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DISTORTION IN SCREENING

AND SPATIAL PREFERENCES

Abstract

We study a multidimensional screening problem with minimal restrictions on valua-
tions. Our ε-relaxation of the constraints excludes bunching and cycles in the graph
of active incentive-compatibility constraints. Therefore, the Lagrange multipliers do
exist and enable us in characterizing distortion. In particular, under �spatial� pref-
erences that include both the Hotelling and the Spence-Mirrlees cases, the solution
has a simple planar graph. Consequently, the pattern of distortion is centrifugal,
i.e., the points of service are biased towards the low-valuation market segments.

Keywords: incentive compatibility, multidimensional screening, second-degree price
discrimination, non-linear pricing, product line, distortion, envy-graphs.

JEL Codes: D42, D82, L10, L12, L40.

1 Introduction

The modern theory of screening or non-linear pricing does consider multidimensional goods
or services, or/and situations when consumers' valuations for the commodity are not strictly
ordered either in a vertical or a horizontal sense (see reviews by Rochet and Stole (2003),
Armstrong (2006), Stole (2007)). �Vertically ordered� valuations in our context mean that they
satisfy the Spence-Mirrlees single-crossing condition (SCC).4 That is, a higher-type agent values
the commodity higher, the valuations cross only once at zero and the demands do not cross.
Another popular simplifying assumption originating from Hotelling's linear-city model is the
�horizontal� ordering: all agents are identical, except for the locations of their bliss points in
some unidimensional space of quantity/quality. Thus, non-participation by the consumers does
not imply a common outside option, but the level of reservation utility is the same for all

1National Research University Higher School of Economics, pr. Rimskogo-Korsakova, 47, St. Petersburg
190068, Russia: tel/fax 8-812- 6779384, and National Research University Novosibirsk State University, ul.
Pirogova, 2, Novosibirsk 630090, Russia, skokov7@gmail.com

2Department of Economics, University of Louisville, Louisville, Kentucky 40292, USA. e-mail: na-
hata@louisville.edu

3Evgeny Zhelobodko: in memoriam 25.09.1973�27.03.2013. Kokovin gratefully acknowledges the support from
the Economics Education and Research Consortium Inc (EERC)�grant 06-056; grants RFBR 12-06-00174a, and
11.G34.31.0059 from the Russian Government. Nahata acknowledges support from the University of Louisville.
We thank R. Ericson, V. Polterovich and A. Savvateev for their valuable comments.

4When a consumer type i has some willingness-to-pay or monetary valuation Vi(x) for quantity/quality x ≥ 0,
SCC is usually understood as V ′i+1(x) > V ′i (x) ∀i, x, Vi(0) = 0.
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types. Under both these simplifying assumptions, the conclusions about the solution structure,
distortion and informational rent are well known. Vertical ordering ensures e�ciency at-the-
top (the highest-demand type) and a downward distortion below with informational rent for
all higher types. Horizontal ordering under monopoly results in overall e�ciency without any
informational rent (see Nahata et al., 2003, Andersson, 2008). Without these two traditional
restrictions on the preference ordering, similar conclusions become more complicated, but we
show that the topic is tractable.

In order to motivate our paper, consider the Hotelling linear city, but consisting of many
blocks. Each block is inhabited by a block-speci�c mass of consumers with a block-speci�c
reservation utility, some blocks may be empty. A monopolist designs a pizzeria chain, serving
each block with its own pizzeria, or may leave some blocks unserved. The four questions we
address are: How to �nd the location/pricing solution? Will the solution be socially e�cient or
distorted? Will the location pattern be grouped towards the consumers with higher willingness
to pay, or dispersed? Who gets the informational rent?

Though formally we focus on monopoly, our intention in the design of the model is also to in-
clude indirectly oligopolistic markets with free entry, for example fast-food chain stores. In such
situations, when designing a menu for all blocks, each �rm considers the existing price/location
bundles of other �rms as given multiple outside options, which becomes a feature of our paper.
We study mainly product lines (screening) in one- or two-dimensional quality-spaces, both for
a general case and also under a speci�c �spatial� class of preferences, somewhat di�erent from
two most standard classes of preferences (Spence-Mirrlees or Hotelling).

More speci�cally, this paper considers a discrete product line for discrete consumer types.5

The setting is almost standard but for the two features. The �rst is di�erent outside options for
di�erent consumers. A rare example of multiple outside options in screening theory is Rochet
and Chone (1998), who study bunching�same bundles for di�erent types of consumers. We
use this feature to build a bridge from monopolistic to oligopolistic free-entry screening that
remains inadequately explored. Our second and the main novelty is the ε-relaxation of the
incentive-compatibility constraints. It allows us to get rid o� �essential� bunching (see de�ni-
tions in Section 3). Then, Proposition 1 guarantees the existence of the Lagrange multipliers
(we enforce similar proposition from Kokovin et al., 2011). Because of bunching the existence
of the Lagrange multipliers has remained problematic so far in the screening theory. This ques-
tion is important, because the multipliers are the key to �nding solutions and in characterizing
distortion in non-trivial situations. Furthermore, the relaxation enables us to completely char-
acterize the class of possible graph structures for screening solutions: they are in-rooted acyclic
graphs (Kokovin et al., 2011). The �envy-graph� of a solution is the list of its active incentive-
compatibility constraints, perceived as arcs directed from the �envying� (almost eager to switch)
agent to the envied quality-tari� bundle.

After some preliminaries, Theorem 1, without any essential restrictions on valuations, states
that similar to SCC the direction of distortion is always governed by �envy� directed from a
high-demand consumer to a low-demand consumer, the lower types get the distorted bundles
and the higher types enjoy the informational rent. Extending this result from SCC to the general
case may seem trivial. However, our necessary and su�cient conditions and the mistakes in the
previous literature (discussed together with the theorem) show that there are complications. In
particular, in de�ning �envy� the literature broadly confuses between �active� and �binding� con-

5Discrete types should be understood as approximation, what we may have in mind here is a continuous
population interval served by a continuous interval of shops, continuity being approximated by many discrete
points.
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straints. The other complication arises in de�ning a �higher� demand consumer when valuations
are non-ordered. For example, suppose an Internet provider serving several types of consumers
designs a product line characterized by the tra�c volume per month. Assume that the adults'
maximal valuation for the �rst minute (or the chock-price) is higher than for teenagers, but the
latter are eager to consume more tra�c. In this case: Who has the �higher� demand? Is such
family of preferences vertical or horizontal? We suggest it to be judged by the market outcome:
�horizontal� market should mean no envy at the solution, whereas �vertical� one means a linear
structure of envy. From our propositions one can see that no envy is the outcome, if and only
if, the peaks of net-of cost valuations are not strictly below each other, and it is (generically)
the only case when overall e�ciency and zero informational rent appear. However, we believe
that real life rarely provides such clear-cut horizontal or vertical outcomes and this motivates
our study.

Having above in mind, in Section 5 we supplement the known relaxed Spence-Mirrlees con-
ditions (see Araujo and Moreira, 2010) with one more. Our de�nition of �Hotelling-Spence-
Mirrlees preferences� includes both polar cases, vertical and horizontal, and bridges them to-
gether with all intermediate realistic situations. This family of preferences can be called �spa-
tial,� because each consumer type is characterized mainly by her bliss point and her personal
reservation utility�personal outside option. Under such (not too speci�c) restriction on pref-
erences, the graph structures become much more speci�c than �all in-rooted acyclic graphs�,
revealed without the restriction. Namely, in a one-dimensional quality space the graphs are
shown to be linear or weakly linear (Theorem 2), and this not only is true for pro�t-maximizing
solutions, but also for any incentive-compatible plan. This enables us to understand envy-
structure of socially-e�cient or oligopolistic solutions. Similarly, in a two-dimensional quality
space Theorem 3 establishes that any incentive-compatible envy-graph is a planar one, i.e., the
arcs of envy on the plane do not cross. Thereby, the distortion caused by envy is transferred
only to the neighbor of any bundle, and the direction of distortion becomes understandable.
Corollaries to Theorems 2 and 3 state that the pro�t-maximizing solutions under monopoly
should have the centrifugal pattern of distortion��from the hills to the valleys�, i.e., from
the locations (bliss points) of high-willingness-to-pay consumers towards the areas with lower
willingness-to-pay consumers (see Figures 2, 3). This location pattern looks counter-intuitive
because it means that generally the service-points should be biased towards low-income areas
away from the high-income areas.

Generally, our examples and ideas express our doubts in the applicability of strict SCC or
purely horizontal preferences to any real-life product lines. Moreover, our approach opens a
question for empirical economists. Which product line observed in real markets relates to what
type of solution structure, and where can e�ciency/distortion be a plausible diagnosis? We add
that our �ndings for monopolistic screening can be extended to mechanism design problems and
other situations with incentive compatibility, because the envy-graphs methodology developed
here applies there as well (see Vohra, 2008).

