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EVALUATION OF THE REFORM

We evaluate the sporting effects of the seeding system reform in the major football

club tournament — the Champions League — organized by the Union of European Football

Associations (UEFA). In the UEFA Champions League, before the 2015-16 season, the teams

were seeded in the group stage with respect to their ratings. Starting from the 2015-16 season,

national champions of the Top-7 countries are seeded in the first pot, whereas other teams

are seeded by their rating as before. We propose a probabilistic model for predicting the

score of a single match in UEFA tournaments as well as the whole UEFA season. This model

uses clubs’ ratings as inputs. Applying Monte-Carlo simulations, we show that the expected

rating of the UEFA Champions League winner, as well as the sum of the finalists’ ratings,

slightly decreased after the reform. At the same time, the difference in the finalists’ ratings,

which is a measure of competitive balance, increased. The UEFA Europa League became

stronger and less balanced. We check the robustness of the results by introducing local

fluctuations in the clubs ratings. Also, we study which national associations took advantage

of the reform. For seeding rules before and after the reform, we estimate the transition

matrix (pij), where pij is the probability of i-th strongest national association moving to

j-th position after the season. The effect of reform on a single national association measured

by the change in probability to increase or decrease the association’s UEFA rank is not more

than 3%.
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1 Introduction

In September, 2013, the Union of European Football Associations (UEFA), a European

football governing body, decided to change the format of European football club tournaments

starting from the 2015-16 season. One of the most important changes was the establishing

a new seeding system for the UEFA Champions League. The short-term effect of the new

seeding policy was that the quantitative characteristics of single matches, as well as whole

tournament characteristics, changed. At the club level, some teams will benefit from the

reform as they will face weaker opponents during the group stage. At the national association

level, some countries will have an increased probability of moving up in the rankings, thus,

increasing the number of representatives that they field in international UEFA tournaments.

Our research aims to evaluate the expected sporting effects of the reform using computer

simulation techniques.

Each season, UEFA organizes two major international club competitions: the UEFA

Champions League, the most prestigious tournament, and the UEFA Europa League, the

second most prestigious. All 54 national associations – UEFA members – receive a certain

number of places in these tournaments, based on UEFA’s ranking of the respective national

associations. Each national association then determines the teams that will enter the inter-

national European competitions based on domestic tournament results – standings from the

domestic championship and domestic cup.1 Clubs enter the Champions League and the Eu-

ropa league at different stages of the tournament depending on both the country’s position

in the UEFA ranking of national associations and the club’s own achievements in domestic

competitions. A full list for the 2015-16 season is provided in the Appendix (see Table 1).

The European Cups have the following structure. Both the Champions League and

the Europa League are made up of four qualifying rounds, followed by a group stage and

a concluding play-off tournament. In every qualifying round and the play-off round, each

team faces a single opponent. They play two games – a home and an away match (the only

exception is the final which is played at a pre-determined neutral stadium). The winner is

determined on the aggregate score. In the Europa League, the winner of these knock-out

matches qualifies for the next round and the loser goes home. The same is true for the first

two qualifying rounds and the play-off round of the Champions League. However, losers in

1Several national associations hold more tournaments. For example, there are two cups in England: the

Football Association Challenge Cup and the Football League Cup. Winners of both tournaments automati-

cally get a place in the UEFA Europa League.
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the 3rd and 4th Champions League qualifying rounds are not completely eliminated: these

teams enter the Europa League 4th qualifying round, and group stage, respectively.

In both tournaments, the group stage is made up of several groups of 4 teams (8 groups

in the Champions League, 12 groups in the Europa League). In each group, teams play a

double round-robin tournament. That is, each team faces each other 2 times – a home and

an away match. A win counts for 3 points, a draw – 1 point, a loss – 0 points. After all

matches are completed, the teams are ranked based on the total number of points from the 6

group matches. The first two teams in the group advance to the play-off round. The fourth

team is eliminated. In the Champions League, the third-place team in the group drops down

to the Europa league. In the Europa League, the third-place team in the group is eliminated.

