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We propose a new theoretical model of the large-scale banking system of an open 

economy. It is shown that distribution of relative sizes of individual banks is stable over time and 

does not depend on the volume of deposits. Our findings provide an additional argument in favor 

of use of the representative agent concept in banking sector modeling. 

 Empirical testing shows that using generalized versions of Pareto and Normal 

distribution, distributions of relative sizes can be approximated with high accuracy and, 

moreover, distributions are stable over time. Moreover, banks move wothin this distribution, thus 

distribution of the general population of banks is stable over time.  

 

  

Key words: size distribution of banks, representative agent, general equilibrium. 

 

 JEL classification: E10, L11, G21 

 

  

                                                 
1
 National Research University Higher School of Economics. Laboratory for Macrostructure 

Modeling of Russian Economy; Department of Applied Economics, Assistant Professor; E-mail: 

dmalakhov@hse.ru 
2
 National Research University Higher School of Economics. Laboratory for Macrostructure 

Modeling of Russian Economy, Senior Research Fellow; Department of Applied Economics, 

Associate Professor; E-mail:u4d@ya.ru 
3
 Federal Research Center “Informatics and Control” of Russian Academy of Science, professor, 

corresponding member, E-mail: pospeli@yandex.ru 
4 The reported study was supported by Russian Science Foundation (RSF), research project No. 14-11-00432.  

We thank Ivan Stankevich, Stanislav Radionov and Sergey Pekarskiy for helpful comments. 

mailto:pospeli@yandex.ru
mailto:pospeli@yandex.ru


3 

 

 

Introduction 

Microfounded macroeconomic models appeared as a result of the Lucas critique (Lucas 

(1976)). Modern studies, which analyzes the banking sector in DSGE models, typically use the 

microfounded approach (this class of models has been developing since the last financial crisis, 

see, for example, Gertler, Kiyotaki (2010) , Gertler, Karadi (2011), Gertler, Kiyotaki (2013)).  

These models use the representative agent approach, thus they omit potentially important effects 

of heterogeneity of real agents (Chang, Kim, Schorfheide (2013)). Agent-based models were 

developed in attempt to overcome this problem (Farmer, Foley (2009), Borshchev, Filippov 

(2004)). But this approach has disadvantages such as complexity and the absence of a 

conventional approach to modeling.  

 In this paper we show how stability of distribution of relative sizes of banks can be used 

as an argument for the use of the representative agent concept in general equilibrium models. As 

proxy for relative bank sizes we used their fraction of assets, because for banks, being financial 

firms, assets are an accurate approximation of scale. Moreover, the volume of a bank’s assets is 

rather sensitive to the requirements of their products and financial policy (Jagtiani, Khanthavit 

(1996), James, Houston (1996)). In our paper we paid attention to specific activity of banks such 

as deposit accumulation and interbank money to investigate the evolution of the structure of the 

banking industry. 

While early money multiplier models, such as Johannes, Rasche (1979), Bernanke, 

Blinder (1988), Carpenter, Demiralp (2012) did not pay much attention to industry structure and 

its evolution, the last financial crisis in 2007-2009 revealed that the structure of the financial 

system is crucial for stability, for the forecasting of its development and for characteristics 

analysis. So attention from the famous 4 «L», leverage, liquidity, losses, and linkages has now 

shifted to the last «L», because risk measures for the first 3 «L» are  somewhat investigated, but 

not the last one. Modern studies, which analyze the structure of the financial industry 

(Acemoglu, Ozdaglar, Tahbaz-Salehi (2015), Billio, Getmansky, Pelizzon (2012), Iori, De Masi, 

Precup, Gabbi, Caldarelli (2008)) show that the number of linkages and their characteristics are 

very important for good risk resistance, but these models in fact don’t take into account to the 

reasons for the development  of such structures in the banking system. Moreover, analysis of the 

dynamics or evolution of the industry is very important because it reveals the mechanisms 

involved in changes to the industry’s structure and helps us to make more precise forecasts. 
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 This paper is presented as follows: In the first section we discuss the theoretical model of 

the banking system. In the second section we provide the result of the empirical testing of our 

model using data from Russian banks. And finally, we make our conclusions.  

 

1. Model of interbank transactions 

 We analyzed the distribution of money among banks and the dynamics of the assets of 

banks. In this section a large scale open economy with a large amount of perfectly competitive 

banks is discussed.   

We showed how the mechanisms of money distribution affect the structure of the banking 

industry. We didn’t impose any restrictions on the banks’ heterogeneity, but noted that the 

distribution of the fraction of bank assets is stable over time. If empirical tests of these results 

show this to be correct  then  this can be used as an additional argument  for the  representative 

agent concept because if banks are really heterogeneous,  then the empirical distribution of their 

fraction of assets can be potentially multimodal or unstable or not well approximated by standard 

distribution.  

This section is mainly based on Malakhov, Pospelov (2014). The main tool that we used 

below is the backward Kolmogorov equation for Markov processes. In our case, in fact, it was an 

accurate total probability formula, which allows to describe all possible variants of history based 

on their probabilities. Solution of this equation determines the dynamics of the distribution of the 

elements of the system according to investigated indices. 

This approach is used in economic problems related to the description of the dynamics of 

systems consisting of large numbers of anonymous agents. Similar problems are solved in 

population game theory the main results are described in Sandholm (2010). In this field there are 

two distinct approaches to aggregate behavior dynamics: the deterministic approach, based 

on differential equations, and the stochastic approach, based on Markov processes. The 

second approach is directly related to our work. Both of these approaches are very complex 

from a mathematical point of view, so they are not yet the standard for the solution of 

economic problems. 

However, such attempts are undertaken regularly. For an example, also see in Radionov, 

Pospelov (2014) the discussion on the dynamic of industry with monopolistic competition as in 

Melitz (2003). In this article, we use it to model the dynamic of the banking system in order to 
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analyze the evolution of distribution of the overall set of banks, rather than behavior of 

individual banks. Due to this approach we are able to avoid assumptions about the rational 

behavior of individual agents and the existence of an equilibrium, for example, as in Ericson, 

Pakes (1995). 

 

1.1. General description of the model 

 New money appears in the economy through two channels: 

1) Loans from outside of the banking system. Residents and non-residents can put their 

money into national banks. National banks can give credit to residents and non-residents 

or can use other financial instruments, such as debt emissions.  

2) Credit emission. A bank can give credit to a client with a corresponding 

creating/changing his/her current account.  

In this paper we do not consider in this paper the impact of the monetary policy pursued by 

the central bank. In this sense, we can assume the monetary policy regime does not switch. Also 

we assume that other regulatory aspects stay the same. Of course, we imposed rather rigid 

assumptions because, as it was shown in Jagtiani, Khanthavit (1996), regulation can greatly 

affect the banks’ sizes. 

In our model we do not differentiate between these two means of money accumulation. . 

Moreover, we could consider interbank credit as a special case of the transactions listed above. 

The value of accumulated money ( )m t  depends only on the number of clients and is independent 

to conjuncture. We propose that all of the  clients are identical to each other (if the number of 

clients is great (which is true for developed banking system) then this assumption is realistic, and 

if not, we can divide transaction of one individual into several smaller ones). So, for example, 

with economy growth the number of clients or value of their emissions could increase, but this 

does not affect our assumptions. 

 Withdrawals from a bank occur only when the bank repays its debts or its client’s debt 

relief. We assume that emission generates interest income (which can be potentially negative). 

Also we propose that all losses are covered and all profits are derived.  

 A bank can potentially transfer a certain amount of its liabilities to other banks. The bank 

which initiates the transaction transfers money from the client’s account to the correspondent 

account of the receiving bank. So only the structure of the liabilities of the banks will change 
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(the value will be the same). Also the transaction between clients does not affect the value of the 

assets of the banking system.  

