζ+(tn − 0) then the process Y (tn) change its state for (i − 1, j, δ). In the case

of ζ(tn − 0) > ζ+(tn − 0) if queue of the S is not empty then δ(tn) = δ(tn − 0) and δ(tn) =

δ(tn − 0)− 1 otherwise. Therefore Y (tn) = (i− 1, j, δ) or Y (tn) = (i− 1, j, δ − 1).

b) Assume that the departing customer is coupled one then γ(tn) = γ(tn − 0) − 1. By

analogy from the previous item the process Y (tn) may have transitions to (i − 1, j, δ − 1)

and (i− 1, j, δ− 2). The initial state such that i < j + δ, so we conclude that new states are

in the set L.

5. a) Assume that at the departure moment of the customer the queue of S is not empty,

i.e. i > r. Then ζ(tn) = ζ(tn − 0). If the departing customer is coupled one then Y (tn) =

(i− 1, i− δ, δ − 1) and Y (tn) = (i− 1, i− δ, δ) otherwise.

b) Assume i ≤ r. Let k of i − δ customers are the second type customers in the S+.

Then ζ+(tn − 0) = i− δ − k, ζ(tn − 0) = i and at the moment tn − 0 the following equality

is fulfilled δ = i − (i − δ − k) + γ = δ + k + γ, where γ is a number of coupled customers.

Therefore k = γ = 0. Thus the departing customer is not coupled one and the new state

Y (tn) = (i− 1, i− δ, δ − 1).

6. Since ζ+(tn−0) > ζ(tn−0) then i < j. If a new customer arrived to the server instead

of departing one is a coupler then the new state Y (tn) = (i, j − 1, δ + 1) and Y (tn) = (i, j −
1, δ) otherwise. Inasmuch as i < j, then process Y (t) remains in the set L.

7. Note if there is a new first type customer arrived to the server instead of the departing

one in the system S+, then this customer is a coupler. Actually, in this case ζ+(tn − 0) = r

and because of the initial state Y (tn− 0) we have ζ(tn) = ζ(tn− 0) = r and according to the

rule (c) we conclude it. Therefor if there is a first type customer in the queue then γ(tn) =

γ(tn − 0) + 1 and ζ+(tn) = ζ+(tn − 0)− 1 otherwise. In any case Y (tn) = (i, j − 1, δ + 1).

8. Since we assumed continuity of service and interarrival times then the departing

customer is a coupled one.

a) If there are some customers waiting for service in the systems S and S+ then the

number of couples remains unchanged and Y (tn) = (i− 1, j − 1, δ).

b) Assume that there is a customer in the queue of the S and there is no first type

customer in queue of the S+. Then ζ(tn) = ζ(tn − 0) = r, ζ+(tn) = ζ+(tn − 0) − 1 and

Y (tn) = (i− 1, j − 1, δ).

c) The case when there is a first type customer in the queue of the S+ and there is no

one customer in the queue of the S yields ζ(tn) < r, ζ+(tn) = r and δ(tn) = δ(tn − 0) − 1.

Thus Y (tn) = (i− 1, j − 1, δ − 1).

d) If there are no customers waiting for service in both systems then Y (tn) = (i− 1, j −
1, δ − 1).
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Note that on account of the initial state Y (tn − 0) the last two cases c) and d) remain

the process Y (t) in the set L.

9. In this case the departing customer is coupled one as well as in the previous case.

a) If there are customers waiting for service in both systems S and S+ then the number

of coupled customers remains unchanged and Y (tn) = (i− 1, i− δ − 1, δ).

b) Assume that there is a customer in the queue of the S and there is no first type

customer in queue of the S+. Thus ζ(tn) = ζ(tn − 0) = r, ζ+(tn) = ζ+(tn − 0) − 1 and

Y (tn) = (i− 1, j − 1, δ).

c) The case when there is a customer waiting for service in the S+ and there is no one in

the S is impossible. Actually, if we assume the contrary then it yields i < r and i− δ > r.

d) The case when there is no customer waiting for service in both systems is impossible.

Let us assume the contrary then i < r. Let k of i−δ customers are the second type customers

in S+. Then ζ+(tn − 0) = i − δ − k, ζ(tn − 0) = i and the relationship (4.2) for moment

tn − 0 yields δ = [i− (i− δ − k)]+ + γ = δ + k + γ, where γ = γ(tn − 0). Therefore k = γ =

0, i.e. the departing customer is not coupled one but it is a contrary to the notion in the

beginning of the item 9.

