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THE UNDERWRITING, CHOICE AND PERFORMANCE OF 

GOVERNMENT-INSURED MORTGAGES IN RUSSIA2 

 

This paper analyzes the mortgage borrowing process from a Russian state-owned provider of 

residential housing mortgages concentrating on the choice of having government insurance. This 

analysis takes into account the underwriting process and the choice of loan limit by the bank, the 

choice of contract terms and the performance of all loans issued from 2008 to 2012. Our dataset 

contains demographic, financial, loan terms and the performance information for all applications. 

We use a multistep nonparametric approach to estimate the determinants of bank and borrower 

choice. The main finding that the probability of having government insurance is linked to riskier 

loans, but insured loans also are more likely to be approved by the bank. The bank, when approving 

a borrower, takes into account not the probability of default but the difference between the 

probability of default and having government insurance.  
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Introduction 

 

During the previous decade, the Russian housing market was affected by two events. First, 

the worldwide financial crisis caused housing prices to fall by 30% in September 2009 compared 

with prices in July 20083. The volume of loans issued in 2009 fell to 25% of the level of 2008. 

Secondly, Agency of Housing Mortgage Lending (AHML), the state-owned mortgage provider, 

increased the volume of mortgages issued by 120% from 2006 to 2012 without any spillover during 

the crisis4 and now holds 7-12% of the market share. This means that demand for government-

issued loans is rising despite the rises and falls in the economy and financial markets.  

When applying for an AHML loan the potential borrower chooses whether to have 

government loan insurance in case of delinquency, along with other mortgage terms. If loan-to-

value ratio (LTV) is more than 70% then the loan must be insured. While credit risk in the Russian 

residential mortgage market has been stable over the past 8 years and the mean probability of 

default varied from 4 to 5%5, government-insured AHML loans performed substantially worse and 

showed a 16% probability of default. This means that government insurance covers potential losses 

from such loans and may affect its approval process. 

 We are interested in the conditions leading to having a government-insured loan, its 

performance and the underwriting process of such loans. In this paper, we will estimate the demand 

function for AHML loans and the probability of default equation taking into account the personal 

characteristics of the borrower and their choice of mortgage contract terms. We also control for 

the selection bias which arises during the underwriting process. 

 This paper uses unique loan-level data on applications, contract terms and the performance 

of mortgages from one regional AHML subsidiary. We use a nonparametric sequential estimation 

approach in order to control for endogeneity in contract terms and the selection process by bank 

and borrower. 

 Next section describes borrowing process in AHML and modeling issues. Section 3 details 

the data. Section 4 contains the econometric model. Section 5 describes the results of estimation. 

Section 6 concludes.           

  

  

                                                           
3 By the Indicators of housing market’s Price Index, www.irn.ru 
4 Agency of Housing Mortgage Lending data, www.ahml.ru  
5 Agency of Housing Mortgage Lending data, www.ahml.ru 
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Theoretical background 

 

The demand for mortgages from a particular bank is usually dependent on the probability 

of taking a loan, its size, the characteristics of a potential borrower, the credit terms and the 

strategies of other banks (Ozhegov, 2014). 

This research analyzes the demand for mortgages from a Russian regional bank which 

offers mortgage programs developed by AHML. AHML is a fully state-owned company which 

develops mortgage programs for special groups of borrowers (“young families”, “young teachers”, 

“soldiers” and so on) and higher risk borrowers who are unable to get a mortgage from commercial 

banks. These programs are developed for commercial banks. If a bank issues a mortgage on the 

AHML program with documentation satisfying the “AHML Standards”, then this loan will be 

automatically refinanced by AHML. The bank is paid a fixed reward. 

The borrowing process has 4 steps: 

1. Application 

A potential borrower chooses a credit organization and credit program that reflects their 

preferences, fills out an application form with their demographic and financial characteristics.  

2. Approval 

Considering the application and recent credit history, the credit organization approves or 

disapproves the application, inquires the form data. When approving a particular borrower, the 

credit organization sets the limit of loan amount. 

3. Contract agreement and choice of credit terms 

The approved borrower chooses a contract agreement, a particular property to buy and 

credit terms: loan amount, downpayment, monthly payment, maturity, and government insurance 

in case of insolvency. As mentioned, if LTV is 70% or more, then the loan must be insured. The 

interest rate is determined by the credit program and depends on the other terms. 

4. Performance of loan 

The borrower chooses to repay the loan according to the contract, or deviates from it in 

some way: becomes delinquent and defaults, or prepays and refinances the loan. 

Traditional models for demand estimation on the residential mortgage market used a 

parametric approach to estimate the loan amount or LTV equation. The two main challenges for 

those models have been widely discussed. The first is sample selection and the second is the 

endogeneity of the other contract terms. 

Sample selection issues arise when decisions on a loan are made sequentially and some 

explanatory variables are partially observed at various stages of the lending process. If the approval 

process is correlated with the choice of contract terms then the magnitude of selection bias depends 
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on the strength of the correlation between the LTV choice and the underwriting process and also 

on the available data in the application sample (Ross 2000). 

Mortgage borrowing as a sequence of consumer and bank decisions was introduced by 

Follain (1990). He defines the borrowing process as the choice of how much to borrow, if and 

when to refinance or default, and the choice of mortgage instrument itself. Rachlis and Yezer 

(1993) suggest a theoretical model of the mortgage lending process, which consists of a system of 

four simultaneous equations: (1) borrower application, (2) borrower selection of mortgage terms, 

(3) lender endorsement, and (4) borrower default. This paper investigates the nature of the 

inconsistency of estimates of recent research on borrower discrimination and shows that all four 

equations (and decisions) should be considered interdependent. 

Public data, such as American mortgage datasets from the Federal Housing Authority 

(FHA) foreclosure, The Boston Fed Study, The Home Mortgage Disclosure Act (HMDA) was 

published in the middle of 1990s. Using this data a few empirical studies analyzed the mortgage 

lending process and studied the interdependency of bank endorsement decisions and borrower 

decisions modeled by the bivariate probit model. As an extension of the study Rachlis and Yezer, 

(1993), Yezer, Philips and Trost (1994) applied a Monte-Carlo experiment to estimate the 

theoretical model. They empirically show that isolated modeling of the processes of credit 

underwriting and default lead to biased parameter estimates. Phillips and Yezer (1996) and 

Munnell, Tootell, Browne and McEneaney (1996) supported these findings.  

Later papers studied the dependence of credit term choices on the other endogenous 

variables. Ambrose, LaCour-Little and Sanders (2004) outlined the endogeneity of the loan 

amount and LTV. 

As key determinants for the demand for the residential mortgage market, authors usually 

select socio-demographic characteristics of borrower and contract terms. Bajari, Chu and Park 

(2008) also use district-level aggregated demographic and economic variables as proxies for 

individual characteristics when they are unavailable.  

Attanazio, Goldberg, Kyriazidou, (2008) applied the Das et al. (2003) three-step 

nonparametric approach to estimate the demand for car loans corrected for sample selection and 

the endogeneity of rate and maturity. First, they estimated the probability of taking a loan, then 

residuals from the endogenous variable equations and then the demand equation corrected for 

sample selection and endogeneity. They found empirical evidence of nonlinearity in the demand 

function and the non-normality of the joint distribution of error terms. 

Not only LTV depends on the other contract terms. The choice of LTV may also affect all 

the other contract terms. Higher risk loans relate to the credit programs with a higher rate. A higher 

loan amount with a fixed rate requires larger monthly payments or a maturity extension for credit 
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constrained borrowers (Attanasio et al., 2008). Higher LTV also implies a higher probability of 

government insurance. The choice of all credit terms is modeled as structurally interdependent. 

The loan limit set by the bank should also be considered as endogenous when modeling the 

choice of contract terms. If the bank predicts a borrower’s decision on credit terms then it may 

adjust the loan limit in order to achieve the optimal contract. 

Recent papers showed that the approval process affects borrower decisions. Table 1 also 

gives evidence of a biased sample of the characteristics of the borrowers who did not sign a credit 

contract. In general, when modeling the contract term choice we may consider the subsample as 

biased because: 1) some applicants were considered uncreditworthy and rejected; 2) some 

approved borrowers did not sign a contract because of better alternatives in other banks or the loan 

available was too small. With the data available we cannot separate these two reasons since we do 

not know the approval decision and loan limit for all the applicants who did not sign a contract. 

To sum up, borrowing process is represented by the following econometric model: 

 

𝑑𝑖 = {
1, 𝑔0(𝑤0𝑖, 𝑥𝑖

1) + 𝑒0𝑖 ≥ 0

0, 𝑔0(𝑤0𝑖, 𝑥𝑖
1) + 𝑒0𝑖 ≤ 0

 

{
𝑦1𝑖

∗ = 𝑔1(𝑥𝑖
1, 𝑥𝑖

2∗
, 𝑤1𝑖, 𝑦−1𝑖

∗ ) + 𝑒1𝑖

…
𝑦𝑘𝑖

∗ = 𝑔𝑘(𝑥𝑖
1, 𝑥𝑖

2∗
, 𝑤𝑘𝑖, 𝑦−𝑘𝑖

∗ ) + 𝑒𝑘𝑖

 

𝑥𝑖
2∗

= 𝜋(𝑥𝑖
1, 𝑧𝑖) + 𝜈𝑖 

𝑑𝑒𝑓𝑖
∗ = {

1, 𝑔𝑑𝑒𝑓(𝑦𝑖
∗, 𝑥𝑖

1, 𝑥𝑖
2∗

) + 𝑒𝑑𝑒𝑓,𝑖 ≥ 0

0, 𝑔𝑑𝑒𝑓(𝑦𝑖
∗, 𝑥𝑖

1, 𝑥𝑖
2∗

) + 𝑒𝑑𝑒𝑓,𝑖 ≤ 0
 

(𝑦𝑖, 𝑥𝑖
1, 𝑥𝑖

2, 𝑑𝑒𝑓𝑖) = 𝑑𝑖(𝑦𝑖
∗, 𝑥𝑖

1, 𝑥𝑖
2∗

, 𝑑𝑒𝑓𝑖
∗) is observed 

(1) 

 

where 𝑑𝑖 is a binary indicator of contract signing, 𝑥𝑖
1 is a set of demographic and financial 

characteristics of the borrower and co-borrowers, 𝑦𝑖 is the set of credit terms, 𝑥𝑖
2 is the logarithm 

of the loan limit, (𝑤0𝑖, 𝑤1𝑖, … , 𝑤𝑘𝑖, 𝑧𝑖) is the set of excluded instruments for the contract signing 

decision, credit terms and loan limit respectively. The set of credit terms 𝑦𝑖  contains LTV, 

logarithm of rate, logarithm of maturity and the probability of government insurance. 𝑑𝑒𝑓𝑖 is a 

binary indicator of default. 

  

Data description 

 

One of the regional AHML operators provided the data set of all applications for mortgage 

collected from 2008 to 2012. We know the demographic and financial characteristics of each of 
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the 3870 applicants as main borrowers and their co-borrowers on the date of application, we also 

know the date of application. For all signed contracts we know the loan limit set by the bank, the 

contract terms, and the value of property. The characteristics of the borrower are fully observable 

and the contract characteristics are partially observable for only the subsample of applicants who 

signed the contract. 

 

Tab. 1. Descriptive statistics for applicants’ characteristics.   

       

Variable 

Full sample 

(3366 obs.) 

  Signed a contract 

(2041 obs.) 

  Did not sign a 

contract (1325 

obs.) 