 Assume that all credits are repaid with a frequency which is proportional to the duration 

of the credits  . All assets are identical to each other in the sense of duration (only the moments 

of creation of bank’s assets are changing). Also we consider that all emissions are equal in size 

and the value of the bank’s assets depend only on the number of the bank’s clients (we propose 

that one client during one moment of time can induce only one single emission). Potentially, in 

reality we can separate all transactions into tranches to hold this assumption. 

 If we analyze a developed banking system with a large amount of highly competitive 

banks and identical clients over a rather long period of time, then assumptions about durations 

and deposit sizes are relevant because we can then average all of the transactions.  

 Proposing that there is a set of banks B . The fraction of an individual bank’s assets in the 

overall amount is bn  , 1 b

b B

n


  . We assume that set B  is stable over time.  

 Bank b  induced the initial emission m , and the transaction is needed with probability

( )  . We can assume that each emission induces a chain of emissions (as in banking multiplier 

models), if the amount of banks is great and ( )   is small then the corresponding series converge. 

Moreover, this assumption does not decrease any explanatory power of the model. So let’s 

assume that with probability in  transaction b i  is needed. The average assets change after 

transaction will be 

m,

( ) m,i

i b

n i b




  
     

 

1.2. Stochastic process of assets change  

Let’s assume that at the moment t  bank b  has assets a ( )b t  

( ) a ( )b

b B

A t t


 ,   

During the period  ,t t dt  one client of a randomly chosen bank b , independently  of the 

others, initiates the emission with probability ( )t dt   with size m( )t , which is much smaller 
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than a ( )b t . Note, that ( )t  is “real” demand and m( )t  is a proxy for inflation and society 

welfare. Thus for simplicity we will further consider, that   is constant. 

        With probability dt  induced emissions are independently covered. Furthermore, we 

propose that   is big enough, so all loans are short-term (long-term loans can be divided into 

parts and analyzed as series of short-term loans) and we can assume that m( )t  can change during 

the repayment time.  

 

1.3. Dynamic of generalized moments 

 Now to discuss the averaged value of  function (a)  over the realization of stochastic 

process a( )t : 

  a( )( ) a( )tt E t   ,  

where   a( ) a( )tE t – mathematical expectation of  a( )t  over a( )t . Calculate ( )X t dt , 

0dt   using the chain rule for mathematical expectation: 

     a( ) ,
( ) a( ) a( )t t t dt
t dt E E t dt t


     .  

       During the period [ ]t dt : 

1) with probability 1 ( ) ( ) ( )t A t dt A t dt   assets are not changed 

2) with probability a ( )b t dt  assets of bank b  decrease by m( )t  

3) with probability ( )a ( )bt t dt  initial emission m( )t  occurs at bank b  and with 

probability 
a ( )

( ) a ( )

с

b

t

A t t
 


 bank с b  continues this transaction. Here we assume, that 

the probability of continuation of emission is proportional to the amount of assets. 

Now we derive conditional mathematical expectation using the probabilities which were 

mentioned above: 

        ,
a( ) a( ) 1 ( ) ( ) ( ) a( )

t t dt
E t dt t t A t dt A t dt t


       

  a ( ) a ( ) ( ) b

b i i b B
b B

dt t t m t




                                                                         

  a ( ) (1 a ( ) ( )( ) b

b i i i
b B

t dt t t m t




      
B

                                                         (5) 
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  
 \

a ( )
a ( ) ( ) ( )

( ) a ( )

b cс
i i i i B

c B b b

t
t m t m t

A t t 


     


 .  

 Then we use (4):  

      a( )( ) [ ( ) ( ) ( ) a( ) a ( ) a ( ) ( ) b

t b i i b B
b B

d
t E t A t A t t t t m t

dt 


            

     a ( ) ( 1( ) a ( ) ( ) b

b i i b B
b B

t m tt t




          

  
 

a
\

a ( )
a ( ) ( ) ( ) )]

( ) a ( )

b cс
i i i b

c B b b

t
t m t m t

A t t 


      


 . (6) 

 

We can rewrite this difference equation as (for a detailed solution see Appendix 1): 

     
1

ln ( ) ( ) l( ,x)
m )

n ,x)
(

(b

bb B b B

f t
t

t x t f t
t x 

  
      


 








   

 \

b B c

c B b

bx

x
B





   


,                                                                                                      (7) 

where ( , )f t x  - density function of x  at time ,t x  – random variable, which describes the 

volume of assets of a particular bank, x  and a are connected as a random variable and its 

realization.  

We could find a solution to this equation: 

  

 

 0

m( )

\

1

( )

0

,...,

ln m( )

exp

( , )

exp ( )

t

B

b b

b B b B

c B b B c

c B b

td

b
c

b

xx
h

x x

f x

x

t

x
x e d

   

 

 

 





  
  
  

  



 

 
    

 

 
  
 

 
 

 

 

  
 

B

. (8) 

  

 Notice, that density function ( )f x  can be represented as a quotient of two typically 

different factors. The numerator 1exp ,...,
B

b b

b B b B

xx
h

x x
 

  
  
  

  
  
 

 depends only on the fractions of 
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assets, and does not depend on time or the absolute value of assets. The denominator depends on 

the absolute values of the assets of the individual banks only in the expression 

 \

b B c

c B b

bx

x






. If 

this expression has a constant value over time, then it makes sense to only pay attention to the 

aggregate value of assets in the denominator. We consider the fraction of assets to be the relative 

size of the bank. 

Since the function f  is a function of density, of course, then the integration of all the 

values of x  at any time t  gives 1. After the change of variables in the integral, we can go to the 

1B   indexes of fraction and the total absolute amount of assets. Indeed, if we know indexes of 

fraction of 1B   banks, and the total absolute amount of assets of banks, we can calculate the 

volume of the assets of each bank individually. Direct calculation of the Jacobian, which is 

required during replacing the variables in the integral, transforms our original expression, but 

allows us to integrate the numerator and denominator separately. It is important that the 

numerator will remain only fractions of banks' assets, and the denominator - only the total 

absolute amount of assets. The only variable that remains after the integration on fractions of 

assets and total amount of assets, is the variable of time t . But this variable is not in the 

numerators, thus the integral of the denominator will not depend on it Therefore, the function 

1exp ,...,
B

b b

b B b B

xx
h

x x
 

  
  
  

  
  
 

 can be regarded as up to a constant a function of density, depending 

on only a fraction of the banks' assets. Moreover, since it is not directly dependent on time, this 

function within our assumptions must be constant.  

Thus, according to our model under an unchanging monetary regime, constant number of 

banks and the absence of structural shocks (such as risk requirements or Central Bank regulation 

policy) the distribution of relative sizes of banks is stable over time, so growth of the economy 

(which could increase the number of banks’ clients and/or the volume of their deposits) does not 

affect the structure of relative sizes of banks. So macro-agent usage could lead to the correct 

results without any loss of generality due to the stability and homogeneity of banking system.  
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2. Empirical testing 

2.1. Model validation 

 To validate the model we provided empirical tests. We decided to use the financial 

statements of banks as our source of information as these are particularly informative
5
. 

Moreover, we decide to use information about Russian banks because the Russian banking 

system is rather developed and competitive, especially during the last 10 years, and the data 

about Russian banks is open and very detailed.  

 

2.1.1. Data 

 We used information from the ‘101 turnover balance sheet’ of individual credit 

organizations. The 101 turnover balance sheet is the trial balance with debit and credit subtotals 

per account, we can therefore get information about assets, deposits, credits and other financial 

variables from this report. We collected information only from credit organizations, both bank 

and non-bank organizations, which can provide banking services and are registered in Russia and 

report balance sheets publicly. The proportion of non-bank credit organizations is very small if 

we consider either the number of firms or the volume of assets. For simplicity we will name all 

credit organizations as banks. 

  Information about the 101 turnover balance sheet is collected from the official website of 

the Central Bank of the Russian Federation http://www.cbr.ru/. In our sample, on average for the 

period 2009-2015 we have approximately 99% of the overall number of banks and about 99% of 

the overall banking system assets for all time periods. So our sample is roughly equal to the 

amount of Russian banks (for details see Figure 3).  