Section 2 formulates the screening model with relaxation, Section 3 presents our approach
to graph theory in screening and the background results: no-bunching and no cycles under
relaxed constraints. Section 4 presents the general results related to e�ciency, distortion and
informational rent, for any types of preferences. Section 5 studies the speci�c solution properties
under the �spatial� preferences: speci�c graphs, patterns of distortion and examples. Section 6
concludes and the Appendix contains some proofs.
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2 Model

Our discrete screening model is somewhat more general than the standard one, because the
restrictions on functions are relaxed, a constraints-relaxation parameter is added and multiple
outside options are allowed. We formulate the model for a monopolistic seller, but have in mind
all other usual interpretations and applications of screening, including principal-agent relations,
Pareto-e�cient allocations, etc. (see Rochet and Chone (1998) and Rochet and Stole (2003)).
Moreover, we expect the structures of incentive-compatible solutions to be similar in the other
areas of mechanism design and not just screening.

Consumer types are indexed by i ∈ IN = {1, ..., N}; and mi > 0 is the frequency of type i,
which can be either the probability to participate in the market, or the total number or mass
of such agents (consumers). Multiple agents of the same type can also mean multiple purchases
by one individual. The quantity- or the quality-tari� bundles are denoted by (xi, ti), where
xi ∈ X denotes the l-dimensional vector of attributes of the bundle purchased by the agent i.
Here X ⊂ Rl denotes a consumption set, which can be discrete or continuous, and the product
of such sets is XN = X ×X × ... ×X ⊂ RNl. When 0 ∈ X, this zero bundle may denote the
common outside option which is non-participation, otherwise outside options may be multiple.
Tari� ti is the monetary transfer from consumer i to the �rm. We assume quasi-linear utility
functions-??

Ui(xi, ti) = Vi(xi)− ti,

where Vi is the monetary valuation of a purchase. In the particular case of a common outside
option of non-participation 0 ∈ X, valuations can be normalized as Vi(0) = 0. For a more general
case we assume k ≥ 1 outside options which are some �xed quantity-tari� bundles produced
by other �rms and non-participation amounts to outside options set K ≡ {(a1, b1)..., (ak, bk)} 3
(0, 0) available to each consumer (see Figure 2). For some propositions we additionally assume
di�erentiability, but otherwise do not restrict Vi, X.6

A monopolist selects a subset In ⊆ IN of n ≤ N types of consumers to be served and o�ers
a product or a service using a menu of several packages of di�erent quantities or qualities at
some �xed tari�s on a take-it-or-leave-it basis (under 0 ∈ X the monopolist can set n ≡ N and
just assign xi = 0 to agents not served). Afterwards the agents self-select. The seller knows the
possible characteristics of the types and their probabilities but cannot discriminate personally.
The cost function is quasi -separable:

C(m,x) = f0 +
∑
i∈In

mic(xi),

where f0 ≥ 0 stands for some �xed cost and c(·) : Rl →R is the cost function per-package.7

We use the standard assumption that the producer designs only one package for each type,
thereby plans an assignment, (x, t) = {(xi, ti)}i∈In , and from the equivalent choices an agent
selects whatever the principal prefers (friendly behavior). The pro�t π is the di�erence between
the total tari�s and the total costs. After introducing a constraint-relaxation parameter ρ ≥ 0

6Weak restrictions on X and V allow us to model many interesting and realistic situations, for example,
satiable demands and discrete characteristics. Positive consumption and tari�s can be modelled through pos-
itivity restrictions on X,V . Instead, decreasing valuations Vi or negative quantities xi are appropriate for
modelling e�orts spent in a principal-agent setting. By treating multiple outside options as options o�ered by
the competitor(s) allows us to analyze oligopolistic markets.

7As shown in Kokovin et al. (2010, 2013), too general cost functions, including convex ones (decreasing
returns), sometimes can undermine the applicability of the screening setting.
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for technical reasons, we can formulate the seller's relaxed assignment-optimization program as
follows.

π(x, t, ρ) =
∑
i∈In

miti − C(m,x)→ max
In⊂IN ,(x,t)∈(Xn,Rn)

, s.t. (1)

Vi(xi) − ti + ρ ≥ Vi(xj)− tj (∀i ∈ In,∀j ∈ In \ {i}), (2)

Vi(xi)− ti ≥ Vi(al)− bl (∀i ∈ In,∀l ∈ K). (3)

Here (2) and (3) represent the incentive-compatibility (IC) constraints, and the participation
constraints respectively. A plan (x, t) satisfying (2)�(3) is called ρ-feasible. The admissible set
for (x, t) de�ned by these constraints is denoted as Z(ρ) ⊂ (Xn,Rn).

A solution (x̄, t̄) to the problem (1)�(3) under ρ = 0 is the standard screening solution. More
generally, under ρ ≥ 0 a solution (x̄, t̄) to (1)�(3) is called here a relaxed ρ-speci�c solution, or
just a ρ-solution.

The main focus of our study further is on ρ-solutions with ρ > 0, because relaxation implies
acyclic solution graphs, without sacri�cing modelling of reality (under small ρ).8 Moreover, we
have found (see Kokovin et al., 2011) that when ρ → 0, the relaxed solutions converge to the
non-relaxed solutions.

To complete the setting, it should be added that under a quasi-separable cost f0+
∑n

i=1 mic(xi),
it is possible and standard to normalize. It means considering the normalized net-of-cost valu-
ations vi(xi) = Vi(xi) − c(xi) or social surpluses instead of the initial valuations, and seek for
net-of-cost tari�s τi = ti− c(xi), or per-package pro�ts τi.9 Similarly, u0i ≡ maxl∈K{Vi(al)− bl }
becomes the reservation utility of each consumer, the seller cannot serve her by giving less util-
ity. Then the initial screening problem (1)-(3), obviously, amounts to the normalized screening
program to be studied further:

π̃(x, τ, ρ) = −f0 +
n∑
i=1

miτi → max
In⊂IN ,(x,τ)∈(Xn,Rn)

, s.t. (4)

vi(xi) − τi + ρ ≥ vi(xk)− τk (∀i ∈ In,∀j ∈ In \ {i}), (5)

vi(xi)− τi ≥ u0i (∀i ∈ In,∀l ∈ K). (6)

3 Graph notions, graph structures and Lagrange multipli-

ers

Now we introduce some graph theory notions and our approach to applying them to screening
and incentive-compatibility problems. The terminology and the methodology are not standard
so far. For example, Brito et al. (1990) speak of eliminating �cycles of binding incentive
constraints among separated types,� some di�erent terminologies appear in Guesnerie and Seade

8Economically speaking, a relaxation parameter ρ can be interpreted as the �cost of switching� for the agent
i from her usual package (xi, ti) to some new package k. One could try to make ρ negative instead of our ρ ≥ 0,
for modelling a premium to the agent for not switching and designing a strictly incentive-compatible menu that
ensures strictly-dominant-strategy implementation of solutions. Unfortunately, ρ < 0 does not exclude dicycles,
and often undermines the existence of solutions.

9It is worth recalling that welfare-maximizing screening under restriction on total costs is an equivalent
problem, reciprocal to pro�t-maximization (see e.g. Brito et al., 1990, Rochet and Stole, 2003).
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(1982), in Vohra (2008) and others. More importantly, mixing binding with active constraints is
rather common in the screening literature (see Brito et al. (1990), Rochet and Stole (2003) and
Andersson (2005)), even though the distinction matters as we show in this section. We mainly
follow Rochet and Stole's terminology, except for the term �binding�, a reversed direction of arcs
and our new notions. First we de�ne the terms; relate graphs to screening and then motivate
our approach.

Standard terms for digraphs. A directed graph or digraph G (hereafter just �graph�) is a
collection of nodes (vertices) denoted as i ∈ G and of arcs (oriented edges) (i, j) ∈ G . Each arc,
denoted as i→ j or equivalently (i, j), describes an active constraint of our screening problem
so that multiple arcs in direction i, j and loops (i, i) are excluded. In each i→ j, the arc's tail
i is the adjacent predecessor of j, and the arc's head j is the adjacent successor of i. A source
is a node without predecessors (with 0 in-degree). A (local) sink is a node without successors
(0 out-degree). If the sink is unique and is reached from all nodes, it is called an in-root or,
hereafter, just root of this (rooted) graph. A node without adjacent arcs is disconnected. A walk
is a sequence of adjacent nodes and edges {i1, e12, i2, e23, i3, ..., in} = {i1 → i2 → i3 → ..., in};
a path is a directed nonempty walk with distinct nodes, i.e., not a loop (not i → i ). When
there is a unique directed path from any node to the root, then this graph is called an in-tree,
hereafter just a tree, and the simplest tree is a star {i1 → i0, i2 → i0, ..., in → i0}. A spanning-
tree of graph G is a subgraph�a tree containing all nodes of G. An (in-)rooted graph is a
digraph with a unique sink (in-root) when this root is reachable from every node through a
path. Obviously, any in-rooted graph contains one or more spanning-trees. A closed directed
path {i1 → i2 → i3... → i1} is a dicycle, and a digraph is acyclic if there are no dicycles. A
partial order among nodes i1, ..., in can be viewed as an acyclic digraph when order relation
i � j is equivalent to arc i→ j ... In addition, the following notions and the notion of preorder
de�ned in Appendix.

