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1 Introduction
Accurate macroeconomic forecasts are extremely important for policy making. Central

banks and government bodies monitor a large set of macroeconomic indicators to determine
the policy (Beckner (1996), Bernanke and Boivin (2003)). Therefore, a model used for
forecasting must be suitable for data-rich samples because large models might outperform
low-dimensional ones by taking into account more potentially relevant information. This
explains the recent resurgence in interest from academics, central bankers and private sector
experts for macroeconomic forecasting in a data-rich environment.

In this paper, we forecast Russian macroeconomic indicators with Bayesian vector au-
toregressions (BVARs) of different sizes. Our goal is twofold. First, we compare the forecast
accuracy of BVAR with that of unrestricted vector autoregressions (VARs) and random walk
with drift models for 23 important macroeconomic indicators. Second, we question whether
a high-dimensional model always outperforms a low-dimensional one in terms of forecasting
accuracy.

For the last 30 years, VARs introduced by Sims (1980) have become a widely-used tool
for forecasting. However, unrestricted VARs bear the risk of over-parametrization even for
samples of moderate size. This risk stems from the fact that the number of parameters
to be estimated increases nonlinearly with the number of equations. For this reason, in
economic applications unrestricted VARs usually contain only up to eight variables, and this
may potentially lead to the loss of some relevant information and undermine the forecast
accuracy.

To deal with a data-rich environment researchers modify VARs and impose restrictions
on the covariance structure. One strand of the literature focuses on dynamic factor models
(DFM, Forni et al. (2000) and Stock and Watson (2002))and Panel VARs and Global VARs
(PVARs, GVARs, Pesaran, Schuermann, and Weiner (2004) and Dees and Güntner (2014)).
DFM are based on the idea that a relatively small set of indices extracted from a high-
dimensional set of variables can summarize the information from this set. These factors are
treated as variables in a VAR model either separately or in conjunction with several time
series from the original information set in a factor-augmented VAR (FAVAR) model. For
data sets with a panel structure a suitable choice is a PVAR or a GVAR with shrinkage done
by exclusion, exogeneity or homogeneity restrictions.

Another method of shrinkage is the Bayesian one and we follow this approach. The
shrinkage is done by imposing restrictions on the parameters in the form of prior distri-
butions. While BVARs in a low-dimensional space were widely used for macroeconomic
analysis, their use for data-rich environments was limited until recently. The reason was a
general agreement that Bayesian shrinkage is insufficient to solve the over-parametrization
problem in high cross-sectional dimension samples.

However, in their influential paper, De Mol, Giannone, and Reichlin (2008) show that
Bayesian methods can be successfully applied to a data-rich environment if the degree of
shrinkage is set relative to the cross-sectional dimension of the sample. Bańbura, Giannone,
and Reichlin (2010) confirm and develop this assertion for BVARs applied to a large set of
US time-series. Their main result is that high-dimensional models have better forecasting
performance than small-dimensional models and even FAVARs. They also show that accurate
forecasts can be already obtained using a medium-sized BVAR (20 variables in their case).

Several authors have recently shown that, in terms of forecasting accuracy, medium and
large BVARs outperform their low-dimensional counterparts. For example, Beauchemin and
Zaman (2011) present a medium BVAR with a good forecasting performance applied to the
US data. Bloor and Matheson (2010) compare univariate autoregresions (ARs), unrestricted
VARs and BVARs and show evidence that high-dimensional BVARs, in general demonstrate
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better forecasting performance. Koop (2013) demonstrates that high-dimensional BVARs
outperform factor models in terms of forecasting performance. Moreover, he argues that
more complicated priors than those that are usually applied may not lead to more precise
forecasts. Alessandri and Mumtaz (2014) underline the importance of financial factors for
an accurate forecast of output and inflation, especially «for predicting «tail» macroeconomic
outcomes». Carriero, Clark, and Marcellino (2015) study some characteristics of BVARs and
find those providing the most accurate forecasts.