 Sub-accounts are rather minor, so they are noisy and are not very representative 

indicators of the financial health of individual banks. We used aggregate variables because they 

are very informative, are not so noisy and the number of these variables is not very high. We 

decided to use the following variables: 

1. Total amount of assets.  

2. Fixed date deposits of banks and other credit organizations, including overdraft ( below 

we will use abbreviations for financial variables, so this variable is Db) 

                                                 
5 It is not correct for real sector firms (physical indicators (output, etc.) for firms sometimes are very useful, but rather 

subjective). 

http://www.cbr.ru/
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3. Fixed date deposits of non-residents (Df), 

4. Fixed date deposits of individuals – residents (Dh), 

5. Fixed date deposits of nonfinancial organizations (Da), 

6. Fixed date credits to commercial non-bank organizations-residents, including overdraft 

(La), 

7. Fixed date credits to individuals – residents (Lh),  

8. Fixed date credits to foreign organizations (Lf). 

 All our variables are calculated by summing the corresponding sub-accounts of the 101 

turnover balance sheet. We chose these variables because they are a significant fraction of the 

total amount of assets (liabilities). The final data are tables, where columns indicate the time 

period and rows indicate the bank’s I.D. We have separated tables for each financial variable. 

The period of observation begins in January 2004 and ends in February 2015 (monthly data 

without any omissions). We have the actual data for each time period. 

  In our analysis we used the relative size of individual banks as the total amount of the 

particular variable. So, for example, the fraction of assets of Bank A is the amount of assets of 

Bank A at the end of month i, divided by the total amount of assets of all the banks in the sample 

at the end of month i. We used fraction s of assets instead of absolute assets because distribution 

of fractions is investigated in the first part of our work. Moreover, we needed to not deflate them  

as they give a relevant picture of the banking system structure. As mentioned before, we would 

name the fraction of assets as the relative sizes of banks, due to the fact, that the amount of assets 

is an accurate proxy for bank size. 

 The number of banks in Russia has changed over time, also the proportion of banks 

which give information to the Central Bank has changed too, so we  had a different number of 

observations each month. Generally the number of banks didn’t vary greatly. The number of 

banks with non-zero values is approximately 700 at the beginning of the time period and 1100 by 

the end. It is important to mention that we worked only with banks which provide information to 

the Central Bank.  

 We did not drop any banks from our sample, so we estimated distributions including 

those of the very big banks such as Sberbank and VTB. Moreover, we did not ignore the very 

small banks, which form a left tail of distribution. This section is mainly based on the paper 

Malakhov, Pilnik, Radionov (2015).  
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2.1.1. The possibility of aggregation of the banking system 

 Let's go back to the equation (8). We plot values of 

 \

b B c

c B b

bx

x






 for each month (vertical 

axes is value of corresponding parameter, horizontal axe is time (January 2004-Febrary 2015)). 

 

Figure 1. Values of the main factor of (22). 

 As we can see, for a fairly long period of time from March 2008 (approximately 50
th

 

point) to January 2014 (120
th

 point) the value of 

 \

b B c

c B b

bx

x






 was rather stable. Consequently, 

during this period, it can be expected that the distribution of relative sized banks did not change 

as much as in the remaining periods. Shocks in 

 \

b B c

c B b

bx

x






could be possibly connected with 

sample changes, monetary policy regime switches and other banking system regulation aspects. 

It is quite interesting that the “stability” period includes part of the global financial crisis, but it 

might be connected to the fact that in USA this crisis began at the end of 2007 and  by the time 

the shocks affected the Russian economy Russian banks and the Central Bank already knew how 

to react and prepared accordingly by providing assistance.  
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 Also we investigate the dynamic of ln
c B

cx


 
 
 
 . The chart clearly shows three periods: 

before the 50
th

 point, from the 50
th

 to 120
th

 and after the 120
th

. Thus figure 1 represents some 

realistic trends, not “statistical artifacts”. 

 

Figure 2. Logarithm of the total assets of the Russian banking system. 

   

 

2.2. Approaches to modeling distributions of firms’ sizes 

 The theoretical model showed that distribution of the relative size of banks is stable over 

time, so these results are highly connected with industry evolution and development. Today there 

are many works connected with the evolution of particular industries. The classical work is 

Gibrat (1931), in which the following hypothesis is formulated: a firm’s size and its growth rate 

are independent. If this hypothesis is true then firm growth rate is independent of its size, so  

large and small firms have approximately equal growth rates. Researchers tested this hypothesis 

for many different industries. Generally it is difficult to say if this Law is correct for a real 

economy or not: firms in some industries grow independently of their size, but firms in other 

industries don’t (Javonovich (1982)). 

 Lotti, Santarelli, Vivarelli (2003) provided an empirical test of Gibrat’s Law for young 

firms. The authors postulate that there are three approaches to Gibrat Law testing. The first 
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approach is the most general: Gibrat’s Law is correct for all firms, independent of their 

bankruptcy status during the period of observation. The second approach: Gibrat’s Law is correct 

only for firms which are functioning during the period of observation. The third approach: 

Gibrat’s Law is correct only for firms whose size is bigger than the minimum efficient scale. The 

authors provide an extensive research survey (actual for 2003 ) in which they show that for some 

industries this Law is correct, and for  others - not.  

 If Gibrat’s Law is correct then firm size can be approximated by lognormal distribution 

(for example, Gibrat(1931),  Axtell (2001)). But fat tails of distribution of firm sizes may occur 

because positive feedback can exist. So Pareto distribution may also be helpful.  

 Prescott, Janicki (2006) investigate the data of American banks  during 1960-2005 . The 

authors postulate that lognormal and Pareto distributions are good approximations for bank size, 

but the right tail of empirical distribution is much fatter than the lognormal one, so they use 

lognormal distribution as the main distribution for the central part and left tail of data, but the 

right tail is approximated by Pareto distribution. Also Prescott, Janicki (2006) show that Gibrat’s 

Law is correct for American banks.  

In the paper Cont, Moussa (2010) a quantitative methodology for analyzing the potential 

for contagion and systemic risk in a network of interlinked financial institutions is presented. 

This methodology is applied to a data set of mutual exposures and capital levels of financial 

institutions in Brazil in 2007 and 2008, and the role of balance sheet size and network structure 

in each institution's contribution to systemic risk is analyzed. Results emphasize the contribution 

of heterogeneity in network structure and the concentration of counterparty exposures to a given 

institution in explaining its systemic importance. In this paper, which analyzes the interbank 

sector, it is shown that the right tail of distribution can be approximated by Pareto distribution. 

For testing this hypothesis Cont, Moussa (2010) show that linear regression models are good 

approximations of the logarithmic data.  

In Andreev, Pilnik, Pospelov (2009) the authors analyze rang distribution of Russian 

banks and come to  the conclusion that it can be approximated by Pareto distribution with high 

quality. Moreover, this distribution is stable over time.  

A specific parametric form of distribution function of the relative sizes of banks can also 

be interesting for researchers (see McDonald (1984), Fishlow (1972) for the selection of specific 

distribution function of household incomes). Moreover, a lot of attention is paid to the 
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connection between income distribution and economic development of the country (see, Galor, 

Zeira (1987), Greenwood, Jovanovic (1989)). 

The selection of a specific functional form of distribution helps us to understand properties of 

random variable, forecast more precisely its dynamics and calculate  indexes of inequality more 

accurately (see Atkinson, Bourguignon (2000), McDonald , Xu (1995), Kleiber, Kotz(2003)). 

Moreover, correct selection of specific distribution can help fill the gaps in data. Today there 

is a class of works (Miao (2005), Ericson, Pakes (1995)), which discusses the evolution of 

industry and the connection of firm characteristics with their sizes. But the authors are unaware 

of any such works which discuss the banking system.  

