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Abstract

We adapt a deterministic game theoretic framework in discrete time to super-hedge

pricing contingent claims (CCs). The key aspect of this framework is that the worst-

case scenario dictates the super-hedging price which protects counter-parties in �nancial

contracts from insolvencies. A general application algorithm for super-hedge pricing of

European CC portfolios with piecewise linear payo�s, based on linear programming, is

o�ered for practical usage. Examples of path-dependent European CCs and portfolios

of vanilla European CCs are presented to highlight important features of this pricing

framework.
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1 Introduction

In complete markets, every contingent claim can be replicated by a combination of other

available instruments. It can be said with a high degree of con�dence - it is a good approxi-

mation to how markets operate, at least. Theoretically, it is possible to make models which

maintain the property of completeness and hence lead to the so-called fair price; this type

of models are used by the overwhelming majority in the �nancial industry to price �nancial

instruments. A comprehensive review of such pricing models in the pre 2008 �nancial crisis

era is recounted well in Bates [2003].

In incomplete markets, on the other hand, it is impossible to perfectly replicate contingent

claims. Consequently, there is no unique risk-neutral measure and hence no unique price

to contingent claims. The up-side of incomplete market models is that they yield so-called

super-hedging prices which guarantee that contingent claims would be paid o� with complete

certainty. From the practical standpoint, this might be useful for market makers to limit

their risk exposures, stress testing purposes and/or in illiquid and developing markets where

contingent claim pricing is otherwise impossible.

Alternatively, super-hedging methodology could be implemented by central-counter par-

ties to calculate marginal requirements in derivatives and structured product deals. The

continuing process of the regulatory institutions to impose well-de�ned rules and practices

on over-the counter (OTC) markets, such as the ones by Basel Committee on Banking Su-

pervision [2015], and the ongoing trend to switch to central clearing as a result of the post

2008 �nancial crisis reforms and revitalization e�orts, as described in Domanski et al. [2015],

suggest that super-hedge pricing is becoming increasingly relevant.

The �rst work on the subject of super-hedging pricing was carried out by Karoui and

Quenez [1995]. They proved the optional decomposition theorem in the case of di�usion

dynamics of asset prices. The famous work by Kramkov [1996] extended the optional de-

composition theorem in continuous time to the case of semi-martingales and suggested how

it can be applied to calculate minimal super-hedging prices and strategies. F�ollmer and Ka-

banov [1997] o�ered a proof of the same theorem under weaker conditions both in discrete

and continuous time.

The work on super-hedge pricing had continued to involve and variations on the theme

were suggested. F�ollmer and Leukert [1999; 2000] proposed the notion of quantile hedging

and e�cient hedging where they considered maximizing the probability of a successful hedge

3



given a constraint on the cost. Along the same lines is the work by Xu [2006] where a

market participant is able to choose the level of risk exposure and set the riskiness of the

hedge according to his preference. Thus, we can then view Kramkov's super-hedging prices

as a special case when the participant rejects bearing any risk at all. Kolokoltsov [1998]

proposed a semi-formal version of the guaranteed pricing approach for one and multi- risky

asset contingent claims. He examined it in the case of convex payo� functions but, in

our opinion, his treatment of the multi-asset contingent claims is only partially satisfactory

because it is certainly more natural for the jointly allowed prices changes, and even more

general, to be in the shape of ellipsoids and not rectangles. Furthermore, R�uschendorf [2001]

studied the upper (super-hedge) and lower prices of contingent claims with convex payo�

functions on measures with bounded support. For that class of functions, he showed that

the upper price is given by the Cox-Ross-Rubinstein model (CRR); more on the CRR model

below. Carr et al. [2001] analyzed the standard arbitrage pricing in conjunction with utility

maximization and proved the fundamental asset pricing theorems in this context. Curiously

enough, in the context of their framework, results show that even in incomplete markets

there is exactly one and unique price.

The theoretical foundation for practical methods to calculate super-hedge prices had been

established but due to absence of necessity it remained dormant. One may �nd examples

of super-hedge calculations in the already mentioned articles here and there, but they are

typically supplements to the preceding rigorous proofs and as such are obfuscated for non-

experts. Among practical methods, of course, one may resort to the rough static super-

hedging method using the triangular inequalities to decompose exotic derivatives into a

collection of constituents. Admittedly, it is an unsatisfactory method because the resulting

super-hedge price is exceedingly expensive. More reasonable approaches to static hedging

exist, for instance Derman et al. [1995] and Carr et al. [1998]. These methods are considered

highly desirable but they may su�er from model dependence and/or applicability to only a

speci�c set of exotic derivatives.