       

Age6, years 33.8  34.0  33.5 

  (7.57)  (7.67)  (7.41) 

Sex       

 Male 1858 (55.2%)  1161 (56.9%)  697 (52.6%) 

 Female 1508 (44.8%)  880 (43.1%)  628 (47.4%) 

Marital status      

 Single 1017 (30.2%)   590 (29.0%)  426 (32.2%) 

 Married 1807 (53.7%)  1146 (56.1%)  661 (49.9%) 

 Widowed 42 (1.2%)  20 (1.0%)  22 (1.7%) 

 Divorced 500 (14.8%)  284 (13.9%)  216 (16.3%) 

Category of employment      

 Hired employee 3229 (95.9%)  1942 (95.1%)  1287 (97.1%) 

 Entrepreneur 25 (0.7%)  19 (0.9%)  6 (0.5%) 

 State-owned employee 112 (3.3%)  80 (3.9%)  32 (2.4%) 

Level of education      

 Elementary 53 (1.6%)  33 (1.6%)  20 (1.5%) 

 Secondary 1425 (42.3%)  816 (40.0%)  609 (50.0%) 

 Incomplete higher 120 (3.6%)  64 (3.1%)  56 (4.2%) 

 Complete higher 1768 (52.5%)  1128 (55.3%)  640 (48.3%) 

Number of co-borrowers      

 0 1423 (42.3%)  1012 (49.6%)  593 (44.8%) 

 1 1809 (53.7%)  1120 (54.9%)  689 (52.0%) 

 2 134 (4.0%)  91 (4.5%)  43 (3.2%) 

Declared income of co-borrowers     

 Not declared 2949 (87.6%)  1687 (82.7%)  1262 (95.2%) 

 From 0 to 9999 rub. 111 (3.3%)  103 (5.0%)  8 (0.6%) 

 From 10000 to 19999 rub. 161 (4.8%)  133 (6.5%)  28 (2.1%) 

 More than 20000 rub. 145 (4.3%)  118 (5.8%)  27 (2.0%) 

Declared income of main borrower     

 Not declared 2337 (69.4%)  1227 (60.1%)  1110 (83.8%) 

 From 0 to 9999 rub. 91 (2.7%)  53 (2.6%)  38 (2.9%) 

 From 10000 to 19999 rub. 283 (8.4%)  241 (11.8%)  42 (3.2%) 

 From  20000 to 39999 rub. 445 (13.2%)  361 (17.7%)  84 (6.3%) 

  More than 40000 rub. 210 (6.2%)   159 (7.8%)   51 (3.8%) 

 

The outliers from the sample were excluded. We treat an observation as an outlier if the 

age, level of education, marital status or other characteristics were missing. We exclude 

observations with borrowers under age 21, with LTV or DTI (debt-to-income ratio) less than 0 or 

                                                           
6 Mean and standard deviation in the parenthesis. 
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more than 1. We consider those outliers as random and due to the errors in the database. After 

excluding the outliers the sample was 3366 observations. 2041 applicants signed the mortgage 

contract, while 1325 of them did not. The descriptive statistics of the available variables are shown 

in the Tables 1 and 2. 

Some mortgage programs allow the applicants not to provide any information on their 

income. These programs are usually linked with a higher contract rate. The reason for this choice 

may be explained by a temporary or changeable income (LaCour-Little, 2007), for instance, for 

entrepreneurs. Generally, income should be considered endogenous while modeling the approval 

of borrower or contract terms. However, we can control for employment category, which rejects 

the inconsistency due to possible endogeneity of income. Moreover, co-borrower income may also 

be endogenous and we cannot provide any proxy for co-borrower income since we do not have 

any characteristics of co-borrowers. This is a limitation of the research. But we may consider it as 

insignificant for the choice of contract terms compared to the income of the main borrower. 

Tab. 2. Descriptive statistics of the issued loans (2041 contracts).  

     

Variable Mean St. dev. Min Max 

     

Loan amount, rub. 1 040 037 573 665 120 000 10 000 000 

Downpayment, rub. 854 962 706 635 40 000 13 820 000 

Flat value, rub. 1 894 999 1 049 502 330 000 15 290 000 

Monthly payment, rub. 12 610 7 324 1 872 140 381 

Loan limit, rub. 1 046 023 587 762 150 000 10 000 000 

Loan-to-value ratio (LTV) 0.56 0.17 0.11 0.94 

Maturity, months 189.05 62.17 26 360 

Rate, % 11.59 1.64 9.55 19 

     

Insurance Is insured 1851 (90.7%)   

  Not insured 190 (9.3%)     

     

  Insured Not insured Total 

Indicator of default Not defaulted 1783 (96.3%) 159 (83.7%) 1942 (95.1%) 

  Defaulted 68 (3.7%) 31 (16.3%) 99 (4.9%) 

 

To estimate the model we need to find a set of relevant excluded instruments for the 

probability of signing a contract, the loan limit and each credit term. 

Bajari et al. (2008) discussed the possibility of using aggregated district-level variables as 

proxies for unavailable data. We will use the same strategy to find the set of instruments. Since we 

have data without spatial variation we can use time variation in applications. We have data from 

July 2008 to August 2012 and we know the application date for each applicant. Each application 

was matched with the set of aggregated mortgage and housing market characteristics for the same 

month. On average, the process takes two months from the date of application to the date of 

contract agreement. Also Ozhegov and Poroshina (2013) showed that aggregated demand on 



8 

 

mortgage reacts to changes in supply within two months. Then we need to fix the aggregated 

market characteristics for each application not only in the month of application, but also the 1-2 

months prior the application, and use these as instruments.  

Table 3 represents the descriptive statistics of aggregated mortgage and housing market 

characteristics for the period from July 2008 to August 2012 (50 months). 

About 15% of issued loans were refinanced by AHML, but not all of them were issued by 

the bank supplying the data. Generally, the number of applications to the bank is fewer than the 

number refinanced by AHML by all the regional banks. 

 

 Tab. 3. Aggregated mortgage and housing markets characteristics. 

     

Variable Mean St. dev. Min Max 

     

Volume of issued mortgage in region, mln. rub. 921.8 562.3 116.1 2191.0 

Volume of issued mortgage in region, number 894.40 529.27 134 2112 

Mean loan amount, rub. 1 152 568 251 993 899 310 1 908 200 

Median maturity, months 200.79 12.81 173 222.2 

Median rate, % 12.97 0.80 12 14.3 

Mean LTV 0.58 0.03 0.48 0.65 

Mean DTI7 0.35 0.01 0.33 0.37 

Mean м2 value, rub. 38 622 6 165 28 782 51 304 

Affordability of housing coefficient8 0.287 0.055 0.215 0.389 

Number of refinanced in AHML loans 129.1 83.7 30 310 

Number of application to the bank 121.4 51.9 43 222 

  

The difference between the number of loans refinanced by AHML and the number of 

applications to the bank within a particular month may be the excluded variable which explains 

the probability of contract agreement, but it does not affect the contract term choice. Since every 

commercial bank operates with the same AHML programs, the difference in the approval process 

does not affect the term choice. But an increase in the number of refinanced loans shows the 

changes in the underwriting process in other banks and may correlate with the probability of a 

contract agreement with the bank. This variable should be considered as exogenous since each 

individual decision explains an insignificant variation of the aggregated market characteristic (less 

than 1%).      

As an excluded instrument for the loan limit we use the mean Debt-to-Income ratio (DTI). 

The positive dependence of these two variables is because the mean DTI for all issued loans 

reflects the evaluation of the mean credit risk (the higher the DTI of issued loans, the less risk). It 

positively correlates with the loan limit, which reflects the willingness to issue a larger loan for a 

                                                           
7 DTI – ratio between monthly payment and monthly income.  
8 Affordability coefficient reflects the ratio between an income of mean household and a value of mean flat. 
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particular borrower. This variable is valid since individual shocks of loan limit do not affect the 

aggregated characteristic of issued loans. 

As excluded instruments for credit terms, LTV, rate, maturity and insurance, we used mean 

LTV, median rate, median maturity for issued loans and the housing affordability coefficient. The 

relevance of the first three instruments is implied by the interdependence of mortgage market 

characteristics and the AHML credit programs conditions. Validity is implied by the exogeneity 

of the program terms for each particular borrower.   

The affordability coefficient is relevant for the probability of insurance because the 

increase of affordability should lead to the choice of a lower LTV and consequently to a lower 

probability of loan insurance. Validity is also implied by the independence of individual preference 

on insurance shocks and the aggregated affordability of housing. All the variables are relevant and 

valid and may be used as instruments. The relevance will be also proved for each model with the 

F-test for the excluded instrument in section 5. 

 

Econometric model 

 

Model (1) contains a system of simultaneous equations when we model the choice of 

contract terms. Moreover, contract terms are observable only for the subsample of borrowers who 

have signed contract. This means that we have selection bias problem.   

The sample selection bias problem was discussed in Gronau (1973) and Heckman (1974). 

Heckman proposed methods to estimate these models using maximum likelihood or the two-step 

procedure in Heckman (1976, 1979) which corrects the error term in the outcome equation on 

covariance with the selection equation error term. However, both approaches have been limited by 

an assumption on the joint error distribution. Further papers deal with a relaxation of the 

distribution assumption for the two-step procedure using a nonparametric approach for model 

estimation, for instance, using a Fourier decomposition of unknowns in terms of a functional form 

error correction function (Heckman and Robb, 1985), or an approximation by a series of power 

functions (Newey, 1988). 

While modeling the borrower choice of contract terms we need to allow regressors to be 

endogenous and represent the system of equations for each endogenous variable in structural form. 

Regression functions are unknown and not limited by any assumptions. Newey and Powell (1989) 

introduced a nonparametric procedure for the estimation of a triangular system of simultaneous 

equations with unknown regression functions. Vella (1993) elaborated on this procedure for the 

case of a limited dependent variable. Newey, Powell and Vella (1999) proposed a two-step 

procedure for the correction of an error term on the endogeneity of regressors approximating the 
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control function by power series on reduced form residuals. Then Newey (2013) provided an 

overview of nonparametric instrumental variable methods for simultaneous equations and 

discussed the problem of weak instruments.  

Das, Newey and Vella (2003) proposed a model with both sample selection and 

endogenous regressors, and its estimation procedure. They also approximated a control function 

using a power series which depended on the propensity score from the selection equation and the 

endogenous variable reduced form equation residuals. 

We extend the proposed methods for the consistent estimation of a non-triangular system 

of simultaneous equations with sample selection, endogenous regressors and arbitrary joint error 

distribution and the functional form of regression and the control functions in reduced and 

structural forms. We may apply this method to estimate model (1) with the following steps. 

1. We need to estimate the propensity score for the contract agreement equation: 

𝑝 = 𝐸[𝑑|𝑥0, 𝑤0] = 𝑔0(𝑤0, 𝑥0) (2) 

2. We estimate the prediction of endogenous regressors which is logarithm of the loan limit 

corrected for sample selection using the estimate of propensity score: 

𝐸[𝑥2|𝑥1, 𝑧, 𝑤0, 𝑑 = 1] = 𝜋(𝑥1, 𝑧) + 𝜆(�̂�) (3) 

3. We estimate each contract term equation in the reduced form corrected for sample selection 

and the endogeneity of the loan limit using estimates of propensity score and residuals from 

the loan limit equation: 

𝐸[𝑦𝑗|𝑥1, 𝑥2, 𝑧, 𝑤, 𝑤0, 𝑑 = 1] = 𝛾𝑗(𝑥1, 𝑥2, 𝑤) + 𝜇(�̂�, �̂�) (4) 

4. We estimate the structural form contract term equations corrected for sample selection, 

endogeneity and simultaneity using the estimates of propensity score, residuals from the 

loan limit equation and reduced form contract term residuals: 

𝐸[𝑦𝑗|𝑥1, 𝑥2, 𝑤𝑗 , 𝑦−𝑗, 𝑧, 𝑤−𝑗, 𝑤0, 𝑑 = 1] = 𝑔𝑗(𝑥1, 𝑥2, 𝑤𝑗, 𝑦−𝑗) + 𝜑(�̂�, �̂�, �̂�−𝑗) (5) 

5. We estimate the probability of default equation corrected for sample selection and the 

endogeneity of contract terms using the propensity score, residuals from the loan limit 

equation and structural form residuals: 

𝐸[𝑑𝑒𝑓|𝑥1, 𝑥2, 𝑦, 𝑧, 𝑤, 𝑑 = 1] = 𝑔𝑑𝑒𝑓(𝑥1, 𝑥2, 𝑦) + 𝜑𝑑𝑒𝑓(�̂�, �̂�, �̂�) (6) 

 Identification conditions for equations (2-6) are formulated with the following theorem. 

Theorem 1. If functions 𝑔0(𝑤0, 𝑥0), 𝜋(𝑥1, 𝑧), 𝜆(𝑝), 𝛾𝑗(𝑥1, 𝑥2, 𝑤), 𝜇(𝑝, 𝜈), 

𝑔𝑗(𝑥1, 𝑥2, 𝑤𝑗 , 𝑦−𝑗), 𝜑(𝑝, 𝜈, 𝑒−𝑗), 𝑔𝑑𝑒𝑓(𝑥1, 𝑥2, 𝑦), 𝜑𝑑𝑒𝑓(𝑝, 𝜈, 𝑒)  are continuously differentiable 

with continuous distribution functions almost everywhere and with probability one  
𝜕𝑔0(𝑤0,𝑥0)

𝜕𝑤0
≠
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0, 𝑟𝑎𝑛𝑘 [
𝜕𝜋(𝑥1,𝑧)

𝜕𝑧
] = 𝑑𝑖𝑚 (𝑥2) and for each 𝑗 ∈ {1, … , 𝑘} at least one 𝑤𝑗 with 

𝜕𝛾𝑗(𝑥1,𝑥2,𝑤)

𝜕𝑤𝑗
≠ 0 exists 

then each regression function in (2-6) is identified up to an additive constant. 

 Proof. See appendix. 

