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1. Introduction

Hierarchical structures are frequently used to formalize complex multicrite-
ria decision analysis problems. The analytic hierarchy process (AHP) of Saaty
[1980] is an established method used to solve practical multicriteria problems
of the hierarchical nature. It is also well-known that AHP, and its modifica-
tions and generalizations, including the analytic network process [Saaty, 1996],
poses a number of fundamental drawbacks that cannot in principle be over-
come (see, e.g., [Barzilai, 2001; Belton, Stewart, 2003]). The main drawbacks
are the independence of the evaluation procedure of the criteria importance
from the normalization of criterion values — this violates the requirement of the
mathematical theory of measurement, and the lack of a formal definition of the
notion of criteria importance. Furthermore, the use of ratio scales in AHP for
the expression of importance of criteria is theoretically unsubstantiated [Bar-
zilai, 2010].

In our paper we suggest a new methodology suitable for the analysis of
multicriteria problems with hierarchical structures. It is based on criteria im-
portance theory (CIT) developed by Podinovski [1976, 1993, 2002] and is free
from the above drawbacks.

2. The hierarchical model

We use the mathematical model of individual decision making under cer-
tainty adopted in CIT [Podinovski, 1976, 2002] as the initial model:
<X.f.Zo,R>, (1)
where X is the set of alternatives (in specific problems, these could be strate-
gies, actions, variants, ...), f= (f1, ..., fm), where m > 2, is the vector criterion, f;
are particular criteria (attributes, indices, ...), Zj is the common set of numeri-
cal values (also known as the range, or the common “scale”) of criteria f;, R is a
non-strict preference relation as defined below.



The criterion f; is the function defined on X and taking its values from Z,.
Thus, each alternative x is characterized by its vector estimate y = fix) = (f1(x),
.., fm(x)). Alternatives are compared by comparing their vector estimates. The
set of all possible vector estimates (including the vector estimates of actual
alternatives) is denoted Z =Z2;".

The preferences of the decision maker (DM) are modelled using the non-
strict preference relation R on the set Z: yRz means that vector estimate y is not
less preferable than z. The binary relation R is a (partial) quasi-order, that is R
is reflexive and transitive: yRy holds, and also yRz and zRu implies yRu for any
v, z, u € Z. Relation R induces the (strict) preference relation P and indiffer-
ence relation / on Z: yPz means yRz and not zRy, while y/z means yRz and zRy.

All individual criteria in model (1) are assumed homogeneous, i.e., meas-
ured on the same scale, and therefore have the same range Z,. For example, in
practical problems criteria may be assumed homogeneous if they are measured
on the same point or linguistic scale. If criteria are measured on different
scales, special methods may be used to convert them to the same scale [Podi-
novski, 1976].

The approach developed in this paper assumes that the individual criteria
are a part of the hierarchical structure an example of which is shown in Figure
1. This structure represents 2 variants and 7 individual criteria arranged in 5
levels. The levels are denoted /, where [=0,...,4 .

At level /=2 the (individual) criteria of the lower level are grouped into
disjoint sets and form vector criteria. In Figure 1 there are three such vector
criteria: fj3, fs and fi;. As above, the superscript shows that these criteria
are of the level 2. The subscripts identify the individual criteria that constitute
the corresponding vector criterion. For example, frs =(f;, /1, /5) -

Atlevel /=1 the vector criteria of level 3 are grouped into “longer” vectors

using the same principle. For example, the vector criterion fj,,; is the “mer-
ger” of vector criteria f;; and f;> of the lower level 2. Note that the two crite-
ria of level 1, f;, and f , include all individual criteria and have no com-

mon individual criteria between them.
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Figure 1. An example of a five-level hierarchy and the corresponding
coefficients of importance o

At the top level /=0, the single vector criterion £}, is the original vec-
tor criterion f= (f1, ..., f7).

Figure 1 also shows the coefficients of importance o that correspond to
vector criteria of different levels. For example, o, is the coefficient of im-
portance associated with the vector criterion f;) . The exact meaning of coeffi-
cients of importance is defined below.

In practical problems the hierarchical structure such as in Figure 1 may be
constructed using either the “top-down” or “bottom-up” approach. It is im-
portant that each of the vector criteria at each level has a clear meaning. For

example, in Figure 1 criterion f may represent the economic consequences

of the decision option, and f;,,,, — its social consequences.

The suggested structure allows us to use methods of CIT for the analysis of
complex hierarchical multicriteria problems. It also simplifies a theoretical
justification of the known methods by which the coefficients of importance o
corresponding to criteria of lower levels can be calculated taking into account
the coefficients of importance of the criteria of the higher levels.