New terms: rivers and �ows. Any in-rooted acyclic digraph is called a river. Obviously,
all trees are rivers but the latter may also contain bypasses de�ned as two directed paths
(i1 → i2 → ... → ik), (i1 → i3 → ... → ik) with the same source and the same sink (see Fig.1
below for illustration). A �ow-graph in our context is a 2-colored digraph such that all sinks
and maybe some other nodes are colored as drains, the remaining nodes becoming non-drains.
Obviously, after connecting all drains of any �ow-graph �to� some additional node (root), this
�ow-graph becomes a river. Thereby each acyclic �ow-graph can be perceived as a river without
its root. There is one-to-one correspondence between rivers and acyclic �ow-graphs.

We call a digraph a directed chain when it consists of unique directed path {i1 → i2,→, ..., in}
having all nodes distinct (no repetition or branching). We call a graph (piece-wise) linear or
when each of its connected component is a chain or has an underlying undirected chain.

Graphs application in screening. In applying graphs to screening, all agents' identities
#1,...,#n are treated as nodes whereas constraints are interpreted as envy arcs within a related
envy graph. In this graph, the non-participation option is considered as an additional node
with the label #0. It must succeed all sinks and can succeed other nodes. More precisely,
our optimization program (1)�(3) has n × (n − 1) + n = n2 inequalities and all can become
active, i.e., equalities. For any feasible plan (x, t) we de�ne its envy A-graph ¯̄G(x, t) as the
list ¯̄G(x, t) = {(i1, j1), (i2, j2), ...} of all constraints that are active at (x, t) (double-bar over
G highlights equalities as the basis of de�nition and for a non-feasible plan (x, t) we similarly
de�ne the strict-envy graph G<(x, t) as the list of all violated constraints). The direction of
any active constraint (i, k): Vi(xi) − ti ≥ Vi(xk) − tk is represented as an arc (i → k) going
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from i to k, i.e., in the direction of a possible choice of consumer switching. It means that
an agent i (weakly) envies package #k, being indi�erent between her package and #k, almost
eager to switch to #k. The opposite direction of arcs, chosen in Rochet and Stole, seems
inconvenient for this interpretation and for the use of ��ow networks� in screening. Finally, the
notation ¯̄G−0(x, t) = ¯̄G(x, t) \ {#0} means further the unrooted graph, where the root node #0
is deleted, but the related arcs remain as the indicator of �drain.� Thereby, this graph ¯̄G−0(x, t)
is the �ow-scheme uniquely related to the plan (x, t).

Fig. 1 illustrates these notions through an example violating SCC but having the common
outside option (0, 0). Three valuations {v1(x), v2(x), v3(x)} = {(2x− 2x2), x− 0.75x2, (0.72x−
0.36x2)} are shown in green. Their peaks (marked by the green squares) are the bundles (x, t) =
{(0.5, 0.5), (0.666667, 0.33333), (1.0, 0.36)} which are the �rst-best for the monopolist when the
IC constraints are ignored. In contrast, the red circles show the actual pro�t-maximizing solution
(x̄, t̄) = {(0.5, 0.432255), (0.725275, 0.330757), (1.0, 0.36)}. One can see a rightward distortion
at x̄2 > 0.666667 and consumer surplus for the agent #1: t̄1 = 0.432255 < 0.5. The A-envy
graph (in red) results from the active indi�erence curves that connect the envying bundle and the
envied bundle. Here it is a river with root (0,0), namely, ¯̄G(x̄, t̄) = {1→ 2, 3→ 2, 2→ 0, 3→ 0}.
But, is it also the graph of binding constraints (those that in�uence the optimal value when
relaxed or eliminated)? No, the participation constraint 3 → 0 is excessive, it became active
just occasionally.
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Figure 1: How A-envy-graph results from a solution.

We now introduce B-graphs and LA-graphs related to solutions, and explain their relation-
ships to A-graphs under our ρ-relaxation.

First note that even under concave valuations V a screening problem (1)-(2) is typically non-
convex. It is so because concave functions enter into both sides of the inequalities. Therefore, for
any non-convex optimization, a distinction becomes important between an active constraint and
a binding constraint�the one which in�uences the optimal value when relaxed or eliminated.
Generally, a binding constraint need not be active and an active one need not be binding, see
example (7) below. So, screening may also need B-graphs representing all binding constraints,
not only A-graphs.

In addition, there could also be a need for a LA-graph, which is de�ned as the list of all LA-
constraints�those having strictly positive Lagrange multipliers (see our Proposition 1). This
LA-graph generally may di�er both from A-graph and B-graph, and even from their intersection.
The typical reason for the discrepancy among these graphs is due to the so-called bunching
situation. Bunching means identical packages (xi, ti) = (xj, tj) = ... are assigned to di�erent
agents i, j,... at the optimum. Such an outcome is known to be quite a regular case in standard
screening with ρ = 0, see Rochet and Chone (1998) for a thorough treatment of bunching. In a
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bunch, naturally, all the bunched agents do envy each other, thereby creating a dicycle in the
A-graph ¯̄G(x, t) and an �over-constrained� situation. Bunching and more general dicycles create
major hardships in characterizing and �nding solutions, mainly because the usual constraint-
quali�cation conditions fail and then the existence and �nding the Lagrange multipliers become
problematic.

In contrast, under positive relaxation (ρ > 0), dicycles and bunching among predecessors and
successors are excluded in A-graphs as shown in Lemma 2 below. The Lagrange multipliers do
exist and most often become unique. Additionally, based on our experience with solutions, (only)
under positive relaxation, A-graph �almost always� coincides with the LA-graph. The latter is
most useful one for solution characterization, whereas the former is more easily observable at
any admissible plan.

To appreciate the di�erence between A, B, LA constraints and related hardships with charac-
terizing optima, consider a simplest over-constrained non-convex example, where the constraints
display all three kinds of importance:

maxx ∈ R s.t. (i) : x2 ≥ 1, (ii) : x4 ≥ 1, (iii) : x ≤ 0. (7)

Clearly, here the optimum is x̄ = −1, and the constraint (iii) is binding, because it cannot
be dropped and keep the optimum intact, but (iii) is not active or LA. In contrast, the two
constraints (i) and (ii) are active but not binding, because any one of these two constraints
can be removed without changing the solution. Each can either be LA or not, because any
Lagrange multipliers λA, λB ≥ 0 such that λA + λB = 1 are admissible. Unfortunately, none
of these multipliers λi re�ect the sensitivity of the objective function to the related constraint,
as it should. However, for a small price for accuracy, we can exclude this indeterminacy and
weakness of λi. We can remove the over-constrained situation by slightly relaxing one of the
constraints, (i) or (ii). Such harmless trick is common in linear programming to exclude cycles.

In screening, like in linear programming, our ρ-relaxation helps to overcome all over-constrained
situations and cycles. This discussion motivates our focus mainly on the relaxed screening prob-
lems and on envy A-graphs ¯̄G(x, t). Hereafter, what we have in mind is these kind of graphs
when we drop �A� and mention just envy graphs.

3.1 Background facts on solution structures: all envy-graphs are

rivers

Now we repeat from Kokovin et al. (2011) the necessary lemmas on solution structures.
The lemmas below state the most general properties of the solution structures, guaranteed

solely by quasi-linearity of utilities.
Lemma 1: (in-rooted envy-graph). For any ρ-solution (x̄, t̄) its envy-graph ¯̄G(x̄, t̄) is

in-rooted, i.e., each node i is connected to the root (#0) by a directed path i → ... → 0. Thus,
¯̄G(x̄, t̄) contains a spanning-tree.

Lemma 2: (profits order). Take any ρ-solution (x̄, t̄) under quasi-separable costs
(C(m,x) = f0 +

∑n
i=1 mic(xi) (f0 ≥ 0)), then: (i) the pro�t contribution τi = ti − c(xi)

from any agent is not lower than the contribution from any of her successor in the envy-graph,
i.e., i→ ...→ j ⇒ τ̄i ≥ τ̄j,; (ii) under ( ρ > 0) this inequality is strict: i→ ...→ j ⇒ τ̄i > τ̄j,
and for the adjacent couples i → j it has the particular form τ̄i ≥ τ̄j + ρ, whereas bunching
among predecessors and successors (xi = xj) and other dicycles are excluded.
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The above two lemmas imply the following lemma on acyclic solution structures.
Lemma 3: (envy-graphs are rivers).10 For any ρ-solution (x̄, t̄) to a screening problem

with quasi-separable costs and positive relaxation ρ > 0, its envy-graph ¯̄G(x̄, t̄) is a river.

Note that bunching (xi = xj) among the predecessors and the successors is excluded, it re-
mains possible only for the disconnected packages that coincide accidentally.11 Unlike the usual
bunching, the accidental bunching can be ignored because it has no impact on characterizing
solutions.

Proposition 2 in Kokovin et al. (2011) shows also that all rivers can be envy-graphs under
some valuations and this class of graphs is enumerated.

3.2 Solution characterization through FOC and Lagrange multipliers

Now we show how one can use the envy-graphs in characterizing and �nding solutions. Since
the existence of multipliers is guaranteed under positive relaxation ρ > 0 (a big reward of
the relaxation), relying on Lemmas 1-3, in Kokovin et al. (2011) under relaxation ρ > 0 any
optimal solution with its �rst-order conditions, i.e., Lagrange multipliers can be characterized.
We expand this proposition now onto the case ρ ≥ 0, by denoting λi0 the Lagrange multiplier
for the i-th participation constraint and λij for the i→ j incentive-compatibility constraint.

