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1 Introduction

Causes of social conflicts always attract attention of researchers in social
sciences and economics. In the early studies much attention was paid to the
inequality in income distribution: it was assumed to be a one of the reasons
of conflicts between groups in society [TH3]. Indeed, inequality of wealth can
cause the antagonism between rich and poor segments of society; however,
noneconomic characteristics of individuals may also be reasons of division
of society into separate groups.

There are two basic approaches in the analysis of social diversity: frac-
tionalization [4H6] and polarization [7HI] measures. The fractionalization
is a characteristic of social dissociation into groups according to some at-
tribute. It depends only on the number of groups: the greater the number
of groups, the higher the level of fractionalization. Polarization takes into
account the degree of similarity between groups: less the similarity, greater
polarization and degree of antagonism in society. Polarization, like fraction-
alization, can be measured in different aspects of invididual life : income,
ethnic, religion, linguistic group, political views and so on [I0].

The fundamental work in the theory of measure of polarization is [7]. In
this paper the following definition of polarization is suggested:

Suppose that a population of individuals may be grouped ac-
cording to some vector of characteristics into clusters, such that
each cluster is very similar in terms of the attributes of its mem-
bers, but different clusters have members with very dissimilar
attributes. In that case, we say that the society is polarized.

Therefore, the degree of social polarization depends on how much the values
of attributes differ for different groups, and on the number and sizes of
groups.

Polarization of society is directly related to existence of social tension
and hence with a probability of social conflict. Thus, development of meth-
ods for polarization measure allows quantifying social tension and predicting
social conflicts.

There are several polarization indices. The Esteban-Ray index [7] is a
generalization of the Gini index . In [9] the Aleskerov-Golubenko index was
introduced, which is based on ideas from mechanics.

Bi-polarization measures are very common as a subset of polarization
measures. While a polarization measure reflects the division of society into



groups (regardless of number of groups), bi-polarization measure is closely
related with concept of "middle class” - the lower the size of middle class,
the higher the degree of bi-polarization of the system and vice versa. The
Wolfson-Foster index [I1] is well-known bi-polarization index. Similarly to
the Gini index, Wolfson-Foster index is calculated as twice the area un-
der polarization curve. The generalization of the Wolfson-Foster index was
proposed in [12].

In this work, polarization indices in some special cases are investigated
and compared. In Section [2[ formulation of indices is given. In Section
some new properties for indices are formulated. In Section [4] polarization
indices are compared with formulated properties. Results and conclusions
are presented in Section

2 Formal Definition

Let us consider a society divided into n groups, where coordinate of i-th
n
group is y; € [0,1] and the size is p;, where > p; = 1.
i=1
In [7] the model of ”identification-alienation” was suggested, according
to which any individual, on the one hand, identified with his group (and
a sense of identification enhanced by the size of group), and on the other
hand alienated from individuals from the other groups (a sense of alienation
enhanced by the distance between groups). Based on this model the index
was obtained

n n
ER =21 "pitp; yi — y] (1)
i=1 j=1
where « € (0,1.6] is a parameter of the model, that describes the degree
of 7polarization sensitivity” of the system (if « = 0 ER is equal to Gini
inequality index).

In [9] an alternative approach to measure polarization was proposed, it
was used to estimate the degree of polarization in Finland parliamentary
election in 1999 and 2003. The approach is based on the idea of physical
characteristics of mass distribution in the system - the static moment of
forces [13]. The Aleskerov-Golubenko index was introduced as

AGy = 2Zpi ly; — ¢ (2)
i=1



n
> Pivi

i=1
> pi
i=1
Further, the modification of will be used

where ¢ = is the barycenter of the system.

4 n
AG = — i |Yi —
G= Lpiln (3)

The main difference between and is that if n — co AG — 0, while

AGy — % Since in many practical cases the number of groups is large, it
is more convenient to use an index with zero limit value: that index takes a
low value not only in the case of a single group, but in the case of sufficiently
large number of equal groups too.

