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1. Introduction 
 
Hierarchical structures are frequently used to formalize complex multicrite-

ria decision analysis problems. The analytic hierarchy process (AHP) of Saaty 
[1980] is an established method used to solve practical multicriteria problems 
of the hierarchical nature. It is also well-known that AHP, and its modifica-
tions and generalizations, including the analytic network process [Saaty, 1996], 
poses a number of fundamental drawbacks that cannot in principle be over-
come (see, e.g., [Barzilai, 2001; Belton, Stewart, 2003]). The main drawbacks 
are the independence of the evaluation procedure of the criteria importance 
from the normalization of criterion values – this violates the requirement of the 
mathematical theory of measurement, and the lack of a formal definition of the 
notion of criteria importance. Furthermore, the use of ratio scales in AHP for 
the expression of importance of criteria is theoretically unsubstantiated [Bar-
zilai, 2010]. 

In our paper we suggest a new methodology suitable for the analysis of 
multicriteria problems with hierarchical structures. It is based on criteria im-
portance theory (CIT) developed by Podinovski [1976, 1993, 2002] and is free 
from the above drawbacks. 

 
2. The hierarchical model 

 
We use the mathematical model of individual decision making under cer-

tainty adopted in CIT [Podinovski, 1976, 2002] as the initial model: 
< X, f, Z0, R >,  (1) 

where X is the set of alternatives (in specific problems, these could be strate-
gies, actions, variants, …), f = (f1, …, fm), where m ≥ 2, is the vector criterion, fi 
are particular criteria (attributes, indices, …), Z0 is the common set of numeri-
cal values (also known as the range, or the common “scale”) of criteria fi, R is a 
non-strict preference relation as defined below. 
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The criterion fi is the function defined on X and taking its values from Z0. 
Thus, each alternative x is characterized by its vector estimate y = f(x) = (f1(x), 
… , fm(x)). Alternatives are compared by comparing their vector estimates. The 
set of all possible vector estimates (including the vector estimates of actual 
alternatives) is denoted   Z = Z 0

m . 
The preferences of the decision maker (DM) are modelled using the non-

strict preference relation R on the set Z: yRz means that vector estimate y is not 
less preferable than z. The binary relation R is a (partial) quasi-order, that is R 
is reflexive and transitive: yRy holds, and also yRz and zRu implies yRu for any 
y, z, u ∈ Z. Relation R induces the (strict) preference relation P and indiffer-
ence relation I on Z: yPz means yRz and not zRy, while yIz means yRz and zRy. 

All individual criteria in model (1) are assumed homogeneous, i.e., meas-
ured on the same scale, and therefore have the same range Z0. For example, in 
practical problems criteria may be assumed homogeneous if they are measured 
on the same point or linguistic scale. If criteria are measured on different 
scales, special methods may be used to convert them to the same scale [Podi-
novski, 1976]. 

The approach developed in this paper assumes that the individual criteria 
are a part of the hierarchical structure an example of which is shown in Figure 
1. This structure represents 2 variants and 7 individual criteria arranged in 5 
levels. The levels are denoted l, where   l = 0,...,4 . 

At level   l = 2  the (individual) criteria of the lower level are grouped into 
disjoint sets and form vector criteria. In Figure 1 there are three such vector 
criteria:   f12

2 ,   f345
2  and   f67

2 . As above, the superscript shows that these criteria 
are of the level 2. The subscripts identify the individual criteria that constitute 
the corresponding vector criterion. For example,   f345

2 = ( f3, f4, f5) . 
At level   l =1  the vector criteria of level 3 are grouped into “longer” vectors 

using the same principle. For example, the vector criterion   f34567
1  is the “mer-

ger” of vector criteria   f345
2  and   f67

2  of the lower level 2. Note that the two crite-

ria of level 1,   f12
1  and   f34567

2 , include all individual criteria and have no com-
mon individual criteria between them. 
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Figure 1. An example of a five-level hierarchy and the corresponding  
coefficients of importance α 

 
At the top level   l = 0 , the single vector criterion   f1234567

0  is the original vec-
tor criterion f = (f1, …, f7). 

Figure 1 also shows the coefficients of importance !  that correspond to 
vector criteria of different levels. For example,  !12

1  is the coefficient of im-

portance associated with the vector criterion   f12
1 . The exact meaning of coeffi-

cients of importance is defined below. 
In practical problems the hierarchical structure such as in Figure 1 may be 

constructed using either the “top-down” or “bottom-up” approach. It is im-
portant that each of the vector criteria at each level has a clear meaning. For 
example, in Figure 1 criterion   f12

1  may represent the economic consequences 

of the decision option, and   f34567
2  – its social consequences. 