Proposition 1 (FOC characterization). Assume quality space X = Rl, quasi-separable
costs, continuously di�erentiable net valuations vi bringing positive net surplus somewhere:
∃x : vi(x) > u0.

(a) When qualities bringing positive net surplus {x : vi(x) > u0} are bounded, then a solution
to the normalized problem (4)-(6) does exist.

(b) Additionally, when the solution (x̄, τ̄) is unique, then: (i) There exist some Lagrange
multipliers λ = (λ1,0, λ1,2, ..., λn,n−2, λn,n−1) ∈ Rn∗n

+ , satisfying the following �rst-order condi-
tions of Lagrangian L(.) and supplementary inequalities for �nding (x̄, τ̄ , λ) from a hypothetical
LA-graph Gλ

+:

∂L(x̄, τ̄ , λ)

∂τi
= mi −

∑
j∈Sadi (Gλ+)

λij +
∑

k∈Padi (Gλ+)

λki = 0 ∀i > 0, (8)

∇xiL(x̄, τ̄ , λ) = ∇xivi(x̄i)
∑

j∈Sadi (Gλ+)

λij −
∑

k∈Padi (Gλ+)

λki∇xivk(x̄i) = 0; ∀i > 0, (9)

0 = vi(x̄i)− τ̄i − vi(x̄j) + τ̄j + ρij ∀(i, j) ∈ Gλ
+, (10)

0 ≤ vi(x̄i)− τ̄i − vi(x̄j) + τ̄j + ρij ∀(i, j) 6∈ Gλ
+, where (11)

Gλ
+ = {(ij)|λij > 0}, x̄0 := 0, τ̄0 := 0. (12)

(ii) The Lagrange multipliers of the constraints successive to any i are bounded as

10 Reducibility of cycles in A-graph of the main problem (with more restrictions on vi, C than here) was proven
in Guesnerie and Seade (1982) through the same simple Lemma 2, and is repeated in subsequent papers.

11Such solution can be called regular ; bunching is excuded among prdecessors and successor (it may occur
only ocassionally among nodes not connected by a path).
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∑
j∈Sadi (Gλ+)

λij ≤M
PGλ+
i :=

∑
j∈P (i,Gλ+)∪{i}

mj ∀i; (13)

moreover, when the river Gλ
+ is a tree, the positive multiplier for the unique successor of i is

found as

λis1i (Gλ+) = M
PGλ+
i .

Proof : see Appendix.
In essence, the proposition above provides FOC and a method for practically �nding solutions

under relaxation, though it does not formulate a su�cient condition for the optima, it only gives
the necessary one. Typically the reason is a non-convex optimization in screening, even under
strictly concave net valuations vi(·) (see Section 3). Therefore, for �nding a solution through this
characterization, one should explore all possible rivers Gλ

+, and then compare pro�ts from these
locally-optimal solutions. So far, this method is the only practical way for arbitrary valuations,
and Proposition 1 provides justi�cation for it.

Interestingly for �nding the solutions, any screening problem can be interpreted as a ��ow-
network�. In our context it is an acyclic �ow-graph F supplemented with incoming �ows mi ≥ 0
assigned to all nodes, ultimate out �owing magnitudes λjj < 0 assigned to certain nodes (drains),
and current-�ow magnitudes λij ≥ 0 assigned to all arcs. Then the equation (8) is interpreted as
the balance of in�ows to and out�ows from each node. Respectively, the following �conservation
law�

∑
i∈F mi =

∑
j∈F λjj holds (see Vohra (2008), Berg and Ehtamo, 2010)), i.e� the whole

network have balanced in�ows and out�ows. This interpretation provides an interesting analogy
from physics and helps one to understand why the Lagrange multipliers are bounded from the
above in claim (ii).

4 Distortion as a result of envy

�For where you have envy..., there you �nd disorder and ... evil practice.� /James 3:16/
Under the usual SCC, it is a common knowledge that whenever a bundle is envied it is

distorted and conversely, a bundle free of envy is free of distortion. Economic intuition suggests
that such equivalency should hold also without SCC. This section generally supports this con-
jecture but with some cautions, and provides rather comprehensive results on distortion. They
turn out to be dependent on the above analysis.

We use the following de�nition of distortion, rather standard for a separable screening prob-
lem like (4)�(6).12

Definition: An allocation x̄i designed for the i-th agent is called (partially) e�cient or
non-distorted when x̄i maximizes the joint welfare of this agent and the principal, regardless of
all other packages in the menu (x̄, τ̄). That is,

x̄i ∈ arg max
xi∈Rl

vi(xi) = arg max
xi∈Rl

(Vi(xi)− c(xi)).

In the opposite case, the package and the allocation x̄i are called distorted for the i-th agent
(the same quantity x̄i can be e�cient for i, but distorted for some bunched j : x̄j = x̄i). The

12In contrast, without separability or/and quasi-linearity of utilities (as in Guesnerie and Seade (1982)), the
distortion notion becomes tedious, dependent on other packages.
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related bundle (x̄i, τ̄i) is also called distorted. An allocation x̄ is called overall -e�cient or
socially the �rst-best, when x̄ maximizes the total social welfare

∑
imivi(xi) without regard to

incentive-compatibility constraints.

Now we formulate a su�cient condition for partial e�ciency of a bundle in three di�erent
versions, only the third one is non-obvious.

Proposition 2. Consider a solution (x̄, τ̄) to the problem (4)�(6), then: (i) Whenever all
IC constraints ( j → i) leading to consumer type i are non-binding (can be dropped without
changing the optimal pro�t), then x̄i is non-distorted;

(ii) An allocation x̄i of consumer type i would be distorted if and only if this distortion helps
the principal to increase pro�t by relaxing the related IC constraint ;13

(iii) Under convex X and concave net valuations, if a quantity-tari� bundle (x̄i, τ̄i) appears
(strictly) inferior for other agents (i.e., there is no active IC constraint ( j → i) leading to an
agent i in the A-graph ¯̄G(x̄, τ̄)), then the bundle (x̄i, τ̄i) is non-distorted.

Proof : see Appendix.
Surprisingly in (iii) there is the need for convexity/concavity assumption. Similar claim is

proved within Proposition 2 of Guesnerie and Seade (1982) under strict concavity of utilities,
locally-di�erent consumers and one-dimensional X. However, their brief proof uses concavity
only implicitly, which tempted Brito, Hamilton, Slutsky and Stiglitz (1990) to mistakenly drop
the concavity assumption in their Proposition 3, repeated also in Andersson (2005) as Lemma
3 (using many dimensions). Such relaxation is incorrect as shown by our counter-example,
Example 1 below. The reason for the mistakes was the confusion between active and binding
constraints. Indeed, for claim (i) or its version (ii) no concavity assumptions are needed, unlike
the su�cient condition (iii).

Example 1. Let two agent types have equal frequencies m1 = m2 and the net valuations
v1 = max{4− 4(1− z)2, min{4z, 4, 8− z}, 5− (5/16)(4− z)2}, v2 = 7− (7/16)(4− z)2. Here v2

is concave but v1 is only quasi-concave. One can check that the socially e�cient quantities are:
x1 = 4, x2 = 4. However, the pro�t-maximizing menu is (x̄1, τ̄1) = (1, 4), (x2, τ2) = (4, 7) with
pro�t equal to 11, and it has no active IC constraints, though constraint #2→ #1 is binding,
preventing a better incentive-incompatible plan (x1, τ1) = (4, 5), (x2, τ2) = (4, 7). A similar
socially e�cient incentive-compatible plan (x1, τ1) = (4, 5), (x2, τ2) = (4, 5) brings less pro�t,
only 10, compared to (x̄, τ̄). Thus, �only participation constraints active� is not a su�cient
condition for overall e�ciency without concavity or strict quasi-concavity.

Now we turn to more complicated necessary and su�cient conditions for distortion in terms
of active or LA constraints. These can be formulated as aggregate envy to a given packageas
follows.

Assumption DC: The net-valuations vi are continuously di�erentiable and concave on
an admissible space X = Rl. The solution (x̄, τ̄) studied is characterized by the �rst-order
conditions (8-12), the set of admissible multipliers supporting this solution is denoted as Λ =
Λ(x̄, τ̄).

Theorem 1 (distortion and lagrange-active constraints): Let the assumption
(DC) hold at some solution (x̄, τ̄). If the gradients of valuations satisfy the inequality∑

k 6=j0

λkj0∇vk(x̄j0) 6= 0 (14)

13We are grateful to Larry Samuelson for suggesting this very intuitive formulation/ interpretation.
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for all supporting Lagrange multipliers λ ∈ Λ(x̄, τ̄), then the package (x̄j0 , τ̄j0) is distorted.
Conversely, when this relation becomes an equality for some supporting λ ∈ Λ(x̄, τ̄), then this
package is non-distorted.