All considered cases prove the lemma.�

For the following statements we need a definition.

Definition 2. Stochastic process {Y (t), t ≥ 0} with values in R+ is stochastically bounded

if for every ε > 0 there exists y <∞ such that for all t ≥ 0

P{Y (t) < y} > 1− ε.

Now we formulate the statement which is similar to the lemma 2 in [2].

Lemma 2. If fj ↓ f and (3.2) is fulfilled then the process Q+
2 (t) is stochastically bounded.

Proof. Since Q+
2 (t) is not decreasing on t then it is sufficient to prove that the ran-

dom variable Q+
2 (∞) = limt→∞Q

+
2 (t) is finite with probability one. Let us estimate the

probability of the event

{Q+
2 (∞) =∞} =

∞⋂
k=1

{Q+
2 (∞) > k} =

∞⋂
k=1

⋃
j>k

{Q+
2 (∞) = j}.

Let Dn be an event that the nth customer joins the system S+ and it has the second type.

Since

{Q+
2 (∞) = j} =

∞⋃
n=1

{Q+
2 (tn − 0) = j − 1} ∩Dn,

we have

{Q+
2 (∞) =∞} =

∞⋂
k=1

⋃
j>k

∞⋃
n=1

{Q+
2 (tn − 0) = j − 1} ∩Dn.
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Denote Λj =
⋃∞
n=1{Q

+
2 (tn − 0) = j − 1} ∩Dn. Then

{Q+
2 (∞) =∞} ⊆ lim sup

j→∞
Λj (4.3)

Note that P{Λj} ≤ fj−1−f . The Borel-Cantelli lemma [11] and (3.2) yield P{lim supj→∞ Λj} =

0. This fact assembled with (4.3) proves the lemma. �

5 Ergodic theorem

In this section we establish necessary and sufficient condition for ergodicity of the system

S by exploiting majorizing lemma for the process Q(t) and ergodic theorem for classical

multichannel system with a regenerative input flow and heterogeneous servers [3].

Definition 3. We say that point y ∈ R+ is reachable from zero by process Y (t) if for every

ε > 0 there exists neighborhood ∆ε(y) = {x : |x − y| < ε} and tε ≥ 0 such that P{Y (tε) ∈
∆ε(y)|Y (0) = 0} > 0. Let B0(Y (t)) be a set of all reachable points from zero by the process

Y (t).

The set of reachable points from zero for process Y (t) ∈ Z+ is defined the same way

where set ∆ε(y) equals y.

Definition 4. Process {Y (t), t ≥ 0} is ergodic if for every initial state Y (0) = y ∈ B0(Y (t))

there exists a limit

lim
t→∞

P{Y (t) ≤ x} = F (x),

where F (x) is a distribution function and it does not depend on y.

Definition 5. Stochastic process Y (t) is strongly stochastically unbounded if for every ε >

0 and y <∞ there exists t0 <∞ such that for all t > t0

P{Y (t) ≥ y} > 1− ε.

Theorem 1. 1. If conditions 1, 3 are fulfilled and traffic coefficient

ρ = fλβ−1 < 1, (5.1)

then the process Qn is ergodic. Moreover if additionally condition 2 is fulfilled then the

process Q(t) is ergodic as well.

2. If ρ > 1 or ρ = 1 and additional assumptions are fulfilled

Eτ 2+δ1 <∞, Eξ2+δ1 <∞, E(ηi1)
2 <∞, i = 1, r (5.2)

for some δ > 0 then this process is not ergodic.
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Proof. We introduce the system S− with the same input flow and servers but it has

the property that all second type customers get rejection upon arrival. Thus only first type

customers can join the system. Let Q−(t) be a number of customers in the system S− at

time t. We note that Q−(t) =d Q+
1 (t). The intensity of the input flow for the S− equals fλ,

so the traffic coefficient satisfies (5.1) and S− is a classical multichannel queueing system.

From the theorem 2 in [3] for this system we conclude that if ρ ≥ 1 and (5.2) is fulfilled

then the process Q−(t) is strongly stochastically unbounded. According to the lemma 1 we

deduce that Q(t) is strongly stochastically unbounded as well and certainly is not ergodic.