To sum up all the necessary identification conditions, the assumptions of the model restricts 

the regression function and control function at each step to be functions from different variables 

and to be separable. The control function also must be a function from the variables which were 

obtained from the previous steps of estimation procedure. 

The first group of Theorem 1 conditions (
𝜕𝑔0(𝑤0,𝑥0)

𝜕𝑤0
≠ 0, 𝑟𝑎𝑛𝑘 [

𝜕𝜋(𝑥1,𝑧)

𝜕𝑧
] = 𝑑𝑖𝑚 (𝑥2) and 

for all 𝑗 ∈ {1, … , 𝑘} must be 𝑤𝑗 with 
𝜕𝛾𝑗(𝑥1,𝑥2,𝑤)

𝜕𝑤𝑗
≠ 0) restricts the data. Thus, there must be at least 

one significant variable in the selection equation excluded from the system and at least one relevant 

excluded instrument for each endogenous variable (𝑥2, 𝑦). 

The last group restricts all regression and control functions to be continuously 

differentiable. 

An estimation procedure is based on an approximation by a series of power functions which 

depend on the initial set of regressors. This family of regression functions satisfies the 

differentiability conditions of Theorem 1.  

Let 𝜔 = (𝜔1, … , 𝜔𝜒) be a set of variables with 𝜒 = 𝑑𝑖𝑚(𝜔). 

𝜅(𝜌, 𝜒) =
(𝑝+𝜒)!

𝑝!𝜒!
 will be the number of polynomial terms with a power no more than 𝜌 

which may be obtained from 𝜒 variables. 

Let Q𝜌(𝜔) = (𝑞1(𝜔), … , 𝑞𝜅(𝜔)) be a vector of 𝜅 power functions, which are a full set of 

polynomial terms with a power no more than 𝜌 obtained from 𝜔, i.e. 𝑞𝑗(𝜔) = ∏ 𝜔𝜏
𝑠𝜏𝜒

𝜏=1 , ∑ 𝑠𝜏
𝜒
𝜏=1 ≤

𝜌, 𝑠𝜏 ∈ {0,1, … , 𝑝} ∀𝜏 = 1, 𝜒̅̅ ̅̅ ̅. 

Let Q𝜌(𝜔) be a polynomial approximating series with power 𝜌. 

Then the propensity score of the selection equation may be estimated by OLS as  

𝑝�̂� = 𝐸[𝑑𝑖|𝑥0𝑖 , 𝑤0𝑖] = 𝑄𝜌0(𝑤0𝑖, 𝑥0𝑖)[(𝑄𝜌0(𝑤0, 𝑥0))′𝑄𝜌0(𝑤0, 𝑥0)]−1(𝑄𝜌0(𝑤0, 𝑥0))′𝑑 (7) 

Let 𝑎 = (𝑎1, 𝑎2), 𝑄𝑍1,𝑍2(𝑥1, 𝑧, �̂�) = (𝑄𝑍1(𝑥1, 𝑧), 𝑄𝑍2(�̂�)), then 𝑎 may be obtained by OLS 

as 

�̂� = [(𝑄𝑍1,𝑍2(𝑥1, 𝑧, �̂�))′𝑄𝑍1,𝑍2(𝑥1, 𝑧, �̂�)]−1(𝑄𝑍1,𝑍2(𝑥1, 𝑧, �̂�))′𝑥2 (8) 

Then the residuals of the loan limit equation may be obtained as 

�̂�𝑖 = 𝑥𝑖
2 − 𝑄𝑍1,𝑍2(𝑥𝑖

1, 𝑧𝑖 , �̂�𝑖)�̂� (9) 

Let 𝑏𝑗 = (𝑏1𝑗, 𝑏2𝑗) and 𝑄𝑀1,𝑀2(𝒲) = 𝑄𝑀1,𝑀2(𝑥1, 𝑥2, 𝑤, �̂�, �̂�) =

(𝑄𝑀1(𝑥1, 𝑥2, 𝑤), 𝑄𝑀2(�̂�, �̂�)) then 𝑏𝑗 may be obtained by OLS as 
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�̂�𝑗 = [(𝑄𝑀1,𝑀2(𝒲))′𝑄𝑀1,𝑀2(𝒲)]−1(𝑄𝑀1,𝑀2(𝒲))′𝑦𝑗 (10) 

Then the reduced form contract terms residuals will be 

�̂�𝑗𝑖 = 𝑦𝑗𝑖 − 𝑄𝑀1,𝑀2(𝑥𝑖
1, 𝑥𝑖

2, 𝑤𝑖, �̂�𝑖, �̂�𝑖)�̂�𝑗 (11) 

Let 𝛽𝑗 = (𝛽1𝑗, 𝛽2𝑗) and 𝑄𝜉1,𝜉2(𝒳) = 𝑄𝜉1,𝜉2(𝑥1, 𝑥2, 𝑤𝑗 , 𝑦−𝑗 , �̂�, �̂�, �̂�−𝑗) =

(𝑄𝜉1(𝑥1, 𝑥2, 𝑤𝑗 , 𝑦−𝑗), 𝑄𝜉2(�̂�, �̂�, �̂�−𝑗)) then the estimate for 𝛽𝑗 may be obtained by OLS as 

�̂�𝑗 = [(𝑄𝜉1,𝜉2(𝒳))
′
𝑄𝜉1,𝜉2(𝒳)]−1(𝑄𝜉1,𝜉2(𝒳))′𝑦𝑗 (12) 

Then the structural form contract terms residuals will be 

�̂�𝑗𝑖 = 𝑦𝑗𝑖 − 𝑄𝜉1,𝜉2(𝒳)�̂�𝑗 (13) 

Let 𝛼 = (𝛼1, 𝛼2) and 𝑄𝜃1,𝜃2(𝑥1, 𝑥2, 𝑦, �̂�, �̂�, �̂�) = (𝑄𝜃1(𝑥1, 𝑥2, 𝑦), 𝑄𝜃2(�̂�, �̂�, �̂�)) then the 

estimate for 𝛼 may be obtained by OLS as 

�̂� = [(𝑄𝜃1,𝜃2(𝑥1, 𝑥2, 𝑦, �̂�, �̂�, �̂�))
′

𝑄𝜃1,𝜃2(𝑥1, 𝑥2, 𝑦, �̂�, �̂�, �̂�)]−1 ∗ 

  ∗ (𝑄𝜃1,𝜃2(𝑥1, 𝑥2, 𝑦, �̂�, �̂�, �̂�))′𝑑𝑒𝑓 

(14) 

 The next theorem introduces conditions for the consistency of the proposed estimation 

procedure. 

Theorem 2. If equations (2-6) are identified through theorem 1 and the set of variables 

(𝑤0, 𝑤1, … , 𝑤𝑘, 𝑧, 𝑥2) is independent from the distribution of (𝑒0, 𝑒1, … , 𝑒𝑘, 𝜈, 𝑒𝑑𝑒𝑓) then �̂�, �̂�, �̂�𝑗 

and �̂�𝑗 are consistent.    

Proof. See in Appendix. 

 

Results 

 

Model (1) was estimated with the proposed procedure (7-14).   

First, we estimated the model of the probability of a contract agreement based on the 

characteristics of the borrower and co-borrowers and the difference between the number of AHML 

refinanced loans and the number of applications. 

The last variable which was taken as an excluded instrument is significant at the 1% level. 

The sign and significance of borrower characteristics are consistent with recent research. The 

demographic characteristics, such as age, sex, marital status and the level of education of the 

borrower are insignificant, which supports the absence of discrimination. The probability of a 

contract agreement is positively correlated with the income of the main borrower and co-borrowers 

and, on the contrary, negatively correlates with the failure to provide income details. Entrepreneurs 

have a higher probability of a contract agreement ceteris paribus. 
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These estimates were obtained from the linear probability model and were compared with 

the probit model. The comparison showed an insignificant difference in the significance of the 

parameter estimates and predictive power (with slightly higher predictive power for the linear 

probability model). The propensity score 𝑝�̂� = 𝐸[𝑑𝑖|𝑥𝑖 , 𝑤0𝑖] was obtained from the linear 

probability model. 

The model of the logarithm of the loan limit was estimated for all the signed contracts. The 

excluded instrument (DTI) is significant at the 1% level. We used polynomials up to the third 

power as approximations for the control function on �̂�. The hypothesis of its significance was 

rejected (at 29% level) which suggests there is no selection bias of underwriting on the set of loan 

limits. The estimated parameters for borrower characteristics are also not counterintuitive. The 

bank proposed a higher limit for the mid-aged borrowers (38 years) with a higher number of co-

borrowers, their income, the higher income of the main borrower, and the higher level of education. 

Sex, marital status and employment did not affect the loan limit.  

For each credit term we estimated the reduced form equation. The control function was 

approximated by the polynomial with power 𝑀2 on the estimate of the propensity score and the 

loan limit equation residuals. The regression function was estimated as partially polynomial. It 

was linear for the characteristics of the borrower and polynomial for the excluded instruments for 

contract terms with power 𝑀1. The proof of relevance of excluded instruments is provided in Table 

4. 

 

Tab. 4. Proof of instrument relevance.   

        

 Eq 1. LTV on mean LTV   Eq. 2. Log. of rate on the median rate 

 (1) (2) (3)  (1) (2) (3) 

Marginal effect 
-0.003** -0.001 0.017  -0.110*** -0.047*** -0.026 

(0.002) (0.003) (0.146)  (0.006) (0.011) (1.137) 

        

t-stat 1.873 0.411 0.128   17.72 4.196 0.023 

        

k 33 43 63  33 43 63 

N 2041 2041 2041   2041 2041 2041 

        

 
Eq. 3. Log. of maturity on 

median maturity 
 

Eq. 4. Probability of insurance on 

affordability coefficient 

 (1) (2) (3)   (1) (2) (3) 

Marginal effect 
0.0016** -0.002 0.046  -0.580** -0.701 -0.827 

(0.0009) (0.002) (0.117)  (0.288) (0.623) (0.715) 

        

t-stat 1.810 0.742 0.392   2.013 1.126 1.157 

        

k 33 43 63  33 43 63 

N 2041 2041 2041   2041 2041 2041 
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Note: In the table cells there are marginal effects of changing of dependent variable on a change of its excluded 

instrument. Bootstrap standard errors for 100 replications clustered on the month of application are in the parenthesis. 

Significance level obtained from bootstrap distribution,  

* - 10%, ** - 5%, *** - 1%.  

k – number of estimated parameters, N – number of observations.  

For each equation, model (1) was estimated for 𝑀1 = 1, 𝑀2 = 3, model (2) for 𝑀1 = 2, 𝑀2 = 3, model (3) for 𝑀1 = 3, 

𝑀2 = 3. 

Cragg-Donald Wald F-statistics for the joint significance of contract instrument for models (1) is 4.73.        

  

All the excluded instruments are relevant for the use of the first power polynomial for the 

regression function. The joint significance of the marginal effect of excluded instrument is not 

rejected at the 5% level. We use the reduced form residuals obtained from the models with 𝑀1 =

1, 𝑀2 = 3. 

We estimated the contract term equations in structural form using a polynomial 

approximation with power 𝜉2 for the control function on �̂�, residuals from the loan limit equation 

and the reduced form of the contract term equations. The regression function was partially 

polynomial, linear for the characteristics of the borrower and polynomial with power 𝜉1 for the 

credit terms and loan limit. Estimation results are provided in Table 5. 

The sign and significance for the majority of marginal effects remain the same with the 

increase of the polynomial power. This supports the robustness of the results. While the marginal 

effects in models without correction (𝜉2 = 0) for sample selection, the endogeneity of the loan 

limit and the simultaneity of contract term choice are significantly different from the corrected 

ones (comparing models (3) and (4) for each equation). This result is evidence of the inconsistency 

of the estimates without correction and the necessity of using the proposed estimation procedure.  

The estimates of the marginal effects for the LTV equation are consistent with intuition 

and recent research. LTV negatively depends on the rate and positively correlates with the 

maturity, loan limit and having insurance. The demand for government insurance rises with LTV 

and the rate, for shorter maturity and a lower loan limit. These results are also not counterintuitive. 

The link between higher risk borrowers and the probability of insurance is also supported by the 

significantly negative covariance between the error terms in the approval and insurance equations. 

This means that borrowers that are more likely to be approved are less likely to have insurance. 

The probability of having government insurance rises with the declared income of the main 

borrower. This result is not very obvious because insurance is linked with higher risk borrowers 

which are usually not borrowers with a higher income.  
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Tab. 5. Estimates for the contract terms equations in structural form.      