It is worth noting that the suggested hierarchical structure is in principle
different from the hierarchical structures used in AHP [Saaty, 1980] and other
known approaches. All of the latter approaches, including AHP, while giving a
verbal description of the different levels of the hierarchy, do not identify the
values of such criteria, except for the individual criteria at the lowest level. The
notion of importance for such verbal structure is difficult to define rigorously.
Furthermore, the known methods of assessment of criteria importance based on
the comparison of specially constructed criterion structures (see, e.g., [Ed-
wards, Barron, 1994; Podinovski, 1976, 1993, 2002]) cannot be used either.

3. Some facts from criteria importance theory

For ease of reference, below we present the basic results from CIT deve-
loped for the conventional non-hierarchical decision analysis problems. As-
sume that the set Z is finite: Zy = {1, ..., k, ..., g}, ¢ = 2. We refer to Z; as the
set, or range, of gradations. Unless stated otherwise, the criterion scale is as-
sumed to be ordinal (i.e., the DM prefers gradation k+1 to k for all &, but the
use of gradations k£ in any arithmetic operations is incorrect). We further define
the Pareto relation R?: yR?z < y; > z;, i = 1,..., m. (The symbol of empty set
@ indicates that the relation R® is not based on any additional information
about the preferences of the DM).

To solve the multicriteria decision problem, the methodology of CIT aims
at expanding the preference relation R® by using additional information about
the preferences of the DM. Such information may consist of the judgments
about the relative importance of criteria and the differences between the grada-
tions in Z, [Podinovski, 2008].

Following Podinovski [1979], let 4 and B be two disjoint and non-empty
subsets of the set of all indexes {1, ..., m}. Let {f;};c4 and {f:}..5 be the corre-
sponding sets of individual scalar criteria.

Let y=(,,...,»,,) be any vector of criteria values. Assume that all compo-

nents y, for ie A are equal to the same value y,, , and all components y,p,
for i€ B are equal to the same value y,p, . Let 8 be the vector obtained from

vector y as follows. All components y, of vector y for i€ A are replaced by



the value y,p, . Similarly, all components y, for i€ B are replaced by the val-
ue ,, - The remaining components of vector y are unchanged. For example,
lety=(2,4,4,3,2,2),4={1,5,6} and B= {2, 3}. Then »**=(4,2,2,3, 4,
4).

Definition 1. The groups of criteria {f;},.4 and {f;} .5 are equally important
(such statement is denoted as A= B) if the DM considers vectors y and yAB as
indifferent.

Definition 2. The group of criteria {f;},.4 is more important than the group
of criteria {f;},.p (such statement is denoted as 4>B) if the DM prefers y to
yAB, whenever y, >V, -

If both sets 4 and B have single elements, the above definitions coincide
with the definition of importance of single criteria [Podinovski, 1976].

The quantitative information about criteria importance € may consist of
statements such as 4=B or 4>B. According to Definitions 1 and 2, each of such
statements introduces the corresponding indifference relation /*=* and strict
preference relation P on the set Z. In particular, yI*=*z iff (if and only if) z =

vy and yP*’z iff z = y*®, provided Yi4 > Y5, - The non-strict preference rela-

tion R® on Z (induced by information Q) is defined as the transitive closure of
the union of relations induced by all statement from Q and relation R®:

R =TrCI[(U,,R”)UR?]. (2)

0eQ
This means that yR%z is true if and only if there exists a sequence of vectors
u* € Z such that
yRW', W'RAP ..., u'Rz,

where R’ is either R® (IA:B if ®= A=B and P*’ if 0 = A-B) or R®. Existing
methods of CIT allow for the verification of the consistency of information €
and the construction of the relation R

Let all criteria be of equal importance (such information is denoted by S).
For any k=1,...,q—1, denote o,(y) the number of components y; of vector y

such that y; < &, and let 6(y) = (61(»), ..., 64.1(»)), where g was defined above.



As proved in [Gaft, Podinovski, 1981], the decision rule for relation R’ is as
follows:

YRz e 0(y)<o(2), 3)

where < is the component-wise non-strict vector inequality. Furthermore, if at
least for one component the inequality on the right-hand side of (3) is strict
(denoted o(y) < o(2)), then yP’z. Otherwise, if 6(y) = o(z), we have yI'z. The
same remark on < and = is true for decision rules that are introduced below and
formulated using non-strict vector inequalities.

