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1 Introduction

Causes of social conflicts always attract attention of researchers in social

sciences and economics. In the early studies much attention was paid to the

inequality in income distribution: it was assumed to be a one of the reasons

of conflicts between groups in society [1–3]. Indeed, inequality of wealth can

cause the antagonism between rich and poor segments of society; however,

noneconomic characteristics of individuals may also be reasons of division

of society into separate groups.

There are two basic approaches in the analysis of social diversity: frac-

tionalization [4–6] and polarization [7–9] measures. The fractionalization

is a characteristic of social dissociation into groups according to some at-

tribute. It depends only on the number of groups: the greater the number

of groups, the higher the level of fractionalization. Polarization takes into

account the degree of similarity between groups: less the similarity, greater

polarization and degree of antagonism in society. Polarization, like fraction-

alization, can be measured in different aspects of invididual life : income,

ethnic, religion, linguistic group, political views and so on [10].

The fundamental work in the theory of measure of polarization is [7]. In

this paper the following definition of polarization is suggested:

Suppose that a population of individuals may be grouped ac-

cording to some vector of characteristics into clusters, such that

each cluster is very similar in terms of the attributes of its mem-

bers, but different clusters have members with very dissimilar

attributes. In that case, we say that the society is polarized.

Therefore, the degree of social polarization depends on how much the values

of attributes differ for different groups, and on the number and sizes of

groups.

Polarization of society is directly related to existence of social tension

and hence with a probability of social conflict. Thus, development of meth-

ods for polarization measure allows quantifying social tension and predicting

social conflicts.

There are several polarization indices. The Esteban-Ray index [7] is a

generalization of the Gini index . In [9] the Aleskerov-Golubenko index was

introduced, which is based on ideas from mechanics.

Bi-polarization measures are very common as a subset of polarization

measures. While a polarization measure reflects the division of society into

3



groups (regardless of number of groups), bi-polarization measure is closely

related with concept of ”middle class” - the lower the size of middle class,

the higher the degree of bi-polarization of the system and vice versa. The

Wolfson-Foster index [11] is well-known bi-polarization index. Similarly to

the Gini index, Wolfson-Foster index is calculated as twice the area un-

der polarization curve. The generalization of the Wolfson-Foster index was

proposed in [12].

In this work, polarization indices in some special cases are investigated

and compared. In Section 2 formulation of indices is given. In Section 3

some new properties for indices are formulated. In Section 4 polarization

indices are compared with formulated properties. Results and conclusions

are presented in Section 5.

2 Formal Definition

Let us consider a society divided into n groups, where coordinate of i-th

group is yi ∈ [0, 1] and the size is pi, where
n∑
i=1

pi = 1.

In [7] the model of ”identification-alienation” was suggested, according

to which any individual, on the one hand, identified with his group (and

a sense of identification enhanced by the size of group), and on the other

hand alienated from individuals from the other groups (a sense of alienation

enhanced by the distance between groups). Based on this model the index

was obtained

ER = 2α+1
n∑
i=1

n∑
j=1

p1+αi pj |yi − yj | (1)

where α ∈ (0, 1.6] is a parameter of the model, that describes the degree

of ”polarization sensitivity” of the system (if α = 0 ER is equal to Gini

inequality index).

In [9] an alternative approach to measure polarization was proposed, it

was used to estimate the degree of polarization in Finland parliamentary

election in 1999 and 2003. The approach is based on the idea of physical

characteristics of mass distribution in the system - the static moment of

forces [13]. The Aleskerov-Golubenko index was introduced as

AG0 = 2

n∑
i=1

pi |yi − c| (2)
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where c =

n∑
i=1

piyi

n∑
i=1

pi

is the barycenter of the system.

Further, the modification of (2) will be used

AG =
4

n

n∑
i=1

pi |yi − c| (3)

The main difference between (3) and (2) is that if n→∞ AG→ 0, while

AG0 →
1

2
. Since in many practical cases the number of groups is large, it

is more convenient to use an index with zero limit value: that index takes a

low value not only in the case of a single group, but in the case of sufficiently

large number of equal groups too.