Sorting teams into groups or knock-out matches may be done in many different ways.

However, the quality of the participating teams varies greatly. Hence, two different draws are

not equal. The probability of a team advancing further depends significantly on its particular

opponents. Without additional protections, the second best team may be eliminated by the

best one in the very first round. This is likely an undesirable event for tournament organiz-

ers, since spectators prefer watching stronger teams. Hart, Hutton, and Sharot (1975) found

that stadium attendance positively correlates with a visiting team’s strength. Hence, early

elimination of a favourite may reduce overall spectator interest in a tournament. Tourna-

ment organizers are interested in a draw procedure that protects stronger teams from being

eliminated early. Forrest and Simmons (2002) tested whether match attendance depends on

outcome uncertainty. They found that, all else equal, matches that are thought to be intense

attract more spectators.

UEFA exploits coefficients2 that reflect the strength of European clubs and national

associations. The are two different coefficient rankings: the UEFA club ranking and the

UEFA national association ranking. Club coefficients are used by UEFA for seeding (and,

thus, protection) purposes, whereas national association coefficients determine the number

of representatives from each association in European club tournaments.

UEFA national association coefficients are calculated in the following way. All clubs

participating in the Champions League and Europa League collect points for the national

association that they represent. In the qualifying rounds, each win adds 1 point to the

association’s total, a draw – 0.5 points, a loss – 0 points. Starting from the group stage,

these values increase to 2, 1, and 0, respectively. After the season, the total number of

2See also the unofficial, but very comprehensive UEFA coefficient website compiled by Bert Kassies

http://kassiesa.home.xs4all.nl/bert/uefa/calc.html.
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points is divided by the number of participants from this association. The resulting average

is the association’s yearly coefficient. It is calculated for the last 5 seasons; the sum is the

association’s 5-year coefficient.

The UEFA club coefficient is calculated in a similar way based on the club’s performance

in European cups during the last 5 seasons, as well as on the coefficient of the association

the club belongs to. Technically, these calculations are more complicated. Additional details

are relegated to the Appendix.

In both tournaments, the group stage draw is an important event that determines the

contest flow for months. At the draw, UEFA team coefficients are used to protect stronger

teams and avoid heterogeneity between groups. Before the 2015-16 season, at the beginning

of the draw, participants were split into 4 pots with respect to their coefficients. The only

exception was for the title-holder who was guaranteed to be seeded into the first pot, irre-

spective of their rating. After that, groups were formed by picking 1 team from each of the

4 pots. This procedure guarantees that each group contains a very strong top-8 team and a

relatively weak bottom-8 team.

Starting from the 2015-16 season, UEFA changed the seeding procedure. Namely, the first

pot comprises the title-holder and the champions of the top-7 countries (or the champions of

the top-8 countries, if the title-holder is a champion from one of the top-7 countries). Since

a national champion may have a relatively low UEFA coefficient, the changes in the seeding

procedure lead to less homogeneous groups. In this paper, we evaluate how the changes

affect competitive balance, quality, and other key metrics.

The problem of optimally sorting objects into groups has long been a topic of academic

interest. The literature includes both the theoretical studies of sorting properties and appli-

cations to various industries. A comprehensive introduction to the mathematical theory of

sorting may be found in (Andrews , 1998). A review of operational research classification

and sorting methods is provided in (Zopounidis and Doumpos , 2010). These techniques

may be applied to solve such real-life problems as diagnosing based on the set of symptoms

(Stefanowski and Slowiński , 1997), routing the packages at the post (McWilliams, Stan-

field, and Geiger , 2005), or choosing the sample for sociological interview (see, for example,

(Zopounidis and Doumpos , 2010) for more details).