The suggested structure allows us to use methods of CIT for the analysis of 
complex hierarchical multicriteria problems. It also simplifies a theoretical 
justification of the known methods by which the coefficients of importance !  
corresponding  to criteria of lower levels can be calculated taking into account 
the coefficients of importance of the criteria of the higher levels. 
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It is worth noting that the suggested hierarchical structure is in principle 
different from the hierarchical structures used in AHP [Saaty, 1980] and other 
known approaches. All of the latter approaches, including AHP, while giving a 
verbal description of the different levels of the hierarchy, do not identify the 
values of such criteria, except for the individual criteria at the lowest level. The 
notion of importance for such verbal structure is difficult to define rigorously. 
Furthermore, the known methods of assessment of criteria importance based on 
the comparison of specially constructed criterion structures (see, e.g., [Ed-
wards, Barron, 1994; Podinovski, 1976, 1993, 2002]) cannot be used either. 

 
3. Some facts from criteria importance theory 

 
For ease of reference, below we present the basic results from CIT deve- 

loped for the conventional non-hierarchical decision analysis problems. As-
sume that the set Z0 is finite: Z0 = {1, …, k, …, q}, q ≥ 2. We refer to Z0 as the 
set, or range, of gradations. Unless stated otherwise, the criterion scale is as-
sumed to be ordinal (i.e., the DM prefers gradation k+1 to k for all k, but the 
use of gradations k in any arithmetic operations is incorrect). We further define 
the Pareto relation R∅: уR∅z ⇔ yi ≥ zi, i = 1,…, m. (The symbol of empty set 
!  indicates that the relation R∅ is not based on any additional information 
about the preferences of the DM). 

To solve the multicriteria decision problem, the methodology of CIT aims 
at expanding the preference relation R∅ by using additional information about 
the preferences of the DM. Such information may consist of the judgments 
about the relative importance of criteria and the differences between the grada-
tions in   Z 0  [Podinovski, 2008]. 

Following Podinovski [1979], let A and B be two disjoint and non-empty 
subsets of the set of all indexes {1, …, m}. Let {fi}i∈A and {fi}i∈B be the corre-
sponding sets of individual scalar criteria.  

Let   y = (y1,...,ym )  be any vector of criteria values. Assume that all compo-
nents  yi  for  i !A  are equal to the same value   y{A} , and all components   y{B}  

for  i !B  are equal to the same value  y{B} . Let  y
AB  be the vector obtained from 

vector  y  as follows. All components  yi  of vector  y  for  i !A  are replaced by 
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the value   y{B} . Similarly, all components  yi  for  i !B  are replaced by the val-

ue  y{A} . The remaining components of vector  y  are unchanged. For example, 

let y = (2, 4, 4, 3, 2, 2), A = {1, 5, 6} and B = {2, 3}. Then  yAB = (4, 2, 2, 3, 4, 
4). 

Definition 1. The groups of criteria {fi}i∈A and {fi}i∈B are equally important 
(such statement is denoted as  A !B ) if the DM considers vectors y and yAB as 
indifferent. 

Definition 2. The group of criteria {fi}i∈A is more important than the group 
of criteria {fi}i∈B (such statement is denoted as AB) if the DM prefers  y  to 

yAB, whenever   y{A} > y{B} . 

If both sets A and B have single elements, the above definitions coincide 
with the definition of importance of single criteria [Podinovski, 1976]. 

The quantitative information about criteria importance Ω may consist of 
statements such as A≈B or AB. According to Definitions 1 and 2, each of such 
statements introduces the corresponding indifference relation IA≈B and strict 
preference relation PAB on the set Z. In particular, yIA≈Bz iff (if and only if) z = 
yAB, and yPABz iff z = yAB, provided   y{A} > y{B} . The non-strict preference rela-

tion RΩ on Z (induced by information Ω) is defined as the transitive closure of 
the union of relations induced by all statement from Ω and relation R∅: 

 

    R
! = TrCl[(!"#!R")!R$].     (2) 

 
This means that yRΩz is true if and only if there exists a sequence of vectors 

uk ∈ Z such that 
yR1u1,  u1R2u2 , . . . ,  us–1Rsz, 

 
where Rj is either Rω (IA≈B if ω = A≈B and PAB if ω = AB) or R∅. Existing 
methods of CIT allow for the verification of the consistency of information Ω 
and the construction of the relation RΩ. 

Let all criteria be of equal importance (such information is denoted by S). 
For any   k =1,...,q !1 , denote σk(y) the number of components yi of vector y 

such that yi ≤ k, and let σ (y) = (σ1(y), …, σq−1(y)), where q was defined above. 
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As proved in [Gaft, Podinovski, 1981], the decision rule for relation RS is as 
follows: 

  yRS z !"(y)# "(z) ,       (3) 
 
where ≤ is the component-wise non-strict vector inequality. Furthermore, if at 
least for one component the inequality on the right-hand side of (3) is strict 
(denoted σ(y) ≤ σ(z)), then yPSz. Otherwise, if σ(y) = σ(z), we have yISz. The 
same remark on ≤ and = is true for decision rules that are introduced below and 
formulated using non-strict vector inequalities. 

