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1 Introduction: The problem and background

The issue of measuring research impact is attracting intense attention of
scientists because metrics of research impact are being widely used by var-
ious managing bodies and by public at large as easy-to-get shortcuts for
judging of comparative strengths among scientists, research centers, and
universities. The citation index and such its derivatives as Hirsch index are
produced by a number of organizations including the inventors, currently
named Thomson Reuters [32], and Google. These indexes are used some-
times in evaluation and management in sciences, although this is subject
to the ongoing debate because of over-simplifications that are immanent
to bibliometrics [3]. There have been a number of proposals to amend
the indexes, say, by using less extensive characteristics, such as central-
ity indexes in the intercitation graphs [6] or by following only citations
in the “lead scientists” work [5]. Other proposals deny the usefulness of
bibliometrics altogether; some propose even such drastic measures as the
“careful socialization and selection of scholars, supplemented by periodic
self-evaluations and awards” [26], that is, moving back to the closed or-
ders of medieval monk-scientists. Other, more practical systems, such as
the UK Research Assessment Exercise (RAE, recently rebranded as REF)
intends to assess most significant contributions only, and in a much infor-
mal way, which seems a better option. Yet there have been criticisms of
the RAE-like systems as well: on the one hand, in the absence of a cita-
tion index, the peer reviews do not manifest any consistency in evaluations
[11], and, on the other hand, in the long run, the system itself seems a bit
too short-sighted; it has cut off everything which is out of the mainstream
[18]. Therefore, a recent initiative by a group of influential scientists DORA
[30], while rejecting the bibliometrics as the only assessment source, pro-
poses to switch from counting publications only, to checking for the whole
list of scientific production including data sets, patents, and codes among
others. The U.S. National Science Foundation already modified its instruc-
tions so that the outputs of scientific research include products rather than
just publications [30]. Although there are less tangible dimensions of im-
pact, that can be important in evaluations, this goes in line with what Alfred
Nobel, the founder of the most prestigious science prize, has expressed in
his will: the prize goes to those who “have conferred the greatest benefit
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on mankind” which is further detailed, say for physics, as “ have made the
most important discovery or invention within the field of physics” [23].

We adhere to this direction of thought. This paper is an attempt at
exploring aspects of the concept of larger than papers researcher’s produc-
tivity. Looking from a practical side, one can recognize that currently there
are at least four types of products of scientific research:

1. producing novel scientific results to be described in papers and mono-
graphs;

2. participating in the organization of sciences such as being a journal
editor or running a research conference;

3. transferring knowledge to and training of younger generations such
as undergraduate and postgraduate students;

4. developing technology innovations including patents and other in-
dustry related products.

They all should be counted in as parts of the impact by a scientist.
Therefore we are going to explore how these can be reasonably mea-

sured and aggregated to derive a reasonable measure of research impact.
We recognize the difficulties in measuring the last item, of technical inno-
vations, for the currently living scientists because not so many of them ever
get patents. To justfully abandon this item we restrict ourselves with uni-
versity based researchers only, since academics normally are not required
to get a practical use of their research results in engineering.

Another issue is in finding a direct measure to score the research results,
item 1, which is so remarkably avoided in current mainstream efforts by
using bibliometrics instead. Here we are going to employ the idea of using
a hierarchical taxonomy of a research field for mapping research results in
the field to those subjects that have been created or drastically revised in
the light of these results. The ranks of the receiving nodes define the rank
of the research results [19].

Another innovation reported in this paper is in the way of combining
multiple criteria. Most popular approaches to multicriteria ranking rely on
weighted combinations of criteria in such a way that the weights are defined
either manually or in a supervised manner. For example, the former applies

5



to computing university league tables, and the latter is characteristic for
defining ABC-classifications of inventory items. Automatically deriving
the weights have been pursued as well, mostly in the format of the eigen-
vector corresponding to the maximum eigenvalue for a similarity-between-
criteria matrix such, as RankClus [31] and PCA [20]. This approach is
much relevant when the criteria are well correlated so that a better entity
over one criterion would be better over most other criteria. If, however,
criteria are essentially inconsistent at different entities, the first eigenvector
would take into account too little of the data scatter and, therefore, may
appear somewhat inappropriate. We develop an approach which we think
is adequate at both correlated and inconsistent criteria. According to our
approach, the issue is to be solved by finding such a direction in the criteria
space that all the entities are projected into compact well-separated clusters
on the direction so that the orthogonal hyperplanes may be considered as
boundaries between different multicriterial strata of entities. This approach
was introduced and substantiated recently in [21, 24].

One more innovation described here is a case of practical implementa-
tion of our approaches. To be specific, we focus on the field of Computer
Science related to data analysis, machine learning, cluster analysis and data
mining. As a relevant taxonomy of the domain we take relevant parts of the
ACM Computing Classification System 2012 [2]. We pick up a sample of
30 leading scientists in the field such that the information of their research
results is publicly available. We consider three sets of criteria for research
contributions: (a) one comprises three Google citation criteria, (b) the sec-
ond, criteria for items of merit, 2 and 3 from the list above, and (c) the third
utilizes adjusted ranks of research results within the taxonomy.

Our preliminary hypothesis is that the aggregate scales of both (i) ci-
tation and (ii) merit relate to popularity of scientists rather than anything
else. Therefore, the combined scales for (i) and (ii) should have a rather
high positive correlation between them. On the other hand, the level of re-
sults has no straightforward relation to popularity - the latter much depends
on the scientist’s character, communication skills, and being employed in a
good university, whereas the former, on talent and luck. So any reasonable
scale of the level of results should have rather low correlation with both the
citation index and the merit index. Our computations do show that this is
largely true at our data, although the level of correlation between (i) and
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(ii) is not that high. To an extent, this observation supports the views ex-
pressed in DORA declaration [30]. Also, we may conclude that our method
of mapping research results to a taxonomy of the field (MMRRTF) could be
considered a good way forward. It does involve a great deal of manual com-
ponent, of course. However, it is based on an agreed upon taxonomy of the
domain and explicitly mapping the results to taxonomy nodes. Therefore,
its results are explicitly expressed and admit public discussions of them,
which leads to much less inconsistency in the assessments than just mere
subjective evaluations by panel members.

The remainder is organized as follows. The next section provides an
algorithmic background for our Linstrat method for aggregating criteria in
the format of a weighted sum of them [24, 25]. Our method for mapping re-
search results to a taxonomy of the fields is presented there too. The section
3 describes how our sample of scientists has been formed and how scien-
tists’ ranks have been defined by adapting an extract from the taxonomy
in ACM-CCS [2]. Section 4 presents data related to features of (i) cita-
tion and (ii) merit for our sample. Our results in determining stratifications
and criteria weights are presented here as well. Section 5 concludes with a
summary and future work directions.

2 Methodology

2.1 The problem of stratification

There is general understanding that in the ranking problem one usually
looks for an ordered partition in which entities in the same class are con-
sidered to be equivalent over a pre-specified set of criteria, rather than for
just a linear ordering of the entities. Reasons for this may include a degree
of indifference of the decision-makers (as reflected, say, in the concept of
ABC ranking in inventories) or a degree of imprecision in the measurement
of criteria or both. We refer to a partition, classes of which are linearly
ordered by a relation of precedence, as a stratification. Such areas as soci-
ology and mineralogy use this term exactly in this sense to express social
inequality in the former and depth/time precedence in the latter.