Assume that ¢ > 2 and suppose it is known that the increase of preferences
along Z, “slows down”. We denote this information Al. This means that the
increase of the DM’s preferences that corresponds to the transition from grada-
tion k to gradation k+1 is greater than the increase from gradation &k + 1 to gra-
dation £+ 2, forall k=1, ..., ¢ — 2. The statement i=j, together with the infor-

~AL

mation A, induces the following preference relation P7** on Z:

yP Mz o y=[(2]|2+8,2,-8), z+8<2,-8) v

>

3~ S,Zj+8), Zj+8 < Zi_s]

y=(3|

where § is a natural number, and (z’ 7,+98,7,-0) is the vector obtained from z

by substituting its component z; by z; +  and z; by z; — 8. As proved in [Podi-
novski, 2009], the decision rule for the relation R*™ induced by information
S&A on Z is as follows:

B2 Y 6,00y 6,2, 1=1..q-1. (4)

Now we define the notion of degrees of importance superiority [Podi-
novski, 2002]. It is based on the notion of N-model. Let N = (ny, ny, ..., n,) be
a vector, all components of which are natural numbers, and let n = n; + ... +
n,. Consider a decision model with m criteria and the set of vector estimates
Z =Z;". The corresponding N-model has the following vector of n scalar cri-

teria:



< es e [y i > (5)

where, for each i=1,...,m , the set of equally important criteria f',..., /" corre-

sponds to the original scalar criterion f;. We refer to the values of vector (5) as
N-estimates. The set of all N-estimates is Z(N)=Z2]'.

For any vector estimate yeY in the original model, the corresponding
N-estimate y" € Z(N) . In particular, the first n, components of vector y" are
equal to y;, the next n, components are equal to y,, and so on. In other words,
yN is obtained by the cloning of components of y. Conversely, if yN is an N-
estimate such that y;= ... = y, , and so on, then the corresponding vector esti-

mate y=(y,,.»Y, V€Z .
Definition 3. Criterion f; is hy; times as important as criterion f; (such

statement is denoted as i =" j) if for any agreeing N-model (i.e. the N-model

in which n;/n; = h;j) each of n; criteria f;’ and each of n; criteria f; are equally
important.
Let O be the quantitative information about the importance of criteria: such

information consists of the statements in the form 7" Jj . We assume that the

information © is consistent and complete, i.e. it allows us to calculate the ma-
trix H = (h;) of degrees of importance superiority, whose positive elements
satisfy equalities n;/n;= hy, i,j, k€ {1, ..., m}. Let R® be the non-strict prefer-
ence relation induced by information ® on the set Z. It is defined by the fol-
lowing decision rule which is obtained on the basis of decision rule (3) for
problems with equally important criteria (5) [Podinovski, 2002]:

YRz & o(™) < o(2M). (6)

In (6), each component oy (yN) of the vector cs(yN) = (G](yN), cees cq_l(yN)) is
defined as the number of components of vector y" that are not greater than k.

The quantitative (or cardinal) coefficients of importance of criteria, in-
duced by the information ©, are positive numbers o, such that a;/a; = hy, i, j =
1, ..., m, and such that the sum of all o, is equal to 1. The coefficients o, are

unique.



Define

o, Y, <k,
Osyi>k, ’

(xk(y):(x‘lk(y)+"'+0(‘mk(y)a k: 1:"'9 q— 1’ a(y) = (al(y)a LERE) aq—l(y))' (8)

o, (y)= i=1,...mk=1,..,qg-1,; (7

The decision rule using the coefficients of importance and based on (7) —
(8) is as follows [Podinovski, 2002]:

YRz & a(y) < a(z). )

Let us introduce vectors o' (y) =u(y)=...+tw0),k=1,...,q9 —1. The

R@Al

decision rule describing relation spemﬁed by 1nformat10n O&Al is as

follows [Podinovski, 2009]:
yRz & o"My) <o), k=1, ..., g - 1. (10)

Some methods for the practical elicitation of different types of qualitative
and quantitative information about the importance of criteria, and the corre-
sponding decision rules were developed by Podinovski [2009] and Nelyubin
and Podinovski [2011].

4. Criterion groups of equal importance

A new decision rule is needed for multicriteria decision problems with a hi-
erarchical structure. Assume that the set of m criteria is divided into s > 1 dis-
joint and equally important groups of criteria {f;} {3}, - We further

assume that the criteria in each group are of equal importance, and at least one
of the groups contains no less than two criteria. For simplicity and without loss
of generality we assume that the first group includes the first m; equally im-
portant criteria, the second group contains the next m, equally important crite-
ria, and so on. The last s-th group contains the last m, equally important crite-
ria. Therefore, the vector criterion f may be stated as

ied >

f (.ﬁ’ fm] fm|+1’ fm,+m2"“’fm|+...+m3,|+lﬂ“"fm)' (11)

'"1 ny my

10



The above information may be represented in the following form:
S*={A'=~...=A*;i~j i,je A,t=1,..,s}. According to the general definition
(2) this information induces the non-strict preference relation R®" on the set Z.