In literature on super-hedge pricing, there are few works related to general methodolo-

gies of dynamic super-hedge price calculation in discrete time especially for more general

non-convex payo� functions. Carassus et al. [2006] reported on a discrete time model where

the underlying assets may evolve in time unrestrictedly. They summarized a handful of

trivial calculations on common contingent claims; trivial in the sense that they correspond

to the naive �buy and hold� super-hedge strategies. Our work takes it further and considers,
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presumably less expensive and more e�cient, dynamic super-hedging, i.e. where the super-

hedging portfolio gets restructured at each time step. Consequently, Carassus and Vargiolu

[2010] improved the results of Carassus et al. [2006] by imposing bounds on the changes of

asset prices. From the basic principles di�ering ours, they derived key expressions similar

to those in Section 3 of this article; but they did not provide any practical calculations.

Braouezec and Grunspan [2015] studied bounds of contingent claims prices in a geomet-

ric approach based on determining convex hulls but their work is impeded by numerical

computation and practical examples are absent.

The purpose of this work is to o�er a super-hedge pricing framework for practical cal-

culations based on the deterministic game theoretic approach developed by Smirnov [2016]

and which, hereafter, we refer to as the guaranteed approach. It is to be contrasted with the

traditional/probabilistic theory for fair and super-hedge pricing in discrete time as, for exam-

ple, in the textbook by F�ollmer and Schied [2004] and the aforementioned articles. For the

inquisitive reader, we refer to Smirnov's original work for detailed and rigorous formulation

of the framework.

From the onset, we adapt Smirnov's guaranteed approach to the case of one risky asset

since we limit ourselves to the study of contingent claims of this type. The asset prices are

given by the vector Xt = (X0
t , X

1
t ) where the zeroth component is the riskless asset. The

quantities of each asset in a hedging portfolio form a strategy vector Ht = (H0
t , H

1
t ). They

are decided upon before Xt+1 gets revealed. Recall that the riskless asset X
0
t evolves in time

deterministically according to the risk-free interest rate. Therefore, we conveniently set the

zeroth asset as the numeraire, i.e. X0
t = 1 and ∆X0

t = X0
t − X0

t−1 = 0 for all 1 ≤ t ≤ N ,

and do not worry about its propagation in the remainder of the article. Consequently, we

redenote the single risky asset X1
t ≡ Xt to ease notation. Furthermore, we assume no

transactional costs and no trade constraints such that the set of all admissible strategies Ht

is Rn.

The principle feature of Smirnov's framework is that price changes in the risky asset ∆Xt

belong to an apriori speci�ed non-empty compact set Kt(·) ≡ Kt(X0, ..., Xt−1). No other

information about the dynamics of Xt needs to be speci�ed. We consider a particularly

simple model where the allowed price changes are independent of price history, i.e Kt(·) =

Kt = Xt−1[a, b], X0 > 0 with a < 1 < b to ensure absence of arbitrage opportunities2. Note

2There would be obvious arbitrage opportunities if both a and b were on the same side from unity.
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that it is instructive to exhibit the price change both as additive and multiplicative processes:

Xt+1 = φt+1Xt = Xt + ∆Xt+1. (1.1)

We refer to both random ∆Xt+1 and φt+1 ∈ [a, b] as the additive and multiplicative changes

respectively; and they may be used interchangeably.

In guaranteed pricing, the task is to assign the smallest price vt(·) to the contingent claim

at hand such that, even in the worst case scenario of the market behaviour, there is su�cient

funds to make the full payment on the contingent claim. We refer to it as the super-hedging

price. The subscript variable t (s = N − t) is the time elapsed from the issuance (remaining

time) of the contract.

Smirnov proposed to perform guaranteed pricing in the context of game theory with pure

hedger strategies and mixed market strategies. It was rigorously proved that in absence of

trade constraints and arbitrage opportunities a game equilibrium exists, i.e. vt(·) remains

unaltered irrespective of who moves �rst (either the hedger or the market) in the hedging

process. In real life though, the hedger would never be able to act retroactively. Further, in

equilibrium, for European contingent claims with one underlying asset, the super-hedging

pricing expression is

vt(·) = sup
Q∈Pt(·)