To choose between different partitions, an optimization criterion (or criteria) must be

selected. The simplest problem is to maximize the objective function, which is defined

explicitly on the set of all partitions. In this case in the tournament seeding context we call

the optimized value a tournament success measure. Since a finite number of objects may be
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split into a finite number of groups in a finite number of ways, one may theoretically evaluate

the objective function for each partition and choose the one that maximizes the objective

function. In practice, the total number of partitions may be very large, which makes a full

search hard (or even impossible). In such situations, one needs to establish properties that

significantly shrink the number of alternatives.

Searching for the optimal seeding in a knock-out tournament with 4 participants, given

pairwise winning probabilities, Horen and Riezman (1985) consider 3 objective functions:

1) the probability of the strongest team winning the tournament;

2) the probability of the two strongest teams meeting in the final;

3) the expected rating of the winner.

They show that a seeding in which the strongest team faces the weakest team in the semifinal,

while the two other teams play each other in the other semifinal, is a solution to each of

the three maximization problems. This, however, is not necessarily the case for a knock-

out tournament with 8 participants. Vu (2010) models tournament revenue with a function

that includes game parameters, such as competitive balance and quality. The competitive

balance (CB) of a game is the difference in the opponents’ strengths always taken with

a minus sign (thus, a closer opponent rating corresponds to a more intense game with a

higher CB value). The quality (Q) of a game is the sum of the opponents’ ratings. As

discussed earlier, spectators are more interested in games with greater competitive balance.

At the same time, spectators prefer higher quality games. Aggregating the revenue over all

tournament games, we reach the organizers’ optimization problem. Simulating parameters

of the model for each seeding, Vu found the frequency at which this seeding is optimal. In

this paper, we will use competitive balance and quality as the main objectives.

More complicated sorting problems arise when the objective function is given implicitly.

In contest theory, contest organizers are interested in maximizing the overall effort levels

exerted by participants in the Nash equilibrium. Following a Tullock contest model (Tullock

, 1980), the contestants independently choose the level of costly efforts. The probability of a

win equals the share of the participant’s efforts in overall efforts exerted by the players. Baik

(2008) considers a contest between N groups of players, N ≥ 2. Similarly, the probability

of a group winning equals the share of the group’s efforts. If a group wins a contest, each

member of the group receives a prize valued at 1. Baik shows that if the cost function is

linear on efforts, then, in each group, only the player with the lowest marginal cost of efforts

exerts positive efforts. It follows from this fact that effort-maximizing organizers must assign

top N players to N different groups; other player assignments do not matter. In the same
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between-groups contest, Ryvkin (2011) considers general convex cost functions. He shows

that under reasonable assumptions, the optimal partition of the contestants into groups

either minimizes or maximizes the contestants’ strength variance between groups. Note

that this problem is different from the one faced by UEFA, because there is no competition

between groups in either the Champions League or Europa League.

The rest of the paper is organized as follows. In Section 2 we describe our simulation

models: a model for simulating the outcome of a single match (subsection 2.1), and a model

for simulating the whole UEFA season (subsection 2.2). In Section 3 we present the results of

the comparison of the two seeding systems (subsection 3.1) and test robustness (subsection

3.2). Section 4 concludes.

2 The model

In this section, we model the Champions League and Europa League tournaments. First,

we propose a simulation model for a single game in both competitions. Second, we simulate

the whole tournament.

2.1 Simulation of a single game score

An adequate model is key for making a good prediction about the outcome of a single game

between two football teams. After (Maher , 1982), the most popular approach assumes

that each team i is assigned two parameters ai and di that characterize the team’s attack

and defence strengths, respectively. Then, the number of goals scored by the home side i

against the away team j is expressed as a random variable, with a Poisson distribution, and

parameters ai and dj (and vice-versa with a correction for the home advantage). Attack

and defence parameters may be estimated with a maximum likelihood approach taking

into account previous matches results. Maher model generalizations are applied to various

tournaments and datasets. Dixon and Coles (1997) introduced dynamic attack and defence

parameters which vary throughout the season into the model. This novelty allows the model

to capture changes in a team’s condition. Also, the authors developed a successful betting

strategy based on their model. Another dynamic bivariate Poisson model for predicting the

results of English Premier League matches is presented in (Koopman and Lit , 2015). Koning

et al. (2003) adopted the model for major international tournaments, including the World

Cup. To deal with the ‘golden goal’ rule, the authors introduced scoring intensity.