Let u be the least common multiple of the natural numbers m, ..., m,. De-
fine m=p/m,, ..., n,=p/m,, and consider the corresponding N-model. In
the latter model, an initial vector estimate y = (1, ..., ¥m) corresponds to the
N-estimate

yN = (yls'--aym] ;---ayl:---ayml ;'“;yml+...+m3,|+l5""ym;"'5y1’ym1+.,.+mx,1+1""9ym)‘ (12)

m K3

The set of all N-estimates is Z . Let us note that number of components in
yN that were obtained from the z-th group of components of vector estimate y is
equal to n, m; = (4, and this number is the same for all groups. Therefore, in
accordance with (6), the relation R" on Z we can define as follows:

YRSz < o(0™) < o(™). (13)

It can be shown that the relation RS* expands the preference relation RS in

the following consistent way: R* >R (therefore, I /%) and

P55 PS5
5. Quantitative importance of group of criteria

For problems with hierarchical structure, we further need to define the de-
gree of importance superiority applicable to groups of criteria. Let us first illus-
trate the idea of the definition given below by an example.

Example 1. Let the set of criteria in a five-criterion problem (m = 5) be di-
vided into two groups: {f1, /2, f3} and {fs, f5}. Also let 4 = {1,2, 3} and B = {4,
5} be the sets of criterion indexes (subscripts) from the first and the second
groups, respectively. We now address the following question: how we could
formalize, for example, the statement that the group of criteria {fi, f5, f3} is
twice as important as the group {fs, fs}?

To answer this question, let us expand the vector estimate y = (y1, y2, ¥3, Va,

11



ys) to the vector (y1, V2, ¥3, V1, V2, V3, V4, ¥s) and consider the latter vector as a
vector estimate in the eight-criterion problem, with three equally important
groups. Each of the first two groups consists of three criteria, and the third
group consists of two criteria. Furthermore, if there is information about the
importance of the original scalar criteria y;, i=1,...,5, such information
should also apply to the extended eight-criterion problem.

Let {f;}ics and {f;}.c5 be two disjoint groups of criteria. Consider any two
integers n,,n, >0 and define A=n,/n, . Let us expand the vector y = (yy, ...,

vm) by replicating n, — 1 times its components corresponding to the group A.
We refer to the set of such n, identical groups as the clone of group 4, or

simply clone 4. Similarly, we replicate n, — 1 times the components if vector y
corresponding to the group B. We refer to the set of n, identical groups as

clone B.

The above cloning procedure generates a new expanded decision problem
referred to as the (n,; np)-problem. In this problem, any two groups from clone
A are equally important and any two groups from clone B are equally im-
portant. Moreover, any information about the importance of the original scalar
criteria y; is also retained in the expanded problem.

Definition 4. The group of criteria {f;};c4 is h=n,/n, times as important as

the group of criteria {f;},.s (such statement is denoted as A-"B), if in the
(n4; np)-problem any group of criteria from clone 4 and any group of criteria
from clone B are equally important.

In a practical application the information about degrees of importance supe-
riority of one group of criteria over another may be elicited using methods sim-
ilar to those developed for single criteria [Podinovski, 2002]. In such methods
we should consider vector estimates in which components from the same group
are all equal to each other.

Let the set of criteria be divided into s groups as in (11). Suppose that, us-
ing Definition 4, for any two groups {f},., and {f},, we have established

that the former group is 4, times as important as the latter: A4, =" A, .
Let us further assume that for any two criteria f; and f; from the same group

it is known that /=" ;. Such information is denoted by the Greek letter T.

12



Based on information T, and using the process of cloning described above (ap-
plied to groups of criteria and individual scalar criteria), we can construct the
T-model in which all groups of criteria are equally important, and all scalar
criteria within any group are also equally important.

The described cloning process may be performed “bottom-up”, where we
start by cloning groups of criteria, followed by the cloning of individual crite-
ria within each group. Alternatively, the process can be performed “bottom-
up”. In this case we first clone single criteria within groups, followed by the
cloning of the resulting groups. The following example illustrates this proce-
dure.