∫
dQ(∆Xt+1) vt+1(·,∆Xt+1) (1.2)

where the class of measures representing mixed market strategies Pt(·) is martingale, con-

centrated in at most 2 points (n+ 1 points in the case of n risky assets) and the topological

support of Pt(·) is contained in Kt(·). Equation (1.2) is recursively driven backward in dis-

crete time. It bears the name of its inventor Bellman; hence vt(·) may be referred to as a

Bellman function. The supremum operator instructs to seek a measure Q ∈ Pt(·), i.e. Q is

the unknown, that attains the maximum of integration. It may be shown that this maximum

is attainable for upper semicontinuous payo� function (su�cient conditions are provided in

Smirnov [2016]) which we study in this article. Whenever payo� functions are either concave

or convex such measure is easily obtained. In the case of piecewise linear payo� functions of

mixed concavity such measure can be determined from considerations based on the convex

measure. For this class of functions, as we will show below, the solution of equation (1.2) can

be reduced to the linear programming problem. Henceforth, and if there is no ambiguity, we
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refer to the super-hedging price simply as the price to avoid repetition.

In the examples throughout, it was found useful to factor out some reference scale Λ

that exists in the calculation and work with dimensionless variables zt =
Yt
Λ
, with Yt being a

state variable. Note that Λ does not have to be a constant nor unique; it may as well be the

price of the underlying asset or a state variable related to the price. E�ectively, we change

appropriately the numeraire to simplify the calculation process and bring the �nal answer to

a simpler form. This is particularly useful, as we show below, for the Asian and Lookback

call options where there are two state variables to begin with. In fact, as a result of the

numeraire change, their solutions are partially analytic and reduce the computational load

on the recursive part. Moreover, it is the author's opinion that working with dimensionless

variables is aesthetically more appealing.

2 Convex Payo�

Single asset contingent claims with convex payo� functions are the most widely-spread deriva-

tive instruments. For such payo� functions, the supremum is attained when the integration

measure Q is concentrated at two points in Kt = Xt−1[a, b], t = 1, . . . , N maximally distant

from each other, i.e. the extreme points of Kt, which follows readily from Jensen's inequality.

A characteristic feature of Q here is that it remains the same for all values of the underlying

and for all times of existence of such contracts. This makes recursive calculations partic-

ularly easy. To �nd it, we solve for the following linear system which corresponds to the

martingality property and normalization of Q: ∆Xdown
t ∆Xup

t

1 1

 α

β

 =

 0

1

 (2.1)

where α is the down-move probability and β is the up-move probability and the quantities

∆Xdown
t = Xt−1(a − 1) and ∆Xup

t = Xt−1(b − 1) are the corresponding down-move and

up-move price changes. The solution for the probabilities is

P(Xt = Xt−1a) = α =
b− 1

b− a
, P(Xt = Xt−1b) = β =

1− a
b− a

. (2.2)
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It is worthwhile to point out that these equations cannot be inverted to retrieve a and b.

Also, note a useful trivial property which comes in handy for the derivations below

α · a+ β · b = 1. (2.3)

Altogether for convex functions, the recursive expression that follows from equation (1.2) is

vt−1(Xt−1) = α vt(Xt−1a) + β vt(Xt−1b), t = 1, . . . , N. (2.4)

Furthermore, it is an easy exercise to cast this result in terms of the strategy vector H which

exhibits how super-hedging could be implemented in practice:

vt−1(Xt−1) = H0
t−1 +H1

t−1Xt−1, t = 1, . . . , N.

H0
t−1 =

b

b− a
vt(Xt−1a)− a

b− a
vt(Xt−1b), H1

t−1 =
vt(Xt−1a)− vt(Xt−1b)

Xt−1(a− b)
.

(2.5)

One does not have to be an astute reader to quickly realize that equation (2.4), in its

appearance, is exactly the binomial tree model due to Cox et al. [1979] and Rubinstein [1994].

However, the di�erence in interpretation is crucial between our and the Cox-Ross-Rubinstein

(CRR) models. In the CRR model, evolving from t− 1 to t, the price Xt may end up being

only either Xt−1a or Xt−1b, i.e. no other values are permitted. In the guaranteed approach

framework, there is an uncountable in�nity of values that Xt can take on in the interval

Xt−1[a, b]. In the CRR model, the resulting answer is the fair (risk-neutral) contingent claim

price in the sense as we described it for the complete market framework above. There, the

parameters a and b, in principle, could be inferred by �tting them to the market observed

prices. In the guaranteed approach framework, the answer is the super-hedging price, i.e.

due to the worst case scenario played out by the market. It is not meaningful to �t the

parameters a and b to the market prices of contingent claims. In fact, these parameters

have to be estimated from, say, the historical time series, i.e. they could represent a high

percentage con�dence band of the returns on the underlying asset. Alternatively, in marginal

requirements calculations, a and b would represent typical price limits in a speci�ed time

interval by which markets operate, i.e. when these limits are breached, there is a temporary

trading halt. Hence, the super-hedge price may be interpreted as the marginal requirement

itself.