Our analysis delivers two important results. First, we show that most Russian macroeco-
nomic indicators in our sample can be forecast by BVARs more accurately than by compet-
ing models. However, contrary to other studies (for example, Bloor and Matheson (2010),
Bańbura, Giannone, and Reichlin (2010)) we do not confirm that relative forecast error
monotonically decreases with the dimension of the sample. In almost half of those cases
where a BVAR is the most accurate model, a small-dimensional BVAR outperforms its
high-dimensional counterpart.

The paper is structured as follows. Section 2 presents our model and the prior distribution
we apply. In Section 3 we describe our sample and the data transformations we use. Section
4 contains the results and their interpretation. Section 5 concludes.

2 Model

2.1 BVAR

Let yit be variables1 stacked in a m× 1 vector yt = (y1t, y2t, . . . , ymt)
′. The reduced form

VAR can be written as:

yt = Φconst + Φ1yt−1 + Φ2yt−2 + . . .+ Φpyt−p + εt, εt ∼ N (0,Σ) (1)

where Φconst = (c1, . . . , cm)′ is a m× 1 vector of constants, Φl are autoregression m×m - di-
mensional matrices where l = 1, . . . , p. Vector εt is a m-dimensional vector of errors with co-
variance matrix E εtε′t = Σ, and is uncorrelated with regressors. By grouping parameter ma-
trices into one matrix Φ = [Φ1 . . .Φp Φconst]

′ and defining new vector xt = [y′t−1 . . . y
′
t−p 1]′,

the equation (1) can be written in a more compact form:

yt = Φ′xt + εt (2)

If the variables and shocks are grouped in the following way: Y = [y1, y2, . . . , yT ]′, X =
[x1, x2, . . . , xT ]′, E = [ε1, ε2, . . . , εT ]′, the VAR can be written as:

Y = XΦ + E (3)

The Bayesian estimate combines a likelihood function L(Y |Φ,Σ) with a prior distribution
p(Φ,Σ) and results in a posterior distribution of parameters p(Φ,Σ|Y ):

p(Φ,Σ|Y ) ∝ p(Φ,Σ)L(Y |Φ,Σ) (4)

2.2 Сonjugate normal — inverse Wishart prior

Our benchmark model for estimation and forecasting purposes is a BVAR with a conju-
gate normal — inverse Wishart prior. The prior can be written as:

1For the convenience of the reader, all the notations are also shown in Appendix 1.
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{
Σ ∼ IW(S, ν)

Φ|Σ ∼ N (Φ,Σ⊗ Ω)
(5)

The prior mean of the coefficient matrices is written with a k × m matrix Φ = E(Φ),
where Φ = [Φ1 . . .Φp Φconst]

′.The matrices Φl are defined as follows:

(Φl)ij =

{
δi i = j, l = 1;

0, otherwise
(6)

A matrix Ω is assumed to be diagonal and it depends on several hyperparameters:

Ω = diag{Ωlag=1, . . . ,Ωlag=p,Ωconst} (7)

(Ωlag=l)jj =

(
λ

lλlag σ̂j

)2

Ωconst = λ2const (8)

The hyperparameters have the following interpretation: λ determines the overall tightness
of the prior and it is responsible for the relative weight of the prior with respect to the
information incorporated in the data, λlag controls the velocity of the decrease of the prior
variance with increasing the lag length, and λconst governs the relative tightness of the prior
for the constant terms.

The scale matrix S is diagonal and its non-zero elements assure that the mean of Σ is
equal to the fixed covariance matrix of the standard Minnesota prior:

(S)ii = (ν −m− 1)σ̂2
i (9)

The scale parameter σ2
i is usually set to be equal to the variance estimate of residuals in a

univariate AR model. The choice of degrees of freedom of inverse Wishart distribution ν
greater than or equal to than max{m+ 2,m+ 2h− T} guarantees the existence of the prior
variance of the regression parameters and the posterior variances of the forecasts at horizon
h (Kadiyala and Karlsson (1997)).