As it was mentioned in Introduction the class of bi-polarization mea-

sures can be distinguished among polarization measures. By analogy with

the Lorentz curve, in [11] a notion of polarization curve was proposed, and

Wolfson-Foster index was determined as twice area under second-order po-

larization curve. In [11] the following formula for Wolfson-Foster index was

obtained

WF = (T −G)
µ

m
(4)

where µ is the mean and m is the median values of attribute, G is Gini

index,

T = 1− 2L(0.5), L(0.5) is the value of Lorenz curve in point 0.5 [11].

The other bi-polarization measure - Wang-Tsui index - is the general-

ization of Wolfson-Foster index [12].

WT =
1

N

N∑
i=1

∣∣∣∣yi −mm

∣∣∣∣r =

n∑
i=1

pi

∣∣∣∣yi −mm

∣∣∣∣r , (5)

where m is the median value of attribute, N is the number of individuals,

n is the number of groups, r ∈ (0, 1).

Note that extreme values of (1), (3) and (4), (5) are different. The

Esteban-Ray and Aleskerov-Golubenko indices take maximal values in the

case of two equal groups and this value is equal to one [7, 9]; the Wolfson-

Foster and Wang-Tsui indices tend to infinity in the case of complete in-

equality.

Further we compare the indices (1), (3), (4) and (5) in some special cases

and show important differences between them.
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3 Properties for Polarization Indices

In this section, I propose two properties, which in my opinion polarization

indices should satisfy. Verification of such properties allows us to detect

differences between indices, what may be helpful for choosing the right

index in specific case.

The first property states that polarization should decrease when the

number of groups grow up and groups have equal sizes.

Property 1. Let us consider aciety divided on n groups of equal size, which

are placed on [0, 1], so that any two neighboring groups are equally distanced.

Then increasing of the number of groups leads to polarization decreasing,

and if n→∞ polarization tends to zero.

In the next property only cases of odd n are considered. For example,

let us consider the case of three equal groups and let the middle group move

toward one of the groups on the boundary. When the middle group merges

with one of the extreme, there will be only two groups. Such a system seems

to be more polarized than the initial system with three groups.

Property 2. Let us consider a society divided on n groups of equal size,

which are placed on [0, 1], so that any two neighboring groups are equally

distanced and n is odd. Let the middle group move from yn+1
2

by ε, such that

|ε| < 1

2(n− 1)
. Then polarization should in socrease with |ε| increasing.

We use these properties to observe important differences between polar-

ization indices.

4 A Comparison of Polarization Indices

In this Section the properties formulated above are verified and important

differences between indices are demonstrated.

4.1 A Comparison of Polarization Indices in a Case of

Equal Groups

Consider the situation from Property 1: society is divided on n equal groups

which are placed on [0, 1], so that any two neighboring groups are equally

distanced (Fig.1). We call this distribution ”equal”. Although this case is
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not likely to be met in real systems, it is interesting for consideration: as

it will be shown, indices are not sensitive to small perturbations of groups

sizes and positions.

Figure 1. Equal distribution of n groups

Theorem 1. Let ERn and AGn be the values of Esteban-Ray and Aleskerov-

Golubenko indices in the case of equal distribution of n groups. Then

• ERn+1 < ERn;

• AGn+1 < AGn.

Proof of this and all other theorems is given in the Appendix.

Theorem 1 means that Esteban-Ray and Aleskerov-Golubenko indices

decrease monotonically with n increasing. This theorem is consistent with

the results obtained in [7, 9], that the indices (1), (2) takes maximum values

in the case of two equal groups.

In contrast to Aleskerov-Golubenko and Esteban-Ray indices bi-polarization

indices do not decrease monotonically with number of groups increasing.

Theorem 2. Let WTn and WFn be values of Wang-Tsui and Wolfson-

Foster indices in the case of equal distribution of n groups. Then

• ∀n > 1, ∀r ∈ (0, 1) WT2n > WT2n+2, WT2n−1 < WT2n+1,

WT2n > WT2n+1;

• ∀n > 1 WF2n > WF2n−1 > WF2n+1, WF2n > WF2n+2.
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Theorem 2 demonstrates some interesting features of bi-polarization in-

dices. Firstly, values of bi-polarization indices depend on whether the num-

ber of groups odd or even, and in the case of even number of groups the

indices values are greater. Secondly, while the Wolfson-Foster index non-

monotonically decreases with n growing, the Wang-Tsui index is increasing

with growing odd n and decreasing with even n.