Before proceeding on to the convex examples, we brie�y mention the case of the concave
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payo� functions. The supremum of integral is attained when the measure Q is concentrated

at the single point Xt−1, corresponding to ∆Xt = 0; this is, again, a consequence of Jensen's

inequality. The recursive Bellman equation leads to the trivial result

vt−1(Xt−1) = vt(Xt−1), t = 1, . . . , N. (2.6)

2.1 European Option

Any article that studies the pricing of a selected set of contingent claims would most likely

begin with the European option; we are not an exception. Here and everywhere below,

without any prejudice though, we calculate the prices of the call type options. Analogously,

calculations may be retraced to obtain the prices of the put type options. The payo� of a

European call option with the underlying asset price XN , the strike K and at maturity time

N is

vN = max(0, XN −K) = K max(0, zN − 1) (2.7)

where the dimensionless variable zN =
XN

K
is introduced for the reasons discussed above.

We rede�ne the payo� function ṽN =
vN
K

and drop the tilde symbol everywhere below.

According to the de�nition of the maximum function3, we may write the payo� function as

vN(zN) =
1

2
(zN − 1) + λN(zN), λN =

1

2
|zN − 1|. (2.8)

The advantage of casting it in this form is that the �rst term stays invariant upon

integration. In fact, this trick is possible and suitable for any vanilla and exotic derivatives,

with their corresponding λ functions, as we shall see below. By the virtue of equation (2.4)

and making use of identify (2.3), we quickly �nd the price at time t given that the price at

time t+ 1 is available:

vt(zt) =
1

2
(zt − 1) + λt(zt), t = 0, . . . , N − 1

λt(zt) = αλt+1(zta) + β λt+1(ztb).

(2.9)

This expressions constitute a recursive solution for the price of a European call option

at any time prior to maturity N . For path-dependent (and still convex payo�) contingent

claims, as we show below, such recursive solutions can be simpli�ed further only partially.

3The maximum of two real numbers is de�ned by max(a, b) =
1

2

(
a+ b+ |a− b|

)
.
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The computational time grows as 2s where s is the number of time steps to maturity. On

the desktop computer available to us, we run into the problem of excessive and practically

unreasonable computational times around s ∼ 20. It is feasible to circumvent this with

parallelization but still with limited gain.

Fortunately, in the case of the European option, and for that matter even any portfolio

of contingent claims with a convex payo� function, it is possible to express the solution

as a computation on s + 1 points of the payo� function due to the recombining nature of

the binomial tree by invoking induction. Once again, this is in agreement with the CRR

binomial model and, in fact, has become standard textbook material by now. For instance,

the book by van der Hoek and Elliot [2006] treats many common contingent claims with a

generic method in the context of the binomial tree model. However, we emphasize that in our

approach, seemingly being identical to the CRR model this far, the mathematical expression

bears a new interpretation, i.e. super-hedge price due to the worst case scenario. In the next

section on the Barrier option, the di�erence between the two approach will emerge explicitly.

Still for the European call, let us assume that at arbitrary time t we may express the

solution in terms of the convex payo� vN as follows

vt(zt) =
s+1∑
i=1

γiα
s+1−iβi−1vN(zta

s+1−ibi−1), t = 0, . . . , N − 1. (2.10)

By equation (2.4), which also happens to be the particular case when s = 1, we calculate

the solution at the earlier time step t− 1. After a little bit of manipulation and a change of

variable on the summation index, we readily �nd

vt−1(zt−1) =
s̃+1∑
i=1

γ̃iα
s̃+1−iβi−1vN(zta

s̃+1−ibi−1), t = 0, . . . , N − 1

γ̃i = γi + γi−1, γ̃1 = γ1, γ̃s̃+1 = γ̃s+1

(2.11)

where s̃ = s + 1 and γi turns out to be just the binomial coe�cient. Most mathematical

libraries have the binomial coe�cient precomputed which means that it is computationally

e�cient to use equation (2.11) for large s.