Example 2. In Example 1 we showed how the information that the group of
criteria 4 is twice as important as group B (A>2B) could be represented by cre-
ating an expanded vector of criteria in which all groups of criteria were equally
important. Suppose we additionally have the following information concerning

525 Then all the information we have

individual scalar criteria: 1>32, 2=3, 4>
can be represented as T = {A>2B; 172, 2-'3; 4>5/25}.

First, we construct the T-model using the “top-down” approach. As in Ex-
ample 1, using the statement A-"B, we expand the original vector y = (31, 2,
V3, Y4, ¥5) 10 (U1, V2, ¥3, V1, V2, 3. V4, ¥s5). Next, we clone the single criteria using
the information 12, 2=3 and 4>=>25. The resulting vector, which we refer to

as the T-estimate, is as follows:

yT :(y17y1>yl=y27y3; y17y17y17y25y3; y4=y47y47y4’y4’y57y5) . (14)

Alternatively, we can use the “bottom-up” approach. Using the information
122, 2=3 and 45, we first clone individual criteria to expand the original
vector y = (y1, ¥2, ¥3, V4, ¥s) t0 vector (i, Y1, Y1, V2, ¥3} Vi, Va, V4, V4, Vas Vs, Vs).
We then use the information A>>B to obtain (14).

Note that in the resulting T-model all groups of criteria are equally im-
portant, and all criteria in each group are also equally important. Therefore,
using the approach described in Section 4, we can associate this model with the
N-model in which all criteria are equally important. We refer to this model as
the NT-model. The following example clarifies this correspondence.

13



Example 3. The T-model constructed in Example 2 includes three groups
of criteria, and all three groups are equally important. The first two of these
groups contain m; = m, = 5 equally important criteria, and the third group con-
tains m3 = 7 equally important criteria. Since the least common multiple of m;,
my, and mj is 35, and because n=u/m =7, n,=pn/m=7, ny=p/m =5,
the relevant NT-model contains 105=5x7x3 equally important criteria. This
model is obtained by repeating the criteria from the first and second groups 7
times, and repeating the criteria from the third group 5 times. For example, for
y=(2,4,5,1,3), its T-estimate is (13) and its NT-estimate is

y"=(2,2,2,452,2,2,4,52,2,2,4,52,2,2,4,52,2,2,4,5,2,2,2,4,52,2,2,4,5;
2,2,2,4,5; 2,2,2,4,5; 2,2,2,4,5; 2,2,2,4,5; 2,2,2,4,5; 2,2,2,4,5; 2,2,2,4,5;
LL1,1,1,3,3; L1,1L,1,1,3,3; 1,1,1,1,1,3,3; 1,1,1,1,1,3,3; 1,1,1,1,1,3,3) .

Because all criteria in the NT-model are equally important, such a model
can be stated in an equivalent compact form: we need to indicate only the
components of the original vector y and to use the superscripts to specify the
number of times each component occurs in the NT-estimate. In our example,
we have y"" =(1%,2% 310 41 51y

Because all criteria in the NT-model are of equal importance, for the com-
parison of two vector estimates y and z we can use any method of CIT suitable
for such criteria. For example, adapting (13), we obtain the following decision
rule:

YRz & (" < o(2"") (15)

Example 4. Let the set of gradations in the problem from Example 3 be Z
= {1, 2, 3,4, 5}. Let us compare the three vector estimates y = (2, 4, 5, 1, 3), z
=(3,554,2),u=(1,5,5,5,4). We first construct the three corresponding
NT-estimates. Our task is simplified by noting that, as in Example 3, we need
to replicate the first component 42 times, the second and third 14 times, the
fourth 25 times and the fifth 10 times. Therefore,

yNT :(125’242,3I0’414,5I4)’ ZNT:(zl()’ 342, 425’528) , UNT :(142’410,553) .

14



Furthermore,

c,(y""=25, 6,(y"")=67, 5,(b"")=77, 5,(»y")=91;
6,(z")=0, 0,(z")=10, 0,(z"")=52, 0,(z"")=77;
c,w")=42, 6,w"") =42, 6,u"")=42, o,u"")=52.

Note that the following inequalities are true

6,(z")<0,(»"), 6,(z") <0, , 05(z") <0,(¥"),0,(z") <0, (V™).
Then, according to (15), zP"y . For u and z we have

6,")>0,(z"), 0,(")>0,(z"), 6,") <0,(z"), 0, <5, (2"),

so that zR"u and uR"z are not true, i.e. u and z are non-comparable with re-

spectto R”.