                 

 Eq 1. LTV Eq 2. Log. of rate Eq. 3. Log. of maturity Eq 4. Probability of insurance 

 (1) (2) (3) (4) (1) (2) (3) (4) (1) (2) (3) (4) (1) (2) (3) (4) 

LTV 
- - - - -0.431*** -0.359*** -0.232*** -0.018 0.720*** 0.046* 0.087*** 0.093 0.686*** 0.534*** 0.104*** 1.147*** 

    (0.055) (0.047) (0.026) (0.037) (0.143) (0.036) (0.016) (0.120) (0.089) (0.040) (0.022) (0.052) 

Log. of rate 
-0.204*** -0.068*** -0.172*** -0.026 - - - - 0.245*** 0.276*** 0.448*** 0.126 0.485*** 0.492*** 0.436*** 0.223*** 

(0.017) (0.013) (0.018) (0.043)     (0.046) (0.018) (0.008) (0.209) (0.018) (0.019) (0.018) (0.043) 

Log. of 

maturity 

0.208*** 0.161*** 0.254*** 0.031*** 0.157*** 0.636*** 1.657*** 0.025*** - - - - -0.199*** -0.260*** -0.780*** 0.009*** 

(0.031) (0.020) (0.031) (0.009) (0.054) (0.052) (0.025) (0.010)     (0.053) (0.040) (0.036) (0.012) 

Probability 

of insurance 

0.396*** 0.223*** 0.281*** 0.301*** 0.720*** 0.669*** 1.041*** 0.130 -0.387*** -0.153*** -0.437*** 0.045 - - - - 

(0.021) (0.018) (0.040) (0.048) (0.054) (0.037) (0.057) (0.211) (0.059) (0.036) (0.045) 0.449     

Log. of loan 

limit 

0.115*** 0.148*** 0.193*** 0.120*** -0.355*** -0.333*** 0.197*** -0.027*** -0.159*** -0.026* -0.154*** 0.191*** -0.124*** 0.075*** -0.133*** 0.003 

(0.014) (0.010) (0.012) (0.006) (0.036) (0.029) (0.010) (0.007) (0.039) (0.023) (0.009) (0.020) (0.025) (0.019) (0.014) (0.008) 

                 

k 24 60 132 49 24 60 132 49 24 60 132 49 24 60 132 49 

N 2041 2041 2041 2041 2041 2041 2041 2041 2041 2041 2041 2041 2041 2041 2041 2041 

Note: In the table cells there are marginal effects of changing of dependent variable on a change of another endogenous variable. Bootstrap standard errors for 100 replications clustered on the month of application are 

in the parenthesis. 

Significance level obtained from bootstrap distribution,  

* - 10%, ** - 5%, *** - 1%.  

k – number of estimated parameters, N – number of observations.  

For each equation, model (1) was estimated for 𝜉1 = 1, 𝜉2 = 1, model (2) for 𝜉1 = 2, 𝜉2 = 2, model (3) for 𝜉1 = 3, 𝜉2 = 3, model (4) for 𝜉1 = 3, 𝜉2 = 0.        
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Finally we estimated the probability of default equation using a polynomial approximation 

with power 𝜃2 for the control function on �̂�, the residuals from the loan limit equation and 

structural form contract term equations. The regression function was partially polynomial, linear 

for the characteristics of the borrower and polynomial with power 𝜃1 for the credit terms and loan 

limit. The estimation results are provided in Table 6. 

Tab. 6. Estimates for probability of default equation. 
    

  (1) (2) (3) 

Prop. score from selection equation 
-0.082*** -0.038 -0.027 

(0.033) (0.084) (0.092) 

LTV 
-0.006 -0.083** -0.123* 

(0.034) (0.049) (0.082) 

Log. of rate 
0.561*** 0.436*** 0.498*** 

(0.061) (0.051) (0.077) 

Log of. maturity 
-0.046*** -0.023** -0.022* 

-0.013 (0.013) (0.015) 

Probability of insurance 
0.040* 0.222** -0.0356 

(0.027) (0.112) (0.044) 

Log. of loan limit 
-0.022 0.096 -0.022 

(0.023) (0.153) (0.17) 

k 33 68 154 

N 2041 2041 2041 

% of correct predictions 95.1 95.9 96.4 
Note: In the table cells there are marginal effects of changing of dependent variable on a change of another endogenous variable. 

Bootstrap standard errors for 100 replications clustered on the month of application are in the parenthesis. 

Significance level obtained from bootstrap distribution,  

* - 10%, ** - 5%, *** - 1%.  

k – number of estimated parameters, N – number of observations.  

For each equation, model (1) was estimated for 𝜃1 = 1, 𝜃2 = 1, model (2) for 𝜃1 = 2, 𝜃2 = 2, model (3) for 𝜃1 = 3, 𝜃2 = 3.  
       

 

The results are also consistent with increasing the power of the approximation. However, 

increasing the number of parameters improves the predictive power of model but leads to less 

efficient estimates. The estimate results are intuitive for rate, maturity, propensity score and 

insurance: a higher rate, less maturity, less probability of approval and higher probability of 

choosing insurance are linked with a higher probability of default. However, we also have some 

controversial results. An increase of the co-borrower’s declared income decreases the probability 

of default and at the same time the probability of being approved. It looks like an non-optimal 

underwriting decision for this category of borrowers, although at the same time it is linked to a 

lower probability of the loan to be insured.    

Table 7 represents the estimation results for the probability of approval, having insurance 

and the default equation with approximation by polynomials with a power 1. We show only the 

relevant estimates of the parameters. The table implies that the underwriting process takes into 

account not only the default probability but the insurance decision too. The probability of contract 

agreement is negatively and significantly correlated with the probability of default and having 

insurance. Thus, the probability of having insurance is bad sign for underwriter because it is linked 
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with a higher probability of default. Then, in order to estimate the potential loss from a delinquent 

borrower we estimate the difference between the probabilities of default and having insurance. 

This probability difference shows the probability of a potential default without government 

insurance. Uninsured defaults cause a loss for the bank, and insured default for government, then 

the bank will tend to select potential borrowers with the lowest probability difference.  

 

Tab. 7. Estimates for probability of approval, having insurance and default equations. 

     

  Selection Insurance Default 
Prob. Diff. 

(Def.-Ins.) 

Number of co-borrowers (No co-borrowers is base level):  

1 co-borrower 
-0.011 -0.051** -0.035*** 0.015 

(0.016) (0.032) (0.006) (0.039) 

2 co-borrowers 
0.029* -0.045 -0.090*** -0.044 

(0.023) (0.117) (0.030) (0.087) 

Income of co-borrowers (From 0 to 9999 rub. is base level): 

Not declared 
-0.185*** -0.097* -0.052*** 0.045 

(0.052) (0.091) (0.022) (0.069) 

From 10000 to 19999 rub. 
-0.098*** -0.044 -0.040* 0.004* 

(0.019) (0.067) (0.036) (0.004) 

More than 20000 rub. 
-0.081*** -0.046* -0.015* 0.031*** 

(0.028) (0.038) (0.012) (0.014) 

Income of main borrower (From 0 to 9999 rub. is base level): 

Not declared 
-0.020 0.101 -0.116 -0.218* 

(0.046) (0.125) (0.142) (0.190) 

From 10000 to 19999 rub. 
0.234*** 0.094** 0.026 -0.068 

(0.046) (0.062) (0.082) (0.103) 

From  20000 to 39999 rub. 
0.202*** 0.138* -0.052 -0.190* 

(0.049) (0.101) (0.118) (0.156) 

More than 40000 rub. 
0.167*** 0.210* -0.020 -0.230 

(0.052) (0.163) (0.181) (0.247) 

Prop. score - -0.078*** -0.346*** - 

  (0.017) (0.084)  

Prob. of insurance - - 0.031* - 

    (0.019)   
k 24 31 33 - 

N 3366 2041 2041   
Note: In the table cells there are estimates of parameters.   
Bootstrap standard errors for 100 replications clustered on the month of application are in the parenthesis. 
Significance level obtained from bootstrap distribution,  

* - 10%, ** - 5%, *** - 1%.  
  

k – number of estimated parameters, N – number of observations. 

 
 

 

Table 7 shows that relatively riskier borrowers (in terms of the probability difference) are 

less likely to be selected by bank and vice versa. Borrowers with insignificant probability 

difference in all cases are also more likely to be approved. Moreover, not declaring the income of 

the main borrower is not a risk factor because it has significant, small but negative probability 

difference. The same is for the co-borrower’s income. It does not affect the probability difference 

but these borrowers are less likely to be approved by bank. This means that bank need to improve 

the underwriting process and approve more borrowers without declared income. 
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As the result, government insurance on AHML loans tends to be an important determinant 

of bank and borrower decisions. The bank takes into account the predicted probability of insurance 

along with the probability of borrower default. In order to compensate for a high probability of 

default and to have more chance of being approved, potential borrowers choose to insure the loan, 

especially when loans have riskier terms such as high LTV, rate and short maturity.    

 

Conclusion 

 

This paper analyzes the borrowing process in one Russian bank which is a regional 

subsidiary of AHML, a national provider of residential housing mortgages. This analysis takes 

into account the underwriting process and the choice of loan limit by the bank, the choice of 

contract terms including having government insurance and the performance of all loans issued by 

the bank from 2008 to 2012. The dataset contains information about the demographic and financial 

characteristics of the borrower for all applications, the loan limit set by bank, the contract terms 

and the property value, and the indicator of default for all signed contracts. We also used regional-

level aggregated housing and mortgage market characteristics as instrumental variables for the 

selection equation and endogenous variables. 

We model the demand for loans as a simultaneous choice of loan terms and represent this 

as a system of simultaneous equations. We observe the choice only for those borrowers who were 

approved by the bank and chose to get a mortgage from this particular bank. While approving the 

borrower the bank sets the loan limit which affects the choice of credit terms and is considered an 

endogenous variable. This structure of borrowing process determines the use of the multistep 

nonparametric approach. 

The main finding is that the probability of having government insurance is linked to riskier 

loans, such as loans with higher LTR, higher interest rate and lower maturity. Insured loans also 

are more likely to be approved by the bank. The bank, when approving a borrower, takes into 

account not the probability of default, but the difference between the probabilities of default and 

having government insurance. The probability of having insurance positively correlates with the 

probability of default. It may be explained in two ways: 1) Riskier borrowers in order to 

compensate for their credit risk choose to have insurance to increase the probability of being 

approved; 2) Riskier borrowers make a strategic choice to be insured and try to reduce their loss 

via a potential default.     

The obtained estimates depend on the data. We used data from only one regional operator 

of AHML programs and do not have enough space variation. Our dataset is not big enough to 

apply nonparametric procedures with high-order polynomial approximations for regression and 
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correction functions. Therefore the estimates with increasing polynomial order remains consistent 

but is inefficient. However, we may rely on the obtained results since the estimation procedure is 

based on the minimum assumptions for the consistency of estimates.  
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Appendix 

 

Tab. A1. Estimated parameters for selection equation. 

Variable 
(1) (2) 

OLS Probit 

   

Age of borrower 
-0.004 -0.012 

(0.009) (0.024) 

Age squared 
0.000 0.000 

(0.000) (0.000) 

Male 
0.026 0.075 

(0.018) (0.050) 

Family status (Single is base level): 

Married 
0.030 0.094 

(0.025) (0.070) 

Divorced 
-0.104 -0.278 

(0.075) (0.204) 

Widowed 
-0.012 -0.034 

(0.027) (0.074) 

Category of activity (Hired employee is base level): 

Entrepreneur 
0.086 0.246 

(0.095) (0.287) 

State employee 
0.133*** 0.377*** 

(0.045) (0.131) 

Level of education (Elementary is base level): 

Secondary education 
-0.060 -0.174 

(0.066) (0.185) 

Incomplete higher education 
-0.076 -0.208 

(0.077) (0.216) 

Complete higher education 
0.013 0.026 

(0.066) (0.184) 

Number of co-borrowers (No co-borrowers is base level) 

1 co-borrower 
-0.004 -0.027 

(0.024) (0.068) 

2 co-borrowers 
0.020 0.053 

(0.048) (0.139) 

Declared income of co-borrowers (From 0 to 9999 rub. is base level): 

Not declared 
-0.193*** -0.852*** 

(0.050) (0.194) 

From 10000 to 19999 rub. 
-0.087 -0.507 

(0.058) (0.617) 

More than 20000 rub. 
-0.115 -0.596 

(0.261) (0.722) 

Declare income of main borrower (From 0 to 9999 is base level): 

Not declared 
-0.019 0.004 

(0.053) (0.147) 

From 10000 to 19999 rub. 
0.180*** 0.531*** 

(0.061) (0.172) 

From  20000 to 39999 rub. 
0.229*** 0.700*** 

(0.055) (0.156) 

More than 40000 rub. 
0.257*** 0.830*** 

(0.081) (0.151) 

Difference between AHML loans number and number of 

applications 

-0.000*** -0.001*** 

(0.000) (0.000) 
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Constant 
0.781*** 1.028** 

(0.178) (0.516) 

N 3366 3366 

k 22 22 

% of correct predictions 64.3 63.7 

F-statistics for difference between the number of 

refinanced loans and applications 
13.59 12.13 

Note: Robust standard errors are in parenthesis, 

significance level obtained from t-statistics,  

* - 10%, ** - 5%, *** - 1%.  

k – number of estimated parameters, N – number of observations 

 

 

Tab. A2. Estimated parameters for loan limit equation. 