It is possible to show that the posterior distribution formed by combining this prior
distribution with a likelihood function is also normal — inverse Wishart (see, for example,
Zellner (1996)): {

Σ|Y ∼ IW(S, ν)

Φ|Σ, Y ∼ N (Φ,Σ⊗ Ω)
(10)

with the following parameters:

ν = ν + T

Ω = (Ω−1 +X ′X)−1

Φ = Ω · (Ω−1Φ +X ′Y )

S = S + Ê ′Ê + Φ̂′X ′XΦ̂

+ Φ′Ω−1Φ− Φ
′
Ω
−1

Φ

Φ̂ = (X ′X)−1X ′Y

Ê = Y −XΦ̂

There is a popular alternative approach to calculate hyperparameters of the posterior
distribution. We set S and Ω−1 to be zero matrices and to compensate the difference we add
supplementary observations into X and Y matrices according to:
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Y ∗ =

[
Y NIW

Y

]
X∗ =

[
XNIW

X

]
, (11)

where matrices Y NIW and XNIW are defined as follows2:

Y NIW =


diag(δ1σ1,...,δmσm)

λ

0m(p−1)×m
diag(σ1, . . . , σm)

01×m

 XNIW =

diag(1,2
λlag ,...,p

λlag )⊗diag(σ1,...,σm)
λ

0mp×1
0m×mp 0m×1
01×mp

1
λconst

 (12)

This method permits the calculation Φ as an OLS estimate of the regression of Y ∗ on
X∗: Φ = (X∗′X∗)−1X∗′Y ∗ and S as a sum of the squared residuals for this regression:
S = (Y ∗ − ΦX∗)′(Y ∗ − ΦX∗).

2.3 Prior modifications

Doan, Litterman, and Sims (1984) and Sims (1993) propose complementing this prior
distribution with additional information in form of two other priors. This modification
reflects the belief that time series may have unit roots and cointegration relations. These
elements in the prior allow avoiding an unreasonably large share of the variation in the data
which is accounted for by deterministic components (Sims (1993)).

A sum-of-coefficients prior was introduced by Doan, Litterman, and Sims (1984). If all
the time-series in a sample have a unit root, this information can be taken into account with
a prior where a sum of all the lag parameters for each dependent variable is equal to one
(Robertson and Tallman (1999), Blake and Mumtaz (2012)). In other words, when the mean
of the lagged values of a variable is at a certain level, this level is a good forecast for future
observations of this dependent variable. We implement this prior by combining the dataset
given in 11 with artificial dummy-observations according to the following scheme:

Y SC =
1

λsc

[
diag(δ1µ1, . . . , δmµm)

]
(13)

XSC =
1

λsc

[
(11×p)⊗ diag(δ1µ1, . . . , δmµm) 0m×1

]
, (14)

where (11×p) is a unitary [1× p] vector, µi is i-th component of vector µ, which contains the
average values of initial observations of all variables in the sample3: µ = 1

p

∑p
t=1 yt.

The dummy initial observation prior proposed by Sims (1993) expresses the belief that
the variables have a common stochastic trend. Only one observation is added so that the
values of all variables are equal to the average value of initial observations µi normalized to
a scale coefficient λio. Therefore, this extra observation is defined as follows:

Y IO =
1

λio

[
δ1µ1, . . . , δmµm

]
(15)

XIO =
1

λio

[
(11×p)⊗ (δ1µ1, . . . , δmµm) 1

]
, (16)

2The similar formulae provided in Bańbura, Giannone, and Reichlin (2010), Berg and Henzel (2013) can
be regarded as special cases of (12) for λlag = 1 и λconst →∞.

3Some authors calculate µ using the average values of all observations in a sample, so that µ = 1
T

∑T
t=1 yt

(Bańbura, Giannone, and Reichlin (2010) and Carriero, Clark, and Marcellino (2015)). However, following
Sims and Zha (1998) we calculate µ using only initial p observations.
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This prior distribution reflects the belief that the average value for a variable is a linear
combination of average values of all the other variables.