 

2.3. Preliminary analysis of data 

In this part we focus only on the relative sizes of Russian banks
6
. We calculate descriptive 

statistics for all of the time periods, but for clearer visualization  we print only time means:  

Table 1. Descriptive statistics 

 Value 

Stand. deviation 0.01345341 

Min 6.414726e-08 

Max 0.3835583 

 

So we can see that the difference between the mean smallest bank and the mean largest 

bank
7
 is rather big. So we have some large banks, such as Sberbank, VTB, and very small banks. 

It is important to mention that the mean relative size is , n – number of banks. Moreover, we 

plot the dynamic of number banks on our sample, standard error of relative sizes, skewness and 

kurtosis (vertical axes are values of corresponding parameters, horizontal axes are time periods 

(January 2004 - Febrary 2015)).  

 

                                                 
6 Due to space restrictions. 
7 Values are stable over time. 
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Fig. 3. Number of banks in our sample (black points) 

and the amount of Russian banks (grey points). 

Fig. 4. Dynamic of standard error of relative sizes of 

banks. 

 

  

Fig.5. Dynamic of skewness of relative sizes. Fig.6. Dynamic of kurtosis of relative sizes. 

 

It is clear that since October 2009 (70
th

 point) our sample is approximately equal to the 

amount of Russian banks. Inequality (measured as standard error) has a nontrivial dynamic, it 

has been rising since the 70
th

 point. Skewness and kurtosis are far from “normal” ones so we 

expect that distribution functions will be nontrivial. 

 

2.4. Distribution approximation 

In our research we used two families of distribution: Pareto-related distributions (Pareto, 

distribution, Generalized Pareto distribution (Gen. Pareto), Wakeby distribution, Pareto IV type, 

Generalized Beta of the second kind (Beta prime distribution)) and Normal-related distribution 

(Normal, Generalized normal distribution (Gen. normal distribution), Skew normal distribution, 
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asymmetric exponential power distribution (asymmetric generalized error distribution or simply 

AEP), Generalized lambda distribution (Gen. lambda distribution)). For a detailed description of 

the distributions and motivation for their selection see Appendix 3. 

We used R software for our analysis.
8
 Maximum likelihood and L-moments approaches 

are used because these methods give estimators with “good” properties and they don’t depend on 

chosen distances (Asquith (2015), Hosking (2015), Yee, Wild (1996)). 

 The quality of approximation is rather stable in terms of time and for all financial 

variables. Also it is important to mention that we modeled the overall set of banks by the entire 

distribution, thus we have included in our analysis extremely small or extremely big banks. As 

an example, we present a graph of the cumulative distribution function (only for one month 

(May 2012)). We used the relative sizes of banks, as mentioned above. For clearer visualization 

the top 3-4 banks with very big assets for the family of Pareto distributions were not shown (this 

will not affect the analysis results because the pattern will be the same).  

  

Figure 7. Relative sizes, Pareto distribution. Figure 8. Rang distribution of relative sizes in both 

logarithmic axes. 

 The Pareto approximation is not very good however this can easily be explained by low 

number of parameters and the inflexible functional form. Moreover, the rang distribution graph 

shows us that this data cannot be correctly approximated by Pareto distribution because it is not a 

strict line in the double log axes: we can see the curve on the right side of graph (the cluster of 

small banks). A similar situation occurs with other time periods and financial variables.  

 We estimated the normal distribution for the log data (for motivation see Appendix 2). As 

we can see, the quality of approximation is moderate (but higher than for Pareto distribution), 

                                                 
8 Computer code and dataset could send for request. 
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because the left tail is approximated (quantiles less than -12) not very  well and there is 

noticeable bias  in the middle  section (quantiles is around -8), which is connected with the 

calibration of the right tail. So we move to the analysis of the rest of the distributions.  

 

 

Figure 9. Logarithm of relative sizes, normal 

distribution. 

  

 Below, we discuss the findings of the graphs for 4 variables: fraction of assets, fraction of 

credits to firms (La), fraction of deposits of households (Dh), and fraction of interbank deposits 

(Db) (see Appendix 3). We have presented the graphs for May 2012 only because distribution is 

rather stable over time and patterns will be the same. We decided not to show results for the 

generalized beta of the second kind because its results  are equal to those of the Pareto IVs  

therefore the graphs become more complicated. Wakeby distribution is turned into Pareto IV for 

our data, so we excluded this distribution too. Also we assumed that the location parameter for 

Pareto IV type is 0. This assumption is reconciled with data and does not lead to any limitations 

(Brazauskas (2003)).  

The quality of approximation is rather high for all of the variables. We eliminate skew 

normal distribution from our further analysis because the estimation results are unstable and their 

quality is rather low. Pareto and Generalized Pareto distribution cannot approximate the left tail 

of empirical distribution due to the specific values of estimates of the parameters. The typical 

normal distribution is not a good approximation as the empirical distribution is in fact rather 

asymmetric and fat tailed.  However, we used Pareto distribution and lognormal distribution as 

benchmarks. Generalized normal, AEP and Generalized lambda distributions are very accurate 

approximations. Pareto IV type also gives a very high quality of approximation.  
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According to the graphical analysis results it is difficult to conclude which distribution is 

better so we calculated two distances between empirical and theoretical distributions for each 

month, so called extreme and average distances, respectively: 

1) max ( ) ( )emp theorF x F x  

2) 
1

1
( ) ( )

kn
emp theor

i i

ik

F x F x
n 

 , where n – number of observations in k-th month. 

We show maximum, minimum, average and standard error of distances. The following two 

tables are calculated for relative sizes of banks.  

 

Table 2. Extreme distance for relative size distribution 

 Pareto Gen. Pareto Pareto IV 

Maximum  0.48313 0.18795 0.02455 

Minimum 0.34992 0.10712 0.01191 

Average 0.41238 0.14349 0.01709 

Stand. Err. 0.03508 0.02008 0.00254 

 

 Normal Gen. Normal AEP 

Gen. 

Lambda 

Maximum  0.06809 0.04451 0.02064 0.04773 

Minimum 0.03485 0.02327 0.00972 0.01185 

Average 0.05275 0.03178 0.01805 0.01924 

Stand. Err. 0.00803 0.00470 0.00314 0.00468 

 

Table 3. Average distance for relative size distribution 

 Pareto Gen. Pareto Pareto IV 

Maximum  0.21907 0.07107 0.00720 

Minimum 0.17427 0.03248 0.00323 

Average 0.19391 0.05107 0.00506 

Stand. err 0.01084 0.01077 0.00093 
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 Normal Gen. Normal AEP 

Gen. 

Lambda 

Maximum  0.03006 0.01635 0.00734 0.02029 

Minimum 0.01363 0.00929 0.00268 0.00334 

Average 0.02378 0.01267 0.00498 0.00575 

Stand. err 0.00523 0.00149 0.0008 0.00198 

 

Pareto IV is the best distribution among the Pareto family of distributions and asymmetric 

exponential power distribution is the best among normal-related distributions. We can easily 

notice that difference of approximation between asymmetric exponential power and Pareto IV 

distributions is rather insignificant. For clearer visualization, we present graphs for these 

distributions for November 2004 and November 2014. November is one of the months with little 

seasonality effect. Also, it is interesting to investigate the differences in distributions which 

occurred during the last 10 years. 

  

Figure 10. Relative sizes, Pareto IV distribution 

(November 2004) 

Figure 11. Logarithm of relative sizes, asymmetric 

exponential power distribution (November 2004) 
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Figure 12. Relative sizes, Pareto IV distribution 

(November 2014) 

Figure 13. Logarithm of relative sizes, asymmetric 

exponential power distribution (November 2014) 

 

We can see that distribution of relative sizes of banks has not changed significantly 

during the last 10 years. Both distributions have become more inclined, so in general the banking 

system has become more homogenous. The recent crisis did not greatly affect (in terms of 

relative sizes) the banking system because there are no significant changes in the form of 

distribution. The quality of approximation is very high. Thus we can conclude that the functional 

form of distributions of relative sizes is stable over time. 