7



While these models have demonstrated good performance, there is an important issue

one has to deal with when trying to replicate the model for UEFA club competitions. Each

season, hundreds of teams participate in the Champions League and Europa League. Most

of them exit the tournament after only several games. Therefore, for most teams, there is

simply not enough data to estimate their attack and defence strength. It is not possible

to use domestic competition results, because the level of national leagues and cups varies

dramatically across Europe. Thus, we use UEFA team coefficients instead of attack and

defence parameters to predict the number of goals scored by teams. UEFA coefficients are

determined for each team participating in European cups and reflect team achievements on

the international level over the last five years.

2.1.1 Poisson model

We have analysed the results of all 688 games from the UEFA Champions League and Europa

League 2014-15 editions. The goal distributions (Fig. 1) show the difference in statistics for

home and away goals scored. Poisson fitting of the data (solid lines on Fig. 1) indicates the

strong potential of the Poisson distribution-based stochastic process as a model to predict

the score.

Figure 1: Distributions of goals in 688 CL and EL games from the 2014-2015 UEFA season.

Solid lines show fitting with Poisson distribution (λ = 1.40±0.04, R2 = 0.98 for home goals;

λ = 0.92± 0.04, R2 = 0.97 for away goals).

Thus, we suggest the Poisson model for the score of a single game between clubs H

(home) and A (away). Denote by nh and na the number of goals scored by H and A, and by

λh and λa the mean number of goals scored by H and A, respectively, in a match between

them. Suppose that nh and na follow Poisson distributions with parameters λh and λa,
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respectively, and the corresponding probability mass functions Ph(nh) and Pa(na) are given

as follows:

Ph(nh) =
λnh
h exp(−λh)

nh!

Pa(na) =
λna
a exp(−λa)

na!
. (1)

To choose the model for λh and λa, we take into account two empirical observations.

First, the number of goals scored in European international club matches correlates with the

difference in the opponents’ UEFA coefficients. Second, the home side has an advantage.

Therefore, we consider the following parametric family of models for λh and λa:

λh = αh + βh · exp

(
Rh − χhRa

γh

)
λa = αa + βa · exp

(
Ra − χaRh

γh

)
, (2)

where Rh and Ra stand for home and away club ratings, respectively, and αj, βj, γj, χj,

j ∈ {a, h} are constants determining the model. Now, equations (1) can be rewritten as

Ph(nh) = Ph(nh, αh, βh, γh, χh) =
λnh
h exp(−λh)

nh!

Pa(na) = Pa(na, αa, βa, γa, χa) =
λna
a exp(−λa)

na!
. (3)

Let ῡ = (αh, βh, γh, χh, αa, βa, γa, χa).

2.1.2 MLE

We estimate 8 parameters of the model with a Maximum Likelihood Estimation (MLE)

approach based on 2014-15 UEFA season data. The dataset contains the results of each

of M = 688 matches in the Champions League and Europa League, as well as the UEFA

coefficients of the opponents. Within the MLE, model parameters ῡ are varied to maximize

the objective function

Ptotal(ῡ) =
M∏
m=1

Pm(ῡ), (4)

where Pm(ῡ) is the estimated probability of the observed score of the match number m (see

(3)):

Pm(ῡ) = Ph(nh, αh, βh, γh, χh) · Pa(na, αa, βa, γa, χa). (5)
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We use Monte-Carlo simulated annealing (Kirkpatrick, Gelatt and Vecchi , 1983) with

Metropolis criterion (Beichl and Sullivan , 2000) to find MLE-estimations. The starting val-

ues of ῡ are random. On i-th Monte-Carlo step, the new set of parameters ῡi+1 is tested. The

new set of parameters ῡi+1 is generated by adding a random normally distributed fluctuation

to the previous set ῡi:

ῡi+1 = ῡi + σTMC∆ῡ,

where TMC is Metropolis ‘temperature’ (it regulates the degree of allowed fluctuations in the

system), and σ is a coefficient, the value of which is chosen to obtain a mean acceptance ratio

equal to 0.5. The step acceptance probability is equal to pMC = exp
(
Ptotal(ῡi+1)−Ptotal(ῡi)

TMC

)
.