The above method required the construction of NT-models. We used this
approach to illustrate the theoretical definition of the preference relation R”.
There also exists a simpler alternative approach based on the notion of coeffi-
cients of group importance o.,. These are positive numbers that correspond to
groups of criteria. The sum of ayy is equal to 1, and we require that
o, /o, =h,, forall s, =1, ..., s. It is straightforward to prove that such co-

efficients of importance are unique for T.
Let ay,...,0, be the coefficients of importance of individual scalar criteria

from the group 4,. (Note that these coefficients are valid only within the group
A; and cannot be directly compared to the coefficients of importance from the
other groups of criteria.)

Leta;, i=1, ..., m be final coefficients of importance of the individual sca-
lar criteria. These can be calculated using the conventional approach: if criteri-
on f; belongs to group {f},_, then o, =o,0;. The coefficients o, allow us to

simplify the construction of the NT-model and introduce a new decision rule
based on (9). Let all coefficients a; be proper fractions: o, =n//n”, where n;

15



and n] are relatively prime numbers, and n/ < n . Furthermore, let all these
fractions be reduced to the lowest common denominator c. It is easy to see that
the NT-model with N = (ny, ..., n,) is appropriate. The NT-estimates con-
structed in this way have dimension equal to c.

Example 5. In the example 4 problem for the information T = {A>ZB; 1-2,

5/2 1 1 1 . 2
2=3; 4-775} we have: o, =%, Op=); o,=%, o,=0;=); o/=%,

ocg =2% . Therefore,

oy =%, 0, =03=%s, Oy =%, Os=2%;. (16)

The lowest common denominator ¢ of numbers 5, 15 u 21 is equal to 105.
Fractions (14) being reduced to lowest common denominator become

=05, Oy =03 =5, 0y =205, Os="'%ps. (17)

Thus, N for NT-model is the vector (42, 14, 14, 25, 10), and the dimension
of NT-estimates is equal to 105. The same established in another way in exam-
ple 3.

The equivalence of two considered ways for constructing NT-models al-
lows to use decision rules (9) and (10) because they were justified just with the
help of N-model [Podinovski, 2002, 2009]. For this it is necessary to account
for final importance coefficients. Let us illustrate the “work™ of decision rule
(9) with an example.

Example 6. Let us compare vector estimates in example 3 by preference
using final importance coefficients (16) reduced to lowest common denomina-
tor (17). According to (7) and (8) we have for y, z and u:

a(y) = (&5, 15> 105> 15 )> (2) = (0, 165 » % » 15 )> @) = (%5 , 0% » 105 » 105 )-

Since a(z) < a(y), then, in accordance to (9), zP"y is true. But both a(z) <
a(u) and a(u) £ a(z) are not true and, therefore, z and u are incomparable by

R™. 1t is useful to compare calculations that are executed here with calcula-
tions from example 4.
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6. Decision rules for problems with a hierarchical structure

In problems with a hierarchical criteria structure similar to that depicted in
Figure 1 we can treat vector criteria of different levels as groups of component

scalar criteria. For example, the vector criterion f in Figure 1 is treated as

the group of criteria {f3, f1, f5}. Therefore, all of the approaches and methods
considered above are applicable to such problems.

While analyzing practical problems with a hierarchical structure, the deci-
sion maker may be asked to compare (vector) criteria of the same level /,
which are the subvectors of the same vector criterion of the higher level /— 1.
(We refer to this higher-level vector criterion as the common parent of the two
subvectors of level /. For example, in Figure 1, criterion f,,, is the parent of
criteria fy5 and f}.)

The scale gradations of parent vectors are defined as follows. The scale
gradation of a vector criterion is equal to ke Z if the scale gradations of all
particular criteria included in the vector criterion are equal to k. For example, if
the scale Z is linguistic and the value & corresponds to gradation “good”, then
the parent vector criterion is also assigned the common general value &
(“good”).

The qualitative information € about the importance of criteria can be ob-
tained using Definition 1 and Definition 2. Existing methods of CIT allow us
to obtain the non-strict preference relation on Z taking into account information
Q and also statements about the rate at which the DM’s preferences change
along the criterion scale. To construct such relations, one could use the general
approach developed by Osipova et al. [1984]. However, this method assumes a
matrix representation of the binary preference relation. Due to the very large
dimensions of such a matrix even for a small number of criteria, the practical
application of this method is questionable. Unfortunately, no analytical meth-
ods for the solution of such problems exist at the present time. However, under
some additional assumptions a suitable optimization method can be developed
(see Example 8).

To obtain quantitative information on criteria importance one can use
methods described in Podinovski [2002]. This information consists of state-
ments about the degree of importance superiority of some criteria over the other.
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The use of such information for the construction of the non-strict preference
relation on Z requires the construction of the corresponding NT-model as de-
scribed in section 5. However, as shown in the example below, it may be easier
to calculate the final coefficients of importance first, and then use a suitable
decision rule.