The hyperparameter λio controls the tightness of this prior. When λio → 0, the model
implies that either all variables are stationary with the mean equal to sample mean of the
initial observations or non-stationary without drift and cointegrated.

2.4 Choice of tightness hyperparameter: the algorithm of shrinkage

As shown by De Mol, Giannone, and Reichlin (2008) and confirmed in several other
recent studies, a sample with a larger cross-sectional dimension requires a lower λ, so the
prior must be tighter for a larger sample than for a smaller one. In this paper, we use the
approach introduced by Bańbura, Giannone, and Reichlin (2010) to determine the optimal
λ for every model.

This algorithm is based on the idea that the shrinkage should be sufficiently tight to
avoid over-parametrization. Moreover, it is assumed that a three-variable unrestricted VAR
is parsimonious enough and does not require any additional shrinkage. This implies that
the hyperparameter λ can be chosen so that the model has the same in-sample fit as a
three-variable VAR. In other words, a BVAR model of any dimension is shrunk to the size
of a small unrestricted VAR. A detailed description of the procedure is laid out below. We
denote the actual value of a variable var at moment T + h by yvar,T+h, and a forecast of
the variable var at moment T for a horizon h in a model with m variables and an overall
tightness parameter λ by yλ,mvar,T+h|T . The algorithm for choosing λ has the following steps.

1. We make in-sample one-period forecasts with BVAR on a training sample and calculate
the mean squared forecast error for the set of M variables of central interest4:

MSFEλ,m
var,1 =

1

T0 − p

T0−1∑
t=p

(
yλ,mvar,t+1|t − yvar,t+1

)2
, (17)

where the BVAR coefficients are obtained using the training sample: t = p+ 1, . . . , T0
and T0 is the last observation of the training sample: T0 = p+ 120.

2. In a similar way we calculate one-period forecasts according to the random walk model5
for the same variables

(
MSFE0

var,1

)
and a new indicator FIT λ,m:

FIT λ,m =
1

M

∑
var∈M

MSFEλ,m
var,1

MSFE0
var,1

(18)

3. We estimate VARs for the same set of M variables of interest6 and calculate MSFEs
and an indicator FIT∞,M :

FIT∞,M =
1

M

∑
var∈M

MSFE∞,Mvar,1

MSFE0
var,1

(19)

4Our benchmark set of variables of central interest (M) includes the industrial production index, consumer
price index and interbank interest rate so that M = 3. As a robustness check we excluded the interest rate
from this set and there was almost no change in the vector of the optimal λ.

5We normalize MSFE for the BVAR and VAR models by MSFE obtained with the random walk model
to take into account the different scales of the series. We use a superscript 0 for the random walk model as
random walk may be considered as a special case of BVAR if λ = 0 and δi = 1, i = 1, . . . , k.

6We denote all results from VAR by a superscript ∞ as unrestricted VAR is a special case of BVAR with
λ→∞. In this case the posterior coincides with the likelihood function.
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4. The optimal lambda is the value minimizing the difference between FIT λ,m and FIT∞,M :

λ∗m = arg min
λ
|FIT λ,m − FIT∞,M | (20)

After the optimal λ is chosen for every m, we keep it fixed and make out-of-sample forecasts
on the evaluation sample.

2.5 Out-of-sample forecasting

We estimate BVARs with the optimal λ on «rolling window» containing 120 observations,
starting from observation p+1 and continuing until March 2015. The first p observations are
used as a pre-sample and the subsample [p+1, p+120] is a training sample to determine the
optimal λ on a grid. We denote the last available observation as T1, and the last observation
of each evaluation subsample as τ . The number of forecasts is equal to T1−T0−h+ 1 where
h is the forecasting horizon (h = 1, 3, 6, 9, 12). Therefore, the number of one-period forecasts
is greater than the number of three-period forecasts by two, etc.7 For every model m and
forecasting horizon h we calculate the out-of-sample MSFE for all m variables included in
the model:

OMSFEλ,m
var,h =

1

T1 − T0 − h+ 1

T1−h∑
τ=T0

(
yλ,mvar,τ+h|τ − yvar,τ+h

)2
, (21)