During optimization, we decreased TMC from 106 to 10−5 in 106 steps, which corresponds to

a random walk in the parameter space at the beginning of optimization and negligibly small

parameter fluctuations in the end.

Since scores follow a Poisson distribution, λh and λa must always be positive; parameters

ῡ that lead to negative λh or λa are considered invalid. During Monte-Carlo optimization,

we used only valid sets of parameters ῡ. New fluctuations (and, thus, new sets of parameter

values) were generated at each step until a valid set was obtained.

Based on the scores of UEFA 2014-15 matches in both tournaments and corresponding

participant coefficients, we obtained the following parameter estimations: αh = −0.135,

βh = 1.562, γh = 132.4, χh = 0.977, αa = −0.199, βa = 1.264, γa = 163.0, and χa = 1.006.

These values lead to an average value for home and away teams equal to 1.51 and 1.10,

respectively, which is close to the real-life average values 1.65 and 1.01.

2.2 Simulation of UEFA season outcome

According to the above-mentioned model, each match is a random process. The UEFA season

comprises hundreds of games. Thus, any particular outcome of the season is a coincidence

of many random variable realisations. In such complex systems, even for very simple events,

it is difficult to find exact probabilities. To find the empirical probability distributions for

these events, one may accumulate statistics from multiple independent runs. This technique,

called Monte-Carlo simulations, can be treated as averaging multiple measured values. The

more Monte-Carlo trials one completes, the less errors of averaged values will be obtained

(typically, the error S ∼
√
K, in which K is the number of trials).

We estimated how errors in tournament success measures (expected rating of the winner,

expected competitive balance in the final, expected quality of the final, and others) depend
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on the number of runs in simulations3. We produced simulations with 103 to 107 runs, 10

times each. For each particular number of runs, we calculated unbiased sample variance of

the average values of the tournament success measures. Then, we converted it to relative

errors (see Fig. 2). At first glance, the relative error drops down quickly, and even 103–104

runs are enough to estimate results. However, our primary goal was to estimate the difference

between the two seeding policies that produce relatively similar data and, thus, high errors.

Therefore, we produced our primary simulations and robustness check simulations with 106

and 107 independent runs per simulation. The errors in the values of differences between the

average values for new and old seeding procedures are the following: 0.008 for the winner

rating, 0.01 for the competitive balance in the final, 0.015 for quality in the final, and 3 ·10−4

for the probability of the top team winning the Champions League.

Figure 2: Dependence of relative errors for various tournament success measures on amount

of independent Monte-Carlo runs.

3 Results and discussion

3.1 Main results

In the literature (see, for example, Horen and Riezman, 1985; Scarf, Yousof and Bilbao,

2009), the following quantities are often regarded as tournament success measures: the

3The stochastic part of the observational error is meant. The kth simulation run is treated as a single

measurement xk of a certain tournament success measure. As we estimate average values x̄ of this tournament

success measure across all possible outcomes, the resulting error of the average value is an estimation of the

feasible difference between the measured average and the true average, calculated as an unbiased sample

variance: S(x̄) = 1
K−1

∑K
k=1(xk − x̄)2. The relative error is s(x̄) = S(x̄) · x̄−1.
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expected rating of the winner, the expected quality of the final (the sum of the finalists’ rat-

ings), and the expected competitive balance of the final (the difference between the finalists’

ratings).