Behavior of indices in this case is demonstrated on Fig.2. The graph

shows that while Aleskerov-Golubenko and Esteban-Ray indices tends to

zero for large values of n, bi-polarization indices vary around some positive

values. This fact is formulated in Theorem 3.

Figure 2. Behavior of indices in the case of equal distribution, α = 1.6,

r = 0.5. The graph is obtained via computer simulations.

Theorem 3. Let us consider the equal distribution of n groups. Then if

n→∞

• ∀α ERn → 0, AGn → 0;

• WTn → f(r) > 2r−2;

• WFn →
1

6
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Thus if n→∞ the values of Wang-Tsui and Wolfson-Foster indices stay

positive. Note that in the case of two equal groups the Wang-Tsui index

value is equal to one for all r ∈ (0, 1). But if r is close to zero the limit

value of index (when n → ∞) is close to one, although polarization seems

to be very low in the limit case. Similarly the Wolfson-Foster index changes

its value very slowly since n > 3.

Theorems 1-3 can be formulated as the next proposition

Proposition 1. Property 1 holds for Aleskerov-Golubenko and Esteban-Ray

indices, and does not hold for Wang-Tsui and Wolfson-Foster index.

Results of the comparison of polarization indices are presented in The-

orems 4-5.

Theorem 4. Let us consider the equal distribution of n groups. Then there

is n∗(α) such that

• if n ≤ n∗ AGn < ERn;

• if n > n∗ AGn > ERn;

Theorem 5. Let us consider the equal distribution of n groups. Then

∀n > 1, r ∈ (0, 1) WTn > WFn.

4.2 A Comparison of Polarization Indices in the Case

of Odd Number of Equal Groups

Let us consider situation from Property 2: society is divided on n equal

groups which are placed on [0, 1], so that any two neighboring groups are

equally distanced, n is odd and the middle group is placed on

x ∈
[
n− 3

2(n− 1)
,
n+ 1

2(n− 1)

]
(Fig.3).

Theorem 6. Let us consider the equal distribution of n groups, when n

is odd and the middle group is placed on x ∈
[
n− 3

2(n− 1)
,
n+ 1

2(n− 1)

]
. Then

regardless of x, ER =

(
2

n

)1+α
n+ 1

3
.

Theorem 7. Let us consider the equal distribution of n groups, when n

is odd and the middle group is placed on x ∈
[
n− 3

2(n− 1)
,
n+ 1

2(n− 1)

]
. Then
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Figure 3. Middle group placed on x: cases of three and five groups)

Aleskerov-Golubenko index takes the minimum value on x = 0.5 and the

maximum value on x =
n− 3

2(n− 1)
, x =

n+ 1

2(n− 1)
.

Study of behavior of bi-polarization indices gives interesting results: it

turns out that Wang-Tsui and Wolfson-Foster indices are not symmetric

with respect to x = 0.5. This fact presented in Theorem 8.

Theorem 8. Let us consider the equal distribution of n groups, when n is

odd and the middle group is placed on x ∈
[
n− 3

2(n− 1)
,
n+ 1

2(n− 1)

]
. Then WT

and WF decrease monotonically with x increasing.

Theorems 6-8 are illustrated on Fig.4 and can be formulated as the next

proposition.

Proposition 2. Property 2 holds for Aleskerov-Golubenko index and does

not hold for Esteban-Ray, Wolfson-Foster and Wang-Tsui indices.

4.3 A Response to A Random Perturbation (Compu-

tational Experiment)

The case of equal groups is very easy for analytical investigation, but it is

unlikely to be common case in reality. Therefore, a question about indices

sensitivity to small perturbation of equal distribution is appropriate. We

estimate this sensitivity using computer modeling.

Equal distribution system was uniformly perturbed in several ways: only

sizes or only positions of groups or both were changed. Computer modeling
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Figure 4. Behavior of indices depending on coordinate of the middle group

x in the case of three equal groups (α = 1.6, r = 0.5). The graph is obtained

by computer simulations.

was carried out in Matlab, for number of groups from 2 to 15. The mag-

nitude of perturbation was always δ = 10% from initial value. There were

10,000 iterations for each n and value of ∆I = |I−I0| ·
100%

I0
was calculated

on each iteration (here I0 is initial index value, I - perturbed index value).