Then we calculate the MSFE of out-of-sample forecasts obtained with random walk with
drift (OMSFE0

var,h) and unrestricted VAR (OMSFE∞,mvar,h):

OMSFE∞,mvar,h =
1

T1 − T0 − h+ 1

T1−h∑
τ=T0

(
y∞,mvar,τ+h|τ − yvar,τ+h

)2
(22)

OMSFE0
var,h =

1

T1 − T0 − h+ 1

T1−h∑
τ=T0

(
y0var,τ+h|τ − yvar,τ+h

)2
, (23)

To compare the forecast accuracy of different models we report the relative MSFE, that
is, the ratio of the MSFE of the model in question by the MSFE of a reference model (random
walk in our case):

RMSFEvar =
OMSFEλ,m

var,h

OMSFE0
var,h

(24)

3 Data and Estimations
Our dataset consists of 23 time series running from January 1996 to April 2015. Our

sample containing 232 observations is limited by data availability. The full list of the series
and their sources is displayed in Appendix 2. We seasonally adjust data which demonstrate
seasonal fluctuations with TRAMO/SEATS option in EViews and apply logarithms to the
series, with the exception of those already expressed in rates.

We estimate models of different cross-sectional dimension. The industrial production
index, CPI and interbank interest rate are forecast with three-variable, six-variable and 23-
variable models. Monetary aggregate, the real effective exchange rate and the oil price index

7An alternative method is to calculate an equal number of forecasts for each horizon h, starting from
T0 + 12. However this implies the loss of some information about the forecasts and we do not proceed with
this method here.
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Table 1: List of models and variable sets

VAR3/BVAR3 Y = {IP, CPI,R}
VAR4/BVAR4 Y = {IP, CPI,R, Z}
VAR6/BVAR6 Y = {IP, CPI,R,M2, REER,OPI}
VAR7/BVAR7 Y = {IP, CPI,R,M2, REER,OPI,W}
BVAR23 Y includes all 23 variables from the dataset

where IP is the industrial production index, CPI is the consumer price index, R is the
nominal interbank rate, M2 is the monetary aggregate M2, REER is the real effective
exchange rate, OPI is the Brent oil price index. Z is any variable from the dataset besides
IP , CPI and R. W is any variable from the dataset besides IP , CPI, R, M2,REER, and
OPI.

are forecast with four-variable, six-variable and 23-variable models. All the other series
are forecast with four-variable, seven-variable and 23-variable models. For all models with
dimension less than eight we estimate both unrestricted VARs and BVARs. We estimate
only a BVAR on the sample with 23 variables. The three-variable VAR is the simplest
specification that can be justified by a textbook version of a New Keynesian model. A
model with six variables is specified in line with many monetary models used previously
for the structural analysis of different economies (Sims (1992), Kim and Roubini (2000),
Bjørnland (2008), Scholl and Uhlig (2008)) and it contains the real effective exchange rate,
monetary aggregate M2, and the oil price index in addition to three variables included in
the smallest VAR. The oil price index is used as a variable in the model to reflect the belief
that oil price index is an important explanatory factor for the other variables in the sample
as Russia has a petroleum export-based economy. To forecast variables outside of these
core sets we estimate four-variable and seven-variable VARs containing three or six-variable
samples described above plus an additional variable of interest. We include all available
time series in our 23-variable model. In totally, after the optimal λ is chosen, we estimate
79 models. In a compact form the models used for forecasting are presented in Table 1. For
VARs and BVARs we take all possible lags from 1 to 12.