Figures 3–5 illustrate the changes with respect to these parameters after the adoption

of the new seeding system. The expected rating of the winner decreased slightly after the

reform from 157.2 to 157.1 (-0.1%). The expected quality of the final decreased from 300.5

to 299.6 (-0.3%). This decrease is due to the lower probability of top clubs reaching the final

stages of the tournament. The intuition behind this is rather strict: under the new seeding

system, there is a higher probability of drawing two very strong teams into one group. Thus,

the probability that one or both of them will fail to qualify for the knock-out stage increases.

At the same time, the expected competitive balance of the final worsened from -30.0 to -30.7,

which means a less competitive match by approximately 2.4%. The probability of a final

between two low-ranked teams increased. However, this difference is much less than the

increase in the probability of a final between a low-ranked and a high-ranked team.

The changes in the Champions League seeding system indirectly affected the Europa

League. The expected rating of the Europa League winner increased from 95.4 to 96.9,

and the expected quality of the final increased from 179.7 to 182.1 (+1.5% and +1.3%,

respectively). As for expected competitive balance in the final, it fell from -26.5 to -27.1

making the Europa League final less competitive by 2.2%. All in all, after the reform, both

tournaments acquired less competitive finals, and the Europa League winners became closer

in strength to the Champions League winners.

Figure 3: CL winner expected rating.

Another issue is ranking dynamics in European football. At the national association

level, one may think of ranking stability as a matrix (pij), where pij is the probability of a

country ranked i moving to position j after the season (i, j = 1, . . . , 54). For example, the
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Figure 4: Sum of CL finalists expected rating.

Figure 5: Competitive balance in the CL final.

unit matrix corresponds to absolutely stable systems, in which rankings after the next season

are predetermined. Both excessive stability and instability lead to economic ineffectiveness.

Based on 2015-16 season inputs, we calculated the ranking stability matrices (pij) for the

current and previous systems, and study their common properties and differences. Figure

6 shows the effect of the reform on the countries’ positions. The overall influence of the

seeding changes on a country’s ranking may be estimated to be at most 3%. The new rules

favoured Italy and Netherlands, because they got one first-pot representative (Juventus and

PSV, respectively), instead of none. As a result, Italy reduced by almost 3% the probability

of dropping down to fifth place, and the Netherlands reduced by nearly 2% the probability

of dropping down to ninth place. Other changes are close to zero.

3.2 Testing the model’s robustness

The results presented above were obtained based on certain club ratings. We need to separate

the role of the tournament structure itself from dependency on the initial dataset. To deal
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Figure 6: The difference in probabilities (the new system minus the old system) to move

up or move down in the ranking. The absolute error of the probability difference values is

2.5 · 10−4, shown with a light red stripe.

with this point, we developed a robustness test procedure. We varied the clubs’ initial

ratings, while keeping clubs’ and countries’ initial rankings fixed. We produced the same

simulations with the old and new seeding procedures, using randomly modified input ratings

(called hereinafter “setup”). We examined the stability of the resulting shifts in metrics

between the two seeding procedures over the amplitude of the clubs’ rating fluctuations.

3.2.1 Algorithm for a random rating setup generation

One of the simplest and most natural ways to apply random fluctuations to club ratings

is to add a random normally distributed perturbation to each club’s rating. However, the

ratings of clubs participating in the UEFA Champions League and Europa League are very

close, so adding random fluctuations may lead to a ranking change. Thus, we used only such

fluctuations in the clubs’ ratings that preserved rankings. The algorithm utilizes a user-

defined amplitude of fluctuations A and produces a random setup in the following steps:

1. Clubs are sorted according to their true rating R = (R1, ..., RC), where Rc is the

coefficient of the c-th strongest club, c = 1, ..., C.
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2. For each club n, except the one with the lowest rating, the difference to the next club

that has a lower rating is calculated as: ∆Rc = Rc −Rc+1.

3. The new rating is generated by the equations:

R∗
C = RC · (1.00 + ξA),

R∗
c = R∗

c+1 + ∆Rc · (1.00 + ξA), c = C − 1, ..., 1,

where ξ is a (0,1)-normally distributed random variable. For each club, ξ value is

re-generated until (1.00 + ξA) is positive.