Assume that q > 2 and suppose it is known that the increase of preferences 
along Z0 “slows down”. We denote this information Δ↓. This means that the 
increase of the DM’s preferences that corresponds to the transition from grada-
tion k to gradation k+1 is greater than the increase from gradation k + 1 to gra-
dation k + 2, for all k = 1, …, q – 2. The statement i≈j, together with the infor-
mation Δ↓, induces the following preference relation Pi≈jΔ↓ on Z: 

 

  

yP i! j"#z $ y=[(z zi+ %,z j&%), zi+ % ' z j&%)(

y = (z zi&%,z j+%), z j+ % ' zi&%]
, 

 
where δ is a natural number, and 

  
(z zi + !,z j "!)  is the vector obtained from z 

by substituting its component zi by zi + δ and zj by zj − δ. As proved in [Podi-
novski, 2009], the decision rule for the relation RSΔ↓ induced by information 
S&Δ↓ on Z is as follows: 
 

yRSΔ↓z ⇔ 
  

!k (y)
k=1

l" # !kk=1

l" (z), l =1,..., q $1 .                     (4) 
 
Now we define the notion of degrees of importance superiority [Podi-

novski, 2002]. It is based on the notion of N-model. Let N = (n1, n2, …, nm) be 
a vector, all components of which are natural numbers, and let n = n1 + … + 
nm. Consider a decision model with m criteria and the set of vector estimates 

  Z = Z 0
m . The corresponding N-model has the following vector of n scalar cri-

teria: 
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  < f1
1,..., f1

n1,..., fm
1,..., fm

nm > ,                  (5) 
 

where, for each   i =1,...,m , the set of equally important criteria   fi
1,..., fi

ni corre-
sponds to the original scalar criterion fi. We refer to the values of vector (5) as 
N-estimates. The set of all N-estimates is   Z (N )= Z 0

n . 

For any vector estimate y∈Y in the original model, the corresponding  
N-estimate   y

N !Z (N ) . In particular, the first n1 components of vector  y
N  are 

equal to y1, the next n2 components are equal to y2, and so on. In other words, 
yN is obtained by the cloning of components of y. Conversely, if yN is an N-
estimate such that y1 = … =   yn1

, and so on, then the corresponding vector esti-

mate   y = (yn1
,...,ynm

)!Z . 

Definition 3. Criterion fi is hij times as important as criterion fj (such 
statement is denoted as   i !

hij j ) if for any agreeing N-model (i.e. the N-model 

in which ni / nj = hij) each of ni criteria  fi
s  and each of nj criteria  f j

t  are equally 

important. 
Let Θ be the quantitative information about the importance of criteria: such 

information consists of the statements in the form   i !
hij j . We assume that the 

information Θ is consistent and complete, i.e. it allows us to calculate the ma-
trix H = (hij) of degrees of importance superiority, whose positive elements 
satisfy equalities ni /nj = hij, i, j, k ∈ {1, …, m}. Let RΘ be the non-strict prefer-
ence relation induced by information Θ on the set Z. It is defined by the fol-
lowing decision rule which is obtained on the basis of decision rule (3) for 
problems with equally important criteria (5) [Podinovski, 2002]: 

 
yRΘz ⇔ σ(yN) ≤ σ(zN).          (6) 

 
In (6), each component σk(yN) of the vector σ(yN) = (σ1(yN), …, σq−1(yN)) is 

defined as the number of components of vector yN that are not greater than k. 
The quantitative (or cardinal) coefficients of importance of criteria, in-

duced by the information Θ, are positive numbers  !i  such that αi /αj = hij, i, j = 

1, …, m, and such that the sum of all αi is equal to 1. The coefficients  !i  are 
unique.  
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Define 

  

!ik (y)=
!i , yi " k,

0, yi > k,

#
$
%

&%
,  i = 1, …, m; k = 1, …, q − 1;               (7) 

  ! k (y)= !1k (y)+ ...+!mk (y) , k = 1,…, q − 1; α(y) = (α1(y), …, αq−1(y)).   (8) 

 
The decision rule using the coefficients of importance and based on (7) – 

(8) is as follows [Podinovski, 2002]: 
 

yRΘz ⇔ α(y) ≤ α(z). (9) 
 
Let us introduce vectors α[1,k](y) = α1(y) = … + αk(y), k = 1, …, q − 1. The 

decision rule describing relation yRΘΔ↓ specified by information Θ&Δ↓ is as 
follows [Podinovski, 2009]: 

 
yRΘΔ↓z ⇔ α[1,k](y) ≤ α[1,k](z), k = 1, …, q − 1. (10) 

 
Some methods for the practical elicitation of different types of qualitative 

and quantitative information about the importance of criteria, and the corre-
sponding decision rules were developed by Podinovski [2009] and Nelyubin 
and Podinovski [2011]. 

 
4. Criterion groups of equal importance 

 
A new decision rule is needed for multicriteria decision problems with a hi-

erarchical structure. Assume that the set of m criteria is divided into s > 1 dis-
joint and equally important groups of criteria   { fi }i!A1 , …,   { fi }i!As . We further 

assume that the criteria in each group are of equal importance, and at least one 
of the groups contains no less than two criteria. For simplicity and without loss 
of generality we assume that the first group includes the first m1 equally im-
portant criteria, the second group contains the next m2 equally important crite-
ria, and so on. The last s-th group contains the last ms equally important crite-
ria. Therefore, the vector criterion f may be stated as 

 

   

f = ( f1,..., fm1

m1

!"# $#
, fm1+1,..., fm1+m2

m2

! "## $##
, ... , fm1+...+ms!1+1,..., fm

ms

! "## $##
).  (11) 
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The above information may be represented in the following form: 

  S * = {A1 ! ...! As; i ! j, i, j "At,t =1,...,s} . According to the general definition 
(2) this information induces the non-strict preference relation RS* on the set Z. 