We decided to use the Kolmogorov-Smirnov test to compare the two nearest empirical 

distributions. The selection of empirical distribution as a subject of analysis is due to the fact that 

empirical distributions  are consistent estimates  of true ones and it is difficult to conclude which 

theoretical distribution (Pareto IV or AEP) is better. The mean p-value for comparing the two 

closest distributions is 0.94, which means that the hypothesis that “both empirical distributions 

come from the same continuous theoretical distribution” cannot be rejected at a 5% confidence 

level. If the difference between distributions is more than 8 months, then for some pairs the null 

hypothesis can be rejected at the 5% confidence level. Thus, the distribution of relative sizes of 

banks is rather stable over time.  

For modeling other variables (different types of deposits and credits, as mentioned 

earlier) we used all distribution, but AEP and Pareto IV distributions were the best 

approximation for these variable too (for results see Appendix 4, for space economy we only 

provided the results  for these distributions). It is difficult to choose which distribution is better. 

Different financial variables are approximated better by different distributions (generally AEP 
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distribution is better for most cases). The distances between empirical and theoretical 

distributions did not change during our time period (for all our financial variables), so our results 

are stable. We decided to select both, AEP and Pareto IV as the most appropriate distributions.  

We also analyzed graphs of density functions for relative sizes of banks, built with kernel 

functions and  discovered that these functions were rather typical, unimodal and without any 

“statistical artifacts”.
9
 Thus this fact can be used as an argument for the concept of representative 

agent. 

We assumed that it is not the distribution of relative sizes of particular banks which is 

stable, but rather the distribution of banks within the particular banking system. So we explored 

how individual banks could change their position on the listing and found that there were really 

many changes in the banks’ positions (for detailed results see Appendix 5). We could not find 

any clear patterns in the banks’ movements, but  middle sized banks overall had on average 

much more significant position changes (about 250 banks changed their rang by 400 points and 

more during the observation period). Also it is quite interesting that banks on average had a 

negative monthly rang trend, so banks tend to become relatively bigger, thus inequality could 

increase. This is highly connected to the findings of Malakhov (2015). Yet despite these 

microchanges, overall distribution is stable.  Perhaps, if one bank loses clients/assets other banks 

accumulate them due to high levels of competition. This fact can also be used as the argument of 

the representative agent concept because if the system is stable and rather homogeneous, 

macrolevel variables can be forecasted using only previous values of macrolevel variables if the 

frequency of data is high enough to reflect changes in economic system.  

 

2.6. Dynamic of estimates of parameters 

We made sure that Pareto IV type and AEP are good approximations for distribution of 

relative sizes of banks. Also, according to formal and graphical analysis, the functional form of 

distribution is stable over time, so now it is important to define the stability of estimates of 

parameters of Pareto IV type distribution and AEP distribution. Figures 15-17 show the dynamic 

of values of parameters of Pareto IV distribution (the first point is January 2004 and the last 

point is February 2015).  

 

                                                 
9 Corresponding graphs can be send for a request. 
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Figure 14. Dynamic of estimates of parameter of scale of 

Pareto IV distribution  

Figure 15. Dynamic of estimates of parameter of 

inequality of Pareto IV distribution 

 

 

Figure 16. Dynamic of estimates of parameter of shape 

of  Pareto IV distribution 

 

 

After the 60
th

 point, the values of estimates of parameters become stable (the 60
th

 point is 

December 2008). We can see only a slight downward movement in estimates of shape and scale 

parameter and a slight upward trend in estimates of inequality parameter at the end of the period. 

Also it is important to compare the dynamics of estimates of parameters with the dynamic of 

 \

b B c

c B b

bx

x






 (Figure 1).   
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At the beginning of the paper we mentioned that if 
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x






  is stable over time then 

distributions are stable over time too. Thus it can be easily seen that periods when 

 \

b B c

c B b

bx

x






 is 

rather stable (for example, the 50-120
th

 point), estimates of the parameters of Pareto IV are rather 

stable too.  Whereas during periods of instability (before 50
th

 point or after 120
th

 point), the 

estimates of the parameters are again unstable. 

Analysis of the dynamic of estimates of parameters of AEP distribution (Figures 18-21) 

gives similar results. The location and first shape parameters are rather stable from the 60
th

 point 

to 90
th

 point and after the 90
th

 point have a slight downward trend, possibly connected with the 

recent crisis. But estimates of scale and second shape parameters are not stable from October 

2009 and have a very nontrivial dynamic in the last year.  However, this fact can be potentially 

explained by the procedure of estimating the parameters of AEP distribution. Estimates of 

parameters of Pareto IV are estimated by a method of L-moments, but estimates of AEP 

distribution are estimated by a maximum likelihood estimates. Due to the very nontrivial 

functional form of likelihood function maximization procedure for AEP is not very robust, thus 

some proportion of deviation of estimate value can be explained by estimation procedure. 

  

Figure 17. Dynamic of estimates of parameter of 

location of AEP distribution 

Figure 18. Dynamic of estimates of parameter of scale 

of AEP distribution 
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Figure 19. Dynamic of estimates of first parameter of 

shape of AEP distribution 

Figure 20. Dynamic of estimates of second parameter of 

shape of AEP distribution 

 

We can see that estimates of parameters changed during the period of observation but in 

fact the distributions for 2004 and 2014  are identical, so estimated changes are minor in absolute 

value (except scale parameter for Pareto IV). Also, it is important to notice again that our sample 

was changing, so a certain part of the dynamic of estimates can be explained not only by 

institutional changes of the Russian banking industry, but also by sample changing (see Figure 

3), but of course these processes are connected.  

 Therefore these slow changes in estimates of parameters of distributions in fact show 

that this banking system is affected by gradualism property. The banking system is changing 

rather inertly without any serious breaks. 

 

Conclusion 

 Today there are two main approaches to modeling sectors in macromodels: representative 

agent and agent-based. We used the tools described in Melitz(2003) and Hopenhayn (1992a) to 

provide an argument for  the  use of the concept of representative agents in banking sector 

modeling. 

We have demonstrated that for a large-scale open banking system under assumption, that 

monetary policy and regulatory aspects do not change the regime and the distribution of relative 

sizes of individual banks is stable over time. Thus economic growth, which can influence the 

number of banks clients and/or volume of deposits, does not affect the distribution of relative 

sizes of banks measured as a fraction of overall assets.  
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Data from the Russian banking system is used to validate the theoretical model. We 

discussed that among assets are other key variables such as deposits of households, credit of 

firms, interbank deposits, etc. Additional variables are selected to make model validation more 

precise. We show that Pareto IV and asymmetric exponential power distributions are very good 

approximations for all variables. Moreover, the quality of approximation is stable over time, thus 

we could say that the functional form of distributions is stable too.  

We conducted Kolmogorov-Smirnov tests for empirical distribution functions of relative 

sizes of banks and found that if the distance between distributions is greater than 8 months, we 

can reject the null hypothesis for some pairs at a 5% significance level. Moreover, we discovered 

that individual banks could change their position in the distribution of relative sizes, but overall 

distribution is stable over time. We did not find any explicit patterns in the movements of 

Russian banks.  Thus distribution of the general population of banks is stable over time. 

Estimates of parameter values of Pareto IV distributions are mainly stable over time and 

values of estimates of location and first shape parameter for AEP distribution are mainly stable 

too, but estimates of scale and second shape parameters have a rather nontrivial dynamic. This 

result can be explained by the use of different estimation procedures. Moreover, on average 

absolute changes in the estimates of parameter values are not very significant. The question 

about the existence of connection of estimates’ dynamic with sample size changes and industry’s 

shocks, especially as monetary policy and banking regulation regimes switch, is relevant.  