4. After the new rating R∗ is generated for each club, the ratings are normalized to the

initial sum of the ratings:

R̃∗
c = R∗

c

∑
R∗
c∑

Rc

, c = 1, ..., C.

The rankings of the clubs remain the same in this procedure.

Figure 7: Dependence of the resulting dispersion of club ratings after applying fluctuations

of varying strengths (from 0.03 to 10) on initial club ratings. Dispersions are saturated in

fluctuation strength, ranging from 3 to 10.

We have varied fluctuation amplitude A from 0.03 to 10, and generated 100 random setups

per value (also called “setup samplings”, or “samplings”). We calculated the dispersion of

the normalized disturbed rating R̃∗ for each club in each sample. The dependency of the

relative dispersions on A is plotted in Fig. 7. There are two important observations. First,

the relative dispersion in each sampling remains at nearly the same level for all clubs, except

for the clubs with the lowest rating. The increased relative dispersion in the lowest rating

region appears due to the rapid increase in ∆R
R

ratio because R is close to zero. Second, one
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can see the saturation of dispersion values at A ≈ 3. Thus the conditions of simultaneously

(1) maintain club rankings and (2) keep constant average rating limit the maximum possible

fluctuation of the rating. It allows us to test robustness at the whole range of fluctuation.

3.2.2 Analysis of the robustness

Now, we have a set of setup samplings for various fluctuation amplitudes A. For each A,

the comparison of two seeding procedures is made. The case A = 0 corresponds to the basic

comparison (see subsection 3.1). To illustrate the persistence of this result, we compare the

outcomes under the two seeding mechanisms with increased fluctuation amplitude values A.

We produced the simulations for every setup of every sampling. For each setup, we calculated

the changes in the expected rating of the winner (Rnew, Rold), the expected quality of the

final (Qnew, Qold) and the expected competitive balance of the final (CBnew, CBold) for both

the new and old seeding procedures:

∆R(A) = Rnew(A)−Rold(A),

∆Q(A) = Qnew(A)−Qold(A),

∆CB(A) = CBnew(A)− CBold(A).

For each value of A, we calculated empirical distribution functions of ∆R(A), ∆Q(A),

∆CB(A), using 100 setups from the corresponding setup sampling. The obtained distri-

butions are shown on Fig. 8–10. All three empirical distributions are spreading wider with

increasing fluctuation amplitude A, and saturate at A = 10. In all cases, the probabilities

of a sign inversion of the changes ∆R(A), ∆Q(A), ∆CB(A) are negligible. Moreover, the

distribution averaged values (shown on inserts of Fig. 8–10) are conservative across the full

range of A. Therefore, the robustness test demonstrates that the shift in metrics described

in Sec. 3.1 is a steady consequence of changes in the seeding system, and not an effect of a

temporary local distribution of the club’s positions and power.
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Figure 8: Empirical distribution functions of the winner rating difference between new and

old seeding rules for various fluctuation strengths. While larger fluctuations lead to wider

distributions of ∆R, the mean value remains approximately the same (see insert).

Figure 9: Empirical distribution functions of CB in the CL Final difference between the

new and old seeding rules for various fluctuation strengths. While larger fluctuations lead to

wider distributions of ∆CB, the mean value remains approximately the same (see insert).
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Figure 10: Empirical distribution functions of Q in the CL Final difference between new and

old seeding rules for various fluctuation strengths. While larger fluctuations lead to wider

distributions of ∆Q, the mean value remains approximately the same (see insert).