Final value of ∆I calculated as an average over all iterations.

Results of modeling are presented in Tables 1-3.

Tables 1-3 shows that sensitivity of Aleskerov-Golubenko and Esteban-

Ray indices is less than two percent in most cases. In addition, sensitivity of

both indices is decreasing monotonically with n increasing except the cases

of two and three equal groups. Comparison of Tables 1 and 2 suggests that

both indices are more sensitive to perturbation of sizes of groups than its

positions.

The bi-polarization indices behavior is radically different. Firstly, an

important feature of Wang-Tsui and Wolfson-Foster indices is that their
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Table 1. ∆ER, ∆AG, ∆WT and ∆WF in the case of equal distribution

with perturbed sizes of groups. α = 1.6, r = 0.5

Number of groups ∆AG,% ∆ER,% ∆WT ,% ∆WF ,%

2 0.33 0.17 26.19 73.11

3 2.49 2.03 2.25 2.62

4 1.27 1.85 15.73 30.08

5 1.47 1.72 1.24 5.32

6 1.09 1.60 9.51 14.79

7 1.13 1.50 0.89 7.47

8 0.95 1.42 6.95 9.42

9 0.96 1.35 0.72 8.99

10 0.86 1.29 5.41 7.06

11 0.85 1.25 0.61 10.01

12 0.78 1.19 4.42 9.93

13 0.77 1.67 0.54 10.55

14 0.73 1.13 3.76 8.31

15 0.71 1.09 0.49 10.74

sensitivity depends on whether the number of groups is odd or even. This is

consistent with Theorem 2. Secondly, bi-polarization indices are extremely

sensitive to a small perturbation: sensitivity can reach 70-90% if the number

of groups is small. This feature of bi-polarization indices should be taken

into account in real life problems.

5 Conclusions

In our attempt to identify differences and key features of main polarization

indices we introduced two new properties for polarization measures and then

verified them for four known indices of polarization.

Property 1 deals with a simple case of n equal groups. This prop-

erty helps to understand important differences between polarization and

bi-polarization indices. In the case of equal distribution of n groups all

indices decrease with n increasing, but while Esteban-Ray and Aleskerov-

Golubenko indices tend to zero as n tends to infinity, Wolfson-Foster and

Wang-Tsui indices tend to some positive value. Difference between indices

12



Table 2. ∆ER, ∆AG, ∆WT and ∆WF in the case of equal distribution

with perturbed positions of groups. α = 1.6, r = 0.5

Number of groups ∆AG,% ∆ER,% ∆WT ,% ∆WF ,%

3 1.10 0 86.63 3.31

4 1.17 0.47 8.30 2.83

5 0.90 0.46 30.21 3.34

6 0.73 0.42 4.39 1.72

7 0.60 0.37 17.53 2.76

8 0.50 0.33 3.24 1.18

9 0.43 0.29 12.08 2.32

10 0.37 0.26 2.66 0.87

11 0.32 0.23 9.13 1.96

12 0.29 0.21 2.29 0.57

13 0.26 0.19 7.27 1.74

14 0.23 0.17 2.02 0.48

15 0.21 0.16 6.02 1.54

is not only in their limiting values, but also in the type of decreasing. The

bi-polarization indices decrease non-monotonically and depend on whether

the number of groups is odd or even.

In Property 2 the same case is considered, but the number of groups

is odd, and the coordinate of the middle group x 6= 0.5. In this case, the

following features of indices are found

• the Esteban-Ray index value is constant regardless of x;

• the Aleskerov-Golubenko index value is minimal if x = 0.5 and in-

creasing with the middle group coordinate moving towards one of the

extreme groups;

• the Wolfson-Foster and Wang-Tsui indices monotonically decrease

with x increasing.

A sensitivity of the indices to small random perturbations was studied.