Let µ be the least common multiple of the natural numbers m1, …, ms. De-
fine   n1 = µ / m1 , …,   ns = µ / ms , and consider the corresponding N-model. In 
the latter model, an initial vector estimate y = (y1, …, ym) corresponds to the  
N-estimate 

 

   

y N = (y1,...,ym1
;...,y1,...,ym1

n1

! "### $###
;...;ym1+...+ms!1+1,...,ym;...,y1,ym1+...+ms!1+1,...,ym

ns

! "####### $#######
).  (12) 

 
The set of all N-estimates is   Z 0

n . Let us note that number of components in 
yN that were obtained from the t-th group of components of vector estimate y is 
equal to nt mt = µ, and this number is the same for all groups. Therefore, in 
accordance with (6), the relation   R S * on Z we can define as follows: 

                                          yR S *z  ⇔ σ(yN) ≤ σ(zN). (13) 

It can be shown that the relation   R S *  expands the preference relation RS* in 
the following consistent way:   R

S * !RS *  (therefore,   I
S * ! I S * ) and 

  P
S * !P S * . 
 

5. Quantitative importance of group of criteria 
 
For problems with hierarchical structure, we further need to define the de-

gree of importance superiority applicable to groups of criteria. Let us first illus-
trate the idea of the definition given below by an example. 

Example 1. Let the set of criteria in a five-criterion problem (m = 5) be di-
vided into two groups: {f1, f2, f3} and {f4, f5}. Also let A = {1, 2, 3} and B = {4, 
5} be the sets of criterion indexes (subscripts) from the first and the second 
groups, respectively. We now address the following question: how we could 
formalize, for example, the statement that the group of criteria {f1, f2, f3} is 
twice as important as the group {f4, f5}? 

To answer this question, let us expand the vector estimate y = (y1, y2, y3, y4, 
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y5) to the vector (y1, y2, y3, y1, y2, y3, y4, y5) and consider the latter vector as a 
vector estimate in the eight-criterion problem, with three equally important 
groups. Each of the first two groups consists of three criteria, and the third 
group consists of two criteria. Furthermore, if there is information about the 
importance of the original scalar criteria  yi ,   i =1,...,5 , such information 
should also apply to the extended eight-criterion problem. 

Let {fi}i∈A and {fi}i∈B be two disjoint groups of criteria. Consider any two 
integers   na,nb > 0  and define  h = na nb . Let us expand the vector y = (y1, …, 

ym) by replicating  na − 1 times its components corresponding to the group A. 
We refer to the set of such  na  identical groups as the clone of group A, or 

simply clone A. Similarly, we replicate nb − 1 times the components if vector y 
corresponding to the group B. We refer to the set of  nb  identical groups as 
clone B. 

The above cloning procedure generates a new expanded decision problem 
referred to as the (na; nb)-problem. In this problem, any two groups from clone 
A are equally important and any two groups from clone B are equally im-
portant. Moreover, any information about the importance of the original scalar 
criteria  yi  is also retained in the expanded problem. 

Definition 4. The group of criteria {fi}i∈A is  h = na nb  times as important as 

the group of criteria {fi}i∈B (such statement is denoted as AhB), if in the  
(na; nb)-problem any group of criteria from clone A and any group of criteria 
from clone B are equally important. 

In a practical application the information about degrees of importance supe-
riority of one group of criteria over another may be elicited using methods sim-
ilar to those developed for single criteria [Podinovski, 2002]. In such methods 
we should consider vector estimates in which components from the same group 
are all equal to each other. 

Let the set of criteria be divided into s groups as in (11). Suppose that, us-
ing Definition 4, for any two groups 

  
{ fi }i!At

 and 
  
{ fi }i!Ar

 we have established 

that the former group is htr times as important as the latter:   At !
htr Ar .  

Let us further assume that for any two criteria fi and fj from the same group 
it is known that   i !

hij j . Such information is denoted by the Greek letter T. 
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Based on information T, and using the process of cloning described above (ap-
plied to groups of criteria and individual scalar criteria), we can construct the 
T-model in which all groups of criteria are equally important, and all scalar 
criteria within any group are also equally important. 

The described cloning process may be performed “bottom-up”, where we 
start by cloning groups of criteria, followed by the cloning of individual crite-
ria within each group. Alternatively, the process can be performed “bottom-
up”. In this case we first clone single criteria within groups, followed by the 
cloning of the resulting groups. The following example illustrates this proce-
dure. 