Figure 1 illustrates the solution for a European call option with maturity N = 5 at

all times during its existence. The values of the parameters a, b and others used in the

�gures below are selected arbitrarily here and throughout the article. We observe that the

curves representing the prices are piecewise linear. The location of the kinks, i.e. points of
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Figure 1: An example of a European call option price expressed in terms of the strike K.

discontinuity, is straightforward to determine using a simple recursion. Beginning with the

kinks at time t+ 1, we �nd kinks at time t using

z0t = z0t+1 b
−1, zit = zi−1t+1 a

−1, ∀i ≥ 1 (2.12)

where the kinks at t + 1 are placed in increasing order and the superscript i indicates

numeration. On each subsequent time step the number of kinks increments by one. At

maturity N , we begin with a single kink at the strike 1, i.e. z0N = 1.

2.2 Barrier Option

Barrier options are often used in markets whenever one feels con�dent enough that the

underlying asset will or will not cross a certain price which is called the barrier. Thus,

a Barrier option's payo� is path-dependent and, along with many other path-dependent

options, they are referred to as exotic options. We perform a calculation for the price of

a barrier call option of the type up-and-out. For this type, the price of the underlying

asset X0 must start below the barrier B and in the event Xt moves higher than B, at any

time throughout the life of the contract, the option becomes worthless. In this example,

the relative positions of B and K are selected to adhere to the condition K < B. At the
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terminal time N , the payo� function is given by

vN(XN) =

 0,

max(XN −K, 0),

X̂N > B

X̂N ≤ B
= K

 0,

max(zN − 1, 0),

ẑN > zB

ẑN ≤ zB
(2.13)

where X̂N is the maximum price of the underlying asset Xt for 0 ≤ t ≤ N , zN =
XN

K
is the

dimensionless price and zB =
B

K
is the dimensionless barrier. The factor of dimension K is

omitted everywhere below, and we proceed to parametrize the payo� function similarly to

parametrization of the European option payo�:

vN =
1

2
(zN − 1) + λN(zN),

λN(zN) = H(zN − zB)(1− zN) +
1

2
|zN − 1|,

(2.14)

where H(zN − zB) is the usual Heaviside function which takes on only the values zero and

one for zN < zB and zN ≥ zB respectively.

The integration measure Q, for the most part, is identical to the one of the European

option, but it must be adjusted in the vicinity of the barrier zB to ensure that integration

attains supremum. To this end, we denote ztl and ztr as the two points with non-zero prob-

abilities in lieu of zta and ztb as for the European option, where l, r and the corresponding

probabilities α∗ and β∗ take on the values:

l = a and r = min(b, zB/zt), for zt ≤ zB,

l = max(a, zB/zt) and r = b, for zt > zB,

P(zt+1 = zt l) = α∗ =
r − 1

r − l
, P(zt+1 = zt r) = β∗ =

1− l
r − l

.

(2.15)

The measure Q as de�ned in the expression above reduces to the one used for the European

call option in the limits when zB →∞; this is the expected behaviour.

A recursive solution for the price of a Barrier call option of the up-and-out type at

arbitrary time t, provided ẑt ≤ zB, immediately follows

vt =
1

2
(zt − 1) + λt(zt),

λt(zt) = α∗ λt+1(zt l) + β∗ λt+1(zt r).

(2.16)

Whenever ẑt > zB the option is said to be extinguished and the payo� vanishes. Figure 2
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Figure 2: An example of an up-and-out Barrier call option price expressed in units of the
strike price K when K < B.

illustrates a solution for a Barrier call option of the up-and-out type. The price curves are

a copy of the European call beginning from zt = 0 up to the region just to the left of the

barrier zB, and they are zero beyond zB. The super-hedging strategy is given by equation

(2.5) where l, r and zt−1 are inserted in the appropriate places. Note that, still for K < B,

the down-and-out Barrier option would yield a trivial result in line with equation (2.6).

2.3 Asian Arithmetic Option with Floating Strike

Asian options are similar to their European counter-parts except that the strike price is the

arithmetic average of the underlying price. Their payo� is path-dependent and becomes

known only at the time of maturity. They are usually cheaper due to the reduced volatility

of the underlying average price. In addition, the averaging feature makes Asian options'

payo�s secure to any drastic changes in the price of the underlying just before maturity.