Let ρ < 1. Basing on the theorem 2 in [3] we conclude that the process Q−(t) is stochas-

tically bounded. Since Q−(t) =d Q+
1 (t) from lemma 2 we deduce that the process Q+(t) =

Q+
1 (t) +Q+

2 (t) has the same property. Applying the lemma 1 we conclude stochastic bound-

edness of the process Q(t) and its ergodicity as well (see theorem 1 in [3]). �

Remark 1. Condition 3 in the theorem 1 can be omitted. However if we exclude it then

the lemma 2 will be incorrect and we have to construct another majorizing system Ŝ. In the

system Ŝ for every ε > 0 an arriving customer has first type with probability max(f + ε, 1).

Second type customers join the system but they are not served and leave the system in finite

deterministic time Vε (e.g. see [7]). We do not exploit this system because it is seemed to be

useless for the following functional limit theorems.

6 Functional limit theorems

In this section we investigate functional limits of the normalized processQ(t) in a critically

loaded (ρ ↑ 1) and overloaded (ρ ≥ 1) system S. The proofs of theorems are based on

(4.1) and functional approximations for classical multichannel systems without balking. We

assume the conditions 1, 2 and 3 to be fulfilled.

6.1 Overloaded systems

Let traffic coefficient ρ ≥ 1. Since system S is not ergodic under this condition therefore

system is called overloaded. For S, S+ S− we introduce the following normalized processes

Q̂n(t) =
Q(nt)− β(ρ− 1)nt

σ̂
√
n

,

Q̂−n (t) =
Q−(nt)− β(ρ− 1)nt

σ̂
√
n

,

Q̂+
n (t) =

Q+(nt)− β(ρ− 1)nt

σ̂
√
n

. (6.1)

Here

σ̂2 = σ2
X + σ2

β, σ
2
X =

f(1− f)a+ f 2σ2
ξ

τ
+

(fa)2σ2
τ

τ 3
− 2af 2cov(ξ1, τ1)

τ 2
, (6.2)
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σ2
β =

r∑
i=1

σ2
i β

3
i , σ

2
τ = V ar(τ1), σ

2
ξ = V ar(ξ1), σ

2
i = V ar(ηi1), i = 1, r.

In [16] for system without balking (fj = 1 for all j) and recurrent input flow it is shown that

if ρ > 1 (ρ = 1) then the normalized process Q̂n(t) weakly converge on any finite interval

[0, t] to standard Brownian motion (absolute value of standard Brownian motion) as n →
∞. We prove similar result for system with balking and regenerative input flow.

Theorem 2. If ρ > 1 (ρ = 1) and for some δ > 0 condition (5.2) is fulfilled then the process

Q̂n(t) weakly converges on any finite interval [0, t] to a standard Brownian motion (absolute

value of standard Brownian motion) as n→∞.

Proof. We consider two cases.

1) For f = 1 the proof is similar to the theorem 3.1 in [16]. The only one aspect requires

an attention. In [16] authors exploit recurrent input flow in order to prove its convergence

to the Brownian motion. However the same is true for regenerative process as well if (5.2)

is fulfilled (property 1).

2) Let f < 1. We employ (4.1) for normalized processes (6.1)

Q̂−n (t)− r

σ̂
√
n
≤ Q̂n(t) ≤ Q̂−n (t) +

Q+
2 (nt)

σ̂
√
n

+
r

σ̂
√
n
. (6.3)

Here we use that Q+
1 (t) =d Q−(t). From lemma 2 we conclude that Q+

2 (nt) is stochastically

bounded as n → ∞, so the second term in the right part of (6.3) tends to 0 as n → ∞.

Note that S− is a classical multichannel system without balking and thinned regenerative

input flow where variance equals (6.2) (property 2 of regenerative flow). From item 1) we

conclude that left and right parts of the expression (6.3) weakly converge to the common

limit. Therefore the process Q̂n(t) tends to the same limit that completes the proof. �

6.2 Critically loaded systems

In this section we investigate the behavior of the system S when ρ tends to 1 below.

Firstly, we construct the sequence of systems Sn such that the traffic coefficient for Sn

equals ρn and ρn ↑ 1. Therefore we consider the time compression asymptotic. Namely we

introduce the sequence of input flows

Xn(t) = X

(
ρ−1

(
1− 1√

n

)
t

)
such that Xn is an input flow in system Sn. Assume that the sequences of probabilities

of joining the queue {fj}∞j=1 and service times {ηik}∞k=1, i = 1, r of customers are the same

for all Sn. Note that in such definition the traffic coefficient of the system Sn equals ρn =

fβ−1 limt→∞
Xn(t)
t

= 1 − 1√
n
. For every system Sn we introduce corresponding majorizing
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systems S−n and S+
n which deal with the common realization of the input flow Xn(t). Let

Qn(t), Q−n (t) and Q+
n (t) be a number of customers in the systems Sn, S−n and S+

n at time t

respectively. Obviously that these variables satisfy stochastic inequality (4.1), i.e.