We can therefore say that our model passes the empirical test and the results are an 

argument for the use of the concept of representative agent in banking system modeling. Thus, 

an agent-based approach is not necessary for macromodels of the banking sector. This result 

could be also useful for precisians because it means that analysts need not pay much attention to 

differences between banks if they are interested in a macrolevel forecast, especially short run. 

 For future research projects it will be important to investigate the influence of changes of 

monetary policy and regulation requirements on the distribution of relative sizes of banks and 

analyze in detail the dynamics of estimates of parameters. It will be also useful to develop a 

forecasting technique for predicting the evolution of the banking system. Moreover, it is better to 

use the data of a banking system of a developed country, such as the USA, to test the theoretical 

model, as differences between the banking sectors in developed and developing countries can be 

potentially significant. 
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Appendix 1. Theoretical model 
 

In subsection 1.3.  we get, that (6) is equal to:  

      a( )( ) [ ( ) ( ) ( ) a( ) a ( ) a ( ) ( ) b

t b i i b B
b B

d
t E t A t A t t t t m t

dt 


            

     a ( ) ( 1( ) a ( ) ( ) b

b i i b B
b B

t m tt t




          

   
 

a
\

a ( )
a ( ) ( ) ( ) )]

( ) a ( )

b cс
i i i b

c B b b

t
t m t m t

A t t 


      


 .  

 We assume with probability equal to 1, that a ( ) ( )i t m t , but a ( ) ( )i t m t  is finite. Then:  

  a ( ) ( ) (a( )) ( ) (a( ))b

i i bb
t m t t m t t


       

B

, (8) 

   a ( ) ( ) (a( )) ( ) (a( ))b

i i bb
t m t t m t t


       

B

, (9) 

   a ( ) ( ) ( ) (a( )) ( ) (a( )) ( ) (a( ))b c

i i i b cb
t m t m t t m t t m t t


            

B

, (10) 

Substitute the expressions (8), (9), (10) into (6) and using (2): 

 a( )( ) ( ) [ a ( )) a )( ( ( )t b b

b B

t
d

t m t E t t
dt 

          

 

 

\

\

a ( )a ( ) (a( ))

]
a (

)
)

(

b с c

c B b

b B с

c B b

t t

t
t

t






 







 .                                                                            (11) 

 

We know, that for each smooth function 1 1: R R :  

 ( ) ( ) ( ) ( ) ( )x y y dy y x y dy x

 

 

          ,  

 ( ) ( ) ( ) ( ) ( )x y y dy y x y dy x

 

 

             , where ( )   - Dirac function. 

 If (a) (a )b b

b B

x



    , bx  - constant parameters, and distribution of random variable 

a( )t  near x  has smooth density ( ,a) af t d , then: 

 ( (( ) a ( ,)) x)t tt E f t   - density of joint distribution. 
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t  is parameter, so: 

( ) ( ,x)
d

t t
dt t

f



  , (12) 

 \

(a) (x a ) (x a )b i i i i

i B b

        , 

Using expression given above: 

 a( ) a ( ) (a( ))t b bE t t    

 1

0 0 0

a a (a ) a a a (a... ( ))( , ) ,b b bB
b

b

b b b b

i b

d d d f t x f t x
x

x x

  




  


    
   . 

Simplifying expression above, we get: 

 

 

\

a( )

\

a ( )a (a( ))

a

)

( )

(с c

c B b

t

b B с

c B b

bt t

E
t

t






  
 

  
 
 





 

 
 

a( )

\

\

a ( )a (a( ))

a ( )

( )с c
t

b B c B b d

d B b

b tt t
E

t 



 
    

  
 
 

 


 

 
 

1
,

0 0 0\

\

a a (a )
a a (a ) a a

a
... ( , ) с c с

i i

b B c B b i c d

d

b
cB

b c

B b

d d d fx t
x

  


  



   
       

 

 
1

\ 0

a (
( ,x ,...., ,...

a )
a

a
,xa ) bс c с

b B c B b d

c

b c с

d B

c B

x
f

x

x x x
d t

 





   


  
  


 

 
 \

\

( ,x) с

b B c B b d

d B

b

с

b

x
f

x
t

x

x 



  
  

  
  







 



 


. (13) 

            Substitute the expressions (12) and (13) into (11): 

   
1

( ) ( ,( ,x) x
m( )

)b

B bb

tf f t
t xt

xt


 
   





  
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 
 \

\

( ) ( , ) 0b

с

с

b B c B b d

d B b

x x
xt f t

x x 



  
  

   
  

 

 



   


. (14) 

            Simplify the derivatives in (14) and divide both sides of equation by ( , )f t x : 

     (
1

ln , )
m(

( ) ( ) ln ( )
)

,
b

b

bb

tf t t f t
tt  

  
     

 
 


 x x x

xB B

 

 
 

   

\

\

\ \

( , )lnb

с

b

с

b c b d

d b

с с

d d

d b

b

d b

с с

f t
 



 




    



   





 
  
 

   
 



 


 

x x
x

x

x x x

x

x x

x

x x

B B

B

B B

 

 

 

 
2

\

\

\

,l ( )n с

b c b d

d b
d

d b

b b
b b

с с

f t
 





 
 
  

 
   

 
 
 

         
  
    
 





 

 



x

x x x
x x x

x x
x

B B

B

B

 

            Than 

     
1

ln ( ) ( ) l( ,x)
m )

n ,x)
(

(b

bb B b B

f t
t

t x t f t
t x 

  
      


 








   

 \

2

b d

d

b

B

B b

x
x



 
 

 

 
 

    
 





 
 




B , 

     ( ,
1

ln ( ) ( ) ln ( , ))
m( )

b

bb B b B

t t f tf t x x x
t xt  

  
     

  
     



37 

 

 

 

 
2

\

\

\

l ( , )n с

b B c B b d

d B b
d

d

b b
b

B b

с

x x x
x f t x

x x
x

 





 
 
 

    
  
  

 
 
 

 
  

 


 
  

 




. (15) 

            If we integrate second and third summands over the whole space and in each element 

integrate over 
bx , then this integral will be equal to 0, because ( , )f t x  turns into 0 at the edges. 

            Because number of banks 2B , so we can write down: 

     
1

ln ( ) ( ) l( ,x)
m )

n ,x)
(

(b

bb B b B

f t
t

t x t f t
t x 

  
      


 








   

 \

b B c

c B b

bx

x
B





   
  . (16) 

 

 We can make in (16) following substitution: 

  

 0

m( ) ( )

0

( , ) ln , ( )ln m( )

t

td

b B

f t e dxg tx
     



 
       

  
 


 (17) 

           Then we substitute (17) into (16): 

  

 0

)m( ) (

ln , ( )

t

d

t

b B

g t e tx
     



 
     

  
 



  
     

  0 0

m( ) m(( ) () )

( ) ln , ( )

t t

d

b B

d

b b

b B

t x e g t txe
           



 
        

  
 

  
 

  

  
  

0 0

m( ) m( )( ) ( )

( ) ln ,

t t

d d

b B

b bx e t g t ex
           



  
      

    
  

  
 

 \

b B c

c B b

bx

x
B





   


. 

           We make the following change of variables: 
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  

0

(m( ) )

t

d

y xe
     

   

           After simplification we get: 

    

 \

ln , y ln , y
b B b B c

c B b

b
t b b

x
g t y t

x
g B

 



         


. 

           Functions, which depend on  are homogenous of zero degree, so: 

    

 \

ln , y ln , y
b B b B c

c

b

B b

b

b

y
g t y g t B

t y y 



  
 

  





  


. 

            Notice, that this equation is independent on time, so we can find the stationary solution: 

 
  

 0

m( ) ( )

0

( ,xln m( )) ln ( )

t

td

b B

t xef g d
     



 
       

  
 


, 

  

 \

ln 0
b B b B c

c B b

b
b

b

y
y g y B

yy 



    



 


.  

           We can write the preceding relation in the following form: 

  

 \

ln 0
b B b B c

c b

b
b

b

y
y g y

y
B

y 



 



 


B

. (18) 

          General solution of homogeneous equation: 

  ln 0b

b B b

y g y
y




 .  