4 Conclusions

We estimated the changes in competitiveness in the UEFA Champions League and Europa

League after the new seeding system was introduced in the Champions League in the 2015-

16 season. We found the ex-ante expected values of main tournament success measures

and compared the results under seeding rules before and after the reform. Our simulations

show that in the UEFA Champions League the new seeding policy resulted in a decrease

in tournament quality with respect to all main measures. Whereas the decrease in the

expected rating of the winner and the expected quality of the final is only marginal, the

expected competitive balance in the final worsened by approximately 2.4%. At the same

time, in the Europa League, the expected rating of the winner and the expected quality of

the final increased by nearly 1.5% due to an increase in the probability of higher-ranked teams

being eliminated from the Champions League after the group stage. Expected competitive

balance in the Europa League final worsened by approximately 2.2%. These results do not

imply that the reform was a failure. First, our estimations were made only for one set of the

inputs, namely, for the set of the teams participating in the 2015-16 UEFA season. These

results were supported by consideration of inputs that are close to the initial dataset. Other

datasets are expected to provide the results directed in the same way, however, absolute

values of the changes may appear very different. Second, the goal of the reform could be

primarily commercial. Nevertheless, the governing body should not neglect the immediate

sporting effects when changing the tournament format. Evaluation of other tournament

18



format changes made by UEFA, including the major changes in qualification system for the

UEFA Europa League as well as the changes in Access list to European cups, is a possible

direction for future research.
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5 Appendix

Appendix contains supplementary information on the UEFA tournaments format and rank-

ings.

5.1 National association coefficient

All clubs participating in the Champions League and Europa League collect points for the

national association they represent. In the qualifying rounds, each win adds 1 point to the

association’s total, a draw – 0.5 points, a loss – 0 points. Starting from the group stage,

these numbers are 2, 1 and 0, respectively. After the season, the total number of points

is divided by the number of participants from this association. The resulting average is

the association’s yearly coefficient. It is calculated over the last 5 seasons; the sum is an

association’s 5-year coefficient.

5.2 Club coefficient

A UEFA team coefficient consists of two summands: number of points gained by this team

in the Champions League and Europa League for the last 5 years and 20% of the coefficient

of the association this club belongs to. Starting from the group stage, a win adds 2 points

to the team’s coefficient, a draw – 1 point, a loss – 0 points. Bonus points are awarded

for qualification into the latter stages of the tournaments. In the Champions League, it’s 4

points for reaching the group stage, plus 5 points for the Last-16 stage, plus 1 point for the

quarterfinals, plus 1 point for the semifinals, plus 1 point for the final. In the Europa League,

it’s 2 points for reaching the group stage, plus 1 point for the quarterfinals, plus 1 point for

the semifinals, plus 1 point for the final. As an exception from all other bonus points, 2

points for reaching the group stage of the Europa League are partly awarded only if a team

fails to obtain more than 2 points. More precisely, if a team gets x normal points during

the group stage, it gets max(x, 2) points instead. Thus, a total of 2 points is a guaranteed

minimum number for the teams that reached the group stage of the Europa League. The

participants that fail to reach the group stage get points on a different basis. Namely, a team

that leaves the Champions League from the 1st qualifying round gets a fixed amount of 0.5

points, from the 2nd qualifying round – 1 point. A team that finishes its participation in the

Europa League in the 1st qualifying round gets 0.25 points, in the 2nd qualifying round – 0.5

points, in the 3rd qualifying round – 1 point, in the 4th qualifying round – 1.5 points.
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5.3 Access list

Below we use the following abbreviations:

• GS – group stage;

• NCQ3(NCQ4) – non-champions qualifying round 3 (4);

• CQ3(CQ4) – champions qualifying round 3 (4);

• CH – national champion;

• CW – national cup winner;

• Nx – x-placed team in the national championship;

• FP – National Fair-Play ranking leader.

Table 1 determines the number of clubs from each of the national associations and clubs’

starting points in the Champions League and Europa League for the 2015-16 season4.

4See official rules at http://www.uefa.com/memberassociations/uefarankings/index.html

(Reterieved December 26, 2015) or UEFA European Cup Football site by Bert Kassies http:

//kassiesa.home.xs4all.nl/bert/uefa/access2015.html (Reterieved December 26, 2015).
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