4 Results
For every variable and every forecasting horizon we find a model with the lowest RMSFE.

We compare 60 specifications for each variable and each forecasting horizon as we have 5
models (a VAR and a BVAR with 3 or 4 variables, a VAR and a BVAR with 6 or 7 variables,
and a BVAR with 23 variables) and 12 lags for each of them. We visualize our results with
color tables (Figures 1-2 ). The two tables in these Figures differ by the hyperparameter sets
used for the BVAR priors. For models depicted in Figure 1 we take δi = 1 for nonstationary
series and δi = 0.5 for stationary series while constructing the prior. We use the KPSS test
to split the series into two groups. The parameters σi are taken to be equal to the standard
deviations of the residuals in the univariate AR(p) model. This hyperparapeter set will be
referenced as set A in what follows. Figure 2 is related to BVARs with the prior determined
by the univariate AR(1) model. We take δi as equal to the OLS estimates of the first lag
parameter and σi as equal to the standard deviations of residuals in AR(1) models. This set
will be referenced as set B.
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Figure 1: RMSFE of the best forecasting accuracy models, parameter set A: σi are std of
AR(p) residuals, δi = 1 for nonstationary series, δi = 0.5 for stationary series

Figure 2: RMSFE of the best forecasting accuracy models, parameter set B: σi are std of
AR(1) residuals, δi = 1 are first lag AR(1) estimates
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The color of a cell corresponds to the model that appears to outperform the others in
terms of forecasting accuracy for a given variable and a given forecasting horizon. Most of
cells are green (either light green or bright green) reflecting that a BVAR provides the most
accurate forecast for the corresponding variables and forecasting horizons. An unrestricted
VAR gives the most accurate forecast for variables and horizons indicated by yellow and
orange cells. The procedure for choosing λ is such that the BVAR and the unrestricted VAR
necessarily coincide for the smallest sample (3 or 4 variables). This explains why orange
represents both of these models. Blue means that neither BVAR nor VAR beat the random
walk in terms of forecast accuracy.

The forecast accuracy is measured with RMSFE calculated according to (24) and is also
shown in Figures 1-2. The numbers less than one indicate that the a VAR or a BVAR model
provides a better forecast than the random walk and the smaller the number is, the more
accurate the forecasts are relative to the random walk. We see that in most cases we have
at least one model that provides a forecast much better than the reference model.

Despite different prior parameter sets, the two tables are very similar both in terms of
the best forecasting models and the relative accuracy with respect to the random walk.

We interpret our results as follows. First, for many variables and forecasting horizons,
BVARs outperforms the random walk and unrestricted VARs. Out of the 115 forecasting
cases highlighted in the paper (23 variables times 5 forecasting horizons) BVARs appear to
be best in terms of forecast accuracy in 71 cases for the prior hyperparameter set A and
in 77 cases for the prior hyperparameter set B. There are variables in our sample that are
forecast more accurately by BVARs for all forecasting horizons we try (such as employment,
import and lending rate). For several variables BVARs are the best option for the shortest
horizons (for example, monetary aggregate M2 and the real effective exchange rate). On the
contrary, for the agricultural production index a BVAR model has the lowest forecast error
only for a one-year horizon.

Second, among all cases where BVARs show their forecasting accuracy, a high-dimensional
BVAR is the best option in about half of the cases (35 of 71 for set A and 39 of 77 for set
B). In other cases it is beaten by a low-dimensional BVAR (6 or 7 variables).

Third, for some variables and some forecasting horizons neither unrestricted VARs nor
BVARs outperform the random walk. For example, in all specifications we consider the nom-
inal exchange rate cannot be forecast by either VARs or BVARs better than by the random
walk, and it is a long-held consensus in economics remounting to Meese and Rogoff (1983).
However, we question another wide-spread belief that the price of oil is a random walk pro-
cess. We show that the oil price index can be forecasted by BVARs much better than by the
random walk and the result is robust for different prior settings.