           Free term of (18) can be expressed as series: 

 

 
11

\

1
n

b B b B b Bc c b c

c B b c B c

n

b b b n

n n

B

S

y

y y

y y y S

y

   





 





 
 


 
 
 

 


  
  

  , 
n

n

b B

bS y


 .  

          We can find particular solution as series: 

   1

1

( )ln n n

n

y Sg K S




 , 

   1

1 1

1 1( )n ( )l n b n n

n nb

nSg y n K K
y

y S S
 

 


  


   , 
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    1 1

1

1( ) ( )lnb n n n

nbb B

y g y n K K
y

S S S S




   





  . 

           The series, which were mentioned above, can be solution if:  

 1 1 1

1

1
( ) ( )

nn nS Sn K S
S

K    . 

          Homogeneous equation 1 1 1( ) ( ) 0n nn K KS S S    ⇔ 1

1

0n

n

K
n

ddS

S K
   has solution 

1 1( ) n

n SK C S   . So we can use a variation of parameters: 

 1

1

1

1 1 1 1 1

1

1

1
( ) ( ) ( )n n n

n
n C S S C S S n C S S S

S

             , 

 
1

1

1
( )C S

S
    ⇒ 

1 1 0( ) lnC S S C   . 

 We need only a particular solution, so assume, that 0 0C  , then 1
1

1

ln
( )

nnK
S

S
S


  and so 

the partial solution will be: 

 

 
1 1

\

1

1 1( ) ln lnn
cn

c B b B c

b
n n

n n

c B b

S
S S S y

S

y
K

y 



 





 
 

    
 
 


  .  

          The general solution of the equation is following: 

 

 \

1( ) exp ,..., ln
B

c

c B b Bb b c

b B b B c B b

b
yy

g y h y
y y y

y

 

  

  
   

        
  

 
  

. 

           Now return to the original variables 
  

0

(m( ) )

t

d

y xe
     

 : 

 
     

 

0 0

m( ) m( )

\

( ) ( )

1( ) exp ,..., ln

t t

B

c B b Bb b c

b B b B c B b

d d

b
c

xx
g x h

x x
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 We notice again that 
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Appendix 2. Used distributions 

Pareto and Lognormal distributions 

 This part is mainly influenced by Kleiber, Kotz (2003) and McDonald (1984). 

Random variable x has power distribution, if probability density function is    01
~f x x

 
, 

where 0  - parameter. Often Pareto distribution is used as the basic power distribution: 

  
 0 0

0

1 ,if

0 ,if

x x x x
F x

x x

  
 


 

Much attention is paid to parameter value  . If 1  ,  then large  values have a significant 

effect on the average value. If 1  ,  then observations with small values have a significant 

effect on the average. Pareto distribution is rather popular in modeling distribution of firm sizes 

(Axtell (2001), Crosato, Ganugi (2007)). 

 If Gibrat’s Law is correct for the particular sample of firms, then we can use lognormal 

distribution for firms’ sizes, as it is shown in Gibrat’s original paper. So we pay a lot of attention 

to lognormal and Pareto distributions and their quality of approximation.  

 Presently there are a lot of generalizations of these distributions. Generalized 

distributions are very important tools, when data set is rather heterogeneous and it is difficult to 

use basic distributions, because of their small numbers of parameters. Larger number of 

parameters and much more flexible functional form help to get precise results. But when we 

estimate parameters of these distributions we face a lot of problems. Numerical procedures very 

often can’t converge and estimation results are not very precise and robust. In our particular case 

we successfully avoid many estimation problems because dataset is homogenous and rather  

large. We use maximum likelihood and method of L-moments estimation procedures as the most 

reliable methods with good properties of estimators.  

 It is important to note that further distributions have been divided into two families rather 

roughly, sometimes there is no strict connection with the base distribution. This classification is 

made only for simplicity. 

 

Family of Pareto-related distributions 

 Generalized Pareto distribution (Gen. Pareto) has three parameters: location, scale 

and shape. Including of shape parameter allows generalizing standard Pareto distribution: 
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  
1/1 (1 ) , 0

1 , 0z

z if
F x

e if

 







   
 

 
,  

where 
x

z





 ,  - location parameter,   –scale parameter,   - shape parameter. 

 Wakeby distribution is a generalization of generalized Pareto distribution. In special 

cases this distribution is equivalent to Pareto, exponential and uniform distributions. Cumulative 

distribution function is very complicated and it is easier to use quantile function: 

 (U) (1 (1 ) ) (1 (1 ))x U U  


 

       ,  

U - uniform random variable with support [0,1],  -location parameter, ,  -scale parameters, 

,   - shape parameters.  

 So, Wakeby is a very general distribution with 5 parameters, it is widely used in financial 

application (for example, Negrea (2014)). 

 Another way generalization of Pareto distribution is Pareto IV type. Pareto IV is a 

generalization of many different Pareto type distributions and has the following cumulative 

distribution function: 

  

1

1 1 ,

0,

x
if x

F x

if x










  
           

 
 

, 

where    location parameter,    scale parameter,    shape (inequality) parameter,    tail 

parameter.  

 Pareto IV type is one of the most popular generalized Pareto distributions. Location 

parameter affects mathematical expectation and tail fatness, scale parameter stretches cumulative 

distribution and probability density functions along the OX axes. Gini coefficient is greatly 

affected by shape parameter. And tail parameter has significant impact on tail fatness. Due to its 

flexibility Pareto IV type is very often used in firm size modeling Crosato, Ganugi (2007). 

 Generalized Beta of the second kind (Beta prime distribution) is a generalization of 

many different distributions, including Pareto IV type distribution. Probability density function 

for Generalized Beta of the second kind has the following functional form: 
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,  

where , ,p q - shape parameters and b - scale parameter. 

 Beta prime distribution is very often used in income distribution analysis and financial 

modeling, but there are many problems with the parameters’ estimation of this distribution, 

because its probability density function is rather complicated. 

 

Family of Normal-related distributions 

 Generalized normal distribution (Gen. normal distribution) has probability density 

function: ( ) 1 exp( y)F x    ,where  

 

1 ( )
[1 ], if 0

( )
,    0

x
log

y
x

if

 


 







  

 
 



 

where , ,    - parameters of location, scale and shape, respectively. According to the three 

parameters, this distribution is much more flexible than typical normal distribution. Moreover, 

this distribution is skewed and it can be very important in the modeling of income or firm sizes 

distribution, because this data is typically asymmetrically distributed.  

Skew normal distribution has the following probability density function: 

 

2 2

2

( )

2 2
1

( )

x

x t

f x e e dt




 





 
 

  




  
,  

where , ,    - parameters of location, scale and shape, respectively. This distribution has a very 

important feature – its distribution function is asymmetric, which is very relevant for our dataset. 

During parameter estimation problems may occur, for example, probability density functions are 

calculated using simulation methods, so accuracy and robustness of parameters’ estimates are not 

very high.  

 We also used asymmetric exponential power distribution (asymmetric generalized 

error distribution or simply AEP) with cumulative probability function:  
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where 

1 exp( y)dy

(Z,a) , (a)
(a)

Z

y

Г
Г







  

 


 incomplete gamma function,   - location parameter, 

  - scale parameter,  , h  - shape parameters. 

 Asymmetric exponential power distribution was developed as an asymmetric 

generalization of exponential power distribution (also known as generalized error distribution), 

which in turn is a generalization of normal distribution with kurtosis parameter. It is important to 

note that asymmetric exponential power distribution has maximum entropy in the very wide 

class of distributions with support ( ; )   (Zhu, Zinde-Walsh (2009)). Moreover, tails of this 

distribution can potentially have different fatness and they are much fatter than normal ones. In 

the paper Buldyrev, Growiec, Pammolli, Riccaboni, Stanley (2007) asymmetric exponential 

power distribution is used for modeling firms sizes.  