It was shown that Esteban-Ray and Aleskerov-Golubenko indices have low

sensitivity (about 1% for 10% perturbation), and Wang-Tsui and Wolfson-
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Table 3. ∆ER, ∆AG, ∆WT and ∆WF in the case of equal distribution

with perturbed sizes and positions of groups. α = 1.6, r = 0.5

Number of groups ∆AG,% ∆ER,% ∆WT ,% ∆WF ,%

2 0.33 0.17 26.19 73.11

3 2.68 2.00 86.64 4.17

4 1.70 1.86 8.28 30.01

5 1.70 1.76 30.21 6.18

6 1.31 1.63 4.44 14.69

7 1.28 1.54 17.50 7.91

8 1.09 1.45 3.25 9.54

9 1.04 1.38 12.08 9.30

10 0.94 1.31 2.66 7.19

11 0.91 1.27 9.12 9.99

12 0.83 1.21 2.29 8.97

13 0.82 1.18 7.27 1.60

14 0.76 1.15 2.04 8.40

15 0.75 1.13 6.02 10.79

Foster indices are extremely sensitive (sensitivity reaches 80% for 10% per-

turbation in the case of small number of groups).
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7 Appendix. Proof of Theorems

Proof of Theorem 1

1. Let us prove the first statement of the Theorem 1: ∀n ERn+1 < ERn.

In the case of equal distribution of n groups pi =
1

n
and yi =

i− 1

n− 1
∀i = 1, 2, ...n. Then according to (1)

ERn =
21+α

n2+α(n− 1)

n∑
i,j=1

|i− j| = 21+α

3

n+ 1

n1+α
(6)

Hence

ERn+1

ERn
=

(
n

n+ 1

)α
n(n+ 2)

(n+ 1)2
<
n(n+ 2)

(n+ 1)2
= 1− 1

(n+ 1)2
< 1

2. Let us prove the second statement of the Theorem 1: ∀n AGn+1 <

AGn. In the case of equal distribution c =
1

2
, therefore, according to

(3)

AGn =
4

n2

n∑
i=1

∣∣∣∣ i− 1

n− 1
− 1

2

∣∣∣∣ =


1

n− 1
, if n is even

n+ 1

n2
, if n is odd

(7)

Let us show AGn+1 < AGn. If n is even and n+ 1 is odd, then

AGn −AGn+1 =
1

n− 1
− n+ 2

(n+ 1)2
=

n+ 3

(n− 1)(n+ 1)2
> 0

If n is odd and n+ 1 is even, then

AGn −AGn+1 =
n+ 1

n2
− 1

n
=

1

n2
> 0

Hence ∀n AGn > AGn+1.

Proof of Theorem 2

1. Let us prove the first statement of the Theorem 2: ∀n > 1, ∀r ∈ (0, 1)

WT2n > WT2n+2, WT2n−1 < WT2n+1, WT2n > WT2n+1.
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(a) Let us prove that WT2n > WT2n+2. In the case of equal dis-

tribution of 2n groups pi =
1

2n
, yi =

i− 1

2n− 1
, m =

1

2
, hence

according to (5)

WT2n =
2r

2n

2n∑
i=1

∣∣∣∣ i− 1

2n− 1
− 1

2

∣∣∣∣r (8)

Because of the symmetry of considered distribution

WT2n =
1

n(2n− 1)r

n∑
i=1

(2n− 2i+ 1)r (9)

Note that WT2n is non-increasing function of r ∈ (0, 1):

dWT2n
dr

=
1

n(2n− 1)r

n∑
i=1

(2n− 2i+ 1)r ln
2n− 2i+ 1

2n− 1
≤ 0,

and also

WT2n

∣∣∣∣
r=0

= 1 (10)

Let us compare the values of WT2n and WT2n+2 for r = 1.