Q−n (t)− r ≤ Qn(t) ≤ Q+
1,n(t) +Q+

2,n(t) + r, (6.4)

where Q+
1,n(t) (Q+

2,n(t)) is a number of first (second) type customers in the S+
n and Q+

n (t) =

Q+
1,n(t) +Q+

2,n(t). For system S+
n the lemma 2 is fulfilled as well, so Q+

2,n(t) is stochastically

bounded as t→∞. We introduce normalized processes

Q̃n(t) =
Qn(nt)√

n
,

Q̃−n (t) =
Q−n (nt)√

n
,

Q̃+
i,n(t) =

Q+
i,n(nt)
√
n

, i = 1, 2. (6.5)

Theorem 3. If for some δ > 0 the conditions (5.2) is fulfilled then the normalized process

Q̃n(t) weakly converge on any finite interval [0, t] to the reflected Brownian motion with drift

coefficient −β and diffusion coefficient σ̃2 as n→∞. Here σ̃2 = β3σ2
β +

σ2
X

ρ
.

Proof. In case of f = 1 the proof is a corollary of the theorem 5.7.1 [25] where we

exploit the property 1 of the regenerative flow. Let f < 1. We apply the inequality (6.4) for

normalized processes

Q̃−n (t)− r√
n
≤ Q̃n(t) ≤ Q̃+

1,n(t) + Q̃+
2,n(t) +

r√
n
. (6.6)

Let us remind that Q+
1,n(t) =d Q−n (t) and the sequence of processes Q+

2,n(t) is stochastically

bounded. Thus left and right parts of the expression (6.6) tends to the same limit. Note

that Q−n (t) is the queue length process for system without balking and thinned regenerative

input flow. Therefore exploiting theorem 5.7.1 of [25] completes the proof. �

Remark 2. We noticed in remark 1 that condition 3 is not necessary for theorem 1. However

it is not true for theorem 2, so we can not omit it.

7 Summary and conclusion

In this paper we have considered the multichannel queueing system with heterogeneous

servers, balking and regenerative input flow. In order to investigate this model we have

introduced two other systems that bound the number of customers in the basic one above

and below (Lemma 1). Moreover, the difference between queue length processes of these
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systems is stochastically bounded (Lemma 2). Exploiting these lemmas and theorems for

classical multichannel system [3] we have established necessary and sufficient conditions for

ergodicity (Theorem 1). We have also proved functional limit theorems for normalized queue-

length process under critically loaded (Theorem 2) and overloaded (Theorem 3) conditions

exploiting Lemma 1, Lemma 2 and results of the papers [16] and [25]. There are many further

research topics worth pursuing. First, the conjecture that the steady-state distribution of the

limit process Q(∞) = limt→∞Q(t) converge to the exponential law as traffic coefficient tends

to the 1 below remains to be proved, see [2] for single server case. Second, stochastic-process

limits for waiting times remain to be investigated, see, e.g. [23] for many servers systems.

Third, the model could be generalized for the one where customers may renege during their

waiting time as well as balk at the arriving moment.

References

[1] L. G. Afanas’eva and E. E. Bashtova. Coupling method for asymptotic analysis of queues

with regenerative input and unreliable server. Queueing Systems, In press, 2014.

[2] L. G. Afanas’eva and T. N. Belorusov. Limit theorems for systems with impa-

tient customers under high load conditions. Theory of Probability & Its Applications,

56(4):674–682, January 2012.

[3] L. G. Afanas’eva and A. V. Tkachenko. Multichannel queueing systems with regenera-

tive input flow. Theory of Probability & Its Applications, In press, June 2014.

[4] Larisa Afanasyeva, Elena Bashtova, and Ekaterina Bulinskaya. Limit theorems for

semi-markov queues and their applications. Communications in Statistics-Simulation

and Computation, 41(6):688–709, 2012.

[5] R.O. Al-Seedy, A.A. El-Sherbiny, S.A. El-Shehawy, and S.I. Ammar. Transient solu-

tion of the M/M/c queue with balking and reneging. Computers & Mathematics with

Applications, 57(8):1280–1285, April 2009.