Corollary (distortion direction):14 Suppose that only one agent k shows LA-envy
towards a package (x̄j0 , τ̄j0) in the sense minλ∈Λ λkj0 > 0, λij0 = 0 ∀i 6= k, and argmaxima for
these two net-valuations do not coincide: arg maxz vj0(z) 6= arg maxz vk(z). Then the allocation
x̄j0 is distorted. Moreover, for a unidimensional commodity ( l = 1) a bigger envying package
( x̄k > x̄j0 , k → j0) implies that the envied package x̄j0 is undersized ( x̄j0 < arg maxz∈R vj0(z)),
and the opposite relation ( x̄k < x̄j0 , k → j0) implies an oversized package x̄j0 .

15

Proof : see Appendix.
To complete the e�ciency analysis under non-speci�c valuations, we should mention two

simple, generally known in the literature, facts that follow from Lemma 2 and Theorem 1:
(1) Overall distortion cannot occur, at least one bundle is e�cient ; (2) Assume convex X,

concave v, and only the participation constraints being active (i.e., A-graph being a �star�), then
overall e�ciency results.

Again, the need for concavity/convexity here is surprising but supported by the same
counter-example (Example 1). All the claims above are illustrated by our Figures 1, 2 and
3.

5 Special Case: Spatially Heterogeneous Population

In this section we assume a one- or a two-dimensional continuous real spaceX of quality/quantity
characteristics, and population having a �spatial� structure. It means that all agents have the
same or approximately the same shape of net-of-cost valuations vi, but each agent i has her
individual (socially e�cient) bliss point bi = arg maxx∈X vi(x) ∈ X and her individual maxi-
mum hi = maxx∈X vi(x) = vi(bi) the height of the valuation that she can pay if participating.
Based on such parametrization in a one- or a two-dimensional space X of characteristics, we
impose a restriction on the family of preferences that can be called a Hotelling-Spence-Mirrlees
condition. Then, at the solution, the population of the agents gets partitioned into groups, each
group being ordered in the spirit of Spence-Mirrlees single-crossing condition. Such regularity
allows to reduce the domain of possible solution structures dramatically to very simple (linear
or planar) classes of graphs.

Assumption HSM. We assume that the net valuation functions vi(·) of all agents are
continuous, strictly concave and have non-coinciding bliss points bi = arg maxz∈R vi(z) such
that for any couple of types i, j and the direction ∆ = bj − bi ∈ X, the valuations satisfy the
non-normalized single-crossing condition:

vi(z + ∆)− vi(z)

|∆|
<
vj(z + ∆)− vj(z)

|∆|
∀z, (15)

so that along this direction the di�erence vj(z)− vi(z) is a strictly increasing function, whereas
these two curves cannot intersect more than once.

In a one-dimensional space X = R1, this condition di�ers from the usual SCC only in the
sense that normalization is absent, i.e., we do not require vi(0) = 0, because valuations now

14 For applicability of the Kuhn-Tucker and Envelope Theorems see Appendix.
15Compare our claim (ii) with earlier special cases, namely with examples in Andersson (2008), showing

ambiguous direction of distortion.

14



need not intersect at 0, or even need not intersect at all. We shall need also a more special
assumption of this kind, amounting to �spatial� preferences, formulated as follows.

Assumption HSM+. Let all agents' net valuation functions vi(·) be generated by some
common strictly convex non-negative distance function w, such that

vi(z) ≡ hi − w(|bi − z|) ∀i, max
z∈X

w(z) = w(0) ≡ 0

where bi are the bliss points and hi denote the highest possible net tari�. Thus, agents di�er
only in their bliss points and the demand heights, but not in the shape of their valuations.

These two versions of �spatial� preferences have a clear interpretation in one-dimensional
space as follows.

5.1 One-dimensional quality

The example of quadratic net valuations like vi(z) = hi− (bi−z)2 helps to explain how the pref-
erences under Spence-Mirrlees's are bridged with Hotelling's under HSM+ preferences. When
speci�c heights are hi = b2

i ∀i, this quadratic preference pro�le vi(z) = 2biz− z2 becomes verti-
cal, i.e., it satis�es the usual normalized Spence-Mirrlees condition16. In contrast, the Hotelling's
horizontal preference family is de�ned by equal heights hi = hj ∀i, j. These two distinct classes
have contrasting properties: the well-known outcome of vertical pro�le is its linear solution
graph ¯̄G, which is a single path from n to 1. It happens because each agent i can envy only
her left neighbor i− 1 and nobody else. In contrast, as shown in Andersson (2008) and Nahata
et al. (2003), the horizontal pro�le yields a simple star-graph of the solution� no one envies
anybody.

We are ready now to bridge these two classic cases together and prove that, for the same
reasons as for these two extremes (vertical and horizontal), all other preferences satisfying HSM+
or HSM also generate rather simple class of �ow-graphs, which are linear but for bunching.

We de�ned above a piecewise-linear graph so that each of its connected component becomes
a chain when we neglect the directions. Thereby it does not have any (directed or non-directed)
cycles or branching. Now we modify this de�nition as follows.

Definition. A �ow-graph ¯̄G−0 is called weakly-linear when its non-ordered underlying
graph is weakly-linear, i.e., it becomes linear when any bunch of nodes is perceived as one node.

At the expense of one additional new notion, we call such graph a multi-centipede� because it
consists of ordered connected chains connected either tail-to-tail or head-to-head. They always
stay on their heads, since each sink is a drain (see Fig.2). The drains look like legs touching
the ground. This analogy helps us to discuss solutions and their properties. All tails are non-
distorted, the heads are almost-always distorted, and the intermediate segments are distorted
always.

Now, for a given number of agents served, we prove weak linearity of our graphs through
arguments similar to the usual SCC case. The di�erence lies only in a special treatment of
bunching and varying directions of envy.

Theorem 2. Assume HSM preferences in a one-dimensional space X = R and agents
ordered according to their bliss points b1 < b2 < ... < bn, so that the di�erence vi+1(z) − vi(z)
is a strictly increasing function. Consider any incentive-compatible plan (x̄, τ̄) ∈ R2n with n
agents served under any relaxation ρ ≥ 0. Then:

16Similarly, for any function w, the heights are adjusted as hi : vi(0) = 0 to give SCC.
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(i) The order of the incentive-compatible qualities x̄i weakly preserves the order of the bliss
points in the sense ∀i, j : bi < bj ⇒ x̄i ≤ x̄j. Moreover, under ρ > 0, strict inequality x̄i < x̄j
holds for all i, j connected in the A-graph (no bunching, except maybe for the disconnected
neighbor sinks).17

(ii) The graph ordering is also predetermined by the bliss points; the solution �ow-graph
¯̄G−0(x̄, τ̄) is weakly linear, being positioned on the quality axis through connecting all distinct
qualities x̄i 6= x̄j by their envy-arcs i → j (if any) and joining equal quantities into a bunched
node. Under ρ > 0 this graph is linear, moreover, each agent i cannot envy anybody except the
two neighbors of types i− 1 and i+ 1.18

Proof. In our arguments, we exploit types numbering bi < bj ⇔ i < j.
(i) under ρ = 0, to check the types' order preservation for quantities for any i, j, we use their

incentive compatibility constraints vi(x̄i) − τ̄i ≥ vi(x̄j) − τ̄j and vj(x̄j) − τ̄j ≥ vj(x̄i) − τ̄i that
are satis�ed at (x̄, τ̄), and summarize them as: vj(x̄i) − vi(x̄i) ≤ vj(x̄j) − vi(x̄j). Comparing
this inequality with (15) we reach the conclusions x̄i < x̄j ⇒ bi < bj and bi < bj ⇒ x̄i ≤ x̄j
because the di�erence vj(z)−vi(z) is a strictly increasing function. Under ρ > 0 the logic is the
same, the relaxation does not change it. Further, under ρ > 0 there is no bunching by Lemma
2 among the adjacent nodes: x̄i 6= x̄j. We postpone the remaining claim in the parenthesis
because it needs the graph structure.

(ii) To check the order of the types is preserved in the graph, one can use the same logic
of increasing di�erences vi+1(z) − vi(z). We conclude that when the incentive-compatibility
constraint i → i + 1 is satis�ed at (x̄, τ̄) then together with the satis�ed constraints i + 1 →
i+2, ..., it amounts to satisfying the envy constraint from i to any higher than i+1 type j (with
j 6= i) as a strict equality: vi(x̄i) − τ̄i > vi(x̄j) − τ̄j. The same logic works for the lower types
i− 2, .... Thus, all non-bunched with i non-neighbor types are not envied by i (moreover, these
constraints can be eliminated from the initial problem and replaced by x1 ≤ x2 ≤ ... ≤ xn).

From the same logic it follows the absence of any free (disconnected) node xk lying strictly
between connected nodes i→ j: 6 ∃k : xi < xk < xj.