 Generalized lambda distribution (Gen. lambda distribution) is also used for modeling 

data. Quantile function as follows: 

(U) (U (1 ) )hx U     , 

U  - uniform distribution with support [0,1],   - location parameter,   - scale parameter, , h  - 

shape parameters. 

 Generalized lambda distribution is asymmetric distribution with power law tails, so it is 

often used for financial modeling. Generalized lambda distribution was developed as an 

approximation of many standard distributions, because it was originally used in Monte Carlo 

modeling, so flexibility of this distribution should be very high. In Beena, Kumara (2010) 

generalized lambda distribution is used for modeling inequality of income distribution. 
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Appendix 3. Distribution figures 

  

Figure 21. Relative sizes, family of Pareto distribution 

(Pareto, Gen. Pareto) 

Figure 22. Relative sizes, family of Pareto distribution 

(Pareto IV) 

  

Figure 23. Logarithm of relative sizes, family of normal-

related distributions (Normal, Gen. Normal) 

Figure 24. Logarithm of relative sizes, family of normal 

distributions (Skew Normal, Gen. Lambda) 

  

Figure 25. Logarithm of relative sizes, family of normal-

related distributions (AEP) 

Figure 26. Fraction of credits to firms (La), family of 

Pareto distributions (Pareto, Gen. Pareto) 



46 

 

  

Figure 27. Fraction of credits to firms (La), family of 

Pareto distributions (Pareto IV) 

Figure 28. Logarithm of fraction of credits to firms (La), 

family of normal-related distributions (Normal, Gen. 

Normal) 

  

Figure 29. Logarithm of fraction of credits to firms (La), 

family of normal distributions (Skew Normal, Gen. 

Lamda) 

Figure 30. Logarithm of fraction of credits to firms (La), 

family of normal distributions (AEP) 

  

Figure 31. Fraction of interbank deposits (Db), family of 

Pareto distributions (Pareto, Gen. Pareto) 

Figure 32. Fraction of interbank deposits (Db), family of 

Pareto distributions (Pareto IV) 
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Figure 33. Logarithm of fraction of interbank deposits 

(Db), family of normal-related distributions (Normal, 

Gen. Normal) 

Figure 34. Logarithm of fraction of interbank deposits 

(Db), family of normal-related distributions (Skew 

Normal, Gen. Lambda) 

 

 

Figure 35. Logarithm of fraction of interbank deposits 

(Db), family of normal-related distributions (AEP) 
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Appendix 4. Maximum and mean distances for other financial variables 

  Maximum Minimum Average Stand.Err. 

Db 

Max, Pareto IV 0.0561 0.0217 0.0381 0.0068 

Max, AEP 0.0478 0.0163 0.0293 0.0068 

Mean, Pareto 

IV 0.0211 0.0073 0.0135 0.0029 

Mean, AEP 0.0182 0.0043 0.0090 0.0028 

      

Df 

Max, Pareto IV 0.0942 0.0318 0.0546 0.0165 

Max, AEP 0.0574 0.0173 0.0296 0.0078 

Mean, Pareto 

IV 0.0377 0.0093 0.0196 0.0078 

Mean, AEP 0.0213 0.0048 0.0099 0.0039 

      

Dh 

Max, Pareto IV 0.0601 0.0171 0.0325 0.0100 

Max, AEP 0.0472 0.0168 0.0312 0.0081 

Mean, Pareto 

IV 0.0200 0.0065 0.0121 0.0038 

Mean, AEP 0.0209 0.0056 0.0117 0.0041 

      

Da 

Max, Pareto IV 0.0401 0.0131 0.0260 0.0059 

Max, AEP 0.0429 0.0145 0.0269 0.0062 

Mean, Pareto 

IV 0.0149 0.0040 0.0087 0.0025 

Mean, AEP 0.0162 0.0044 0.0089 0.0026 

      

Lf 

Max, Pareto IV 0.0531 0.0163 0.0318 0.0065 

Max, AEP 0.0441 0.0142 0.0252 0.0053 

Mean, Pareto 0.0172 0.0054 0.0102 0.0027 
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IV 

Mean, AEP 0.0127 0.0042 0.0072 0.0017 

      

Lh 

Max, Pareto IV 0.0355 0.0128 0.0222 0.0043 

Max, AEP 0.0326 0.0093 0.0158 0.0048 

Mean, Pareto 

IV 0.0113 0.0041 0.0073 0.0019 

Mean, AEP 0.0097 0.0029 0.0047 0.0014 

      

La 

Max, Pareto IV 0.0335 0.0151 0.0240 0.0042 

Max, AEP 0.0387 0.0162 0.0262 0.0051 

Mean, Pareto 

IV 0.0116 0.0044 0.0080 0.0019 

Mean, AEP 0.0118 0.0052 0.0079 0.0016 
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Appendix 5. Dynamics of ranks of individual banks 

The conclusion of the stability of the distribution of relative sizes of banks does not mean 

that the position (rank) of banks in this distribution remains constant. In this section we show 

how much some banks may change their positions in the distribution by the example of banks' 

assets.
10

 For this we order all the banks in accordance with the rank of their assets at the end of 

the observation period (February 2015) and calculate the difference between the highest and 

lowest rank for the entire period of observation. Those banks, which at the end of the period had 

revoked license, we place on the right side of the x-axis (after position 814). For these banks the 

difference was calculated only for the period prior to license revocation. As we can see in Figure 

36, the vast majority of banks shifted more than 100 positions, with nearly 250 of them shifting 

more than 400 positions. This means that individual banks are constantly changing their position 

along quite a stable distribution.   

 

Figure 36. The difference between the highest and lowest ranked bank by assets during the 

period of observation. The abscissa is the rank of the bank at the end of the observation period 

(February 2015). Banks, whose license was revoked, are located after position 814. 

 

Figures 37 and 38 describe the same process over the past three years and the last year, 

correspondingly. We see that there is a sufficient number of banks, whose ranks over the year 

                                                 
10

 Obviously, it is equivalent to analyze assets’ rang of banks or rang of relative sizes of banks. 

0

100

200

300

400

500

600

700

800

900

1000

1 101 201 301 401 501 601 701 801 901 1001 1101 1201



51 

 

changed by more than 200 points. We could not find any patterns in banks’ movements; 

moreover, we can’t say that any cluster of banks is more active, than others. 

 

Figure 37. The difference between the highest and lowest ranked bank by assets during the past 

three years. The abscissa is the rank of the bank at the end of the observation period (February 

2015). Banks, whose license was revoked, are located after position 814. 

 

Figure 38. The difference between the highest and lowest ranked bank by assets during the last 

year. The abscissa is the rank of the bank at the end of the observation period (February 2015). 

Banks, whose license was revoked, are located after position 814. 
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Obviously, the question of direction of movement of a bank on the distribution occurs. To 

answer this question we calculate the average monthly change in the ranks of the assets of 

individual banks. The relevant information is shown in Figures 39 - 41 for the entire period of 

observation, for the last 3 years and over the last year. We found the banks which survived had  

on average a decreasing trend to their rang position. In turn, the banks whose license was 

revoked, shifted faster toward the bottom of the rang list. 

 

Figure 39. Average monthly change in rank of the bank's assets during the period of observation. 

The abscissa is the rank of the bank at the end of the observation period (February 2015). Banks, 

whose license was revoked, are located after position 814.  
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Figure 40. Average monthly change in rank of the bank's assets in the past three years. The 

abscissa is the rank of the bank at the end of the observation period (February 2015). Banks, 

whose license was revoked, are located after position 814. 

 

Figure 41. Average monthly change in rank of the bank's assets in the last year. The abscissa is 

the rank of the bank at the end of the observation period (February 2015). Banks, whose license 

was revoked, are located after position 814. 

 

Thus, we can conclude that the overall stability of the distribution of bank assets is accompanied 

by the constant mixing of banks in a given distribution. 
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