Variable 
(1) 

OLS 

  

Age of borrower 
0.017* 

(0.010) 

Age squared 
-0.000* 

(0.000) 

Male 
-0.006 

(0.021) 

Family status (Single is base level): 

Married 
0.045 

(0.028) 

Divorced 
-0.041 

(0.098) 

Widowed 
-0.005 

(0.031) 

Category of activity (Hired employee is base level): 

Entrepreneur 
0.076 

(0.098) 

State employee 
-0.066 

(0.054) 

Level of education (Elementary s base level): 

Secondary education 
0.044 

(0.074) 

Incomplete higher education 
0.255*** 

(0.090) 

Complete higher education 
0.225*** 

(0.073) 

Number of co-borrowers (No co-borrowers is base level) 

1 co-borrower 
0.082*** 

(0.027) 

2 co-borrowers 
0.133** 

(0.053) 

Declared income of co-borrowers (From 0 to 9999 rub. is base level): 

Not declared 
0.047 

(0.064) 

From 10000 to 19999 rub. 
0.093 

(0.059) 

More than 20000 rub. 
0.259*** 

(0.064) 
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Declare income of main borrower (From 0 to 9999 is base level): 

Not declared 
0.942*** 

(0.065) 

From 10000 to 19999 rub. 
0.486*** 

(0.081) 

From  20000 to 39999 rub. 
0.893*** 

(0.078) 

More than 40000 rub. 
1.346*** 

(0.078) 

Mean DTI 
-0.000*** 

(0.000) 

Prop. score 
2.292 

(1.736) 

Prop. score squared 
-4.977 

(3.766) 

Prop. score cubed 
3.136 

(2.600) 

Constant 
9.379*** 

(0.750) 

N 2041 

K 25 

F-statistics for mean DTI 20.72 

Note: Robust standard errors are in parenthesis, 

significance level obtained from t-statistics,  

* - 10%, ** - 5%, *** - 1%.  

k – number of estimated parameters, N – number of observations 

 

Lemma 1.  If functions 𝑔0(𝑤0, 𝑥0), 𝜋(𝑥1, 𝑧), 𝜆(𝑝)  are continuously differentiable with 

continuous distribution functions almost everywhere and with probability one  
𝜕𝑔0(𝑤0,𝑥0)

𝜕𝑤0
≠ 0, then 

𝜋(𝑥1, 𝑧) is identified up to an additive constant. 

Proof (is similar to T.2.1 in Das et al. (2003)): Any observationally equivalent model for 

(3) must have 𝐸[𝑥2|𝑥1, 𝑧, 𝑤0, 𝑑 = 1] = �̂�(𝑥1, 𝑧) + �̂�(𝑝). Consider 𝑓1(𝑥1, 𝑧) + 𝑓2(𝑝) = 0, where 

𝑓1(𝑥1, 𝑧) = 𝜋(𝑥1, 𝑧) − �̂�(𝑥1, 𝑧), and 𝑓2(𝑝) = 𝜆(𝑝) − �̂�(𝑝). If 𝑔0, 𝜋 and 𝜆 are differentiable, then 

𝑓1 and 𝑓2 are also differentiable. Then we may differentiate 𝑓1 + 𝑓2 = 0 by the set of (𝑤0, 𝑥1, 𝑧): 

0 =
𝜕𝑓2(𝑝)

𝜕𝑝

𝜕𝑔0(𝑤0,𝑥0)

𝜕𝑤0
  

0 =
𝜕𝑓1(𝑥1,𝑧)

𝜕𝑥1 +
𝜕𝑓2(𝑝)

𝜕𝑝

𝜕𝑝(𝑤0,𝑥0)

𝜕𝑥1   

0 =
𝜕𝑓1(𝑥1,𝑧)

𝜕𝑧
  

(A.1) 

First condition and 
𝜕𝑔0(𝑤0,𝑥0)

𝜕𝑤0
≠ 0 implies 

𝜕𝑓2(𝑝)

𝜕𝑝
= 0, then 𝑓2 is constant. 
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Then the second condition gives 
𝜕𝑓1(𝑥1,𝑧)

𝜕(𝑥,𝑧)
= 0. It means that 𝑓1(𝑥1, 𝑧) is constant and  

�̂�(𝑥1, 𝑧) = 𝜋(𝑥1, 𝑧) + С. || 

Lemma 2. If functions 𝑔0(𝑤0, 𝑥0), 𝜋(𝑥1, 𝑧), 𝜆(𝑝), 𝛾𝑗(𝑥1, 𝑥2, 𝑤), 𝜇(𝑝, 𝜈) are continuously 

differentiable with continuous distribution functions almost everywhere and with probability one 

𝜕𝑔0(𝑤0,𝑥0)

𝜕𝑤0
≠ 0 and 𝑟𝑎𝑛𝑘 [

𝜕𝜋(𝑥1,𝑧)

𝜕𝑧
] = 𝑑𝑖𝑚 (𝑥2), then every 𝛾𝑗(𝑥1, 𝑥2, 𝑤) is identified up to an 

additive constant. 

Proof: Any observationally equivalent model for (4) must have 

𝐸[𝑦𝑗|𝑥1, 𝑥2, 𝑧, 𝑤0, 𝑑 = 1] = 𝛾𝑗(𝑥1, 𝑥2, 𝑤) + �̂�(𝑝, 𝜈). Consider 𝑓3(𝑥1, 𝑥2, 𝑤) + 𝑓4(𝑝, 𝜈) = 0  

where 𝑓3(𝑥1, 𝑥2, 𝑤) = 𝛾𝑗(𝑥1, 𝑥2, 𝑤) − 𝛾𝑗(𝑥1, 𝑥2, 𝑤), and 𝑓4(𝑝, 𝜈) = 𝜇(𝑝, 𝜈) − �̂�(𝑝, 𝜈). If all the 

conditions of this lemma are met, then so are the ones of lemma 1 then 𝜋(𝑥1, 𝑧) and 𝜈 are identified 

up to an additive constant. 

If 𝑔0, 𝜋, 𝜆, 𝛾𝑗 and 𝜇 are differentiable then 𝑓3(𝑥1, 𝑥2, 𝑤) and 𝑓4(𝑝(𝑤0, 𝑥0), 𝜈) are also 

differentiable. Then we may differentiate 𝑓3 + 𝑓4 = 0 on the set of variables (𝑥1, 𝑧, 𝑤, 𝑤0): 

0 =
𝜕𝑓3(𝑥1,𝑥2,𝑤)

𝜕𝑥1 +
𝜕𝑓3(𝑥1,𝑥2,𝑤)

𝜕𝑥2

𝜕𝜋(𝑥1,𝑧)

𝜕𝑥1 +
𝜕𝑓4(𝑝(𝑤0,𝑥0),𝜈)

𝜕𝑝

𝜕𝑝(𝑤0,𝑥0)

𝜕𝑥1   

0 =
𝜕𝑓3(𝑥1,𝑥2,𝑤)

𝜕𝑥2

𝜕𝜋(𝑥1,𝑧)

𝜕𝑧
+

𝜕𝑓4(𝑝(𝑤0,𝑥0),𝜈)

𝜕𝑝

𝜕𝑝(𝑤0,𝑥0)

𝜕𝑧
  

0 =
𝜕𝑓3(𝑥1,𝑥2,𝑤)

𝜕𝑤
  

0 =
𝜕𝑓4(𝑝(𝑤0,𝑥0),𝜈)

𝜕𝑝

𝜕𝑝(𝑤0,𝑥0)

𝜕𝑤0
  

(A.2) 

𝜕𝑔0(𝑤0,𝑥0)

𝜕𝑤0
≠ 0 and the last condition imply 

𝜕𝑓4(𝑝(𝑤0,𝑥0),𝜈)

𝜕𝑝
= 0. 

Then the second condition and 𝑟𝑎𝑛𝑘 [
𝜕𝜋(𝑥1,𝑧)

𝜕𝑧
] = 𝑑𝑖𝑚 (𝑥2) give  

𝜕𝑓3(𝑥1,𝑥2)

𝜕𝑥2
= 0. 

The first condition implies 
𝜕𝑓3(𝑥1,𝑥2)

𝜕𝑥1
= 0. It means that 𝑓3(𝑥1, 𝑥2, 𝑤) = 𝛾𝑗(𝑥1, 𝑥2, 𝑤) −

𝛾𝑗(𝑥1, 𝑥2, 𝑤) is constant, 𝛾𝑗(𝑥1, 𝑥2, 𝑤) = 𝛾𝑗(𝑥1, 𝑥2, 𝑤) + С𝑗. || 
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Lemma 3. If functions 𝑔0(𝑤0, 𝑥0), 𝜋(𝑥1, 𝑧), 𝜆(𝑝), 𝛾𝑗(𝑥1, 𝑥2, 𝑤), 𝜇(𝑝, 𝜈), 

𝑔𝑗(𝑥1, 𝑥2, 𝑤𝑗 , 𝑦−𝑗), 𝜑(𝑝, 𝜈, 𝑒−𝑗)  are continuously differentiable with continuous distribution 

functions almost everywhere and with probability one  
𝜕𝑔0(𝑤0,𝑥0)

𝜕𝑤0
≠ 0, 𝑟𝑎𝑛𝑘 [

𝜕𝜋(𝑥1,𝑧)

𝜕𝑧
] = 𝑑𝑖𝑚 (𝑥2) 

and for each 𝑗 ∈ {1, … , 𝑘} at least one 𝑤𝑗 with 
𝜕𝛾𝑗(𝑥1,𝑥2,𝑤)

𝜕𝑤𝑗
≠ 0 exists then each 𝑔𝑗(𝑥1, 𝑥2, 𝑤𝑗 , 𝑦−𝑗) 

is identified up to an additive constant. 

Proof. As soon as the conditions of the lemma are more rigid than the ones of the lemmas 

1 and 2 are also satisfied then 𝜋(𝑥1, 𝑧), 𝛾−𝑗(𝑥1, 𝑥2), 𝜈 and 𝑒−𝑗 are identified up to a set of constants. 

Any observationally equivalent model for (5) must have 

𝐸[𝑦𝑗|𝑥1, 𝑥2, 𝑦−𝑗 , 𝑧, 𝑤, 𝑤0, 𝑑 = 1] = �̂�𝑗(𝑥1, 𝑥2, 𝑤𝑗 , 𝑦−𝑗) + �̂�(𝑝, 𝜈, 𝑒−𝑗). Consider 

𝑓5(𝑥1, 𝑥2, 𝑤𝑗 , 𝑦−𝑗) + 𝑓6(𝑝, 𝜈, 𝑒−𝑗) = 0, where 𝑓5(𝑥1, 𝑥2, 𝑤𝑗, 𝑦−𝑗) = 𝑔𝑗(𝑥1, 𝑥2, 𝑤𝑗 , 𝑦−𝑗) −

�̂�𝑗(𝑥1, 𝑥2, 𝑤𝑗 , 𝑦−𝑗) and 𝑓6(𝑝, 𝜈, 𝑒−𝑗) = 𝜑(𝑝, 𝜈, 𝑒−𝑗) − �̂�(𝑝, 𝜈, 𝑒−𝑗).  