We have thus found that among distinct nodes only the neighbors in peaks can be adjacent
in the A-graph, and the nodes #1 < #2 < ... < #n are linearly ordered on the quality axis
corresponding to x1 ≤ x2 ≤ ... ≤ xn. Thereby, connecting these points xi with relevant arcs
of envy from ¯̄G−0(x̄, τ̄) we must get a (piecewise) linear graph on this axis, and (ii) is proved.
What remains to be shown is that neighboring tails of the centipedes cannot be bunched by
accident. Since they are the tops of the graph, they remain non-envied. This con�rms that
they are non-distorted, xi = bi (see Corollary below for more details) and from the assumption
of di�erent peaks bi < bi+1 it follows their non-bunched quantities. �

To appreciate the reduction in graphs' variety that the assumption HSM brings, note that
here active can be only ties among the neighbors: left arrow or/and right arrow in the graph
(i → i + 1 or/and i ← i + 1 ) and nothing else. Therefore, the number of possible (linear)

17Actually, as one can see from the proof, this claim �i� is true for any incentive compatible plan, optimal or
not. Another enforcement is the claim that, for any valuations family v parametrized with the bliss points bi
and heights hi, under ρ > 0 any (even nonessential) bunching is a zero measure case. That is, it appears with
probability 0. To show this, it is su�cient to disturb the bunched bliss points or heights in any direction and
the bunch disappears.

18It follows that when any two distinct nodes x̄i 6= x̄j are adjacent in this graph (i→ j), there does not exist
any bk between the bliss points bi, bj ( 6 ∃ bk : bi < bk < bj or bi > bk > bj), or such an intermediary k is bunched
with j: x̄k = x̄j .
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solution graphs is only 3n−1, much smaller than Proposition 2 predicts for the general case.

Now, using the proposition obtained and Theorem 1 about distortion, we get the natural
conclusion about how distortion/e�ciency depends upon the bundle's position in the graph.
We consider some agent i's bundle (xi, ti) �envied from both sides,� when arcs xi−1 → xi and
xi+1 → xi are present in the A-graph.

Corollary. If the plan (x̄, t̄) is pro�t-maximizing under HSM and valuations vi are dif-
ferentiable, then: (a) all non-envied nodes (sources) in ¯̄G−0(x̄, t̄) are non-distorted, (b) a node
envied from both sides may or may not be distorted, (c) each node envied from one side with a
positive Lagrange multiplier is distorted.

Proof. Here (a) and (c) follow immediately from our theorem, but for the nodes envied
from both sides we must show examples of distorted and non-distorted outcomes. It is su�cient
to take valuations v1(z) = 2 − (−1 − z)2, v2(z) = 0.5 − (0 − z)2, v3(z) = 2 − (1 − z)2 with
m1 = m2 = m3 = 1 and a socially optimal plan (x̄1, x̄2, x̄3) = (−1, 0, 1) = (b1, b2, b3). Simple
calculation show that it is also pro�t-maximizing, and the symmetry of left and right neighbors
of agent #2 entails equality (14) in the form λ12v̇1(x̄2) + λ32v̇3(x̄2) = 0 and hence non-distorted
x̄2 (in spite of envy and λ12 > 0, λ32 > 0). When we use the same logic in the reverse direction by
introducing any asymmetry in this example, say, v3(z) = 2 + ε− (1− z)2, we get distortion. �

It appears rather plausible from arbitrary ε > 0 here, that the envied but non-distorted
bundles are the rare degenerate cases.

Now we should compare the variety of distortion outcomes with two classic polar classes:
vertical and horizontal pro�les of preferences. The former was already shown to be a special
case of our assumption HSM+, the case generating the linear graph n→ (n− 1)→ ...→ 1→ 0
with distortion everywhere except n. The latter pro�le is another special case with uniform
heights of valuations: h1 = h2 = ... = hn. It generates the disjoint graph ¯̄G−0 resulting in
overall e�ciency of bundles. More generally, even without the uniform heights, a pro�le can be
called quasi-horizontal when it generates the disjoint graph ¯̄G−0, and one can easily realize that
for any function w there is a non-degenerate region of parameters b, h that generates overall
e�ciency. However, our class HSM+ includes many other interesting outcomes in addition to
these polar two, and appears almost as tractable as these two. We illustrate such analysis and
possible distortion outcomes by Example 2 below.

Example 2. Consider a product line (x, τ) designed for the population of 6 consumer
groups. Let the frequencies (sizes of the subpopulations) m ≡ (m1, ...,m6) = (1, 2, 1, 1, 1, 1) and
quadratic valuations vi(xi) ≡ hi−0.2(bi−xi)2 for a one-dimensional quality x, depicted in Figure
2. In the upper panel, three non-common outside options are shown by yellow. Option (#1,
#2) is available for these two agents and thus determines their reservation utilities. Option (#3,
#5) is available for agents #3, #5. Somehow, options #4 and #6 are available only to these two
groups. These outside options may be the bundles designed by a competitor and assumed to
be given for the monopolist. Agent groups' masses are m = 3, 1, 1.5, 4.4, 1.5, 1. The valuations
have peaks at the bliss points b = (1, 2, 3, 4, 5, 6) with heights h = (1.0, 1.45, 1.5, 1.1, 1.5, 1.1).
These points (bi, hi) are shown in green. Black lines with arrows describe the (strict and non-
strict) envy-graph resulting from such incentive-incompatible plan. Vertical arrows describe the
participation constraints (drains). We observe a linear �ow-graph. If the drains were connected
to the same outside option, this graph would become a river.

In the lower panel the pro�t-maximizing points (x̄i, t̄i) are shown in red and it occasionally
happens that only x1 = 0.66666 gets distorted. The reason is that the point (x̄4, t̄4) is symmet-
rically envied from both the sides, whereas another envied (but non-distorted) point (x̄6, t̄6) just
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Figure 2: One-dimensional distortion under HSM preferences (Example 2).

happens to lie on the active curve v5. The red lines with arrows describe the resulting A-envy-
graph that mainly preserves the structure of the graph of the �rst-best incentive-incompatible
plan, being a reduction from it.19 The Lagrange multipliers, numbered naturally, are λ11 = 4.0,
λ44 = 7.4, λ66 = 1.0, λ21 = 1.0, λ34 = 1.5, λ54 = 1.5, λ56 = 0, so, here LA-graph di�ers from
A-graph. The main conclusion is that the �ow graph of solution must be linear, but this line
can consist of directed chains connected head-to-head or tail-to-tail. The line may break into
pieces and distortion of any envied bundle is directed from the agent envying from the outside.

5.2 Two-dimensional spatial preferences

Theorem 2 about a �at and an order-preserving solution graph is generalized now onto a two-
dimensional quality space. However, we use speci�c assumption HSM+ with X = R2 and
quadratic distance function, i.e, quadratic valuations

vi(x) = hi − (bi1 − x1)2 − (bi2 − x2)2 (16)

sometimes also called �gravity preferences�.
A graph is called a planar one when it can be displayed on a plane without any intersecting

arcs. We call it weakly-planar when it becomes planar after treating each bunch as a single
node. This property is established as follows.

Theorem 3. Assume two-dimensional quadratic preferences (16), and any ρ-incentive-
compatible plan (x̄, t̄), then: (i) It generates a weakly-planar �ow-graph ¯̄G−0(x̄, t̄), which can be
positioned on the quality space X = R2 through connecting qualities x̄j perceived as nodes by
(linear) envy-arcs, whereas under ρ > 0 the graph is planar.20

(ii) When i → j in this graph, then the envied point x̄j in this graph, the bliss-point bj of
this agent and the envying agent's bliss-point bi belongs to some right-angled triangle where bi

19One can derive a conjecture that the pro�t-maximizing envy-graph should always preserve the structure
of the ��rst-best� envy-graph that emerges under the �rst-best plan (x∗, t∗) with the relaxation ρ = ∞ where
only participation constraints are considered (or at least be a reduction of the �rst-best graph). However, only
sometimes such preservation holds.

20This claim very probably can be extended to all spatial prefernces, not only quadratic, but the envy arcs
will loose the linear shape.
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and x̄j are the ends of the hypotenuse and bj belongs to the cathetus starting at bi.
21

Proof. Take any ρ-incentive-compatible plan (x, t) and display its envy-graph Ḡ on a quality
plane, each couple (xi, xj) becoming an arc when (i→ j). Our goal is to show that these linear
arcs do not intersect. Whenever (xi → xj), both points must lie on the active surface Wi (and
the envied point j belongs also to surface Wj). It is easy to show that the projection of the
intersection of any couple of surfaces, Wi and Wk, is a straight line {(xi1, xi2)| vi(xi1, xi2)− ti =
vk(xi1, xi2)− tk} ⇒hi − (bi1 − xi1)2 − (bi2 − xi2)2 − ti = hk − (bk1 − xi1)2 − (bk2 − xi2)2. Indeed,
powers 2 here cancel each other and the equation becomes linear. Naturally, all points envied
by i lie on one side from this line (closer to i because belonging to its surface), but all nodes
envied by k lie on the opposite side (closer to k), see Fig. 3. Thereby, non-intersection of any
couple of envy-arcs i→ j and k → l becomes clear. The arcs xi → xj and xk → xl just belong
to di�erent half-spaces of the plane, each containing its envying agent: xi or xk respectively.
For any ρ-incentive-compatible plan (x, t), the logic is exactly the same only all active surfaces
become a little (for ρ) lower than under ρ = 0. �.

We now illustrate the use of envy-structures for discussing the direction of distortion among
pro�t-maximizing packages or locations.