According to (9)

WT2n+2 = WT2(n+1) =
1

(n+ 1)(2n+ 1)r

n+1∑
i=1

(2n−2i+3)r (11)

Hence

WT2n

∣∣∣∣
r=1

=
1

n(2n− 1)

n∑
i=1

(2n− 2i+ 1) =
n

2n− 1
(12)

WT2n+2

∣∣∣∣
r=1

=
1

(n+ 1)(2n− 1)

n+1∑
i=1

(2n− 2i+ 3) =
n+ 1

2n+ 1
(13)

So, ∀n WT2n

∣∣∣∣
r=1

> WT2n+2

∣∣∣∣
r=1

. Therefore, according to (10)

and monotonic non-increasing of WT2n on r ∈ (0, 1), WT2n >

WT2n+2 holds for r ∈ (0, 1) for every n.
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(b) Let us prove ∀n WT2n−1 < WT2n+1. According to (5)

WT2n−1 =
2r

2n− 1

2n−1∑
i=1

∣∣∣∣ i− 1

2n− 2
− 1

2

∣∣∣∣r (14)

Because of the symmetry of considered distribution

WT2n−1 =
2

(2n− 1)(n− 1)r

n∑
i=1

(n− i)r − 1

2n− 1

(
n

n− 1

)r
(15)

Note that WT2n−1 is decreasing function of r ∈ (0, 1). Indeed,

dWT2n−1
dr

=
2

(2n− 1)(n− 1)r

n−1∑
i=1

(n− i)r ln
n− i
n− 1

−

− 1

2n− 1

(
n

n− 1

)r
ln

n

n− 1
< 0,

and also

WT2n−1

∣∣∣∣
r=0

= 1 (16)

Let us compare the values of WT2n−1 and WT2n+1 for r = 1.

According to (15)

WT2n−1

∣∣∣∣
r=1

=
n(n− 2)

(2n− 1)(n− 1)
, (17)

WT2n+1

∣∣∣∣
r=1

=
n2 − 1

n(2n+ 1)
, (18)

From (17), (18) WT2n+1

∣∣∣∣
r=1

> WT2n−1

∣∣∣∣
r=1

follows. Hence, ac-

cording to (16) and monotonic decreasing of WT2n−1 on

r ∈ (0, 1), WT2n+1 > WT2n−1 holds for r ∈ (0, 1) and every n.

(c) Let us prove WT2n > WT2n+1. According to (12) and (18)

WT2n

∣∣∣∣
r=1

> WT2n+1

∣∣∣∣
r=1

. Hence, because of (A5), (A11) and

monotonic non-increasing of WT2n and WT2n+1 on r ∈ (0, 1),

the statement holds.
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2. Let us prove the second statement of Theorem 2: ∀n > 1 WF2n >

> WF2n−1 > WF2n+1, and WF2n > WF2n+2. In the case under

consideration µ = m = 0.5, so according to (4) ∀n > 1 and well-

known equation for Gini index

WFn = Tn −Gn =


n2 + 2

6n(n− 1)
, if n is even

n+ 1

6n
, if n is odd.

(19)

Hence according to (19)

WF2n =
2n2 + 1

6n(2n− 1)
(20)

WF2n+2 =
2(n+ 1)2 + 1

3(2n+ 1)2
(21)

WF2n−1 =
n

3(2n− 1)
(22)

WF2n+1 =
n+ 1

3(2n+ 1)
(23)

(a) Let us show WF2n > WF2n−1. According to (20) and (22)

WF2n =
2n2 + 1

6n(2n− 1)
=

n+ 1
2n

3(2n− 1)
>

n

3(2n− 1)
= WF2n−1

(b) Let us show WF2n−1 > WF2n+1. According to (22) and (23)

WF2n−1 =
n

3(2n− 1)
=
n+ 2n

2n−1
3(2n− 1)

>
n+ 1

3(2n+ 1)
= WF2n+1

(c) Let us show WF2n > WF2n+2. According to (20) and (21)

WF2n =
2n2 + 1

6n(2n− 1)
= WF2n+2·

2n2 + 1

2n(2n− 1)

(2n+ 1)2

2(n+ 1)2 + 1
> WF2n+2

The statement is proved.
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Proof of Theorem 3

1. Let us prove the first statement of Theorem 3

∀α ∈ (0, 1.6] ERn, AGn → 0,with n→∞

According to (6)

lim
n→∞

ERn =
21+α

3
lim
n→∞

n+ 1

nα+1
= 0

because α > 0.

According to (7)

lim
n→∞

AGn = lim
n→∞

1

n− 1
= lim
n→∞

n+ 1

n2
= 0

The statement is proved.