[6] C. J. Ancker and A. V. Cafarian. Queuing with reneging and multiple heterogeneous

servers. Naval Research Logistics Quarterly, 10(1):125–149, 1963.

[7] T. N. Belorusov. Ergodicity of a multichannel queueing system with balking. Theory

of Probability & Its Applications, 56(1):120–126, January 2012.

[8] Nam Kyoo Boots and Henk Tijms. AnM/M/c queue with impatient customers. Top,

7(2):213–220, December 1999.

[9] Nam Kyoo Boots and Henk Tijms. A multiserver queueing system with impatient

customers. Management Science, 45(3):444–448, March 1999.

16



[10] J. G. Dai and Shuangchi He. Customer abandonment in many-server queues. Mathe-

matics of Operations Research, 35(2):347–362, May 2010.

[11] Willliam Feller. An introduction to probability theory and its applications. Wiley, New

York, NY, USA, 2 edition, 1957.

[12] O. Garnett, A. Mandelbaum, and M. Reiman. Designing a call center with impatient

customers. Manufacturing & Service Operations Management, 4(3):208–227, June 2002.

[13] J. Grandell. Doubly Stochastic Poisson Processes. Springer, 1976 edition, August 1976.

[14] Shuangchi He and J. G. Dai. Many-server queues with customer abandonment: numer-

ical analysis of their diffusion models. arXiv preprint arXiv:1104.0347, 2011.

[15] Rouba Ibrahim and Ward Whitt. Real-time delay estimation in overloaded multiserver

queues with abandonments. Management Science, 55(10):1729–1742, October 2009.

[16] Donald L. Iglehart and Ward Whitt. Multiple channel queues in heavy traffic. I. Ad-

vances in Applied Probability, 2(1):150 – 177, 1970.

[17] Foad Iravani and Baris Balcioglu. Approximations for the M/GI/N+GI type call center.

Queueing Systems, 58(2):137–153, February 2008.

[18] Ger Koole and Avishai Mandelbaum. Queueing models of call centers: An introduction.

Annals of Operations Research, 113(1-4):41–59, July 2002.

[19] Liqiang Liu and Vidyadhar G. Kulkarni. Balking and reneging in M/G/s systems, exact

analysis and approximations. Probability in the Engineering and Informational Sciences,

22(03):355–371, 2008.

[20] A. Montazer-Haghighi, J. Medhi, and S.G. Mohanty. On a multiserver markovian

queueing system with balking and reneging. Computers & Operations Research,

13(4):421–425, 1986.

[21] Evsey Morozov. Weak regeneration in modeling of queueing processes. Queueing Sys-

tems, 46(3-4):295–315, March 2004.

[22] W. L. Smith. Regenerative stochastic processes. Proceedings of the Royal Society of

London. Series A. Mathematical and Physical Sciences, 232(1188):6–31, October 1955.

[23] Rishi Talreja and Ward Whitt. Heavy-traffic limits for waiting times in many-server

queues with abandonment. The Annals of Applied Probability, 19(6):2137–2175, 2009.

[24] Kangzhou Wang, Na Li, and Zhibin Jiang. Queueing system with impatient customers:

A review. In 2010 IEEE International Conference on Service Operations and Logistics

and Informatics (SOLI), pages 82–87, 2010.

17



[25] Ward Whitt. Stochastic-Process Limits: An Introduction to Stochastic-Process Limits

and Their Application to Queues. Springer, January 2002.

[26] Ward Whitt. Engineering solution of a basic call-center model. Management Science,

51(2):221–235, February 2005.

[27] Ward Whitt. Fluid models for multiserver queues with abandonments. Operations

Research, 54(1):37–54, January 2006.

[28] Wei Xiong and Tayfur Altiok. An approximation for multi-server queues with determin-

istic reneging times. Annals of Operations Research, 172(1):143–151, November 2009.

[29] Sergey Zeltyn and Avishai Mandelbaum. Call centers with impatient customers: Many-

server asymptotics of the M/M/n + G queue. Queueing Systems, 51(3-4):361–402,

December 2005.

18



Authors: Tkachenko Andrey, National Research University Higher School of Economics

(Moscow, Russia). Institute for Industrial and Market Studies. The Researcher; E-mail:

tkachenko av@hse.ru, tel.8-903-187-90-48 (mob.)

Any opinions or claims contained in this Working Paper do not necessarily

reflect the views of National Research University Higher School of Economics.

19