Example 2. In Example 1 we showed how the information that the group of 
criteria A is twice as important as group B (A2B) could be represented by cre-
ating an expanded vector of criteria in which all groups of criteria were equally 
important. Suppose we additionally have the following information concerning 
individual scalar criteria: 132, 2≈3, 45/25. Then all the information we have 
can be represented as Τ = {A2B; 132, 213; 45/25}.  

First, we construct the Τ-model using the “top-down” approach. As in Ex-
ample 1, using the statement A2B, we expand the original vector y = (y1, y2, 
y3, y4, y5) to (y1, y2, y3, y1, y2, y3, y4, y5). Next, we clone the single criteria using 
the information 132, 2≈3 and 45/25. The resulting vector, which we refer to 
as the T-estimate, is as follows: 

 

   y
! = (y1,y1,y1,y2,y3; y1,y1,y1,y2,y3; y4,y4,y4,y4,y4,y5,y5) . (14) 

 
Alternatively, we can use the “bottom-up” approach. Using the information 

132, 2≈3 and 45/25, we first clone individual criteria to expand the original 
vector y = (y1, y2, y3, y4, y5) to vector (y1, y1, y1, y2, y3; y4, y4, y4, y4, y4, y5, y5). 
We then use the information A2B to obtain (14). 

Note that in the resulting T-model all groups of criteria are equally im-
portant, and all criteria in each group are also equally important. Therefore, 
using the approach described in Section 4, we can associate this model with the 
N-model in which all criteria are equally important. We refer to this model as 
the NΤ-model. The following example clarifies this correspondence. 
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Example 3. The T-model constructed in Example 2 includes three groups 
of criteria, and all three groups are equally important. The first two of these 
groups contain m1 = m2 = 5 equally important criteria, and the third group con-
tains m3 = 7 equally important criteria. Since the least common multiple of m1, 
m2, and m3 is 35, and because   n1 = µ / m1 = 7,    n2 = µ / m2 = 7,    n3 = µ / m3 = 5,  

the relevant NΤ-model contains  105 = 5!7!3  equally important criteria. This 
model is obtained by repeating the criteria from the first and second groups 7 
times, and repeating the criteria from the third group 5 times. For example, for 
y = (2, 4, 5, 1, 3), its T-estimate is (13) and its NΤ-estimate is 

 

  y
N! = (2,2,2,4,5;2,2,2,4,5;2,2,2,4,5;2,2,2,4,5;2,2,2,4,5;2,2,2,4,5;2,2,2,4,5;  

  2,2,2,4,5; 2,2,2,4,5; 2,2,2,4,5; 2,2,2,4,5; 2,2,2,4,5; 2,2,2,4,5; 2,2,2,4,5;  

  1,1,1,1,1,3,3; 1,1,1,1,1,3,3; 1,1,1,1,1,3,3; 1,1,1,1,1,3,3; 1,1,1,1,1,3,3) . 
 
Because all criteria in the NΤ-model are equally important, such a model 

can be stated in an equivalent compact form: we need to indicate only the 
components of the original vector y and to use the superscripts to specify the 
number of times each component occurs in the NΤ-estimate. In our example, 
we have   y

N! = (125,242,310,414,514 ) . 
Because all criteria in the NT-model are of equal importance, for the com-

parison of two vector estimates y and z we can use any method of CIT suitable 
for such criteria. For example, adapting (13), we obtain the following decision 
rule: 

 yR!z  ⇔ σ(yNΤ) ≤ σ(zNΤ) (15) 
 
Example 4. Let the set of gradations in the problem from Example 3 be Z0 

= {1, 2, 3, 4, 5}. Let us compare the three vector estimates y = (2, 4, 5, 1, 3), z 
= (3, 5, 5, 4, 2), u = (1, 5, 5, 5, 4). We first construct the three corresponding 
NΤ-estimates. Our task is simplified by noting that, as in Example 3, we need 
to replicate the first component 42 times, the second and third 14 times, the 
fourth 25 times and the fifth 10 times. Therefore, 

 

  y
N! = (125,242,310,414,514 ) ,   z

N! = (210, 342, 425,528) ,   u
N! = (142, 410,553) . 
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Furthermore, 
 

  !1(y N")= 25 ,   !2(y N")= 67 ,   !3(y N")= 77 ,   !4(y N")= 91 ; 

  !1(z N")= 0 ,     !2(z N")=10 ,   !3(z N")= 52 ,    !4(z N")= 77 ; 

  !1(uN")= 42 ,   !2(uN")= 42 ,   !3(uN")= 42 ,    !4(uN")= 52 . 
 
Note that the following inequalities are true 
 

  !1(z N")< !1(y N") ,   !2(z N")< !2(y N") ,   !3(z N")< !3(y N") ,  !4(z N")< !4(y N") . 
 
Then, according to (15),  zP !y . For u and z we have 

 

  !1(uN")> !1(z N") ,   !2(uN")> !2(z N") ,   !3(uN")< !3(z N") ,   !4(uN")< !4(z N") , 
 

so that  zR!u  and  uR!z  are not true, i.e. u and z are non-comparable with re-

spect to  R! . 
The above method required the construction of NΤ-models. We used this 

approach to illustrate the theoretical definition of the preference relation  R
! . 