As it was mentioned in Introduction the class of bi-polarization mea-
sures can be distinguished among polarization measures. By analogy with
the Lorentz curve, in [I1] a notion of polarization curve was proposed, and
Wolfson-Foster index was determined as twice area under second-order po-
larization curve. In [II] the following formula for Wolfson-Foster index was
obtained

WF = (T — G)% (4)

where p is the mean and m is the median values of attribute, G is Gini
index,
T =1-2L(0.5), L(0.5) is the value of Lorenz curve in point 0.5 [I1].

The other bi-polarization measure - Wang-Tsui index - is the general-
ization of Wolfson-Foster index [12].

1 N - r n

i=1
where m is the median value of attribute, IV is the number of individuals,

T
Yi—m

; (5)

m

n is the number of groups, r € (0,1).

Note that extreme values of , and , are different. The
Esteban-Ray and Aleskerov-Golubenko indices take maximal values in the
case of two equal groups and this value is equal to one [7], [9]; the Wolfson-
Foster and Wang-Tsui indices tend to infinity in the case of complete in-
equality.

Further we compare the indices , , and in some special cases
and show important differences between them.



3 Properties for Polarization Indices

In this section, I propose two properties, which in my opinion polarization
indices should satisfy. Verification of such properties allows us to detect
differences between indices, what may be helpful for choosing the right
index in specific case.

The first property states that polarization should decrease when the
number of groups grow up and groups have equal sizes.

Property 1. Let us consider aciety divided on n groups of equal size, which
are placed on [0,1], so that any two neighboring groups are equally distanced.
Then increasing of the number of groups leads to polarization decreasing,
and if n — oo polarization tends to zero.

In the next property only cases of odd n are considered. For example,
let us consider the case of three equal groups and let the middle group move
toward one of the groups on the boundary. When the middle group merges
with one of the extreme, there will be only two groups. Such a system seems
to be more polarized than the initial system with three groups.

Property 2. Let us consider a society divided on n groups of equal size,
which are placed on [0,1], so that any two neighboring groups are equally
distanced and n is odd. Let the middle group move from Ynp by €, such that

le] < Then polarization should in socrease with |e| increasing.

2(n—1)

We use these properties to observe important differences between polar-
ization indices.

4 A Comparison of Polarization Indices

In this Section the properties formulated above are verified and important
differences between indices are demonstrated.

4.1 A Comparison of Polarization Indices in a Case of
Equal Groups
Consider the situation from Property[I} society is divided on n equal groups

which are placed on [0, 1], so that any two neighboring groups are equally
distanced (Fig. We call this distribution ”equal”. Although this case is



not likely to be met in real systems, it is interesting for consideration: as
it will be shown, indices are not sensitive to small perturbations of groups
sizes and positions.

1
0 — e .1
n-—1

Figure 1. Equal distribution of n groups

Theorem 1. Let ER,, and AG,, be the values of Esteban-Ray and Aleskerov-
Golubenko indices in the case of equal distribution of n groups. Then

e ER,.1 < ERy;
[ ] AGTL+1 < AGn

Proof of this and all other theorems is given in the Appendiz.

Theorem [I] means that Esteban-Ray and Aleskerov-Golubenko indices
decrease monotonically with n increasing. This theorem is consistent with
the results obtained in [7, 9], that the indices 7 takes maximum values
in the case of two equal groups.

In contrast to Aleskerov-Golubenko and Esteban-Ray indices bi-polarization
indices do not decrease monotonically with number of groups increasing.

Theorem 2. Let WT,, and WEF, be values of Wang-Tsui and Wolfson-
Foster indices in the case of equal distribution of n groups. Then

o Vn > 1, Vr € (O7 1) Wi, > WT2n+2, WiTs,—1 < WT2n+1,
WTay > Wilsnga;

o Vn>1Wky, >WFsy,_1> WF2n+1, W Fy,, > WF2n+2.