2. Let us prove the second statement of Theorem 3

∀r ∈ (0, 1) WTn → f(r) > 0, n→∞

According to (5) in the case of equal distribution

WTn = 2r
n∑
i=1

1

n

∣∣∣∣ i− 1

n− 1
− 1

2

∣∣∣∣r (24)

Because of r ∈ (0, 1)

WTn >
2r

n

(
n∑
i=1

1

n

∣∣∣∣ i− 1

n− 1
− 1

2

∣∣∣∣
)r

=


2rn

4(n− 1)
, if n is even

2r(n+ 1)

4n
, if n is odd.

Because of lim
n→∞

2rn

4(n− 1)
= lim
n→∞

2r(n+ 1)

4n
= 2r−2

lim
n→∞

WTn > 2r−2

3. The third statement of Theorem follows from (19)

lim
n→∞

WFn = lim
n→∞

n2 + 2

6n(n− 1)
= lim
n→∞

n+ 1

6n
=

1

6

19



Proof of Theorem 4

According to Theorem 1, AGn and ERn decrease monotonically with n

growing. Therefore, ∆(n) = AGn−ERn has a constant sign on N, or there

is n∗ such that ∆(n) changes its sign at n = n∗.

Assume that ∀n ∆n ≥ 0, i.e. AGn ≥ ERn. Then according to (6) and

(7)

1

n− 1
>
n+ 1

n2
≥
(

2

n

)1+α
n+ 1

3
⇒ n >

(
21+α

3

) 1
1+α

,

and this does not hold for α = 1.6, n = 2.

Assume that ∀n ∆n ≤ 0⇒ AGn ≤ ERn. Then(
2

n

)1+α
n+ 1

3
≥ 1

n− 1
>
n+ 1

n2
⇒ n1+α

n2 − 1
≤ 21+α

3
,

and this does not hold for α = 1.6, n = 4.

Hence there is n∗ such that ∆n changes its sign at n = n∗. From

AG3 =

(
2

3

)2

, ER3 = 2

(
2

3

)2+α

⇒ AG3 < ER3, it follows that for

3 ≤ n ≤ ≤ n∗, ∆n ≤ 0⇒ for n > n∗, ∆n > 0. Theorem is proved.

Proof of Theorem 5

Let us show that ∀n ≥ 1 WT2n > WF2n. According to (9) and (20)

WT2n =
1

2n(n− 1)r

n∑
i=1

(2n− 2i+ 1)r >
3
∑n
i=1(2n− 2i+ 1)r

3n(2n− 1)
>

>
3n(n+ 1)

6n(2n− 1)
>

2n2 + 1

6n(2n− 1)
= WF2n

Let us show that ∀n ≥ 1 WT2n+1 > WF2n+1 According to (15) and (23)

WT2n+1 =
2

2n(n+ 1)nr

n+1∑
i=1

(n− i+ 1)r − 1

2n+ 1

(
n+ 1

n

)r
>

>
(n+ 1)(n+ 2)− (n+ 1)r

nr(2n+ 1)
=

(n+ 1)2

3n(2n+ 1)
>

n+ 1

3(2n+ 1)
= WF2n+1

Theorem is proved.
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Proof of Theorem 6

In the case of n equal groups ∀i = 1, ...n pi =
1

n
. Then according to (1)

ER =
21+α

n2+α

n∑
i=1

n∑
j=1

|yi − yj | (25)

Let us express S =

n∑
i=1

n∑
j=1

|yi−yj | through Sequal =

n∑
i=1

n∑
j=1

∣∣∣∣ i− 1

n− 1
− j − 1

n− 1

∣∣∣∣ .
In the case under study ∀i 6= n+1

2 yi =
i− 1

n− 1
. Then

S =

n∑
i=1

n∑
j=1

|yi−yj | = Sequal−2

n∑
i=1

∣∣∣∣ i− 1

n− 1
− 1

2

∣∣∣∣+2

n∑
i=1

∣∣∣∣ i− 1

n− 1
− x
∣∣∣∣−2

(
x− 1

2

)
=

= Sequal−2
n+ 1

2(n− 1)

n− 1

2
+2

n+ 1

2(n− 1)

n− 1

2
+2x−1−2

(
x− 1

2

)
= Sequal

Thereby S = Sequal regardless of middle group position and ER = ERequal =

=

(
2

n

)1+α
n+ 1

3
. Theorem is proved.