If 𝑔0, 𝜋, 𝜆, 𝛾𝑗, 𝜇, 𝑔𝑗, 𝜑 are continuously differentiable then 𝑓5(𝑥1, 𝑥2, 𝑤𝑗 , 𝑦−𝑗) and 

𝑓6(𝑝, 𝜈, 𝑒−𝑗) are also continuously differentiable then we may differentiate 𝑓5 + 𝑓6 = 0 by the set 

of exogenous variables (𝑤𝑗 , 𝑤−𝑗, 𝑥1, 𝑧, 𝑤0): 

0 =
𝜕𝑓5(𝑥1,𝑥2,𝑤𝑗,𝑦−𝑗)

𝜕𝑤𝑗
+

𝜕𝑓5(𝑥1,𝑥2,𝑤𝑗,𝑦−𝑗)

𝜕𝑦−𝑗

𝜕𝛾−𝑗(𝑥1,𝑥2,𝑤)

𝜕𝑤𝑗
  

0 =
𝜕𝑓5(𝑥1,𝑥2,𝑤𝑗,𝑦−𝑗)

𝜕𝑦−𝑗

𝜕𝛾−𝑗(𝑥1,𝑥2,𝑤)

𝜕𝑤−𝑗
   

0 =
𝜕𝑓5(𝑥1,𝑥2,𝑤𝑗,𝑦−𝑗)

𝜕𝑥1
+

𝜕𝑓5(𝑥1,𝑥2,𝑤𝑗,𝑦−𝑗)

𝜕𝑥2

𝜕𝜋(𝑥1,𝑧)

𝜕𝑥1
+

𝜕𝑓5(𝑥1,𝑥2,𝑤𝑗,𝑦−𝑗)

𝜕𝑦−𝑗
[

𝜕𝛾−𝑗(𝑥1,𝑥2,𝑤)

𝜕𝑥1
+

+
𝜕𝛾−𝑗(𝑥1,𝑥2,𝑤)

𝜕𝑥2

𝜕𝜋(𝑥1,𝑧)

𝜕𝑥1 ] +
𝜕𝑓6(𝑝,𝜈,𝑒−𝑗)

𝜕𝑝

𝜕𝑔0(𝑥0,𝑤0)

𝜕𝑥1   

0 =
𝜕𝜋(𝑥1,𝑧)

𝜕𝑧
[

𝜕𝑓5(𝑥1,𝑥2,𝑤𝑗,𝑦−𝑗)

𝜕𝑥2 +
𝜕𝑓5(𝑥1,𝑥2,𝑤𝑗,𝑦−𝑗)

𝜕𝑦−𝑗

𝜕𝛾−𝑗(𝑥1,𝑥2,𝑤)

𝜕𝑥2 ]   

0 =
𝜕𝑓6(𝑝,𝜈,𝑒−𝑗)

𝜕𝑝

𝜕𝑔0(𝑥0,𝑤0)

𝜕𝑤0
  

(A.3) 

The last condition and  
𝜕𝑔0(𝑥0,𝑤0)

𝜕𝑤0
≠ 0 imply that 

𝜕𝑓6(𝑝,𝜈,𝑒−𝑗)

𝜕𝑝
= 0. 
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As soon as for every 𝑗 there is 𝑤𝑗 with  
𝜕𝛾𝑗(𝑥1,𝑥2,𝑦−𝑗)

𝜕𝑤𝑗
≠ 0 give 

𝜕𝛾−𝑗(𝑥1,𝑥2,𝑤)

𝜕𝑤
≠ 0 and make 

the second condition equivalent to 
𝜕𝑓5(𝑥1,𝑥2,𝑤𝑗,𝑦−𝑗)

𝜕𝑦−𝑗
= 0. 

Replacing 
𝜕𝑓5(𝑥1,𝑥2,𝑤𝑗,𝑦−𝑗)

𝜕𝑦−𝑗
= 0 in the fourth condition and using 

𝜕𝜋(𝑥1,𝑧)

𝜕𝑧
≠ 0 we have 

𝜕𝑓5(𝑥1,𝑥2,𝑤𝑗,𝑦−𝑗)

𝜕𝑥2 = 0. 

And  
𝜕𝑓5(𝑥1,𝑥2,𝑤𝑗,𝑦−𝑗)

𝜕𝑦−𝑗
= 0 in the first condition gives 

𝜕𝑓5(𝑥1,𝑥2,𝑤𝑗,𝑦−𝑗)

𝜕𝑤𝑗
= 0.    

All the obtained results in the third condition give  
𝜕𝑓5(𝑥1,𝑥2,𝑤𝑗,𝑦−𝑗)

𝜕𝑥1 = 0 which implies that 

𝑓5(𝑥1, 𝑥2, 𝑤𝑗 , 𝑦−𝑗) = 𝑔𝑗(𝑥1, 𝑥2, 𝑤𝑗 , 𝑦−𝑗) − �̂�𝑗(𝑥1, 𝑥2, 𝑤𝑗, 𝑦−𝑗) is constant, consequently  

�̂�𝑗(𝑥1, 𝑥2, 𝑤𝑗 , 𝑦−𝑗) = 𝑔𝑗(𝑥1, 𝑥2, 𝑤𝑗 , 𝑦−𝑗) + С𝑗
′. || 

 

 Proof of Theorem 1. By lemmas 1-3 equations (2-5) is identified. Let us prove the 

identification of equation (6). 

Any observationally equivalent model for (5) must have 

𝐸[𝑑𝑒𝑓|𝑥1, 𝑥2, 𝑦, 𝑧, 𝑤, 𝑑 = 1] = �̂�𝑑𝑒𝑓(𝑥1, 𝑥2, 𝑦) + �̂�𝑑𝑒𝑓(𝑝, 𝜈, 𝑒). Consider 𝑓7(𝑥1, 𝑥2, 𝑦) +

𝑓8(𝑝, 𝜈, 𝑒) = 0, where 𝑓7(𝑥1, 𝑥2, 𝑦) = 𝑔𝑑𝑒𝑓(𝑥1, 𝑥2, 𝑦) − �̂�𝑑𝑒𝑓(𝑥1, 𝑥2, 𝑦) and 𝑓8(𝑝, 𝜈, 𝑒) = 0 =

𝜑𝑑𝑒𝑓(𝑝, 𝜈, 𝑒) − �̂�𝑑𝑒𝑓(𝑝, 𝜈, 𝑒).  

If 𝑔𝑑𝑒𝑓 and 𝜑𝑑𝑒𝑓 are continuously differentiable then 𝑓7(𝑥1, 𝑥2, 𝑦) and 𝑓8(𝑝, 𝜈, 𝑒) are also 

continuously differentiable then we may differentiate 𝑓7 + 𝑓8 = 0 by the set of exogenous 

variables (𝑤, 𝑥1, 𝑧, 𝑤0): 

0 =
𝜕𝑓7(𝑥1,𝑥2,𝑦)

𝜕𝑦𝑗

𝜕𝑔𝑗(𝑦−𝑗,𝑥1,𝑥2,𝑤𝑗)

𝜕𝑤𝑗
  

0 =
𝜕𝑓7(𝑥1,𝑥2,𝑦)

𝜕𝑥1 +
𝜕𝑓7(𝑥1,𝑥2,𝑦)

𝜕𝑥2

𝜕𝜋(𝑥1,𝑧)

𝜕𝑥1 +
𝜕𝑓7(𝑥1,𝑥2,𝑦)

𝜕𝑦𝑗
[

𝜕𝑔𝑗(𝑦−𝑗,𝑥1,𝑥2,𝑤𝑗)

𝜕𝑥1 +

+
𝜕𝑔𝑗(𝑦−𝑗,𝑥1,𝑥2,𝑤𝑗)

𝜕𝑥2

𝜕𝜋(𝑥1,𝑧)

𝜕𝑥1 ] +
𝜕𝑓8(𝑝,𝜈,𝑒)

𝜕𝑝

𝜕𝑔0(𝑥0,𝑤0)

𝜕𝑥1   

(A.5) 
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0 =
𝜕𝜋(𝑥1,𝑧)

𝜕𝑧
[

𝜕𝑓7(𝑥1,𝑥2,𝑦)

𝜕𝑥2 +
𝜕𝑓7(𝑥1,𝑥2,𝑦)

𝜕𝑦

𝜕𝑔𝑗(𝑦−𝑗,𝑥1,𝑥2,𝑤𝑗)

𝜕𝑥2 ]   

0 =
𝜕𝑓8(𝑝,𝜈,𝑒)

𝜕𝑝

𝜕𝑔0(𝑥0,𝑤0)

𝜕𝑤0
  

The last condition and  
𝜕𝑔0(𝑥0,𝑤0)

𝜕𝑤0
≠ 0 imply that 

𝜕𝑓8(𝑝,𝜈,𝑒)

𝜕𝑝
= 0. 

As soon as for every 𝑗 there is 𝑤𝑗 with  
𝜕𝛾𝑗(𝑥1,𝑥2,𝑦−𝑗)

𝜕𝑤𝑗
≠ 0 give  

𝜕𝑔𝑗(𝑦−𝑗,𝑥1,𝑥2,𝑤𝑗)

𝜕𝑤𝑗
≠ 0 and 

make the first condition equivalent to 
𝜕𝑓7(𝑥1,𝑥2,𝑦)

𝜕𝑦𝑗
= 0. 

Replacing 
𝜕𝑓7(𝑥1,𝑥2,𝑦)

𝜕𝑦𝑗
= 0 in the fourth condition and using 

𝜕𝜋(𝑥1,𝑧)

𝜕𝑧
≠ 0 we have 

𝜕𝑓7(𝑥1,𝑥2,𝑦)

𝜕𝑥2
= 0. 

 And then the second condition gives 
𝜕𝑓7(𝑥1,𝑥2,𝑦)

𝜕𝑥1 = 0. This means that 
𝜕𝑓7(𝑥1,𝑥2,𝑦)

𝜕(𝑥1,𝑥2,𝑦)
= 0 and 

 𝑓7(𝑥1, 𝑥2, 𝑦) is constant. �̂�𝑑𝑒𝑓(𝑥1, 𝑥2, 𝑦) = 𝑔𝑑𝑒𝑓(𝑥1, 𝑥2, 𝑦) + 𝐶𝑑𝑒𝑓 means that 𝑔𝑑𝑒𝑓(𝑥1, 𝑥2, 𝑦) is 

identified up to additive constant.|| 

 

Proof of Theorem 2. Consider a procedure of model (1) identification. It will take 4 steps: 

1. On the first step we will estimate the propensity score  

𝑝 = 𝐸[𝑑|𝑥0, 𝑤0]  from the selection equation: 

𝑑𝑖 = {
1, 𝑔0(𝑤0𝑖, 𝑥0𝑖) + 𝑒0𝑖 ≥ 0

0, 𝑔0(𝑤0𝑖, 𝑥0𝑖) + 𝑒0𝑖 < 0
 (A.6) 

For every marginal distribution 𝑓𝑒0
, 𝐸[𝑑|𝑥0, 𝑤0] = 𝐸[𝑑 = 1|𝑥0, 𝑤0] =

∫ 𝑓𝑒0
(𝑠)𝑑𝑠

∞

−𝑔0(𝑤0,𝑥0)
= 𝛾0(𝑤0, 𝑥0). 𝛾0 with arbitrary distribution of 𝑒0 and functional form of 

𝑔0 will be a function with arbitrary functional form but will depend only on the known set of 

variables, 𝑤0, 𝑥0. 

We may decompose 𝛾0 into the Taylor series in a neighborhood of each (𝑤0𝑖, 𝑥0𝑖). 𝑝𝑖 =

𝐸[𝑑𝑖|𝑥0𝑖 , 𝑤0𝑖] may be approximated by a polynom 𝑄𝜌0(𝑤0𝑖, 𝑥0𝑖)𝛼0,  where 𝑄𝜌0(𝑤0, 𝑥0) is 
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polynomial approximating series for 𝛾0(𝑤0, 𝑥0) with 𝜌0 and 𝛼0 is a vector of parameters with 

dimensiality 𝜅 =
(𝜌0+𝜒0)!

𝜌0!𝜒0!
, 𝜒0 = 𝑑𝑖𝑚(𝑤0, 𝑥0). 

Estimate of 𝛼0 may be obtained by OLS as  

�̂�0 = [(𝑄𝜌0(𝑤0, 𝑥0))′𝑄𝜌0(𝑤0, 𝑥0)]−1(𝑄𝜌0(𝑤0, 𝑥0))′𝑑 (A.7) 

For all fixed 𝜌0 we may prove the consistency of �̂�0. 

plim
𝑛→∞

�̂�0 = plim
𝑛→∞

[(𝑄𝜌0(𝑤0, 𝑥0))′𝑄𝜌0(𝑤0, 𝑥0)]−1(𝑄𝜌0(𝑤0, 𝑥0))′𝑑 =

= plim  
𝑛→∞

[(𝑄𝜌0(𝑤0, 𝑥0))′𝑄𝜌0(𝑤0, 𝑥0)]−1(𝑄𝜌0(𝑤0, 𝑥0))′(𝑄𝜌0(𝑤0, 𝑥0)𝛼0 + 𝜂0)

= 𝛼0 + plim  
𝑛→∞

[(𝑄𝜌0(𝑤0, 𝑥0))′𝑄𝜌0(𝑤0, 𝑥0)]−1(𝑄𝜌0(𝑤0, 𝑥0))′𝜂0 = 𝛼0 

(A.8) 

with the exogeneity of (𝑤0, 𝑥0). 

This is obvious that a convergence speed to true 𝛾0(𝑤0, 𝑥0) depends on the power 𝜌0 

of approximation function. The higher 𝜌0 gives the slower speed of convergence due to 

increase in the number of parameters being estimated. Das et al. (2003) showed that with the 

upper limit to an approximation polynom power the estimate is asymptotically normal. In this 

paper we will not prove the asymptotic normality and return to the issue of standard errors 

calculation in results section. In this section we point out that it may be obtained by bootstrap. 