Consider an example. Table 1 contains normalized food and housing
prices for a foreigner in 10 cities [7]. The left part of Fig. 1 presents a three
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cluster partition found using k-means clustering method with cities Copen-
hagen, New-York and Peking taken as the initial centers. The right part of
Fig. 1 presents a three strata stratification corresponding to the direction
of a combined criterion F = 0.4789 ∗HousingP+ 0.5211 ∗FoodP. This
combined criterion can be interpreted as a measure of “cost of living” that
takes into account the difference in the relative importance of the criteria.

Table 1: Prices of housing and food for a foreigner in ten cities normalized
so that the minimum is zero and maximum, the hundred.

City Housing Food
Moscow 96.7284 56.0364
London 93.2099 62.4146
Tokyo 100.0000 44.4191
Copenhagen 42.7160 100.0000
New-York 96.7284 38.9522
Peking 59.9383 12.0729
Sydney 34.4444 19.5900
Vancouver 12.9630 10.2506
Johannesburg 0 5.2392
Buenos-Aires 14.1975 0

As expected, clusters consist of similar cities (see Fig. 1 on the left).
Those labeled by a square have relatively low prices for both foods and
housing. Cluster labeled by a circle is a singleton consisting of just Copen-
hagen, with a highest food price and moderate housing prices. The cluster
of triangles on the right, in contrast, is of highest housing prices and moder-
ate food prices. The strata, on the right side, are organized over a different
principle. The first stratum, for example, is not a cluster but rather a Pareto
boundary at highest prices. Each of the remaining cities is dominated, over
both criteria, by a city from the first stratum. It is formed not according to
similarity but rather according to the combined weighted criterion as a set
of a higher cost of living. The second stratum is a set of a moderate living
cost, and the third, of the lowest living cost in the set.
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Figure 1: Ten cities over two normalized criteria: Housing price and Food price.
They are partitioned in three clusters (on the left) and in three strata (on the right).

One can classify methods for multicriteria stratification according to
the extent of the assumed elasticity of the criteria to each other. A constant
elasticity e of criterion f1 towards criterion f2 would mean that a change of
criterion f2 by a unity is equivalent to the opposite change of f1 in e units,
independently of values of these and other criteria. That is, criteria f1 and f2
can be combined into weighted sum f1+e f2 in this case. The case of a con-
stant elasticity between all the criteria f1(x), f2(x), ..., fm(x) assumes that
they can be equivalently substituted by an aggregate criterion f (x) which is
expressed as their weighted sum f (x) = w1 f1(x)+w2 f2(x)+ ...+wm fm(x),
where w1,w2, ...,wm are non-negative constant weight coefficients sum-
ming to 1.

An opposite case is when all the criteria are mutually incomparable
and there is no way that a change in one criterion can be equivalently repre-
sented by a change in another criterion. That is, each criterion must be taken
into consideration whatever the other criteria’s values are. The absence of
interrelation among criteria leads to the multivariate relation ”better than”,
that is ”better over every single criterion”, and the concept of Pareto bound-
ary as the only solution that needs no interrelation between criteria at all.

Yet there is a kind of equivalence between these two extremes: under
rather mild mathematical conditions on the criteria and the sets at which

9



they are defined, every x maximizing the combined criterion

f (x) =
m

∑
t=1

wt ft(x)

does belong to the Pareto boundary. And vice versa, any point x belonging
to the Pareto boundary is a maximizer of the combined criterion f (x) =
∑

m
t=1 wt ft(x) for some x-specific set of weights w (see Fig. 2).

Figure 2: An illustration of the equivalence between two approaches; one of the
weighted combined criteria and the other, of the Pareto boundary solutions.

For a detailed review of various interpretations of criteria weight coeffi-
cients one may refer to [9]. Much work on multicriterion ranking has been
done along the lines of using an external information, say from a Decision
Maker, to try to reveal as much information on comparability of criteria at
various preference profiles (see, for example, Electre method [14]). Papers
[22, 29] develop methods for dividing resources in ABC groups according
to their importance for the company by using a criteria weighting system.
The groupings are determined by using a combined weighted criterion in
which weights are found by solving a linear programming problem. These
weights are not constant but depend on the variants being compared.

As we concentrate on the case of a weighted combined criterion with
constant weights, we should mention the following. In the real world,
there are some applications in which weighted combined criteria are used
in such a way that the weights are chosen manually by experts; such are
methods applied in composition of university league ranking tables (see,
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for instance, [10]). In some works, weights are learned in a supervised or
semi-supervised manner [17].

2.2 Linstrat criterion and method

We think of our Linstrat method as that inspired by the idea that Pareto
boundaries, formed by consecutive “shaving” off the current Pareto bound-
ary from the dataset, can be approximated as strata between parallel hyper-
planes whose normal vector, that is, the vector of criteria weights, is taken
such that the projections of entities under consideration within each stratum
are as close to each other as possible. This idea leads to an optimization
problem described below.

Consider a set of N items evaluated over M criteria so that the evalua-
tion scores can be represented as a matrix (xi j), where i ∈ 1, ...,N are the
items or actions, j ∈ 1, ...,M criteria, and xi j is the value of jth criterion
at the ith item. Assume some criteria weights w = (w1,w2, ...,wM) such
that w j ≥ 0 at every j and ∑ j w j = 1. These weights are taken into account
in the combined criterion f = ∑

M
j=1 w jx j where x j is j-th column of ma-

trix X = (xi j). The problem is to divide the itemset in K disjoint subsets
S = {S1, ..Sk, ...,SK},k = 1, ...,K referred to as strata, according to values
of the combined criterion f . Each stratum is characterized by a value of
the combined criterion ck, referred to as the stratum value, or center. These
values are ordered so that ck > cl whenever k < l. That means that any item
from k-th stratum is ranked higher, or is more preferable, than any item
from stratum l if k < l.

Geometrically, strata are formed by layers between parallel hyperplanes
in the space of criteria. At any stratum Sk, we assume that the value of the
combined criterion fi = ∑

M
j=1 w jxi j at any i ∈ Sk approximates the stratum

value ck as much as possible. That is, in the equation xi1w1 + xi2w2 + ...+
xiMwM = ck + ei, ei is an error to be minimized over unknown weights w.
The problem of finding an optimal vector w = (w j) can be formulated as
the following optimization problem with respect to weights w j, centers ck
and partition S:
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min
w,c,S

K

∑
k=1

∑
i∈Sk

(
M

∑
j=1

xi jw j− ck)
2

such that
M

∑
j=1

w j = 1

w j ≥ 0, j ∈ 1...M.