Theorem [2| demonstrates some interesting features of bi-polarization in-
dices. Firstly, values of bi-polarization indices depend on whether the num-
ber of groups odd or even, and in the case of even number of groups the
indices values are greater. Secondly, while the Wolfson-Foster index non-
monotonically decreases with n growing, the Wang-Tsui index is increasing
with growing odd n and decreasing with even n.

Behavior of indices in this case is demonstrated on Fig[2] The graph
shows that while Aleskerov-Golubenko and Esteban-Ray indices tends to
zero for large values of n, bi-polarization indices vary around some positive
values. This fact is formulated in Theorem [3]
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Figure 2. Behavior of indices in the case of equal distribution, a = 1.6,
r = 0.5. The graph is obtained via computer simulations.

Theorem 3. Let us consider the equal distribution of n groups. Then if
n — 0o

e Ya ER, — 0, AG,, — 0;

o WT, — f(r) >2"72;

1
WE, — =
y 6



Thus if n — oo the values of Wang-Tsui and Wolfson-Foster indices stay
positive. Note that in the case of two equal groups the Wang-Tsui index
value is equal to one for all » € (0,1). But if r is close to zero the limit
value of index (when n — o) is close to one, although polarization seems
to be very low in the limit case. Similarly the Wolfson-Foster index changes
its value very slowly since n > 3.

Theorems can be formulated as the next proposition

Proposition 1. Property 1 holds for Aleskerov-Golubenko and Esteban-Ray
indices, and does not hold for Wang-Tsui and Wolfson-Foster indez.

Results of the comparison of polarization indices are presented in The-

orems (@15l

Theorem 4. Let us consider the equal distribution of n groups. Then there
is n*(«) such that

e ifn<n* AG, < ER,;
e ifn>n* AG, > ER,;

Theorem 5. Let us consider the equal distribution of n groups. Then
Yn>1,r€(0,1) WT,, > WF,.

4.2 A Comparison of Polarization Indices in the Case
of Odd Number of Equal Groups

Let us consider situation from Property [2} society is divided on n equal
groups which are placed on [0, 1], so that any two neighboring groups are
equally distanced, n is odd and the middle group is placed on

n—3 n+1
Figl3).
re 2(n—1)’2(n—1)](1g

Theorem 6. Let us consider the equal distribution of n groups, when n

n—3 n+1
T
2n—1)"2(n — 1)} hen

is odd and the middle group is placed on x € {

1+«
2 1
regardless of x, ER = (n) n;—

Theorem 7. Let us consider the equal distribution of n groups, when n

n—3 n+1
. Th
2n — 1)’ 2(711)} o

18 odd and the middle group is placed on x € [
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Figure 3. Middle group placed on x: cases of three and five groups)

Aleskerov-Golubenko index talges the mini_ﬂ:um value on x = 0.5 and the
n— n

2n—1) " " 2tn—1)

mazimum value on x =

Study of behavior of bi-polarization indices gives interesting results: it
turns out that Wang-Tsui and Wolfson-Foster indices are not symmetric
with respect to z = 0.5. This fact presented in Theorem

Theorem 8. Let us consider the equal distribution of n groups, when n is

-3 1
odd and the middle group is placed on x € Q(T;L —1y 23{’; o1k Then WT

and WF decrease monotonically with x increasing.

Theorems [B]§] are illustrated on Fig[]and can be formulated as the next
proposition.

Proposition 2. Property 2 holds for Aleskerov-Golubenko index and does
not hold for Esteban-Ray, Wolfson-Foster and Wang-Tsui indices.

4.3 A Response to A Random Perturbation (Compu-
tational Experiment)

The case of equal groups is very easy for analytical investigation, but it is
unlikely to be common case in reality. Therefore, a question about indices
sensitivity to small perturbation of equal distribution is appropriate. We
estimate this sensitivity using computer modeling.