The basics of asymptotic theory for two-step correction procedures provided by Newey (1997). 

It is also mentioned in Das et al. (2003) that regression function may be represented as partially 

linear in regressors then all identification conditions should be held only for nonlinear part of 

regression function. Then the assumption of differentiability of regression functions may be 

relaxed when we include all discrete regressors only to linear part of regression function.  

Then the propensity score will be  

𝑝�̂� = 𝐸[𝑑𝑖|𝑥0𝑖 , 𝑤0𝑖] = 𝑄𝜌0(𝑤0𝑖, 𝑥0𝑖)[(𝑄𝜌0(𝑤0, 𝑥0))′𝑄𝜌0(𝑤0, 𝑥0)]−1(𝑄𝜌0(𝑤0, 𝑥0))′𝑑 (A.9) 

2. On the second step we will estimate the residuals from endogenous variables equations 

corrected for sample selection: 
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𝜈 = 𝑥2 − 𝐸[𝑥2|𝑥1, 𝑧, 𝑤0, 𝑑 = 1] (A.10) 

For every marginal joint distribution of 𝑒0 and 𝜈, 𝑓𝑒0,𝜈: 

𝐸[𝜈|𝑥1, 𝑧, 𝑤0, 𝑑 = 1] = 𝐸[𝜈|𝑥1, 𝑧, 𝑤0, 𝑑 = 1] = 𝐸[𝜈|𝑔0(𝑤0, 𝑥0)+𝑒0 ≥ 0] =

= ∫ ∫ 𝜈𝑓𝑒0,𝜈(𝑠, 𝑟)𝑑𝑠
∞

−𝑔0(𝑤0,𝑥0)

∞

−∞

𝑑𝑟 = 𝜆(𝑝) 
(A.11) 

where 𝜆 is a function on propensity score with arbitrary function form. 

If �̂� is a predicted propensity score obtained on the previous step then �̂� on this step 

will be fixed. (𝑥1, 𝑧) and �̂� are the sets of different variables since there is at least one 𝑤0 with  

𝜕𝑄𝜌0(𝑤0𝑖,𝑥0𝑖)�̂�0

𝜕𝑤0
≠ 0. 

Every arbitrary functions 𝜋(𝑥1, 𝑧) and 𝜆(�̂�) may be approximated by 𝑄𝑍1(𝑥1, 𝑧)𝑎1 and 

𝑄𝑍2(�̂�)𝑎2 where 𝑄𝑍1(𝑥1, 𝑧) is polynomial approximation series with a power 𝑍1, 𝑄𝑍2(�̂�) is 

polynomial approximation series with a power 𝑍2, then 𝑥2 may be approximated by 

𝑥2 = 𝑄𝑍1(𝑥1, 𝑧)𝑎1 + 𝑄𝑍2(�̂�)𝑎2 + 𝜂𝑧 (A.12) 

Equation (A.12) is identified up to an additive constant due to the Theorem 1 since 

polynomial approximations for 𝜋 and 𝜆 are continuously differentiable and 
𝜕𝑄𝜌0(𝑤0𝑖,𝑥0𝑖)�̂�0

𝜕𝑤0
≠ 0. 

Let 𝑎 = (𝑎1, 𝑎2), 𝑄𝑍1,𝑍2(𝑥1, 𝑧, �̂�) = (𝑄𝑍1(𝑥1, 𝑧), 𝑄𝑍2(�̂�)), then 𝑎 may be obtained by 

OLS as 

�̂� = [(𝑄𝑍1,𝑍2(𝑥1, 𝑧, �̂�))′𝑄𝑍1,𝑍2(𝑥1, 𝑧, �̂�)]−1(𝑄𝑍1,𝑍2(𝑥1, 𝑧, �̂�))′𝑥2 (A.13) 

For some large enough 𝑍1, 𝑍2, 𝑄𝑍1(𝑥1, 𝑧)�̂�1 will be an approximation for 𝜋(𝑥1, 𝑧). And 

�̂� = (�̂�1, �̂�2) will be consistent with the exogeneity of (𝑥1, 𝑧, �̂�) due to 

plim
𝑛→∞

�̂� = plim
𝑛→∞

[(𝑄𝑍1,𝑍2(𝑥1, 𝑧, �̂�))′𝑄𝑍1,𝑍2(𝑥1, 𝑧, �̂�)]−1(𝑄𝑍1,𝑍2(𝑥1, 𝑧, �̂�))′𝑥2 =

= plim
𝑛→∞

[(𝑄𝑍1,𝑍2(𝑥1, 𝑧, �̂�))′𝑄𝑍1,𝑍2(𝑥1, 𝑧, �̂�)]−1(𝑄𝑍1,𝑍2(𝑥1, 𝑧, �̂�))′(𝑄𝑍1,𝑍2(𝑥1, 𝑧, �̂�)𝑎

+ 𝜂𝑧) = 𝑎 + plim
𝑛→∞

[(𝑄𝑍1,𝑍2(𝑥1, 𝑧, �̂�))′𝑄𝑍1,𝑍2(𝑥1, 𝑧, �̂�)]−1(𝑄𝑍1,𝑍2(𝑥1, 𝑧, �̂�))′ 𝜂𝑧 = 𝑎 

(A.14) 

Identification of an additive constant in this equation is an additional research question 

when its true value is a point of interest. Heckman (1990) provided examples when 
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identification of constant is essential. Andrews and Schafgans (1998) discussed also the 

identification strategy. When the identification of constant is not a point of interest then we 

only need to fix a value of some parameter. For example, let the parameter behind (�̂�)0 in 

𝑄𝑍2(�̂�) be equal to 0. On the next steps we will also put 0 as a value of parameter behind the 

polynomial term with 0 power in control function. 

Then the residuals of endogenous variables equations may be obtained as 

�̂�𝑖 = 𝑥𝑖
2 − 𝑄𝑍1,𝑍2(𝑥𝑖

1, 𝑧𝑖, �̂�𝑖)�̂� (A.15) 

3. On the third step we will estimate the reduced form residuals corrected for sample 

selection and endogeneity of 𝑥2: 

𝑒𝑗 = 𝑦𝑗 − 𝐸[𝑦𝑗|𝑥1, 𝑥2, 𝑧, 𝑤, 𝑤0, 𝑑 = 1] (A.16) 

If 𝑒𝑗 has joint marginal distribution with 𝜈 and 𝑒0 with density function 𝑓𝑒0,𝑒𝑗,𝜈 then 

𝐸[𝑒𝑗|𝑥1, 𝑥2, 𝑧, 𝑤, 𝑤0, 𝑑 = 1] = 𝐸[𝑒𝑗|𝜈, 𝑔0(𝑤0, 𝑥0)+𝑒0 ≥ 0]

= ∫ ∫ 𝑒𝑗𝑓𝑒0,𝑒𝑗,𝜈(𝑠, 𝑟|𝜈)𝑑𝑠𝑑𝑟
∞

−𝑔0(𝑤0,𝑥0)

∞

−∞

= 𝜇(𝑝, 𝜈) 

(A.17) 

𝑦𝑗 is decomposed into  regression and control functions:  

𝑦𝑗 = 𝛾𝑗(𝑥1, 𝑥2, 𝑤) + 𝜇𝑗(𝑝, 𝜈) + 𝜂𝑗  (A.18) 

The error term in this equation 𝜂𝑗 is independent on (𝑥1, 𝑥2, 𝑤). 

If �̂� is a propensity score and �̂� is a residuals of endogenous variables equations then 

on this stage �̂� and �̂� will be fixed. (𝑥1, 𝑥2, 𝑤) and (�̂�, �̂�) are two sets of different variables if 

𝜕𝑄𝜌0(𝑤0𝑖,𝑥0𝑖)�̂�0

𝜕𝑤0
≠ 0 and 𝑟𝑎𝑛𝑘(

𝜕𝑄𝑍1(𝑥1,𝑧)�̂�1

𝜕𝑧
) = 𝑑𝑖𝑚 (𝑥2).  

Every arbitrary functions 𝛾𝑗(𝑥1, 𝑥2, 𝑤) and 𝜇𝑗(�̂�, �̂�) may be approximated by 

𝑄𝑀1(𝑥1, 𝑥2, 𝑤)𝑏1𝑗 and 𝑄𝑀2(�̂�, �̂�)𝑏2𝑗 respectively, where 𝑄𝑀1(𝑥1, 𝑥2, 𝑤) is polynomial 

approximating series with a power 𝑀1, 𝑄𝑀2(�̂�, �̂�) is polynomial approximating series with a 

power 𝑀2. Then 𝑦𝑗 may be approximated by the following equation: 

𝑦𝑗 = 𝑄𝑀1(𝑥1, 𝑥2, 𝑤)𝑏1𝑗 + 𝑄𝑀2(�̂�, �̂�)𝑏2𝑗 + 𝜂𝑗 (A.19) 
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Equation (A.19) is identified up to an additive constant when conditions of Theorem 1 

are satisfied. Polynomial approximations for 𝛾𝑗 and 𝜇𝑗 satisfy differentiability condition. And 

we also need 
𝜕𝑄𝜌0(𝑤0𝑖,𝑥0𝑖)�̂�0

𝜕𝑤0
≠ 0 and 𝑟𝑎𝑛𝑘(

𝜕𝑄𝑍1(𝑥1,𝑧)�̂�1

𝜕𝑧
) = 𝑑𝑖𝑚 (𝑥2). 

Let 𝑏𝑗 = (𝑏1𝑗, 𝑏2𝑗) and 𝑄𝑀1,𝑀2(𝒲) = 𝑄𝑀1,𝑀2(𝑥1, 𝑥2, 𝑤, �̂�, �̂�) =

(𝑄𝑀1(𝑥1, 𝑥2, 𝑤), 𝑄𝑀2(�̂�, �̂�)) then 𝑏𝑗 may be obtained by OLS as 

�̂�𝑗 = [(𝑄𝑀1,𝑀2(𝒲))′𝑄𝑀1,𝑀2(𝒲)]−1(𝑄𝑀1,𝑀2(𝒲))′𝑦𝑗 (A.20) 

With some large enough 𝑀1, 𝑀2, 𝑄𝑀1(𝑥1, 𝑥2, 𝑤)�̂�1𝑗 is an approximation for 

𝛾𝑗(𝑥1, 𝑥2, 𝑤). And �̂�𝑗 = (�̂�1𝑗, �̂�2𝑗) are consistent with independency of 𝜂𝑗 and (𝑥1, 𝑥2, 𝑤) due 

to 

plim
𝑛→∞

�̂� = plim
𝑛→∞

[(𝑄𝑀1,𝑀2(𝒲)′𝑄𝑀1,𝑀2(𝒲)]−1(𝑄𝑀1,𝑀2(𝒲))′𝑦𝑗 =

= plim
𝑛→∞

[(𝑄𝑀1,𝑀2(𝒲))
′
𝑄𝑀1,𝑀2(𝒲)]−1(𝑄𝑀1,𝑀2(𝒲))

′
(𝑄𝑀1,𝑀2(𝒲)𝑏𝑗 + 𝜂𝑗) =

= 𝑏𝑗 + plim
𝑛→∞

[(𝑄𝑀1,𝑀2(𝒲))′𝑄𝑀1,𝑀2(𝒲)]−1(𝑄𝑀1,𝑀2(𝒲))′𝜂𝑗 = 𝑏𝑗 

(A.21) 

Then the reduced form residuals will be 

�̂�𝑗𝑖 = 𝑦𝑗𝑖 − 𝑄𝑀1,𝑀2(𝑥𝑖
1, 𝑥𝑖

2, 𝑤𝑖, �̂�𝑖, �̂�𝑖)�̂�𝑗 (A.22) 

4. On the fourth step we will estimate the structural equations corrected for sample 

selection, endogeneity of 𝑥2 and simultaneity in y. 