(1)

At any given weight vector w, the criterion in (1) is but the conventional
square-error clustering criterion of K-means clustering algorithm over a
single feature, that is the combined criterion f = ∑

M
j=1 w jx j. This implies

that finding the optimal stratification S, at a pre-specified K, amounts to
finding K − 1 points dividing the f -axis in K intervals to minimize the
within-cluster variance, and the optimal centers ck are just within-cluster
means of f . An optimal stratification over a single feature can be found by
using Fisher’s dynamic programming clustering algorithm [15]. Therefore,
the difficulty in minimization of (1) is concentrated in the task of finding an
appropriate w at a given stratification S. If an algorithm for this is specified,
then one can proceed in the manner of an alternating minimization algo-
rithm: starting from some weight vector w(0), find optimal S and c. Based
on these, find an appropriate weight vector w(1), etc.

At first, we used an evolutionary algorithm for minimizing (1) with re-
spect to w at a given S and c. However, such an algorithm as a whole leads
to unstable solutions at some datasets and, moreover, the solutions at times
are inferior to those found by using other approaches [21]. A modification
based on a direct algorithm for solving the quadratic programming problem
is proposed in [24]. It starts from a random w, but leads to a stable solu-
tion in most cases. Moreover, in our experiments with synthetic datasets it
typically outperforms its competitors by a high margin [24, 25]. Therefore
we use this version of Linstrat through the entire material reported in this
report.

2.3 Taxonomic rank of a scientist

The concept of taxonomic rank is not uncommon in the sciences. More-
over, it is quite popular in biology as one of its fundamental structures:
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”A Taxonomic Rank is the level that an organism is placed within the hi-
erarchical level arrangement of life forms.”, according to a dictionary (see
http://carm.org/dictionary-taxonomic-rank). Say, Eucaryota is a domain
(rank 1) containing Animals kingdom (rank 2). The latter contains Cor-
data phylum (rank 3) which contains Mammals class (rank 4) which con-
tains Primates order (rank 5) which contains Hominidae family (rank 6)
which contains Homo genus (rank 7) which contains, at last, Homo sapiens
species (rank 8).

Domain

Rank 1 A B

Rank 2 A.1 A.2 B.1

Rank 3 A.1.1 A.1.2 A.2.1

A.1.1.1 A.1.1.2 A.1.1.3 A.1.2.1 A.1.2.2

Figure 3: An illustrative taxonomy of a domain. The triangle shows that subdo-
main A.1.2 has been seriously affected by the results in example.

According to the proposal in [19], the taxonomic rank of a scientist
should be defined in a similar way. The relevant science domain should be
structured by a hierarchical taxonomy such as that on Fig. 3. The rank of a
scientist is defined then as the rank of a subdomain which has appeared be-
cause of the scientist’s work or has been substantially transformed because
of that. For example, if a domain has been structured as shown on Fig. 3
and a scientist’s work has highly affected the subdomain labelled as A.1.2
(see the triangle indicating that), then their rank would be 3, the number of
characters, other than dot, in the code of the subdomain. Of course, this
goes in the opposite direction: the higher the rank, the lower the level.
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In a practical implementation, when scoring the level of results for a
currently living scientist, it is much easier to map their individual papers
to the taxonomy rather than the overall achievements. Indeed, the overall
achievement is not easy to formulate, whereas an individual paper usually
represents a single individual achievement which is not difficult to map to
the taxonomy, even if onto two or more subdomains. Together with the
plurality of one’s results, this leads to the issue of multiple subdomains de-
veloped or transformed by a scientist. If the work of a scientist has affected
a number of subdomains in a taxonomy, what rank should be assigned to
them?

It seems natural that the contribution of an achievement at a lower layer
to that of the highest layer achievement is less by an order of magnitude at
scoring the taxonomic rank of a scientist. Therefore, of all the levels of the
taxonomic hierarchy affected by them first and foremost the highest level
is to be used. In the case that only one subdomain is considered as highly
affected by the scientist, then their rank is defined as the taxonomy layer
to which the subdomains belongs. Such is the case illustrated on Fig. 3
if the subdomain in question is A.1.2, then the scientist’s rank is 3. In the
case when two or more subdomains on the highest level are affected by a
scientist, the rank should be further decreased within the unit interval sep-
arating the current rank from the higher one. The scale of the drop should
depend on the range of numbers of possibly affected subdomains. In our
empirical investigation, we considered, for each of the scientists in our sam-
ple, at most five papers leading to ground-breaking discoveries or methods
within the taxonomy. Thus, we thought that each additional subdomain
of the highest level affected should make a drop in the rank equal to 0.1.
Then, an additional drop caused by a node of a lower layer should be about
0.01. For example, if a scientist’s results highly affected 4 subdomains of
rank 4 and 3 subdomains of rank 3, then the taxonomy rank of the scientist
will be 2.76. Indeed, 4 subdomains of rank 4 contribute -0.01 each; one
affected subdomain of rank 3 leads to the rank value 3, and each of the two
remaining rank 3 subdomains decreases that by 0.1 so that the final rank
is 3− 2 ∗ 0.1− 4 ∗ 0.01 = 2.76. To make it simpler, we can assume that
additionally 0.1 is subtracted from each of the ranks found – this will not
affect the results of the data normalization to 0-100 scale, but the formula
for computing the rank gets very simple. To formulate it, let us denote R
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the set of nodes assigned to a scientist. Let it be partitioned in subsets Rh,
h ∈ H, of the same rank where H = (h1,h1 + 1,h1 + 2, ...,h1 + p) where
some Rh may be empty. Then the taxonomic rank of the scientist is defined
as

r = h1−
p

∑
k=1

(0.1)k ∗ |Rh1+k|

where |X | is the cardinality of set X .
This method for assigning a scientist their taxonomic rank as a measure

of the level of their results suffers of issues of which the following three
seem of importance.

First, the method is not automated. The mapping of a research paper
to the taxonomy is done manually, so that the result is highly affected by
the person(s) performing the mapping. Both the knowledge of the domain
and its history as well as the extent of understanding of the result may
vary dramatically from person to person. Still, any mapping decision is an
explicitly stated judgement which can be discussed openly and corrected if
needed. What important is that the subjective part in the decision can be
made quite minor. This much differs from the currently available method
of peer-reviewing. Indeed, peer-based results can be highly subjective and
dependent on various external features such as citation scores [11, 12, 33].

Second, there can be no regular service for updating the taxonomy of
the domain, which is the case at many domains. In this case, a ground-
breaking paper can be assigned to a wrong sub-domain just because the
proper one is not present yet in the taxonomy under consideration or be-
cause the taxonomy has not been revamped to fit into the newly acquired
evidence. In our assignments reported in the next section this did happen
more than once. Because of the presence of the senior co-author whose ca-
reer spans for the past 50 years, we did not hesitate to expand the taxonomy
with updated subdomains if we felt the existing structure was insufficient.
Which means that this drawback can be dealt with, at least partly.