Equal distribution system was uniformly perturbed in several ways: only
sizes or only positions of groups or both were changed. Computer modeling
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Figure 4. Behavior of indices depending on coordinate of the middle group
x in the case of three equal groups (o = 1.6, » = 0.5). The graph is obtained
by computer simulations.

was carried out in Matlab, for number of groups from 2 to 15. The mag-

nitude of perturbation was always § = 10% from initial value. There were

100
10,000 iterations for each n and value of AI = [T —1I|- 17% was calculated

on each iteration (here I is initial index value, I - perturbed index value).
Final value of AI calculated as an average over all iterations.

Results of modeling are presented in Tables [T}3]

Tables shows that sensitivity of Aleskerov-Golubenko and Esteban-
Ray indices is less than two percent in most cases. In addition, sensitivity of
both indices is decreasing monotonically with n increasing except the cases
of two and three equal groups. Comparison of Tables [I] and [2] suggests that
both indices are more sensitive to perturbation of sizes of groups than its
positions.

The bi-polarization indices behavior is radically different. Firstly, an
important feature of Wang-Tsui and Wolfson-Foster indices is that their

11



Table 1. AER, AAG, AWT and AWF in the case of equal distribution
with perturbed sizes of groups. a = 1.6, 7 = 0.5

Number of groups | AAG,% | AER% | AWT. % | AWFE,%
2 0.33 0.17 26.19 73.11
3 2.49 2.03 2.25 2.62
4 1.27 1.85 15.73 30.08
5 1.47 1.72 1.24 5.32
6 1.09 1.60 9.51 14.79
7 1.13 1.50 0.89 7.47
8 0.95 1.42 6.95 9.42
9 0.96 1.35 0.72 8.99
10 0.86 1.29 5.41 7.06
11 0.85 1.25 0.61 10.01
12 0.78 1.19 4.42 9.93
13 0.77 1.67 0.54 10.55
14 0.73 1.13 3.76 8.31
15 0.71 1.09 0.49 10.74

sensitivity depends on whether the number of groups is odd or even. This is
consistent with Theorem [2| Secondly, bi-polarization indices are extremely
sensitive to a small perturbation: sensitivity can reach 70-90% if the number
of groups is small. This feature of bi-polarization indices should be taken
into account in real life problems.

5 Conclusions

In our attempt to identify differences and key features of main polarization
indices we introduced two new properties for polarization measures and then
verified them for four known indices of polarization.

Property 1 deals with a simple case of n equal groups. This prop-
erty helps to understand important differences between polarization and
bi-polarization indices. In the case of equal distribution of n groups all
indices decrease with n increasing, but while Esteban-Ray and Aleskerov-
Golubenko indices tend to zero as n tends to infinity, Wolfson-Foster and
Wang-Tsui indices tend to some positive value. Difference between indices

12



Table 2. AER, AAG, AWT and AWF in the case of equal distribution
with perturbed positions of groups. a = 1.6, r = 0.5

Number of groups | AAG,% | AER% | AWT. % | AWFE,%
3 1.10 0 86.63 3.31
4 1.17 0.47 8.30 2.83
5 0.90 0.46 30.21 3.34
6 0.73 0.42 4.39 1.72
7 0.60 0.37 17.53 2.76
8 0.50 0.33 3.24 1.18
9 0.43 0.29 12.08 2.32
10 0.37 0.26 2.66 0.87
11 0.32 0.23 9.13 1.96
12 0.29 0.21 2.29 0.57
13 0.26 0.19 7.27 1.74
14 0.23 0.17 2.02 0.48
15 0.21 0.16 6.02 1.54

is not only in their limiting values, but also in the type of decreasing. The
bi-polarization indices decrease non-monotonically and depend on whether
the number of groups is odd or even.

In Property 2 the same case is considered, but the number of groups
is odd, and the coordinate of the middle group x # 0.5. In this case, the
following features of indices are found

e the Esteban-Ray index value is constant regardless of x;

e the Aleskerov-Golubenko index value is minimal if z = 0.5 and in-
creasing with the middle group coordinate moving towards one of the
extreme groups;

e the Wolfson-Foster and Wang-Tsui indices monotonically decrease
with z increasing.