Example 7. Let the set of gradations in the problem from Example 1 be
Zy= {1, 2, 3, 4, 5}. Suppose we have the following quantitative information
about the criteria importance

Jo = fusas Sas = s KA B B B2 B K- R (18)

The above data allows us to calculate the coefficients of importance shown
in Figure 1:

o, =06, ok, =04; o, =1, 03,5=0.7, o, =0.3; &/ =0.5, a;=0.5,

0;=04, 0;=04, 02=0.2, 0;=05, 03=0.5.

(The information about the degree of superiority of one criterion over an-
other may be elicited in the form of precise or interval statements. Such infor-
mation may then be used to calculate the coefficients of criteria importance
using the eigenvalue method of Saaty [1980] or some other methods [Podi-
novski, 2007]. The above coefficients of importance allow us to calculate the
final importance coefficients o; of partial criteria f;:

o1 =0.3,0,=0.3,03=0.112, 04 =0.112, a5 = 0.056, s = 0.06, 0; = 0.06.
Suppose that the values of the vector criterion f=(f,,/, /s, /i, /e, /;) for
alternatives x' and x* are as follows:

y=f(x)=(4,4,3,5312), z=f(x")=(53,2,4,4,31). (19

If there is no information about the rate of increase of the preferences along
the criterion scale, i.e. the scale is ordinal, then we can use decision rule (9) to
compare alternatives with respect to the DM’s preferences. Note that for the
vectors

a(y) = (0.06, 0.12, 0. 288, 0. 888), a(z) = (0.06, 0. 172, 0. 532, 0.7)
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neither a(y) < a(z) nor a(z) < a(y) is true, the alternatives x' and x are uncom-
parable. Now assume that it is known that the rate of increase of the prefer-
ences along the criterion scale “slows down”. According to the definition in
Section 3, in this case we have

a"y) = 0.06, o H(») = 0.18, al" () = 0. 468, o' H(y) = 1.356,
a"(z) = 0.06, " (z) = 0. 232, ol H(z) = 0. 764, o"(2) = 1. 464.

Then the non-strict inequalities from (10)

al"y) < al"z), al'y) < al2), o) < o), o) < a2

are satisfied. Furthermore, we have the strict inequality a[1’4](y) < a[l"”(z).
Therefore, alternative x' is preferred to X%

Remark 1. The method developed in Podinovski (2012) may be used for
the sensitivity analysis of the optimal decision alternative with respect to the
changes of the coefficients of importance.

Above we assumed that the coefficients of criteria importance were as-
sessed exactly, as point estimates. However, quantitative information about
importance may also be obtained in the form of set estimates, e.g. in the form
of intervals (Podinovski, 2002). The point estimates usually require that we
make certain additional assumptions about the preference structure of the DM.
In the absence of such assumptions we may only be able specify a set A of
feasible values of the coefficient of importance a. In this case, we may subse-
quently use the common principle of decision theory (see, e.g., [Weber, 1987;
Podinovski, 2008]) for the definition of the non-strict preference relation R(A),
induced on Z by the information about the importance in the form A.

Namely, we define

VR(A)z < yR(0)z, forany a e A, (20)

where R(a) is the non-strict preference relation defined by the relevant decision
rule for the known value of a. For example, if the criterion scale is ordinal, the
decision rule is (9). The described approach extends to the case in which the
information about the importance of criteria is qualitative.
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Example 8. Assume that in Example 7 the quantitative information (18) is
not available but instead we have the following qualitative information:

fomfusers Jas=Jos K=fs B=Rs -6 £~ @D

For the qualitative information (21) the set A is defined by the following
system of equalities and inequalities:

01>0,0,>0,03>0,04>0,05>0,06>0,07;>0,
aptoaytoztogtostasta;=1,0+a>a3+as+ o5+ og+ oy,
o3 t o4 + 05> 06 + 07, 0] =0, 03 =04, 04> Ols, Olg = 0l7. (22)

If we the criterion scale is ordinal then, according to (9) and (20), the rela-
tion R(A) is defined as follows:

VR(A)z & a(y) £ a(z), for any o € A. (23)

To illustrate the application of (23), consider alternatives x' and x* whose
vector estimates are defined in (19). Taking into account (7) and (8), for y and
z we have:

ai(y) = og, 02(y) = 0 + a7, a3(y) = 03 + s + 0 + 0y,
a4(y) = ap + ot az + s+ og + o,

01(2) = a7, 02(2) = 03 + a7, 03(2) = 6 + 03 + 06 + a7,
a4(z) = o+ o3 + oy + s + o+ 0,