Third, and foremost feature is that, unlike in biology, the taxonomies of
specific research domains, especially those being under development, can-
not be specified exactly because of the changing structure of the domain
and, therefore, are subject to much debate. Some popular concepts may be
gone after a few years, some new concepts may emerge, some new links
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can be discovered, whereas some old links may become obsolete. This is
especially true for such a dynamic area as computer-related computations
and services in which the theoretical thinking is highly affected by the in-
dustrial progress. Say, initially computers were oriented at computations,
then at data processing, and nowadays, it looks they are oriented mostly at
networking. A change in the overall perspective necessarily leads to a dras-
tic change in the taxonomy of the domain. For example, if one compares
the current ACM Computing Classification System 2012 [2] with its pre-
vious version, the ACM Classification of Computing Subjects 1998 which
is available at the same site, one cannot help but notice great differences in
both the list of subdomains and the structure of their mutual arrangement.
Yes indeed, the current taxonomies of domains can be not well structured
and, thus, unstable. However, the appreciation of the level of results goes
in line with the taxonomic structure of the domain. The more important is a
subdomain currently, the more important deemed ground-breaking results
of it. Indeed, unlike the levels of citations, the recognition of the relative
importance of this or that subdomain is subject to change. This just shows
that the domain taxonomy cannot be considered stable while the domain is
being developed, so is the level of results.

3 Empirical testing base for the taxonomic rank eval-
uation

To test our method empirically, we need, first of all, to take a sample of
scientists working in the same domain and score their contributions. The
following steps should suffice:

1. Specify a knowledge domain

2. Take its appropriate taxonomy

3. Collect a representative sample of scientists with results in the do-
main

4. For each of the scientists in the sample, map their ground-breaking
results to the taxonomy
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5. Compute the taxonomic rank of each of the scientists in the sample

Further on we describe our work on implementation of these steps.

3.1 A taxonomy of data analysis subjects

For an empirical evaluation, we decided to focus on the domain of intel-
ligent data analysis including what is referred to as machine learning and
data mining areas. We know some of its history and the current state. We
feel that our expertise in other domains is even worse. As to the taxonomy
of the domain, we tried first the taxonomy from textbook [20], then from
textbook [16] – both cover rather basic subjects only, and it remains en-
tirely unclear at which places in them real-world research results should be
mapped to. In this aspect, the ACM CCM 2012 taxonomy has proved to
give a better guidance. Parts of ACM CCS 2012 related to the domain un-
der consideration can be considered as composed of its branches presented
in Table 2.

Table 2: ACM Computing Classification System (ACM CCS) 2012 high
rank subjects related to data analysis, machine learning, and data mining.

Subject index Subject name
1. Theory of computation
1.1. Theory and algorithms for application domains
2. Mathematics of computing
2.1. Probability and statistics
3. Information systems
3.1. Data management systems
3.2. Information systems applications
3.3. World Wide Web
3.4. Information retrieval
4. Human-centered computing
4.1. Visualization
5. Computing methodologies
5.1. Artificial intelligence
5.2. Machine learning
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This part extended by finer concepts from ACM CCS 2012 and slightly
updated is presented in Table 3. Parts of the hierarchy not affected by the
mapping of research results are minimized. The update refers to adding
items not covered in the taxonomy, yet concerning outsanding results by
scientists from our sample. These concern, as a rule, only leaves of the tree,
as can be seen in Table 3. This table represents that part of the taxonomy
which has been used for mapping there outstanding results by scientists
from our sample. The subdomains (taxonomy nodes) affected by these re-
sults are marked by one or two stars. A one star node refers to a subdomain
from ACM-CCS 2012; a two star node refers to a subdomain added by us.

Table 3: ACM CCS 2012 based taxonomy of data analysis, machine learning and
data mining. A star marks a taxon that has been seriously affected by a scientist
from our sample. Two stars mark taxa added by the authors.

Index Subject name
1. Theory of computation
1.1. Theory and algorithms for applications
1.1.1. Machine learning theory
1.1.1.1. Sample complexity
1.1.1.2. Boolean function learning
1.1.1.3.* Unsupervised learning and clustering
1.1.1.4. Kernel methods
1.1.1.4.1. Support vector machines
1.1.1.4.2. Gaussian processes
1.1.1.4.3.** Modelling
1.1.1.5. Boosting
1.1.1.6.* Bayesian analysis
1.1.1.7.-12. · · ·
2. Mathematics of computing
2.1. Probability and statistics
2.1.1. Probabilistic representations
2.1.1.1. Bayesian networks
2.1.1.2.* Markov networks
2.1.1.3.-8. · · ·
2.1.1.8.1. Kernel density estimators