A sensitivity of the indices to small random perturbations was studied.
It was shown that Esteban-Ray and Aleskerov-Golubenko indices have low
sensitivity (about 1% for 10% perturbation), and Wang-Tsui and Wolfson-

13



Table 3. AER, AAG, AWT and AWF in the case of equal distribution
with perturbed sizes and positions of groups. a = 1.6, r = 0.5

Number of groups | AAG,% | AER% | AWT. % | AWFE,%
2 0.33 0.17 26.19 73.11
3 2.68 2.00 86.64 4.17
4 1.70 1.86 8.28 30.01
5 1.70 1.76 30.21 6.18
6 1.31 1.63 4.44 14.69
7 1.28 1.54 17.50 7.91
8 1.09 1.45 3.25 9.54
9 1.04 1.38 12.08 9.30
10 0.94 1.31 2.66 7.19
11 0.91 1.27 9.12 9.99
12 0.83 1.21 2.29 8.97
13 0.82 1.18 7.27 1.60
14 0.76 1.15 2.04 8.40
15 0.75 1.13 6.02 10.79

Foster indices are extremely sensitive (sensitivity reaches 80% for 10% per-
turbation in the case of small number of groups).
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7 Appendix. Proof of Theorems

Proof of Theorem [1]

1. Let us prove the first statement of the Theoreml 1l Vn ER,+1 < ER,.
1 1—1

In the case of equal distribution of n groups p; = — and y; =
n

n—1

Vi =1,2,...n. Then according to (1)

glta 241

ER, = n2+a(n — 1) Z i =il = T3 plta (6)

7] 1

Hence
ER,1 n \“nn+2) nn+2) [ 1 <1
ER, \n+1) (n+1)2 =~ (n+1)2 (n+1)2

2. Let us prove the second statement of the Theorem Vn AGhy1 <

AG,. In the case of equal distribution ¢ = 2 therefore, according to

()

-1’
n+1 (7)
2

n
=
n2' n—
=1
n

Let us show AG, 11 < AG,. If n is even and n + 1 is odd, then

’ ——, if nis even

, if nis odd

1 n+2 n+3
AG,, — AGp iy = - = 0
¢ Gn1 = 03 112 m-Dn+iE

If n is odd and n + 1 is even, then

n+1 1 1
AGy = AGir = "= =~ = — >0
Hence Vn AG,, > AG 4. O
Proof of Theorem 2|

1. Let us prove the first statement of the Theorem[2} Vn > 1, Vr € (0,1)
Wilay > Wilayy2, Wian 1 < Wilayy1, Wiz, > WTayq1.

15



(a) Let us prove that WTs, > WT2n+2 In the case of equal dis-

tribution of 2n groups p; = 2n7 Yi = %, m = %, hence
according to
i1 1
Wl =52 |31 2 ®

Because of the symmetry of considered distribution
Wy, = (2n — 2i 9
2= 2n—1)r ; nozd ©)

Note that WTs, is non-increasing function of r € (0, 1):

AW Ty, 1 " , on —2i+1
= n—2t+1)In— <
dr n(2n —1)" ;( n-2i+1)"n 2n—1 — 0
and also
W5, =1 (10)
r=0

Let us compare the values of W1y, and W1Th, o for r = 1.
According to (9)

n+1

L )_Z(2n72i+3)’" (11)

W = o) = G 0 + 1y
i=1

Hence

WT. = éi(zn—murl) —_ (12)

T n(2n—1) ¢ T o1
T i=1
n+1
1 n+1

WT: = 2n—2143) = 13

m2 T+ D2n—1) ;( n=2i438) =97 (19)
So, Vn W1y, > Wilh,to . Therefore, according to (|10

r=1 r=1

and monotonic non-increasing of WTs, on r € (0,1), WT5, >
WTs, 12 holds for r € (0,1) for every n.