Proof of Theorem 7

In the case of n equal groups ∀i = 1, ...n pi =
1

n
. Then according to (3)

AG =
4

n2

n∑
i=1

|yi − c| (26)

In the case under study ∀i 6= n+1
2 yi =

i− 1

n− 1
. Hence

AG =
4

n2

n+1
2∑
i=1

(c− yi) + |x− c|+
n∑

i=n+1
2 +1

(yi − c)

 =
4

n2

(
n+ 1

4
+ |x− c|

)
,

where

c =
1

n

n∑
i=1

yi =
1

2
− 1

2n
+
x

n

21



Thus Aleskerov-Golubenko index value

AG =
4

n2

(
n+ 1

4
+
n− 1

n

∣∣∣∣x− 1

2

∣∣∣∣) (27)

Then the derivative of AG with respect to x is

dAG

dx
=

4(n− 1)

n3
sign

(
x− 1

2

)
(28)

So, AG takes minimal value at x =
1

2
, for x >

1

2
AG increases

(
dAG

dx
> 0

)
,

and for x <
1

2
AG decreases

(
dAG

dx
< 0

)
. According to (27)

AG
∣∣∣
x= n−3

2(n−1)

= AG
∣∣∣
x= n+1

2(n−1)

=
4

n2

(
n+ 1

4
+

1

n

)
,

therefore, Aleskerov-Golubenko index value is maximal at x =
n− 3

2(n− 1)
and

x =
n+ 1

2(n− 1)
. Theorem is proved.

Proof of Theorem 8

1. Let us prove Theorem 8 for Wang-Tsui index. In the case of n equal

groups pi =
1

n
, m = x. Then according to (5)

WT =
1

n

n∑
i=1

∣∣∣yi
x
− 1
∣∣∣r (29)

dWT

dx
= − r

nx2

n∑
i=1

∣∣∣yi
x
− 1
∣∣∣r−1 yi · sign|yi − x| (30)

Let us show that S =

n∑
i=1

∣∣∣yi
x
− 1
∣∣∣r−1 yi · sign|yi − x| > 0.

In the case under study ∀i 6= n+ 1

2
yi =

i− 1

n− 1
.

S = −

n−1
2∑
i=1

(
x− i− 1

n− 1

)r−1
i− 1

n− 1
+

n∑
i=n+1

2

(
i− 1

n− 1
− x
)r−1

i− 1

n− 1
=
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=

n−1
2∑
i=1

((
i+ n−1

2 − 1

n− 1
− x
)r−1

i+ n−1
2 − 1

n− 1
−
(
x− i− 1

n− 1

)r−1
i− 1

n− 1

)
+

+(1− x)r

Let x− i− 1

n− 1
= δ. Because of 0 ≤ δ ≤ 1

2
i-th summand of S is

(
i+ n−1

2 − 1

n− 1
− x
)r−1

i+ n−1
2 − 1

n− 1
−
(
x− i− 1

n− 1

)r−1
i− 1

n− 1
=

=

(
1

2
− δ
)r−1(

i− 1

n− 1
+

1

2

)
−δr−1 i− 1

n− 1
≥
(

1

2

)r−1(
i− 1

n− 1
+

1

2

)
> 0

Therefore, S > 0 ⇒ dWT

dx
= − r

nx2
S < 0 ⇒ WT monotonically

decreases with x increasing. The statement is proved.

2. Let us prove Theorem 8 for Wolfson-Foster index (4). In considered

case

T =
3(n+ 1)

4n
+
x

n
(31)

G =
n+ 1

6nc
(32)

where c =
1

2
− 1

2n
+
x

n
- the mean value of the attribute. If middle group

position is x, the median value of attribute m = x, and according to

(4)

WF =
3(n+ 1)

4n
· c
x
− c

n
− n+ 1

6n
· 1

x
(33)

Then

dWF

dx
=

3(n+ 1)

4n
·c
′
xx− c
x2

−c
′
x

n
+
n+ 1

6n
· 1

x2
= − (n+ 1)(5n− 9)

24n2x2
− 1

n2
< 0,

Hence WF monotonically decrease with x increasing. Theorem is

proved.
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