2.1.1.8.2. Spline models

2.1.1.8.3.* Bayesian nonparametric models
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Index Subject name
2.1.2. Probabilistic inference problems
2.1.2.1. - 3.6. · · ·
2.1.3.7. Kalman filters and HMMs
2.1.3.7.1** Factorial HMM
2.1.3.8. - 5.3. · · ·
2.1.5.3.1.* Robust regression
2.1.5.4. - 10. · · ·
2.1.6. - 2.1.9. · · ·
3. Information systems
3.1. Data management systems
3.1.1. Database design and models
3.1.1.1. - 5. · · ·
3.1.1.5.2.* Data streams
3.1.1.5.3. - 7. · · ·
3.1.2. Data structures
3.1.2.1. Data access methods
3.1.2.1.1.* Multidimensional range search
3.1.2.1.2.- 5. · · ·
3.1.2.2. - 5.9. · · ·
3.2. Information systems applications
3.2.1. Data mining
3.2.1.1. Data cleaning
3.2.1.2. Collaborative filtering
3.2.1.2.1** Item-based
3.2.1.2.2** Scalable
3.2.1.3.* Association rules
3.2.1.3.1** Types of association rules
3.2.1.3.2** Interestingness
3.2.1.3.3** Parallel computation
3.2.1.4. Clustering
3.2.1.4.1** Massive data clustering
3.2.1.4.2** Consensus clustering
3.2.1.4.3** Fuzzy clustering
3.2.1.4.4** Additive clustering
3.2.1.4.5** Feature weight clustering
3.2.1.4.6** Conceptual clustering
3.2.1.4.7** Biclustering
3.2.1.5. Nearest-neighbor search
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Index Subject name
3.2.1.6.* Data stream mining
3.2.1.7** Graph mining
3.2.1.7.1** Graph partitioning
3.2.1.7.2** Frequent graph mining
3.2.1.7.3** Graph based conceptual clustering
3.2.1.7.4** Anomaly detection
3.2.1.7.5** Critical nodes detection
3.2.1.8.** Process mining
3.2.1.11** Text mining
3.2.1.11.1** Text categorization
3.2.1.11.2** Key-phrase indexing
3.2.1.10.** Data mining tools
3.2.1.9** Sequence mining
3.2.1.9.1.** Rule and pattern discovery
3.2.1.9.2.** Trajectory clustering
3.2.1.9.3** Market graph
3.2.1.12** Formal concept analysis
3.3. World Wide Web
3.3.1. Web mining
3.3.1.1. - 5. · · ·
3.3.1.6** Knowledge discovery
3.4. Information retrieval
3.4.1. Document representation
3.4.1.1. - 5. · · ·
3.4.1.6.* Ontologies
3.4.1.7. Dictionaries
3.4.1.8. Thesauri
3.4.2. - 3. · · ·
3.4.4. Retrieval models and ranking
3.4.4.1.* Rank aggregation
3.4.4.2. - 4. · · ·
3.4.4.5.* Learning to rank
3.4.4.6. - 7.3. · · ·
4. Human-centered computing
4.1. Visualization
4.1.2. Visualization techniques
4.1.2.1. - 6. · · ·
4.1.2.7** Elastic maps
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Index Subject name
4.1.3. Visualization application domains
4.1.3.1.-4. · · ·
4.1.4. - 7. · · ·
5. Computing methodologies
5.1. Artificial intelligence
5.1.1. Natural language processing
5.1.1.2. - 7. · · ·
5.1.1.7.1** Wikipedia based semantics
5.1.1.8. Phonology / morphology
5.1.1.9. Language resources
5.1.2. Knowledge representation and reasoning
5.1.2.1.- 3. · · ·
5.1.2.4.* Probabilistic reasoning
5.1.2.5. -12. · · ·
5.1.3. Computer vision
5.1.3.1. Computer vision problems
5.1.3.1.1. Interest point and salient region detections
5.1.3.1.2. Image segmentation
5.1.3.1.3. - 10. · · ·
5.1.3.2. Computer vision representations
5.1.3.2.1. Image representations
5.1.3.2.1.1* 2D PCA
5.1.3.2.2. Shape representations
5.1.3.2.3. Appearance and texture representations
5.1.3.2.4. Hierarchical representations
5.2. Machine learning
5.2.1. Learning paradigms
5.2.1.1. Supervised learning
5.2.1.1.1.* Ranking
5.2.1.1.2. Learning to rank
5.2.1.1.3.* Supervised learning by classification
5.2.1.1.4. - 6. Supervised learning by regression
5.2.1.2. Unsupervised learning
5.2.1.2.1.* Cluster analysis
5.2.1.2.2.* Anomaly detection
5.2.1.2.3.* Mixture modeling
5.2.1.2.4. Topic modeling
5.2.1.2.5. Source separation
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Index Subject name
5.2.1.2.6. Motif discovery
5.2.1.2.7.* Dimensionality reduction and manifold learning
5.2.1.2.7.1** Graph embedding
5.2.1.2.7.2** Supervised dimesionality reduction
5.2.1.3. - 2.6. · · ·
5.2.2.7.* Semi-supervised learning settings
5.2.2.7.1.** Kernel approach
5.2.3. Machine learning approaches
5.2.3.1. Classification and regression trees
5.2.3.1.1** Parallel implementation
5.2.3.1.2** Splittting criteria
5.2.3.1.3** Model trees
5.2.3.2. Kernel methods
5.2.3.2.1.** Kernel support vector machines
5.2.3.2.1.1** Dynamic kernel SVM
5.2.3.2.2. Gaussian processes
5.2.3.2.3** Kernel matrix
5.2.3.2.4** Kernel independent components
5.2.3.2.5** Kernel-based clustering
5.2.3.3. Neural networks
5.2.3.3.1** Self-organized map
5.2.3.3.2** Training approaches
5.2.3.3.2.1** Evolutionary approach
5.2.3.3.3** Representation
5.2.3.3.3.1** Rule-based netwok archirtecture
5.2.3.3.3.2** Fuzzy representation
5.2.3.3.4** Evolving NN
5.2.3.3.5** Ensembling
5.2.3.4. Logical and relational learning
5.2.3.4.1. Inductive logic learning
5.2.3.4.2. Statistical relational learning
5.2.3.5.* Learning in probabilistic graphical models
5.2.3.5.1.* Maximum likelihood modeling
5.2.3.5.2. Maximum entropy modeling
5.2.3.5.3. Maximum a posteriori modeling
5.2.3.5.4.* Mixture models
5.2.3.5.5. Latent variable models
5.2.3.5.6.* Bayesian network models
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Index Subject name
5.2.3.5.7.** Markov network models
5.2.3.6. Learning linear models
5.2.3.6.1. Perceptron algorithm
5.2.3.6.2** Linear discriminant analysis
5.2.3.6.2.1** Tensor representation
5.2.3.7.* Factorization methods
5.2.3.7.1.* Non-negative matrix factorization
5.2.3.7.2. Factor analysis
5.2.3.7.3. Principal component analysis
5.2.3.7.3.1** 2D PCA
5.2.3.7.3.2** Sparse PCA
5.2.3.7.4. Canonical correlation analysis
5.2.3.7.5.* Latent Dirichlet allocation
5.2.3.7.6.** Independent component analysis
5.2.3.7.7** Nonlinear principal components
5.2.3.7.8** Multidimentional scaling
5.2.3.7.8.1** Least moduli
5.2.3.8. Rule learning
5.2.3.8.1.** Neuro-fuzzy approach
5.2.3.9. - 13. · · ·
5.2.3.13.1.* Deep belief networks
5.2.3.14** Multiresolution
5.2.3.15** Support vector machines
5.2.4. Machine learning algorithms

5.2.4.1.
Dynamic programming for Markov

decision processes
5.2.4.1.1.- 2.2. · · ·
5.2.4.2.3.** Fusion of classifiers
5.2.4.3. Spectral methods
5.2.4.3.1** Spectral clustering
5.2.4.4. Feature selection
5.2.4.5. Regularization
5.2.4.5.1** Generalized eigenvalue
5.2.5. Cross-validation
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3.2 Sample of scientists and their taxonomic ranks

In our sampling, we rely on Google citation indexes and try to pick up those
with maximum citations. Ideally, we wanted to take about 15-20 scientists
from the USA and a couple of scientists from a country such as Australia,
Canada, China, France, Germany, Netherlands, Russia, United Kingdom,
etc., so that the relative contributions by countries would be reflected in the
sample. This also would warrant a variation in citation levels: from many
dozen thousands at some of the USA scientists to a very few thousands at
those in Europe. This ideal composition, though, was difficult to achieve
because for any scientist from the sample we needed data not only on ci-
tation and taxonomic rank, but on merit as well. The merit data was not
always on display, so that we went as far as to contact those of the sampled
scientists for whom the merit data was not easily available, asking them
to fill in the slots of the numbers of successful PhDs supervised, journal
editing positions, and chairing at conferences. Unfortunately, not all of the
addressees replied to our messages, so that we had to remove from the sam-
ple those whose merit data were missing. In our final sample there are 30
active scientists in the domain.

Now comes a most controversial part of this project – establishing
which areas of the domain have been developed or transformed by this or
that scientist from the sample. One of the aspects under fire is crediting
somebody for this or that result. Indeed, in the current era of globalization
any idea of merit can be traced back to, usually, multiple origins. We ac-
cept an easy touch position so that a person is credited with an innovation if
this is what they claim themselves, and an important part of the community
does support the claim. Another issue is a correct interpretation of the set
of main contributions by a person. How can one select the most important
items from a few hundred publications? In no way can we claim that our
selections have been correct in all the cases; we only hope that did not do
much harm because we selected a number of publications, usually from 4
to 6, (co-)authored by each scientist from our sample. Another, even more
controversial issue is of choosing subdomains in the taxonomy drastically
affected by this or that publication. This is accompanied with a bunch of
more-or-less arbitrary decisions starting from deciding was this or that ef-
fect drastic indeed and finishing by a decision to add this or that node to
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the taxonomy. Luckily, the AMS-CCS 2012 is flexible enough to admit
different interpretations of the same term. For example, “Clustering” ap-
pears in it as part of 1.1 Theory and algorithms for application domains,
as well as part of 3.2. Information systems applications, as well as part of
5.2. Machine learning. This allows to properly choose a location within the
taxonomy for both algorithms, systems and applications.