16



(b) Let us prove Vn WTs,_1 < WTs,41. According to

or 2n—1
Wy 1 =
n—l anlg

i—1 1"

2n—-2 2

Because of the symmetry of considered distribution

2 - ar_ 1 n_\
WTQn—lsz(n_z) -1 (n—l)

(15)
Note that WTs,_1 is decreasing function of r € (0,1). Indeed,

AW Ty, 1 - - n—z
dr _(2n—1 n— 1) g" 0T
1 n " n
— 1 0
o —1 (nl) tao1 Y
and also
Wl 1| =1 (16)
r=0

Let us compare the values of WT5,_1 and WTs, 41 for r = 1.

According to

n(n — 2)
W, — = 17
m1 T Ga-Dn-1) (17
n?—1
WTs, 18
s MR TCER o
From , 1I| WTsn11 > Wis, 4 follows. Hence, ac-
r=1 r=1

cording to (16)) and monotonic decreasing of WT5,_1 on
€ (0,1), WTsp41 > WTs,—1 holds for r € (0,1) and every n.

(c) Let us prove WTs,, > WTs, 1. According to and
W, > Wy . Hence, because of (A5), (Al11l) and

r=1 r=1
monotonic non-increasing of WTs,, and WTs,11 on r € (0,1),

the statement holds.
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2. Let us prove the second statement of Theorem [2} Vn > 1 W F;,, >
> WFy—1 > WFoyt1, and WFy, > WFy, 5. In the case under
consideration y = m = 0.5, so according to Yn > 1 and well-
known equation for Gini index

n*+2 .
—— ifniseven
WF, =T, — G, = 6n(n—1) (19)
n+1 . .
, if n is odd.
6n
Hence according to
2n% +1
Why, = @ "~ 20
7 6n(2n — 1) (20)
2n+1)2+1
WFhypio= ——F—r 21
2n+2 3(2”"‘1)2 ( )
n
Why = — 22
2n—1 3(2n — 1) (22)
WE -l (23)
T 320+ 1)
(a) Let us show WFy, > W Fy, ;. According to and
2n? +1 n+ 5
Wk, = nr = n_ > n =Wk

6n(2n—1) 3(2n—-1) " 3(2n-1)

(b) Let us show WFy,_1 > WFy,41. According to and

n n—+ 22711 TL+1
WFy, 1 = - n-l = W Fy,
T30 —1) 32n—1) " 3(2n+1) el

(c) Let us show W Fy,, > WFy, 5. According to and

2n% +1 2n? +1  (2n+1)?
WkFEy, = ——— =WFs,19 > Wk,
7 6n(2n — 1) T on2n —1)2(n +1)2 + 1 a2
The statement is proved. O
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Proof of Theorem [3]

1. Let us prove the first statement of Theorem [3]

VYo € (0,1.6] ER,, AG,, — 0,with n — oo

According to (@

oL+ 1
lim ER, = lim "EL
n—o00 n—o00 nO‘JFl
because v > 0.
According to
1 1
lim AG, = lim = lim n—&; =
n—o00 n—oo 1N — n—oo N

The statement is proved.

2. Let us prove the second statement of Theorem

vr e (0,1) WT,, = f(r) >0, n— o0

According to in the case of equal distribution

“1li—-1 1"
wWT, =2" — - =
Zn n—1 2
=1
Because of r € (0, 1)
2™n

2r (=1
WTn>n<Zn

i=1

Because of lim — = lim
n—oo (n — 1) n—00 4n

lim WT, > 22

n— oo

3. The third statement of Theorem follows from

n2+2 .o o n+1

lim WF, = lim —— = lim

n—00 n—oo 6n(n —1) n—ooo 6n

19
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if n is even

if n is odd.



Proof of Theorem [

According to Theorem [1 AG,, and ER, decrease monotonically with n
growing. Therefore, A(n) = AG,, — ER,, has a constant sign on N, or there
is n* such that A(n) changes its sign at n = n*.