Example 3: (monopolistic-location rule). In Figure 3 the green dots describe nine locations
{b1, ..., b9} = {(0.35, 0.35), (0.55, 0.9), (0.5, 1.5), (0.9, 0.55), (1.0, 1.0), (1.15, 1.48), (1.57, 0.5), (1.45, 1.0), (1.29, 1.6)}
on the square [0, 2] × [0, 2] ⊂ R2 which may represent nine small towns. They are popu-
lated with 9 related consumer groups having valuation heights {h1, ..., h9} = {0.55, 1, 1, 1, 1.3,
0.95, 1, 1, 0.86} which are the maximal tari�s that can be paid if served at home, having in
mind also the personalized outside options (not presented here explicitly unlike in Figure 2).
The towns have populations {m1, ...,m9} = {1, 1, 1, 1, 1.4, 1, 1, 1, 1}. The agents have gravity
valuations vi(xi) = hi − (bi − xi)2 as in (16). A monopolistic seller (e.g., a chain store) chooses
the locations and price levels for 9 facilities (supermarkets) within or near these 9 towns. The
�rst-best facility position xi = bi inside each town is �non-distorted� one, such positions are
numbered accordingly to {b1, ..., b9}. However, such lucky outcome for all 9 towns could re-
sult only under quasi-horizontal preferences that provide disconnected �ow-graph, but that is
not the case here. Instead, the pro�t-maximizing facility locations calculated numerically are
{x1, ..., x9} = {(0.278333, 0.278333), (0.457353, 0.879412), (0.5, 1.5), (0.879412, 0.457353),

(1., 1.), (1.1788, 1.57215), (1.1788, 1.57215), (1.55833, 1.), (1.29, 1.6)}.
They are shown by nine red circles connected by arrows of the envy-graph in the direction
of envy. One can see that distortion (deviation of the pro�t-maximizing circle from related
socially-optimal dot) always obeys Theorem 1: the direction from the envying �st-best location
to the envied �st-best location similar to the direction of the envy-arcs: the envier is pushing
the envied bundle outside. In particular, location 2 is envied by two agent groups, so, by eqn.
(14) the sum of the pushing gradients (∇v2,∇v4) determines the direction of distortion.

One can observe that the graph structure obeys Theorem 3: it is planar and is order-
preserving in the sense that the higher peaks remain higher in the graph here. When there
is a unique envier, the direction of distortion of any envied location is exactly opposite to

21This claim expresses a sort of shape-preservation between the net of the bliss-points (b1, ..., bn) and the net
of resulting qualities (x1, ..., xn): each envied node lies approximately in the direction from bi to bj but farther
away. Since the non-envied nodes (the graph summits) remain non-distorted (xi = bi), the whole net-of-pro�t-
maximizing qualities (x1, ..., xn) looks like a continuous deformation of initial net (b1, ..., bn), these points to
become xi being pushed away from the graph summits (see our �gures).
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Figure 3: Two-dimensional locational distortion under HSM preferences (Example 3).
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the envier's summit, and thereby can be called �envy pressure� from the envier. Under two
enviers, the direction of distortion re�ects their weighted �envy pressure� on the envied node.
Moreover, the amount of distortion is larger when the weight of the envier is bigger (that can be
derived from the optimality conditions). Thus, assuming similar costs at all locations, the rule
of monopolistic location distortion in such situations can be formulated as centrifugal��from
the hills to the valleys�, i.e., the network of supply points is distorted relatively to the network
of the demand points towards least willingness to pay and away from the highest willingness to
pay.

This seems counter-intuitive: we expect more shops located on the street that is populated
by the rich rather than on the one populated by the poor. However, our expectations may result
from (frequently observed) other market structures: oligopoly or free-entry oligopoly similar to
monopolistic competition. These may have the opposite location rule. If it is true, then by
observing pro-centric or anti-centric location pattern we can conjecture about the underlying
market structure, is it essentially monopoly (tacit collusion) or oligopoly. It could help to
rationalize the location choices of producers.

Example 4: Can we empirically reveal the kind of envy-graph for some observed product
line? For instance, in a liquor shop a typical menu of packaging many brands of whisky contains
0.75, 1.0, 1.75 liters in quantity dimension and �young�, �middle� and �very old� in quality
dimension (measured by the age of the whisky). This overall amounts to 9 points of service
like in Figure 3.22 Our intuitive conjecture is that 1.0 liter bottle of the middle quality has
the highest price-cost margin or net tari�. Thereby, this middle package should serve as the
�top� of the graph, whereas �border� packages should have quality and quantity distortion in
the opposite directions: too small sizes for small bottles and too big for the bigger one, similar
to the distortion in Figure 3. Empirical study can show if it is really the case or not.

6 Conclusions

We have used a quite general setting to study discrete screening without the single-crossing
condition (SCC). Our technical novelties include constraints relaxation that makes the analysis
more tractable, and extensive application of graph theory to screening problems. A modelling
novelty is multiple outside options in screening, which enables one to extend the screening
methodology and �envy-graphs� onto product lines in oligopoly and reach several conclusions.

(1) Regarding distortion in general case, we con�rm the commonly held belief among economists
that the usual �e�ciency at the top and distortion below� remains true even without SCC, but
we provide some important clari�cations. The �top� now means any �source� of the solution
graph, and �below� refers to its successors. Speci�cally, a bundle is distorted if and only if
non-zero is the aggregate envy (the sum of envying utility gradients weighted by their Lagrange
multipliers) towards this bundle. This aggregate gradient also determines the distortion direc-
tion: it is opposite to the envy pressure.

(2) To get more de�nite predictions about distortion (for the price of some additional restric-
tions), we introduce a new and promising �spatial� class of preferences bridging Hotelling and
Spence-Mirrlees assumptions. These preferences enable us to characterize the solution graphs
as linear or planar, i.e., every bundle envies only its neighbor(s). The direction of distortion in

22However, unlike our 9-towns example, consumer types in the whisky example can be of continuous nature
and preferences need not follow the gravity pattern, so our model does not apply strictly.
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monopolistic product lines becomes clear: distortion is centrifugal in quality space�from the
bliss points of the high-demand consumers towards the low demands.

Further we plan to study an extension to �oligopoly with competences:� does it show the
same pattern of distortion as monopoly? Also, it would be interesting to study in the same
fashion a free-entry oligopoly, where consumers are continuously spatially heterogenous (between
Hotelling and Spence-Mirrlees cases), with discrete points of service.

Generally, by our examples and theorems we would like to convince the reader that con-
sidering non-vertical and non-horizontal envy structures in product lines can be practical for
�rms to design their optimal menus, and for researchers to rationalize some speci�c patterns
observed.

7 Appendix: proofs

Proof of Proposition 1 (existence of the Lagrange multipliers in relaxed and non-relaxed
cases).

The claim (a) about the existence of solution is simple. A continuous objective function
should have a maximum on the compact set. To construct the compact set for admissible (x, τ),
we use our assumption on bounded qualities for positive surplus and arti�cially compactify the
admissible set as Z = {x ∈ Rln, τ ∈ Rn

+ : vi(xi) ≥ ui0 ∀i}. Any negative tari�s or qualities
bringing negative surplus cannot be optimal, so essentially this compacti�cation does not restrict
the admissible set.

In proving (b) we rely on Kokovin et al. (2011), Proposition 4 about the existence of the
Lagrange multipliers.23 It is very similar to what we are proving now but for positive relaxation
ρ > 0 and our idea is to expand this statement onto the case ρ = 0 by a limit transition that
uses additional assumption of unique maximum. We construct an in�nite sequence of all local
argmaxima with their Lagrange multipliers and study any such couple (z(n), λ(n))ρ→0 → (z∗, λ∗).
This limit (z∗, λ∗) (of the sequence or some of its subsequence) must exist because variables
z = (x, τ) are bounded by our assumption on bounded x : vi(x) > 0. Also bounded are
variables λ ∈ [0, M̌ ] : M̌ = maxG{MG} due to relation (13) holding for all ρ > 0 (Proposition 4
from Kokovin et al., (2011)). One of such limits (related to one of local maxima) must coincide
with our global maximum z̄ = z∗ of the unconstrained problem. It is so, because the relaxation
ρ > 0 keeps the global maximum feasible and the objective function cannot increase in ρ
discontinuously at z̄ : ρ = 0, since z̄ is supposed to be unique (or at least isolated). It is common
in optimization that when we continuously expand the admissible set, the argmaxima changes
continuously at the points where it is unique. Thus, there is a sequence (z(n), λ(n))ρ→0 → (z̄, λ∗)
converging to our global maximum. Further, since the number of possible graphs is �nite, the
sequence must contain a subsequence with the same list Gλ(n) of LA-constraints for whole tail
of the sequence. So, all the needed equalities and non-strict inequalities (8)�(13) hold true
for the whole tail and thereby for the limiting point z̄. This means that by this sequence we
have constructed the list of LA-constraints and related vector λ∗ of the Lagrange multipliers,
satisfying the FOC, i.e., the Lagrange necessary conditions for this maximum z̄. The essence of
this proof is that all excessive constraints (that could be bunched at z̄ and thereby prevent the

23Its proof exploits Lemma 2 and the speci�c feature of our screening problem: a linear objective function
and separable constraints w.r.t. vi(xi) and τi.