We can now restate (23) in the extended form: yR(A)z is true if and only if],
for any ae A, the following inequalities are true:

O < 07,06t 07< 031 07,03 +ds+ 0+ 0o7< 0t 03+ 0t ay,
(11+(12+(13+(15+(16+(17S(12+(l3+(14+(l5+(l6+(17 (24)
According to (21), ag = o7. Therefore the inequalities (23) are equivalently

restated as

max__; o —0;<0, max _;os—0o,<0, max o, +os—0,<0. (25)
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In (25), A is the set of values of a defined by (22) where all strict inequali-
ties are replaced by epy non-strict inequalities (such substitution is acceptable
[Podinovski, 2004]).

The verification of inequalities (25) requires solving three linear program-
ming programs. For example, the first of these is:

Og — O3 — max
subject to:
(1120,(1220,(1320,(1420,(1520,(1620,(1720,
a1+a2+a3+a4+a5+a6+a7:l,al—a2:O,a3—a4:0,a6—a7:0,
—(11—0.2+(13+(14+(X5+(16+(X7SO,
—0,3—04—05+Q6+G7SO,—Q4+&5SO.

The above program may be solved by any linear optimizer. Its optimal va-
lue is 0.4166667, which does not satisfy the first inequality in (25). Therefore,
zR(A)y is not true. Similarly, it can be established that zR(A)y is also not true.
Therefore, alternatives x' and x° are incomparable by R(A). This result was
entirely expected because these alternatives were incomparable even in Exam-
ple 7, in which the exact values of the coefficients of importance were known.

Remark 2. The decision rule considered in Example 8 is based on the as-
sumption that quantitative coefficients of importance exist, and uses qualitative
information Q about their values. It is worth noting that in case of an ordinal
criterion scale the assumption that quantitative coefficients of importance exist
does not lead to an extension of the preference relation R®. However, if the
increase of preferences along the criterion scale is “slowing down”, the as-
sumption that quantitative coefficients of importance exist does generally lead
to the extension of relation R** [Nelyubin, Podinovski, 2012].
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HoaunoBckwmii, B. B., [loquHoBckas, O. B. Teopust BaXXHOCTH KpUTEPUEB VIS 3314 MPUHATHS
pelIeHuil ¢ MepapXxuyYecKoil KpHUTEpHaldbHON CTpyKTypoii: mpenpunt WP7/2014/04 [Tekcr] /
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W3n. nom Beicuieit mkonsl s5koHoMukH, 2014, — 28 ¢. — 25 3k3. (In English.)

HWepapxndeckue CTpyKTyPbI 4aCTO HCTIOIB3YIOTCS ULt (HOPMATN3ALNK CII0KHBIX MHOTOKPUTEPH-
aJbHBIX 3a/1a4 NPUHATHA pereHnit. g ananu3a takux 3aga4 B 1980 . T. Saaty npencrasui paspa-
OoTaHHbIH UM MeTox aHanu3a uepapxuil (“The Analytic Hierarchy Process” — AHP). OtoTt mmpoxo
U3BECTHBIH METOJI, KaK M ero MoAu(HKaIMK, 00IaaeT psaoM MPHHIUITHATIBHBIX, IPHYEM HEyCcTpa-
HHUMBIX HEJOCTAaTKOB. K OCHOBHBIM TaKHM HEIOCTATKaM OTHOCSTCS HE3aBHCHMOCTB MPOLIELYP OLie-
HHMBAHMS BaKHOCTH KPUTEPUEB M HOPMAJIN3ALMI KPUTCPHUATIBHBIX OLEHOK aJIETEPHATHB, YTO Hapy-
maeT TpeboBaHNe MaTEMaTHIECKONH TCOPHUH U3MEPEHHH, i OTCYTCTBHE (POPMAIBHOTO ONPEICIICHHS
HOHSATHS BaKHOCTH KpHUTepHeB. boee Toro, B CBeTe COBPEMEHHBIX HCCIIEI0BAHUMN 1O TEOPUH H3Me-
peHHi BO3MOXKHOCTD OLCHUBAHNUSI PEAIIOYTCHUH B IIKaJIe OTHOIICHHI HCKII0o4aeTcs. Ml mpeta-
racM HOBYIO METOJIOJIOTHIO IS aHAJIN3a MHOTOKPUTEPUAIIBHBIX 3314 C HEPAPXHIECKOH CTPYKTYPOIA.
OHa 0CHOBaHa Ha TEOPHU BaXKHOCTH KPHTEPUECB.
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