Assume that Vn A, > 0, i.e. AG, > ER,. Then according to @ and

] 1
L _ntl (2 1+‘“n+1;$ N glta Ta
— n
n—1 n?2 ~\n 3 3 ’
and this does not hold for a = 1.6,n = 2.
Assume that Vn A,, <0 = AG,, < ER,,. Then

> > ,
3 “n-1 n? n2—-1- 3

(2>1+“n+1 1 n+1  plte  olta
— <
n

and this does not hold for « = 1.6,n = 4.
Hence there is n* such that A, changes its sign at n = n*. From

9\ 2 2+a
AG3 = 3) > ER; = 2 3 = AG3 < ERjs, it follows that for
3<n<<n* A, <0= forn>n* A, >0. Theorem is proved. O

Proof of Theorem [5]
Let us show that Vn > 1 W15, > W F5,. According to @ and

3y (2n—2i+1)"

Ty, =
W 3n(2n — 1)

(2n—2i4+1)" >
1

1 n
2n(n — 1)7 &

3n(n+1) 2n2 +1
6n(2n—1) = 6n(2n—1)
Let us show that Vn > 1 W1y, 41 > Wk, 11 According to and

=Wk,

n+1 r
2 1 n+1
WTypi1 = —————— —i+1) =
2n+1 2n(n+1)n’“;<n i+ 1) 2n+1( - ) >
n+1)(n+2)—(n+1)" n+1)2 n+1
LD+ @l (et D) I
n™(2n+ 1) 3n(2n+1) = 3(2n+1)
Theorem is proved. O
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Proof of Theorem

1
In the case of n equal groups Vi = 1,...n p; = —. Then according to
n

21+a n
R= 2 S el @5
1=1 j=1
i—-1 j-—1
Let us express S = Z Z lyi—y;| through Sequar = Z Z n—1 ‘

=1 j=1 =1 5=1

1 —

In the case under study Vi # ”TH Y = Then
n—

1
LBy

S = Zzwz yj|— equal — 22’ ‘ 22 n__

=1 j=1 =1

1
-
1

9 1
-2 =
2

n+1l n-—1 n+1l n-—1

1
= Sequal —2 2 20-1-2(z— =) = Sequa
wal =L Ty 2 am—1) 2 o F <x 2) qual

Thereby S = Scquai regardless of middle group position and ER = ERcgyql =

2\ n+1
— <) n—;— . Theorem is proved. 0
n

Proof of Theorem [T

1
In the case of n equal groups Vi = 1,...n p; = —. Then according to
n

4 n
GZEZ\%*d (26)
=1

— 1
In the case under study Vi # ”7“ Yi = 271 Hence
n—

n+1
2

4 . 4 (n+1
A6 =5 (Se-mtle-d 3 -9 ] =5 (S 4le-d).

= _ntl
=1 i=15= 41

where

X
Zyz f——+g
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Thus Aleskerov-Golubenko index value

4 (n+1 n-1
AG = —
n2< 4 + n

x—;D (27)

Then the derivative of AG with respect to z is

dAG (-1 ( - ;) (28)

dx ns3
1 1 A
So, AG takes minimal value at x = 2 for z > 3 AG increases (dde > O),
1 dA
and for x < 5 AG decreases <dG < O>. According to 1)
x
4 1 1
AG| . =ac 1=QC”'+>
$:2&11) $:2(7::1) n 4 n
. . . n—3
therefore, Aleskerov-Golubenko index value is maximal at z = ﬁ and
n—
1
x = 2&7—’;1) Theorem is proved. O

Proof of Theorem

1. Let us prove Theorem [§] for Wang-Tsui index. In the case of n equal

groups p; = —, m = z. Then according to
n

1~ | vi "
WT = — ——1’ 29
3| )
awT T Yi r—1 .
- ——1‘ - - 30
. na? 2| Yi - signly; — x| (30)
— |Yi r—1
Let usshowthatS:Z ——1‘ yi - signly; — x| > 0.
i1 T
1 ,— 1
In the case under study Vi # ntl Y = =
2 n—1
nt 1 n 1
g i—1\" i—1 i—1 i1
S:— — — =
;(x n—l) n—1+.;1(n—1 a:) n—1
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n—1