All in all, our main argument for the usefulness of our approach is a
clear visibility of the entire argument from a piece of work (paper) to for-
mulation of a result to mapping that to a specific (set of) node(s). This gives
to anybody an opportunity to operationally discuss and correct, if needed,
any part of the picture. The only issue preventing us from presenting all
the detail of the dataset and its mapping to the taxonomy is that the project
involves scientists’ names. We think that there is a kind of an implicit uni-
versal non-disclosure agreement making it inconvenient to collect a dataset
about peer scientists for publicly ranking them without their consent or even
their knowledge of that. The only exception from this “agreement” that can
be admitted here are the names of Dr. Panos Pardalos and Dr. Boris Mirkin.
There are two reasons for that. First, each of the two did want to be included
into the sample, whatever the ranks found. Second, this disclosure makes
an evidence that our data relate to real, not imaginary, scientists. Therefore,
we report here that P. Pardalos is labeled as S19 and Boris Mirkin as S5, in
our sample.

Table 4: Mapping main research results to the taxonomy: nodes affected;
taxonomic ranks Tr; taxonomic ranks normalized Trn; three strata.

# Mapping to taxonomy Layers Tr Trn Stratum
S1 4.1.2.7, 5.2.1.2.7, 5.2.3.7.7 4,5,5 3,88 73 1

S2
2.1.1.2, 2.1.1.2, 5.2.2.7,

5.2.3.5, 5.2.3.5 4,4,4,4,4 3.50 100 1

S3
3.2.1.4.2, 5.2.1.2.3, 5.2.1.2.7,

5.2.3.5.4 , 5.2.3.7.6 5,5,5,5,5 4.50 29 2

S4
1.1.1.4.3, 3.4.4.5, 5.2.1.1.1,
5.2.1.2.7, 5.2.3.2.1,5.2.3.7.8 5,4,5,5,5,5 3.90 71 1

S5
3.2.1.4.4, 3.2.1.4.4, 3.2.1.4.5,

3.2.1.4.6, 3.2.1.11.1 5,5,5,5,5 4.50 29 2
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# Mapping to taxonomy Layers Tr Trn Stratum

S6
3.1.1.5.2, 3.1.2.1.1, 3.1.2.1.1 ,

3.2.1.6., 3.2.1.7 5,5,5,4,4 3.77 81 1

S7 5.2.3.5.6, 5.2.3.5.7 5,5 4.80 7 3

S8
3.2.1.3.1, 3.2.1.4.1, 5.2.3.3.1,

5.1.3.2.1, 5.1.3.2.4 5,5,5,5,5 4.50 29 2

S9
5.2.1.2.3, 5.2.3.3.2, 5.2.3.5.1,

5.2.3.5.4, 5.2.3.6.2 5,5,5,5,5 4.50 29 2

S10 5.2.3.3.2, 5.2.3.13.1 5,5 4.80 7 3

S11
3.2.1.2, 3.2.1.2.1,3.2.1.3.3,

3.2.1.4.1, 3.2.1.7.2 4,5,5,5,5 3.86 74 1

S12
3.2.1.9.1.1,3.2.1.10,3.2.1.11.2,

5.1.1.7.1,5.2.3.1.3,5.2.3.4.1 6,4,5,5,5,5 3.86 74 1

S13
1.1.1.3, 5.2.1.2.1,5.2.1.2.1,

5.2.2.7.1,5.2.3.7.1 4,5,5,5,5 3.86 74 1

S14 3.2.1.3.1 5 4.90 0 3
S15 5.2.4.3.1 5 4.90 0 3
S16 5.2.4.2.3 5 4.90 0 3

S17
2.1.3.7.1, 5.2.4.3.1, 5.2.3.7.5,

5.2.1.2.4, 5.2.3.2.4, 5.2.3.7.3.2,
5.2.3.5.4., 5.2.4.3.1

5,5,5,5,6,5,5 4.39 36 2

S18 3.2.1.9.1,3.2.1.9.2,5.2.3.3.3.1 5,5,6 4.79 8 3

S19
3.2.1.7.5, 3.2.1.9.3, 5.2.3.2.1.1,

5.2.4.5.1 5,5,6,5 4.69 15 3

S20 3.2.1.4.3,5.2.3.7.7,5.2.3.7.8.1 5,5,6 4.79 8 3

S21
1.1.1.6, 2.1.1.2, 2.1.1.8.3,
3.2.1.6, 3.4.1.6, 5.1.2.4,

5.2.1.1.3
4,4,5,4,4,4,5 3.57 95 1

S22
3.2.1.2.2, 5.2.1.2.7.1, 5.2.3.1.2,

5.2.3.6.2.1 5,6,5,6 4.78 9 3

S23 3.2.1.3, 3.2.1.3.1, 3.4.4.1 4,5,4 3.79 79 1
S24 2.1.5.3.1 5 4.90 0 3
S25 5.2.3.3.3.2, 5.2.3.8.1 6,5 4.89 1 3

S26
3.2.1.11.1, 3.2.1.11.1, 3.3.1.6,

5.2.2.7,5.2.3.5.6 5,5,4,4,5 3.77 81 1

S27
3.2.1.3.2, 3.2.1.4.1, 5.2.1.2.1,

5.2.3.1.1 5,5,5,5 4.60 21 2

S28 3.2.1.8 4 3.90 71 1
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# Mapping to taxonomy Layers Tr Trn Stratum
S29 5.2.3.3.2.1, 5.2.3.3.3.3, 5.2.3.3.4 6,6,5 4.88 1 3
S30 5.1.3.2.1.1, 5.2.1.2.7.2, 5.2.3.3.5 6,6,5 4.88 1 3

The results of mapping of scientists from our sample to the taxonomy are
presented in Table 4. The table also presents the derived taxonomic ranks
and the same ranks, 0-100 normalized. The normalization went according
to the accepted rule except that the minimum rank, 3.50, gets a 100 mark,
and the maximum one, 4.89, gets a 0. By looking at the values of the
taxonomic rank, it seems quite obvious that the number of strata should be
set to 3, as most values concentrate around 0, 30 and 70 or more. This
specifies the number of strata, three, to look for over all the criteria under
consideration.

4 Citation and merit lining-up

4.1 Scoring citation and merit

There are a number of engines to score citation indexes of scientists. They
are slightly differing over the databases of publications involved or the
time periods used in evaluations or some formulaic modifications. Yet
there are no verified claims of superiority or inferiority of ones over others.
Therefore we limit ourselves with the citation indexes routinely available at
Google Scholar. The three metrics readily available for every scientist who
has arranged their Scholar Google profile are:

• Number of citations that the scientist has received (Citations);

• Number of their papers received at least 10 citations (#10);

• Hirsch index (H): The number h of papers that received at least h
citations.
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Table 5: Statistics for citation metrics: total number of citations, number
of papers received 10 or more citations, and Hirsch index; at 2013 (real, on
the left), at 2014 (normalized, on the right), gains in 2014 (in the middle).