22



cone of the admissible direction being solid at z̄) are ignored, not included into the needed list
Gλ∗ of LA-constraints by construction through the sequence. �.

Proof of Proposition 2.
Claim (i) means: [B-envy-free i0 ⇒ e�cient xi0 ]. Take the optimization problem in terms

of net-valuations vi(xi) = Vi(xi) − C(xi). No-B-envy assumption means that all constraints
like (j → i0)∀j could be eliminated from the optimization program and the objective function
π =

∑n
i=1 miti is maximized w.r.t. x, t under the remaining constraints. They include variables

xi0 , ti0 only in the left side of the inequalities in the form vi0(xi0)−ti0 ≥ vi0(xj)−tj, vi0(xi0)−ti0 ≥
ui0. The bigger the magnitude vi0(xi0), the bigger ti0 can become, but ti0 is maximized and no
other constraint restricts pro�t contribution ti0 from the above. Therefore some constraint of
this type is binding, and at the argmaximum (x̄, t̄) of pro�t, the function vi0(.) also reaches its
unconstrained maximum at the quantity x̄i0 . This means that x̄i0 is non-distorted . Claim (ii)
is obvious.

Further, we shall need the following auxiliary claim: [concavity and LA-envy-free i0 ⇒
e�cient xi0 ]. To prove by contradiction, suppose x̄i0 is not the unconstrained argmaximum of
vi0(.). Then, under concavity of vi0 , in any close vicinity of x̄i0 there is a point x̌i0 (actually,
many points) bringing higher value vi0(x̌i0) > vi0(x̄i0) (an alternative assumption of strict quasi-
concavity works similarly). By no-LA assumption, there exists some ε > 0 such that relaxation
of all constraints of the type (j, i0) : vj(xj) − tj ≥ vj(xi0) − ti0 for this amount ε, the solution
remains unchanged.

Then the additional welfare vi0(x̌i0)− vi0(x̄i0) > 0 from the new better point x̌i0 situated in
ε-vicinity of x̄i0 could be distributed between the agent i0 and the seller. In fact, by constructing
a new package (x̌i0 , ťi0) one can increase the pro�t π without violating any constraints. This can
be done by slightly increasing the net tari� ťi0 = t̄i0 + δ enough to not violate constraints with
direction (i0, j): vi0(x̌i0)− ti0 ≥ vi0(xj)− tj. These constraints have some slack vi0(x̌i0)−vi0(x̄i0)
now, and constraints (j, i0) have some slack by LA-free assumption. But, the increased pro�t
contradicts the optimality of x̄. This proves that x̄i0 ∈ arg maxxi vi0(xi).

Claim (iii): [concavity, weakly-A-envy free i0 ⇒ e�cient xi0 ]. By weakly-A-envy free we
mean absence of envy from any agents not bunched with the one studied. Under the no-
bunching case, obviously, if a package (x̄i0 , t̄i0) is A-envy-free, it also is LA-envy-free, so the
claim just proved applies (one can also repeat similar concavity arguments for an independent
proof).

Now we prove the same no-distortion claim for the case of a group of consumers K =
{i0, ..., k} : x̄k = x̄k−1 = ... = x̄i0 , bunched together with this package i0 : vj(xj)− tj = vj(xi0)−
ti0 ∀j ∈ K and not envied from outside. Can their incentive-compatibility constraints comprise
a cycle causing a distortion? Suppose there are one or more agents from this group whose
welfare function vj does not attain maximum at the equilibrium point, i.e., x̄j 6∈ arg maxz vj(z).

Take a small ε > 0 and denote a small ε-vicinity of x̄i0 as: B(x̄i0 , ε) := {z ∈ Rl| ||x̄i0 − z|| ≤
ε}, small enough so that all IC constraints to i0, which are strict inequalities at the point x̄i0
(those (j, i0): j 6∈ K) remain satis�ed under all z ∈ B(x̄i0 , ε) also, with t̄i remaining �xed.
Continuity of vi (which follows from concavity on Rl) allows us to build such B. Now maximize
among agents and points and denote an agent by k whose welfare function vk attains the
maximum value within B(x̄i0 , ε) among all {i, ..., k}, so that

x̌k := arg max
j∈K

max
z∈B(x̄i0 ,ε)

(vj(z)− vj(x̄i0)).
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As in the proof (no-LA+C) above, from the assumptions of distorted x̄i0 and concavity (or strict
quasi-concavity) there exists x̃i0 ∈ B(x̄i0 , ε) such that vi0(x̃i0) > vi0(x̄i0). Combining this with
maximal position of x̌k, we get vk(x̌k)− vk(x̄i0) ≥ vi0(x̃i0)− vi0(x̄i0) > vi0(x̄i0)− vi0(x̄i0) = 0 =
vk(x̄i0)− vk(x̄i0), so vk(x̌k) > vk(x̄i0). Then, replacing the equilibrium assignment x̄k by x̌k for
this agent, we can again choose a new tari� ťk = t̄k+vk(x̌k)−vk(x̄i0) (as in version no-LA+C) to
increase both welfare and pro�t without violating any constraint with this new (x̌k, ťk). Indeed,
the position of x̌k in B guarantees that the outside agents ∀j 6∈ K will not switch to x̌k even
under the old tari� t̄k, and so they will not switch for a bigger new ťk also. Our k-th agent
herself is indi�erent between the old and the new package: vk(x̌k)− ťk = vk(x̄i0)− t̄k, so she does
not switch. Other agents (∀j ∈ K, i.e., bunched) will not wish to switch to package (x̌k, ťk),
because k is chosen to maximize the bene�t from switching among ∀j ∈ K. In other words, by
recalling t̄j = t̄k = t̄i0 , we can ensure incentive-compatibility constraint j, k as satis�ed:

vj(x̄i0)− t̄i0 = vj(x̄i0)− ťk + vk(x̌k)− vk(x̄i0) ≥ vj(x̄i0)− ťk + vj(x̌k)− vj(x̄i0) = vj(x̌k)− ťk.

So, we have increased the pro�t with a new feasible package (x̌k, ťk) and this contradicts the
pro�t-maximizing (x̄k, t̄k), so the distortion assumption was wrong. This proves that there is
no-distortion now for all bunched agents not envied from outside: x̄j ∈ arg maxz vj(z) ∀j ∈ K.

This completes the proof of the proposition. �

Proof of Theorem 1: [aggregate LA-envy towards j0 ⇔ distorted j0].
We have assumed that the Kuhn-Tucker theorem is applicable to our pro�t maximization

program formulated in terms of net-valuations (see the conditions for this in Proposition 1).
So, there must exist Lagrangian multipliers λ̄is ≥ 0 related to all constraint (i, s) such that the
pro�t maximum can be characterized at the point (x̄, t̄, λ̄) by the �rst-order conditions of the
following Lagrangian:

L(x, t, λ) :=
n∑
i=1

miti +
n∑
i=1

n∑
s=0

λis[vi(xi)− vi(xs)− ti + ts],

where we have denoted the package #0 representing non-participation as (x0, t0) := (0, 0). If
there are multiple dual variables λ satisfying the FOC, we �x one of them and discuss only
it further. Taking the FOC w.r.t. tj0 , we can collect all terms with envy directed from j0 as∑n

s=0 λj0s and another sum
∑

k 6=j0 λ̄kj0 represents all terms with envy to j0:

∂L(x̄, t̄, λ̄)/∂tj0 = mj0 −
n∑
s=0

λ̄j0s +
∑
k 6=j0

λ̄kj0 = 0

(of course, λ̄ij = 0 for non-active constraints).
From the condition λ̄ij ≥ 0 we have mj0 +

∑
k 6=j0 λ̄kj0 > 0, therefore

∑n
s=0 λj0s > 0. Now

taking the FOC w.r.t. any component xj0r of xj0 , we get two similar sums of multipliers λij
directed to and from j0 (using the non-restricted domain of x ∈ Rnl, and denote derivative as
v̇ir(z) := d

dzr
vi(z)):

∂L(x, t, λ)/∂xj0r = v̇j0r(x̄j0)
n∑
s=0

λj0s −
∑
k 6=j0

λkj0 v̇kr(x̄j0) = 0 ∀r = 1, ..., l.

On the other hand, by concavity of vj0 , the point x̄j0 is non-distorted (it is an unrestricted
maximum of vj0) if and only if ∇vj0(x̄j0) = 0 ∈ Rl. So, in view of

∑n
s=0 λj0s > 0, we have
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proved that the relation
∑

k 6=j0 λkj0 v̇kr(x̄j0) = 0 ∀r is the necessary and su�cient condition for
no-distortion. If this equality holds for any λ satisfying the FOC, then it holds for all such λ.
In other words, inequality

∑
k 6=j0 λkj0∇vkr(x̄j0) 6= 0 ∈ Rl for all λ (aggregate LBA-envy from

some agents) implies distortion. �
Corollary (distortion direction) follows.

A program �nding pro�t-maximizing menus

In Kokovin's personal page at HSE (http://www.hse.ru/en/user/?_r=5563158.703607496726/
Other) we present our program in language Wolfram-Mathematika, that �nds pro�t-maximizing
menus under any quadratic valuations of three agent types (it can be modi�ed to cope with
non-quadratic valuations also and to more types).
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