(¢+"51—1 >T1i+ﬂgl—1 ( i1>“4¢1
—s =z — — |z - +
1 n—1 n—1 n—1 n—1

+(1—-2)"

M‘

B

, — 1 1
Let z — 171 = 4. Because of 0 < ¢ < 3 7-th summand of S is

i st o1 gl i—1\"ti-1
— -z — — |z - =
n—1 n—1 n—1 n—1

r—1 . . r—1 .
1 i—1 1 _i—1 1 i—1 1
- il T e S O (e el
(2 5) (n—1+2> ’ n—l(?) (n—1+2>>0
dwT
Therefore,S>O:>L - "
d n?

x
decreases with z increasing. The statement is proved.

S < 0 = WT monotonically

. Let us prove Theorem 8| for Wolfson-Foster index . In considered
case

3(n+1) =
T=——+— 31
4an + n (31)
n+1

G= 32

6nc (32)
1 1 =z . .
where ¢ = 5—2——1—7 - the mean value of the attribute. If middle group
n n

position is x, the median value of attribute m = z, and according to

1)

3n+1) ¢ ¢ n+1 1
WF=—~— "2 .- — — — - 33
4n T n 6n =« (33)
Then
dWF 3n+1) gz—c ¢ n+l 1  (n+1)(5n—-9) i<0
de ~ 4n x? n  6n a2 24n2x? n2 ’

Hence W F monotonically decrease with = increasing. Theorem is
proved. O
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JlumaueBa, A. E.

CpaBHeHHE HHIIEKCOB MOSIPU30BAHHOCTH U GHITOISIPH30BAHHOCTH B HEKOTOPBIX CIICIUATBHBIX
ciyyvasx [Texer] : mpenpunt WP7/2015/06 / A. E. Jlunauesa ; Har. uccnen. yH-T «Bpiciuas mkosa
SKOHOMHKIY. — M. : V31, oM Bercueii mixois sxkonomukH, 2015. —28 ¢. — (Cepust WP7 «Maremarnueckue
METO/Ibl aHAJIN3a PELICHUH B SKOHOMHUKE, OM3HECEe U MOIUTHKE»). — 18 9K3. (Ha aHII. 513.)

3a/1auM OLIEHKH MOJIAPH30BAaHHOCTH BOSHUKAIOT B PAa3HBIX 00J1aCTSAX COLMONIOTHH, TTOUTONOTHU 1
9KOHOMHKH. B paboTe mpoBOANTCS HCCIEIOBAHHE YETHIPEX H3BECTHBIX HH/ICKCOB MOJISIPU30BAHHOCTH:
Ocrebana — Pasi, Aneckeposa — ['ony6enko, Bonbhcona — ®ocrepa u Banra — Llyn. ChopmynupoBans
HOBBIC CBOWCTBA [UISI HHACKCOB MOJISPH30BAHHOCTH, BBISBICHBI B)XHBIC OCOOCHHOCTH U OTIIMYHS B
TOBEJICHUU HHJICKCOB.

KitoueBsle c110Ba: HHAEKCHI NOJISIPU30BAHHOCTH, OJIAPH30BAHHOCTD, OMIIOIIPU30BAHHOCTD, MHIEKC
Ocrtebana — Past, manexc Aneckeposa — [omybenko, naaeke Bonsghcona — docrepa, nuaexe Banra —

yn

Hpenpunth HanuoHaabHOTO HCCIIEI0BATEIbCKOTO YHHBEPCHTETA
«BpIcHIas K012 IKOHOMUKI» pazMelaTes 1o aapecy: http://www.hse.ru/org/hse/wp
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