If 𝑒𝑗 has joint distribution with 𝜈, 𝑒0 and 𝑒−𝑗 with density function 𝑓𝑒0,𝑒,𝜈 then 

𝐸[𝑒𝑗|𝑥1, 𝑥2, 𝑤𝑗 , 𝑦−𝑗 , 𝑧, 𝑤−𝑗, 𝑤0, 𝑑 = 1] = 𝐸[𝑒𝑗|𝜈, 𝑒−𝑗, 𝑔0(𝑤0, 𝑥0)+𝑒0 ≥ 0]

= ∫ ∫ 𝑒𝑗𝑓𝑒0,𝑒,𝜈(𝑠, 𝑟|𝜈, 𝑒−𝑗)𝑑𝑠𝑑𝑟
∞

−𝑔0(𝑤0,𝑥0)

∞

−∞

= 𝜑(𝑝, 𝜈, 𝑒−𝑗) 

(A.23) 

𝑦𝑗 is decomposed into  

𝑦𝑗 = 𝑔𝑗(𝑥1, 𝑥2, 𝑤𝑗, 𝑦−𝑗) + 𝜑𝑗(𝑝, 𝜈, 𝑒−𝑗) + 𝜀𝑗 (A.24) 

The error term 𝜀𝑗 in this equation will be independent on (𝑥1, 𝑥2, 𝑤𝑗 , 𝑦−𝑗). 
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If �̂� is the propensity score,  �̂� are residuals of endogenous variables equations and �̂�−𝑗 

are reduced form residuals then �̂�,�̂� and �̂�−𝑗 on this step are fixed. And (𝑥1, 𝑥2, 𝑤𝑗 , 𝑦−𝑗) and 

(�̂�, �̂�, �̂�−𝑗) are sets of different variables if 
𝜕𝑄𝜌0(𝑤0𝑖,𝑥0𝑖)�̂�0

𝜕𝑤0
≠ 0, 𝑟𝑎𝑛𝑘(

𝜕𝑄𝑍1(𝑥1,𝑧)�̂�1

𝜕𝑧
) = 𝑑𝑖𝑚 (𝑥2) 

and ∀𝑗 ∈ {1, … , 𝑘} ∃�̃� ∈ 𝑤𝑗 ,
𝜕𝑄𝑀1(𝑥1,𝑥2,𝑤)�̂�1𝑗

𝜕�̃�
≠ 0.  

Every functions 𝑔𝑗(𝑥1, 𝑥2, 𝑤𝑗, 𝑦−𝑗) and 𝜑𝑗(𝑝, 𝜈, 𝑒−𝑗) may be approximated by 

𝑄𝜉1(𝑥1, 𝑥2, 𝑤𝑗 , 𝑦−𝑗)𝛽1𝑗 and 𝑄𝜉2(�̂�, �̂�, �̂�−𝑗)𝛽2𝑗 respectively, where 𝑄𝜉1(𝑥1, 𝑥2, 𝑤𝑗, 𝑦−𝑗) is 

polynomial approximating series with a power 𝜉1, 𝑄𝜉2(�̂�, �̂�, �̂�−𝑗) is polynomial approximating 

series with a power 𝜉2. Then 𝑦𝑗 may be approximated by 

𝑦𝑗 = 𝑄𝜉1(𝑥1, 𝑥2, 𝑤𝑗, 𝑦−𝑗)𝛽1𝑗 + 𝑄𝜉2(�̂�, �̂�, �̂�−𝑗)𝛽2𝑗 + 𝜀𝑗 (A.25) 

Equation (A.25) will be identified up to an additive constant if Theorem 1 conditions 

are satisfied. Polynomial approximations for 𝑔𝑗 and 𝜑𝑗 satisfy differentiability condition. And 

we also need 
𝜕𝑄𝜌0(𝑤0𝑖,𝑥0𝑖)�̂�0

𝜕𝑤0
≠ 0, 𝑟𝑎𝑛𝑘(

𝜕𝑄𝑍1(𝑥1,𝑧)�̂�1

𝜕𝑧
) = 𝑑𝑖𝑚 (𝑥2) and ∀𝑗 ∈ {1, … , 𝑘} ∃�̃� ∈ 𝑤𝑗 ,

𝜕𝑄𝑀1(𝑥1,𝑥2,𝑤)�̂�1𝑗

𝜕�̃�
≠ 0. 

Let 𝛽𝑗 = (𝛽1𝑗, 𝛽2𝑗) and 𝑄𝜉1,𝜉2(𝒳) = 𝑄𝜉1,𝜉2(𝑥1, 𝑥2, 𝑤𝑗, 𝑦−𝑗, �̂�, �̂�, �̂�−𝑗) =

(𝑄𝜉1(𝑥1, 𝑥2, 𝑤𝑗 , 𝑦−𝑗), 𝑄𝜉2(�̂�, �̂�, �̂�−𝑗)) then the estimate for 𝛽𝑗 may be obtained by OLS as 

�̂�𝑗 = [(𝑄𝜉1,𝜉2(𝒳))
′
𝑄𝜉1,𝜉2(𝒳)]−1(𝑄𝜉1,𝜉2(𝒳))′𝑦𝑗 (A.26) 

For some large enough 𝜉1, 𝜉2, 𝑄𝜉1(𝑥1, 𝑥2, 𝑤𝑗, 𝑦−𝑗)�̂�1𝑗 will be an approximation for 

𝑔𝑗(𝑥1, 𝑥2, 𝑤𝑗 , 𝑦−𝑗). Estimate �̂�𝑗 = (�̂�1𝑗, �̂�2𝑗) is consistent with independence of 𝜀𝑗 and 

(𝑥1, 𝑥2, 𝑤𝑗, 𝑦−𝑗) due to 

plim
𝑛→∞

�̂�𝑗 = plim
𝑛→∞

[(𝑄𝜉1,𝜉2(𝒳))
′

𝑄𝜉1,𝜉2(𝒳)]−1 (𝑄𝜉1,𝜉2(𝒳))
′

𝑦𝑗 =

= plim
𝑛→∞

[(𝑄𝜉1,𝜉2(𝒳))
′

𝑄𝜉1,𝜉2(𝒳)]−1 (𝑄𝜉1,𝜉2(𝒳))
′

(𝑄𝜉1,𝜉2(𝒳)𝛽𝑗 + 𝜀𝑗) = 

(A.27) 
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= 𝛽𝑗 + plim
𝑛→∞

[(𝑄𝜉1,𝜉2(𝒳))
′

𝑄𝜉1,𝜉2(𝒳)]−1 (𝑄𝜉1,𝜉2(𝒳))
′

𝜀𝑗 = 𝛽𝑗 

Then the structural form residuals will be 

�̂�𝑗𝑖 = 𝑦𝑗𝑖 − 𝑄𝜉1,𝜉2(𝒳)�̂�𝑗 (A.28) 

 

5. On the last step we will estimate the probability of default equation corrected for sample 

selection and endogeneity of contract terms using propensity score, residuals from loan 

limit equation and structural form residuals: 

𝐸[𝑑𝑒𝑓|𝑥1, 𝑥2, 𝑦, 𝑧, 𝑤, 𝑑 = 1] = 𝑔𝑑𝑒𝑓(𝑥1, 𝑥2, 𝑦) + 𝜑𝑑𝑒𝑓(�̂�, �̂�, �̂�) (A.29) 

If 𝑒𝑗 has joint distribution with 𝜈, 𝑒0 and 𝑒 with density function 𝑓𝑒0,𝑒,𝜈,𝑒𝑑𝑒𝑓
 then 

𝐸[𝑒𝑑𝑒𝑓|𝑥1, 𝑥2, 𝑦, 𝑧, 𝑤, 𝑑 = 1] = 𝐸[𝑒𝑑𝑒𝑓|𝜈, 𝑒, 𝑔0(𝑤0, 𝑥0)+𝑒0 ≥ 0]

= ∫ ∫ 𝑒𝑑𝑒𝑓𝑓𝑒0,𝑒,𝜈,𝑒𝑑𝑒𝑓
(𝑠, 𝑟|𝜈, 𝑒)𝑑𝑠𝑑𝑟

∞

−𝑔0(𝑤0,𝑥0)

∞

−∞

= 𝜑𝑑𝑒𝑓(𝑝, 𝜈, 𝑒) 

(A.30) 

𝑑𝑒𝑓 is decomposed into  

𝑑𝑒𝑓 = 𝑔𝑑𝑒𝑓(𝑥1, 𝑥2, 𝑦) + 𝜑𝑑𝑒𝑓(𝑝, 𝜈, 𝑒) + 𝜀𝑑𝑒𝑓 (A.31) 

The error term 𝜀𝑑𝑒𝑓 in this equation will be independent on (𝑥1, 𝑥2, 𝑦). 

If �̂� is the propensity score,  �̂� are residuals of endogenous variables equations and �̂� 

are structural form residuals then �̂�,�̂� and �̂� on this step are fixed. And (𝑥1, 𝑥2, 𝑦) and (�̂�, �̂�, �̂� ) 

are sets of different variables if 
𝜕𝑄𝜌0(𝑤0𝑖,𝑥0𝑖)�̂�0

𝜕𝑤0
≠ 0, 𝑟𝑎𝑛𝑘(

𝜕𝑄𝑍1(𝑥1,𝑧)�̂�1

𝜕𝑧
) = 𝑑𝑖𝑚 (𝑥2) and ∀𝑗 ∈

{1, … , 𝑘} ∃�̃� ∈ 𝑤𝑗 ,
𝜕𝑄𝑀1(𝑥1,𝑥2,𝑤)�̂�1𝑗

𝜕�̃�
≠ 0.  

Every functions 𝑔𝑑𝑒𝑓(𝑥1, 𝑥2, 𝑦) and 𝜑𝑑𝑒𝑓(�̂�, �̂�, �̂�) may be approximated by 

𝑄𝜃1(𝑥1, 𝑥2, 𝑦)𝛼1 and 𝑄𝜃2(�̂�, �̂�, �̂�)𝛼2 respectively, where 𝑄𝜃1(𝑥1, 𝑥2, 𝑦) is polynomial 

approximating series with a power 𝜃1, 𝑄𝜃2(�̂�, �̂�, �̂�) is polynomial approximating series with a 

power 𝜃2. Then 𝑑𝑒𝑓 may be approximated by 

𝑑𝑒𝑓 = 𝑄𝜃1(𝑥1, 𝑥2, 𝑦)𝛼1 + 𝑄𝜃2(�̂�, �̂�, �̂�)𝛼2 + 𝜀𝑑𝑒𝑓 (A.32) 
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Equation (A.32) will be identified up to an additive constant if Theorem 1 conditions 

are satisfied. Polynomial approximations for 𝑔𝑑𝑒𝑓 and 𝜑𝑑𝑒𝑓 satisfy differentiability condition. 

And we also need 
𝜕𝑄𝜌0(𝑤0𝑖,𝑥0𝑖)�̂�0

𝜕𝑤0
≠ 0, 𝑟𝑎𝑛𝑘(

𝜕𝑄𝑍1(𝑥1,𝑧)�̂�1

𝜕𝑧
) = 𝑑𝑖𝑚 (𝑥2) and ∀𝑗 ∈ {1, … , 𝑘} 

∃�̃� ∈ 𝑤𝑗 ,
𝜕𝑄𝑀1(𝑥1,𝑥2,𝑤)�̂�1𝑗

𝜕�̃�
≠ 0. 

Let 𝛼 = (𝛼1, 𝛼2) and 𝑄𝜃1,𝜃2(𝒦) = 𝑄𝜃1,𝜃2(𝑥1, 𝑥2, 𝑦, �̂�, �̂�, �̂�) =

(𝑄𝜃1(𝑥1, 𝑥2, 𝑦), 𝑄𝜃2(�̂�, �̂�, �̂�)) then the estimate for 𝛼 may be obtained by OLS as 

�̂� = [(𝑄𝜃1,𝜃2(𝒦))
′

𝑄𝜃1,𝜃2(𝒦)]−1 (𝑄𝜃1,𝜃2(𝒦))′𝑑𝑒𝑓 (A.33) 

For some large enough 𝜃1, 𝜃2, 𝑄𝜃1(𝑥1, 𝑥2, 𝑦)�̂�1 will be an approximation for 

𝑔𝑑𝑒𝑓(𝑥1, 𝑥2, 𝑦). Estimate �̂� = (�̂�1, �̂�2)  is consistent with independence of 𝜀𝑑𝑒𝑓 and (𝑥1, 𝑥2, 𝑦) 

due to 

plim
𝑛→∞

�̂� = plim
𝑛→∞

[(𝑄𝜃1,𝜃2(𝒦))
′

𝑄𝜃1,𝜃2(𝒦)]−1 (𝑄𝜃1,𝜃2(𝒦))
′

𝑑𝑒𝑓 =

= plim
𝑛→∞

[(𝑄𝜃1,𝜃2(𝒦))
′

𝑄𝜃1,𝜃2(𝒦)]−1 (𝑄𝜃1,𝜃2(𝒦))
′

(𝑄𝜃1,𝜃2(𝒦)𝛼

+ 𝜀𝑑𝑒𝑓) = 

𝛼 + plim
𝑛→∞

[(𝑄𝜃1,𝜃2(𝒦))
′

𝑄𝜃1,𝜃2(𝒦)]−1 (𝑄𝜃1,𝜃2(𝒦))
′

𝜀𝑑𝑒𝑓 = 𝛼 

(A.34) 
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