There also exists a simpler alternative approach based on the notion of coeffi-
cients of group importance α {t}. These are positive numbers that correspond to 
groups of criteria. The sum of α {t} is equal to 1, and we require that 

  !{t } !{r } = htr , for all t, r = 1, …, s. It is straightforward to prove that such co-

efficients of importance are unique for Τ. 
Let   !1

t ,...,!mt

t  be the coefficients of importance of individual scalar criteria 

from the group At. (Note that these coefficients are valid only within the group 
At and cannot be directly compared to the coefficients of importance from the 
other groups of criteria.) 

Let α i, i = 1, …, m be final coefficients of importance of the individual sca-
lar criteria. These can be calculated using the conventional approach: if criteri-
on fi belongs to group 

  
{ fi }i!At

 then   !i = !{t }!i
t . The coefficients  !i  allow us to 

simplify the construction of the NT-model and introduce a new decision rule 
based on (9). Let all coefficients α i be proper fractions:  !i = "ni ""ni , where  !ni  
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and  !!ni  are relatively prime numbers, and  !ni  <  !!ni . Furthermore, let all these 
fractions be reduced to the lowest common denominator c. It is easy to see that 
the NΤ-model with N = (n1, …, nm) is appropriate. The NΤ-estimates con-
structed in this way have dimension equal to c. 

Example 5. In the example 4 problem for the information Τ = {A2B; 132, 
2≈3; 45/25} we have:  !{1} = 2

3 ,  !{2} = 1
3 ;  !1

1 = 3
5 ,  !2

1 = !3
1 = 1

5 ;  !1
2 = 5

7 , 

 !2
2 = 2

7 . Therefore, 
 

 !1 = 2
5 ,  !2 = !3 = 2

15 ,  !4 = 5
21 ,  !5 = 2

21 . (16) 
 
The lowest common denominator c of numbers 5, 15 и 21 is equal to 105. 

Fractions (14) being reduced to lowest common denominator become 
 

 !1 = 42
105 ,  !2 = !3 = 14

105 ,  !4 = 25
105 ,  !5 = 10

105 . (17) 
 

Thus, N for NΤ-model is the vector (42, 14, 14, 25, 10), and the dimension 
of NΤ-estimates is equal to 105. The same established in another way in exam-
ple 3. 

The equivalence of two considered ways for constructing NΤ-models al-
lows to use decision rules (9) and (10) because they were justified just with the 
help of N-model [Podinovski, 2002, 2009]. For this it is necessary to account 
for final importance coefficients. Let us illustrate the “work” of decision rule 
(9) with an example. 

Example 6. Let us compare vector estimates in example 3 by preference 
using final importance coefficients (16) reduced to lowest common denomina-
tor (17). According to (7) and (8) we have for y, z and u: 

 
α(y) = ( 

25
105 ,  

67
105 ,  

77
105 ,  

91
105 ), α(z) = (0,  

10
105 ,  

52
105 ,  

77
105 ), α(u) = ( 

42
105 ,  

42
105 ,  

42
105 ,  

52
105 ). 

 
Since α(z) ≤ α(y), then, in accordance to (9),  zP !y  is true. But both α(z) ≤ 

α(u) and α(u) ≤ α(z) are not true and, therefore, z and u are incomparable by 

 R
! . It is useful to compare calculations that are executed here with calcula-

tions from example 4. 
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6. Decision rules for problems with a hierarchical structure 
 
In problems with a hierarchical criteria structure similar to that depicted in 

Figure 1 we can treat vector criteria of different levels as groups of component 
scalar criteria. For example, the vector criterion   f345

2  in Figure 1 is treated as 
the group of criteria {f3, f4, f5}. Therefore, all of the approaches and methods 
considered above are applicable to such problems. 

While analyzing practical problems with a hierarchical structure, the deci-
sion maker may be asked to compare (vector) criteria of the same level l, 
which are the subvectors of the same vector criterion of the higher level l – 1. 
(We refer to this higher-level vector criterion as the common parent of the two 
subvectors of level l. For example, in Figure 1, criterion   f34567

1  is the parent of 

criteria   f345
2  and   f67

2 .) 
The scale gradations of parent vectors are defined as follows. The scale 

gradation of a vector criterion is equal to k∈Z0 if the scale gradations of all 
particular criteria included in the vector criterion are equal to k. For example, if 
the scale Z is linguistic and the value k corresponds to gradation “good”, then 
the parent vector criterion is also assigned the common general value k 
(“good”). 

The qualitative information Ω about the importance of criteria can be ob-
tained using Definition 1 and Definition 2. Existing methods of CIT allow us 
to obtain the non-strict preference relation on Z taking into account information 
Ω and also statements about the rate at which the DM’s preferences change 
along the criterion scale. To construct such relations, one could use the general 
approach developed by Osipova et al. [1984]. However, this method assumes a 
matrix representation of the binary preference relation. Due to the very large 
dimensions of such a matrix even for a small number of criteria, the practical 
application of this method is questionable. Unfortunately, no analytical meth-
ods for the solution of such problems exist at the present time. However, under 
some additional assumptions a suitable optimization method can be developed 
(see Example 8).  