In 2013 Gains, % Normalized 2014
# Citations #10 Hirsch Citat. #10 Hirsch Citat. #10 Hirsch
S1 5138 101 32 11 6 3 0 8 9
S2 37371 175 78 15 4 4 20 20 46
S3 113240 476 144 14 6 4 68 70 100
S4 70932 292 98 17 15 5 41 40 63
S5 5205 61 31 16 7 3 0 2 8
S6 47844 316 96 15 10 8 27 44 61
S7 38862 299 97 16 44 4 21 41 62
S8 9400 119 46 14 7 2 3 11 20
S9 26630 134 42 18 12 8 14 14 17

S10 92538 239 102 32 4 15 55 31 66
S11 39468 182 73 13 6 6 22 22 42
S12 55831 220 65 16 4 5 32 28 36
S13 14653 104 53 18 12 6 6 9 26
S14 95598 608 122 19 40 7 57 91 82
S15 84127 179 83 25 7 4 50 21 50
S16 12028 86 45 17 10 7 4 6 20
S17 77512 342 116 19 12 9 45 48 77
S18 30009 150 65 14 8 7 16 16 36
S19 26220 402 76 7 7 1 13 58 45
S20 5408 50 21 2 6 -9 0 0 0
S21 24117 121 70 14 7 9 12 12 40
S22 18665 260 70 26 12 11 9 34 40
S23 82781 203 89 10 4 1 49 25 55
S24 164251 280 108 16 10 7 100 38 71
S25 5530 50 29 16 11 7 0 0 7
S26 29334 155 65 11 8 5 15 17 36
S27 54579 661 87 11 23 4 31 100 54
S28 54098 472 111 1 1 0 31 69 73
S29 23773 309 69 16 14 10 12 42 39
S30 14954 179 61 31 20 13 6 21 33
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Table 6: Three merit criteria: PDS – number of successful PhDs supervised,
CC - number of conferences (co)-chaired, EJ - the number of journals (co)-
edited, both real and 0 -100 normalized.

Merits Normalized values
# PDS CC EJ PDS CC EJ

S1 28 5 2 49 6 3
S2 15 12 4 22 16 8
S3 38 24 9 69 31 22
S4 9 5 8 10 6 19
S5 16 21 4 24 27 8
S6 18 6 1 29 8 0
S7 4 0 1 0 0 0
S8 7 19 6 6 25 14
S9 11 5 16 14 6 42
S10 30 36 2 53 47 3
S11 12 7 5 16 9 11
S12 5 20 6 2 26 14
S13 8 7 5 8 9 11
S14 8 11 2 8 14 3
S15 31 3 2 55 4 3
S16 5 1 2 2 1 3
S17 34 2 8 61 3 19
S18 12 6 6 16 8 14
S19 53 77 27 100 100 72
S20 10 2 5 12 3 11
S21 9 7 1 10 9 0
S22 6 18 8 4 23 19
S23 9 9 9 10 12 22
S24 17 3 8 27 4 19
S25 7 7 3 6 9 6
S26 30 30 6 53 39 14
S27 25 28 12 43 36 31
S28 16 29 37 24 38 100
S29 13 28 15 18 36 39
S30 7 16 17 6 21 44
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Table 5 contains values of the three criteria in July 2013 as well as
the gain values, per cent, showing how much they increased to September
2014. Three columns on the right in Table 5 present criteria values in 2014
normalized so that the minimum is 0 and maximum, 100. Although some
empirical proof of stability of the Linstrat stratification method has been
described in [24], these two data sets can be used to further check for the
stability of the method.

Merit of a scientist is a rather vague concept to represent the level of
services to and appreciation of the scientist by the ”research community”.
Of many possible criteria we select those related to the success of the ”re-
search school” established by the scientist and the level of recognition of
them. Of course, the levels of citations reflect both. Yet here we are go-
ing to use measures related to personal efforts made and personal positions
taken by a scientist.

The success manifests itself both scientifically and administratively.
The former can be measured by the number of successful PhD students
(co)-supervised by the scientist. The latter can be measured by the number
of research publishing journals at which the scientist has a role. The level
of recognition can be measured by the number of conferences at which the
scientist has been invited to give a plenary presentation or to participate in
organization of. With some adjustment, these three can be expressed, for a
scientist, as

• Number of successful PhD students supervised (PDS);

• Number of scientific journals in which they have been chief or asso-
ciate editor (at any time) or a member of the editorial board currently
(EJ);

• Number of conferences at which they have participated as either
chair or co-chair or program-chair or keynote-chair or deputy chair
or global chair (CC).

These data over our sample of 30 scientists are presented in Table 6.

4.2 Combined criteria and stratifications obtained

Here are the results of the analyzes over the data in Tables 4, 5, 6:
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1. Found a 3-strata stratification over three citation features in Table 5.
The combined criterion is formed with weights 0.5, for Citations,
0.5, for #10, and 0 for Hirsch over the data at 2014. For the data
of 2013, the respective weights are 0.44 (Citations), 0.56 (#10), 0
(Hirsch). Given that the Citations criterion grew by two-digit per-
centage points from 2013 to 2014 at 90% of the sample while the
#10 criterion by only a one-digit per cent value in most cases, the
change of the weights between the two criteria from 2013 to 2014 is
consistent. The fact that the Hirsch index criterion’s weight is 0 in
both cases goes in line with the overwhelming critiques the criterion
has been exposed to recently, see [3, 26, 30, 33].

2. Found a 3-strata stratification over three merit features in Table 6.
The combined criterion is formed with weights 0.22 at PDS, 0.10 at
CC, and 0.69 at EJ. The relative weight values are consistent with our
intuition based upon the prevailing practice of mantaining a heavy
and just submission reviewing process in leading journals.

3. Found a panoramic stratification embracing all the three aspects of
the researcher’s impact combined: level of results, level of citation,
and level of merit. The combined panoramic criterion according to
Linstrat is formed by summing those three with the weights 0.80
(Taxonomy rank), 0.04 (Combined citation), and 0.16 (Combined
merit), which also corresponds to our intuition.

We summarize these results in Table 7, for the weights, and in Table 8, for
the combined criteria and stratifications.

Table 7: Weights of individual criteria in: Citation combined, Merit com-
bined, and Research impact panoramic.

CCitation CMerit Panoramic
Citations 0.5 PDS 0.22 Taxonomic rank 0.80
#10 0.5 CC 0.10 Citation combined 0.04
Hirsch 0.0 EJ 0.69 Merit combined 0.16
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Table 8: Stratifications and combined criteria values at the sample of scien-
tists over various sets of criteria.