5 Conclusion
This paper evaluates the forecasting performance of BVARs on Russian data. We es-

timate BVARs of different sizes and compare the accuracy of their out-of-sample forecasts
with those obtained with unrestricted VARs and random walk. Our sample consists of 23
variables and we forecast at 5 different horizons up to 12 months. We show that for the
majority of the variables BVARs outperform the competing models in terms of forecasting
accuracy. However, we cannot confirm the conclusion drawn in some other studies (for exam-
ple, Bloor and Matheson (2010), Bańbura, Giannone, and Reichlin (2010)), where Bayesian
methods were applied to data from developed countries, claiming that high-dimensional
BVARs forecast better than low-dimensional models. Our results implies that a 23-variable
BVAR performs most accurately in only about a half of cases where a BVAR is considered
as a better forecasting tool with respect to its competitors. For the rest of those cases a
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BVAR with a relatively small size (6 or 7 variables in our case) can outperform a 23-variable
BVAR in terms of forecasting accuracy.
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Appendices

Appendix 1. Table of notations

Notation Dimension Description Formula

p scalar number of lags
m scalar number of endogenous variables
d scalar number of exogenous variables
k scalar number of parameters in an equa-

tion
k = mp+ d

h scalar forecast horizon

yt m× 1 vector of endogenous variables yt = Φ′xt + εt
xt k × 1 vector of all regressors xt = [y′t−1 . . . y

′
t−p z

′
t]
′

εt m× 1 vector of random errors yt = Φ′xt + εt
Y T ×m all endogenous variables Y = [y1, y2, . . . , yT ]′

X T × k matrix of regressors X = [x1, x2, . . . , xT ]′

E T ×m matrix of errors E = [ε1, ε2, . . . , εT ]′

Φ1, . . . m×m coefficients of VAR yt = Φ1yt−1 + . . .+ Φconst + εt
Φconst m× d matrix of constants yt = Φ1yt−1 + . . .+ Φconst + εt

Φ k ×m grouping of matrices Φ1, . . . Φ = [Φ1 . . .Φp Φex]
′

Φ k ×m prior mean Φ Φ = E(Φ)
Φ k ×m posterior mean Φ Φ = Ω · (Ω−1Φ +X ′Y )
ν scalar prior degrees of freedom ν ≥ max{m+ 2,m+ 2h− T}
ν scalar posterior degrees of freedom ν = T + ν
S m×m prior scale matrix S = (ν −m− 1) diag(σ2

1, . . . , σ
2
m)

S m×m posterior scale matrix S = S + Ê ′Ê + Φ̂′X ′XΦ̂+

+Φ′Ω−1Φ− Φ
′
Ω
−1

Φ

Ω k × k matrix of prior scaling coefficients
of covariance matrix Φ

Ξ = Σ⊗ Ω

Ω k × k matrix of posterior scaling coeffi-
cients of covariance matrix Φ

Ω = (Ω−1 +X ′X)−1, Ξ = Σ⊗ Ω

Σ m×m covariance matrix of errors E εtε′t = Σ
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Appendix 2. Data

Name of serie Type of series Base period (if any) Source

Industrial production index base index 2010 IFS
Consumer price index base index 2010 IFS
Employment in manufacturing index base index 2010 IFS
Interbank interest rate perc. per ann. IFS
Lending interest rate perc. per ann. IFS
Real income index base index 01:1992 FSSS
Unemployment rate percent IFS
Crude oil (Brent) price index base index 2010 IFS
Producer price index chain index IFS
New houses commissioning thous. of sq. met. FSSS
Real fixed investment index base index 01:1994 UAESD
Real wage rates index base index 01:1993 FSSS
Monetary aggregate М2 bln. rub. CBR
Real effective exchange rate base index 2010 IFS
Natural gas price US$ for bln BTU 2010 IFS
International reserves excluding gold Bln US$ IFS
Nominal exchange rate rub. per US$. IFS
Declared need in workers thous. of people UAESD
Real agricultural production index base index 01:1993 UAESD
Real retail output index base index 01:1994 UAESD
Total government budgetary balance bln. rub. UAESD
Export of goods mln US$ IFS
Import of goods mln US$ IFS

IFS - International Financial Statistics of IMF http://www.imf.org/en/Data
FSSS - Federal State Statistical Servicehttp://www.gks.ru/
CBR - Central Bank of Russia http://cbr.ru/
UAESD - United Archive of Economic and Sociological Data http://sophist.hse.ru/
rstat/
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