To obtain quantitative information on criteria importance one can use 
methods described in Podinovski [2002]. This information consists of state-
ments about the degree of importance superiority of some criteria over the other. 
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The use of such information for the construction of the non-strict preference 
relation on Z requires the construction of the corresponding NT-model as de-
scribed in section 5. However, as shown in the example below, it may be easier 
to calculate the final coefficients of importance first, and then use a suitable 
decision rule. 

Example 7. Let the set of gradations in the problem from Example 1 be  
Z0 = {1, 2, 3, 4, 5}. Suppose we have the following quantitative information 
about the criteria importance 

 

   f12
1 !3/2 f34567

1 ;    f345
2 !7/3 f67

2 ;    f1
3 !1 f2

3 ;    f3
3 !1 f4

3 ;    f4
3 !2 f5

3 ;    f6
3 !1 f7

3  (18) 
 
The above data allows us to calculate the coefficients of importance shown 

in Figure 1: 
 

 !12
1 = 0.6 ,  !34567

1 = 0.4 ;  !12
2 =1 ,  !345

2 = 0.7 ,  !67
2 = 0.3 ;  !1

3 = 0.5 ,  !2
3 = 0.5 , 

 !3
3 = 0.4 ,  !4

3 = 0.4 ,  !5
3 = 0.2 ,  !6

3 = 0.5 ,  !7
3 = 0.5 . 

 
(The information about the degree of superiority of one criterion over an-

other may be elicited in the form of precise or interval statements. Such infor-
mation may then be used to calculate the coefficients of criteria importance 
using the eigenvalue method of Saaty [1980] or some other methods [Podi-
novski, 2007]. The above coefficients of importance allow us to calculate the 
final importance coefficients αi of partial criteria fi:  

α1 = 0.3, α2 = 0.3, α3 = 0.112, α4 = 0.112, α5 = 0.056, α6 = 0.06, α7 = 0.06. 

Suppose that the values of the vector criterion   f = ( f1, f2, f3, f4, f6, f7)  for 
alternatives x1 and x2 are as follows: 

  y = f (x1)= (4, 4, 3, 5, 3,1, 2) ,   z = f (x 2 )= (5, 3, 2, 4, 4, 3,1) . (19) 

If there is no information about the rate of increase of the preferences along 
the criterion scale, i.e. the scale is ordinal, then we can use decision rule (9) to 
compare alternatives with respect to the DM’s preferences. Note that for the 
vectors 

α(y) = (0.06, 0.12, 0. 288, 0. 888),  α(z) = (0.06, 0. 172, 0. 532, 0.7) 
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neither α(y) ≤ α(z) nor α(z) ≤ α(y) is true, the alternatives x1 and x2 are uncom-
parable. Now assume that it is known that the rate of increase of the prefer-
ences along the criterion scale “slows down”. According to the definition in 
Section 3, in this case we have 

 
α[1,1](y) = 0.06, α[1,2](y) = 0.18, α[1,3](y) = 0. 468, α[1,4](y) = 1.356, 
α[1,1](z) = 0.06, α[1,2](z) = 0. 232, α[1,3](z) = 0. 764, α[1,4](z) = 1. 464. 

 
Then the non-strict inequalities from (10) 
 
α[1,1](y) ≤ α[1,1](z), α[1,2](y) ≤ α[1,2](z), α[1,3](y) ≤ α[1,3](z), α[1,4](y) ≤ α[1,4](z) 

 
are satisfied. Furthermore, we have the strict inequality α[1,4](y) < α[1,4](z). 
Therefore, alternative x1 is preferred to x2. 

Remark 1. The method developed in Podinovski (2012) may be used for 
the sensitivity analysis of the optimal decision alternative with respect to the 
changes of the coefficients of importance. 

Above we assumed that the coefficients of criteria importance were as-
sessed exactly, as point estimates. However, quantitative information about 
importance may also be obtained in the form of set estimates, e.g. in the form 
of intervals (Podinovski, 2002). The point estimates usually require that we 
make certain additional assumptions about the preference structure of the DM. 
In the absence of such assumptions we may only be able specify a set A of 
feasible values of the coefficient of importance α. In this case, we may subse-
quently use the common principle of decision theory (see, e.g., [Weber, 1987; 
Podinovski, 2008]) for the definition of the non-strict preference relation R(Α), 
induced on Z by the information about the importance in the form Α.  