#t Cc Ccn Mc Mcn Trn P Pn Cs Ms Ts Ps
S1 4 5 13 17 73 61 73 3 3 1 1
S2 20 27 12 15 100 84 100 3 3 1 1
S3 69 93 33 41 29 33 39 1 2 2 2
S4 41 55 16 19 71 62 74 2 3 1 1
S5 1 1 13 17 29 26 30 3 3 2 2
S6 35 48 7 9 81 68 81 2 3 1 1
S7 31 42 0 0 7 7 8 2 3 3 3
S8 7 9 13 16 29 26 31 3 3 2 2
S9 14 19 32 40 29 30 36 3 2 2 2
S10 43 58 18 23 7 11 13 2 3 3 3
S11 22 30 12 15 74 63 75 3 3 1 1
S12 30 41 12 15 74 63 76 2 3 1 1
S13 7 10 10 13 74 62 74 3 3 1 1
S14 74 100 5 6 0 5 5 1 3 3 3
S15 36 48 15 18 0 5 5 2 3 3 3
S16 5 7 3 3 0 1 0 3 3 3 3
S17 46 63 27 33 36 37 43 2 2 2 2
S18 16 22 14 17 8 10 11 3 3 3 3
S19 35 48 81 100 15 30 35 2 1 3 2
S20 0 0 10 13 8 8 9 3 3 3 3
S21 12 16 3 4 95 78 93 3 3 1 1
S22 21 29 16 20 9 11 13 3 3 3 3
S23 37 50 18 23 79 70 83 2 3 1 1
S24 69 93 19 24 0 7 8 1 3 3 3
S25 0 0 6 8 1 2 2 3 3 3 3
S26 16 22 25 31 81 71 84 3 2 1 1
S27 65 88 34 42 21 27 32 1 2 2 2
S28 50 68 77 96 71 75 89 2 1 1 1
S29 27 36 34 42 1 9 10 2 2 3 3
S30 13 18 33 41 1 8 9 3 2 3 3
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The Table 8 presents both stratifications and combined criteria values
at the sample of scientists over various sets of criteria. Specifically, Cc and
Ccn are the citation combined criterion values as computed and normalized
to 0-100 scale, respectively; Mc and Mcn are the merit combined criterion
values as computed and normalized to 0-100 scale, respectively; Trn is the
taxonomic rank normalized; P and Pn is the panoramic combined criterion
values as computed and normalized to 0-100 scale, respectively. The right
part of the table contains three-strata stratifications Cs, Ms, Ts, and Ps over
combined criteria in the normalized to 0-100 scale format, Ccn, Mcn, Trn,
and Pn, respectively.

To further summarize these results, let us take Pearson correlation co-
efficients between the four criteria, Cc, Mc,T, and P, as well as Spearman
correlation coefficients between the stratification rankings, Cs,Ms,Ts, and
Ps. They are presented in Table 9.

Table 9: Pairwise correlation values between both the four criteria, Pearson
coefficients, and between the four stratifications, Spearman coefficients.

Criteria Stratifications
Ccn Mcn Pn Cs Ms Ps

Tr -0.12 -0.04 0.99 Ts -0.12 -0.02 0.98
Cc 0.31 -0.04 Cs 0.25 - 0.10
Mc 0.10 Ms 0.06

As one can see, the three aspects under consideration, Citation, Merit,
and Taxonomy rank, are rather uncorrelated pair-wise, which justifies, up
to the extent of the representativeness of our sample, the choice for mea-
surement scales of these aspects. Yet the two indirect scales, Citation and
Merit, are somewhat positively correlated, probably to that extent at which
they both relate to the popularity of a scientist. Of course, the compre-
hensive Panoramic criterion much correlates with its major constituent, the
Taxonomy rank. Especially impressive this correlation is at the stratifica-
tions: Ps almost coincides with Ts, differing from Ts by just one scientist’s
move from stratum 3 to stratum 2.

On the level of individual researchers, S5 and S19, their lot put them
into the middle lane, stratum 2, of the Panoramic scale. Yet the trajectories
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are different. Scientist S5, Boris Mirkin, makes very little on both, Citation
and Merit, scales, yet falls in stratum 2 over the Taxonomy. In contrast,
scientist S19 is good on both Citation and Merit, especially on the latter,
where he is the best of the entire sample and shares the stratum Ms=1 with
just one other researcher. He falls within Ps=2 just because the papers that
have been published by him on data analysis, although quite fine from the
optimality point of view, did not pay much attention to the structure of the
data analysis area. It seems rather obvious that with the publication of his
more recent results on deriving deep hidden features [13, 28], P. Pardalos
will be getting a higher rank at the ACM-CCS taxonomy, which should
propel him to much higher scores on that in a very near future.

5 Conclusion

The described is an attempt at taking a more rounded view on the problem 
of evaluating impact of a researcher than it is considered usually. Rather 
than dwelling on conventional citation scoring or more recent network re-
lated scoring or even somewhat controversial peer-review evaluations, we 
come up with an idea that the impact cannot be properly evaluated without 
looking at the meaning and level of the research results obtained by sci-
entists. We realize that the idea is not quite novel philosophically, so to 
speak. Yet it is quite novel computationally, as we develop an operational 
approach to implement the idea by mapping the published research results 
to a taxonomy of the domain and, moreover, we explicitly show how this 
can be done by presenting an example of such an evaluation. The example 
concerns the very area at which we conduct our research projects ourselves, 
the domain of data analysis, data mining, and machine learning. We take a 
small sample of scientists in this area so that we are able to manually map 
their research results to a suitable taxonomy, which is an adaptation of the 
ACM CCS 2012 taxonomy.

We also tackle two other aspects of the impact, citation and merit, by
using three operationally defined criteria for each. To combine the criteria,
we find such a weighting of them that approximates the Pareto slices with
between-hyperplane layers. Although rather unconventional, this approach
has been found competitive [21, 24, 25].
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Our empirical results are well matching the conventional wisdom, es-
pecially in the following:

1) The controversial Hirsh index has disappeared in our project by it-
self, that is, its automatically derived weight versus two other citation cri-
teria appears to be 0, at least at our sample.

2) When developing a most comprehensive, the Panoramic, criterion,
its constituting combined criteria – Citation, Merit, and Level of results –
get respective weights 0.04, 0.016, and 0.80, which is far from uniform, yet
much consistent with intuition.

3) The three combined criteria are not correlated, except for a small
positive correlation value between the Citation and Merit combined, prob-
ably because both reflect popularity of a scientist.

These conclusions go in line with the common wisdom, which may
make them looking somewhat suspicious. But all the results have been
computed from the data without any attempt at trimming them. We make
our data available in the Tables 4, 5, 6, and 8 so that everybody could make
their own computations. And we can open the identities of the members of
our sample if needed indeed.

The results suggest directions for future work. First of all, we would
like to further verify our stratification method. For example, quite different
but well justified methods, such as those in [4] and [27], should be applied
to these data so that one can take a look at how much the results are similar
and dissimilar and, depending on that, take next steps in this direction. An-
other direction would be in extending the empirical research both in getting
larger samples and tackling on other research domains. Next, we should
try to automate the task of mapping one’s research results to the taxonomy.
Moreover, we should take a look whether other uncorrelated dimensions for
research impact exist and, if yes, what are they and how one could measure
them. Making these and similar steps will bring us closer to the final goal
of developing a comprehensive measure of research impact.
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таксономии, которые возникли или были существенно преобразованы благодаря этим резуль-
татам. Рассматриваются также два существующих подхода к оценке научного вклада, (а) по 
уровню цитируемости и (б) по уровню заслуг. Для агрегирования отдельных критериев внутри 
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