Namely, we define 
 

yR(Α)z ⇔ yR(α)z,  for any α ∈ Α, (20) 
 
where R(α) is the non-strict preference relation defined by the relevant decision 
rule for the known value of α. For example, if the criterion scale is ordinal, the 
decision rule is (9). The described approach extends to the case in which the 
information about the importance of criteria is qualitative. 
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Example 8. Assume that in Example 7 the quantitative information (18) is 
not available but instead we have the following qualitative information: 

 

   f12
1 ! f34567

1 ;    f345
2 ! f67

2 ;   f1
3 ! f2

3 ;   f3
3 ! f4

3 ;    f4
3 ! f5

3 ;    f6
3 ! f7

3  (21) 
 
For the qualitative information (21) the set A is defined by the following 

system of equalities and inequalities: 
 

α1 > 0, α2 > 0, α3 > 0, α4 > 0, α5 > 0, α6 > 0, α7 > 0, 
α1 + α2 + α3 + α4 + α5 + α6 + α7 = 1, α1 + α2 > α3 + α4 + α5 + α6 + α7, 

α3 + α4 + α5 > α6 + α7, α1 = α2, α3 = α4, α4 > α5, α6 = α7. (22) 
 
If we the criterion scale is ordinal then, according to (9) and (20), the rela-

tion R(Α) is defined as follows: 
 

yR(Α)z ⇔ α(y) ≤ α(z), for any α ∈Α. (23) 
 

To illustrate the application of (23), consider alternatives x1 and x2 whose 
vector estimates are defined in (19). Taking into account (7) and (8), for y and 
z we have: 

 
α1(y) = α6, α2(y) = α6 + α7, α3(y) = α3 + α5 + α6 + α7, 

α4(y) = α1 + α2+ α3 + α5 + α6 + α7. 
α1(z) = α7, α2(z) = α3 + α7, α3(z) = α2 + α3 + α6 + α7, 

α4(z) = α2 + α3 + α4 + α5 + α6 + α7. 

 
We can now restate (23) in the extended form: yR(Α)z is true if and only if, 

for any α∈Α, the following inequalities are true: 
 

α6 ≤ α7, α6 + α7 ≤ α3 + α7, α3 + α5 + α6 + α7 ≤ α2 + α3 + α6 + α7, 
α1 + α2+ α3 + α5 + α6 + α7 ≤ α2 + α3 + α4 + α5 + α6 + α7 (24) 

According to (21), α6 = α7. Therefore the inequalities (23) are equivalently 
restated as 

 

 max!"#!6 $!3 % 0 ,  max!"#!5 $!2 % 0 ,  max!"#!1 +!5 $!4 % 0 . (25) 
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In (25), !  is the set of values of α defined by (22) where all strict inequali-
ties are replaced by еру non-strict inequalities (such substitution is acceptable 
[Podinovski, 2004]). 

The verification of inequalities (25) requires solving three linear program-
ming programs. For example, the first of these is: 

 
α6 − α3 → max 

subject to: 
α1 ≥ 0, α2 ≥ 0, α3 ≥ 0, α4 ≥ 0, α5 ≥ 0, α6 ≥ 0, α7 ≥ 0, 

α1 + α2 + α3 + α4 + α5 + α6 + α7 = 1, α1 − α2 = 0, α3 − α4 = 0, α6 − α7 = 0, 
−α1 − α2 + α3 + α4 + α5 + α6 + α7 ≤ 0, 

−α3 −α4 −α5 + α6 + α7 ≤ 0, −α4 + α5 ≤ 0. 
 
The above program may be solved by any linear optimizer. Its optimal va- 

lue is 0.4166667, which does not satisfy the first inequality in (25). Therefore, 
zR(Α)y is not true. Similarly, it can be established that zR(Α)y is also not true. 
Therefore, alternatives x1 and x2 are incomparable by R(Α). This result was 
entirely expected because these alternatives were incomparable even in Exam-
ple 7, in which the exact values of the coefficients of importance were known. 

Remark 2. The decision rule considered in Example 8 is based on the as-
sumption that quantitative coefficients of importance exist, and uses qualitative 
information Ω about their values. It is worth noting that in case of an ordinal 
criterion scale the assumption that quantitative coefficients of importance exist 
does not lead to an extension of the preference relation RΩ. However, if the 
increase of preferences along the criterion scale is “slowing down”, the as-
sumption that quantitative coefficients of importance exist does generally lead 
to the extension of relation RΩΔ↓ [Nelyubin, Podinovski, 2012]. 
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решений с иерархической критериальной структурой: препринт WP7/2014/04 [Текст] / 
В. В. Подиновский, О. В. Подиновская ; Нац. исслед. ун-т «Высшая школа экономики». – М.: 
Изд. дом Высшей школы экономики, 2014. – 28 c. – 25 экз. (In English.)

Иерархические структуры часто используются для формализации сложных многокритери-
альных задач принятия решений. Для анализа таких задач в 1980 г. T. Saaty представил разра-
ботанный им метод анализа иерархий (“The Analytic Hierarchy Process” – AHP). Этот широко 
известный метод, как и его модификации, обладает рядом принципиальных, причем неустра-
нимых недостатков. К основным таким недостаткам относятся независимость процедур оце-
нивания важности критериев и нормализации критериальных оценок альтернатив, что нару-
шает требование математической теории измерений, и отсутствие формального определения 
понятия важности критериев. Более того, в свете современных исследований по теории изме-
рений возможность оценивания предпочтений в шкале отношений исключается. Мы предла-
гаем новую методологию для анализа многокритериальных задач с иерархической структурой. 
Она основана на теории важности критериев.
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