The payo� of an Asian call option written on the underlying asset with the price XN and

the arithmetic mean SN at maturity time N is

vN = max(0, XN − SN) = XN max(0, 1− zN), (2.17)
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where St is de�ned by and obeys the following identity

St =
1

t+ 1

t∑
i=0

Xi =
t

t+ 1
St−1 +

1

t+ 1
Xt, t = 1, . . . , N (2.18)

and the dimensionless variable zN =
SN

XN

is the arithmetic average expressed in terms of the

underlying �nal price. In the case of the Asian option, we set the numeraire by factoring out

Xt which reduces the number of the state variables to one, i.e. zt =
St

Xt

. We parametrize

the payo� function in a similar manner as the European call option and omit propagating

the scale from line to line

vN(zN) =
1

2

(
1− zN + λN(zN)

)
, λN(zN) = |zN − 1|. (2.19)

It is easy to see that this function is convex. The solution at arbitrary time t is given by

vt(zt) =
1

2

(
t+ 1

N + 1
(zt − 1) + λt(zt)

)
, t = 0, . . . , N

λt(zt) = α · a · λt+1(z
a
t+1) + β · b · λt+1(z

b
t+1),

zat =
1

t+ 1

(
tzt−1a

−1 + 1
)
, zbt =

1

t+ 1

(
tzt−1b

−1 + 1
)
.

(2.20)

Here, the �rst term is not invariant but at least simpli�es to a trivial form and the second

term is calculated recursively. Note that we have used the identity in equation (2.18) to

arrive at the above result. The corresponding expressions for the hedging strategy takes on

a slightly altered appearance as compared to its European counter-part in equation (2.5)

vt(Xt) = Xt vt(zt) = H0
t +H1

t Xt, t = 0, . . . , N − 1

H0
t =

ab

b− a
vt+1(z

a
t )− ab

b− a
vt+1(z

b
t ), H1

t =
a vt+1(z

a
t )− b vt+1(z

b
t )

(a− b)
.

(2.21)

The domain of zt is determined by the extreme behaviour of Xt. In one case, the asset

price drops by a factor of a on every time step. In the other case, it rises by a factor of b on

every step. Then, we express the average of each extreme behaviour in terms of the asset's

current price. Thus, we deduce that the possible values of zt on time step t lie between

Mint =
1

t+ 1

t∑
i=0

b−i, Maxt =
1

t+ 1

t∑
i=0

a−i. (2.22)
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Figure 3: An example of an Asian call option price expressed in terms of the current asset
price Xt.

Figure 3 shows that a typical solution to the recursive equations for the price of the Asian

option is piecewise linear. The averaging feature of the strike makes it possible for the price

at some earlier time t to be lower than at t+ 1 when expressed in terms of the dimensionless

variable zt. Note that the slopes of the price curves are negative which is a consequence of

expressing the solution in terms of the current asset price and not mistakenly represent a

put type solution. The t = 0 curve consists of only one point at z0 = 1, is hidden behind

other curves and lies above them.

It is feasible to �nd the kink points separating the neighbouring linear regions. We can

do this recursively by solving systems of inequalities on each time step. The trick is to keep

applying the identity in equation (2.18) from step to step. However, the restriction on the

allowed values of zt provided by (2.22) exclude many of the outer kink points, i.e. zt can

not reach the outer linear regions de�ned by those kinks. Thus, there is no much bene�t for

calculating them.

Furthermore, due to a resemblance with the European options, it might seem to be

possible to reduce the solution from a calculation on 2s to s+ 1 points. Unfortunately, such

recombination is impossible because of the path-dependence as seen in equation (2.18).
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2.4 Lookback Option with Floating Strike

Lookback options are purchased by market players if they feel con�dent that the price of an

underlying will change mostly in one direction, i.e. either maximally increase or decrease,

by the end of the contract. These options are rare and mostly traded on the OTC markets.

We demonstrate how to calculate the price of a Lookback call option with a �oating strike.

The price of this option is a function of the underlying asset Xt and the �oating strike X̂N

which is the minimum of Xt for all t and becomes known only at maturity. The extreme

values of the payo� are zero on the down side and approach XN on the up-side if the price

of the asset at inception is very small. The option is never out-of-the-money and will always

be exercised by the holder unless XN = X̂N . The payo� function is

vN = XN − X̂N . (2.23)

The minimum price X̂N function is de�ned recursively and requires comparison between

neighbouring time steps

X̂t = min(Xt, X̂t−1), X̂0 = X0. (2.24)

As before we will express the result in terms of a dimensionless quantity. In this example,

it is convenient to choose the underlying Xt itself as the numeraire; we remove it from the

equations but keep it in mind that Xt is still there. Using the de�nition of the X̂t function

and the minimum function, we parametrize the payo� as follows

vN(zN) =
(
1−min (1, ẑN)

)
=

1

2

(
1− ẑN + λN(ẑN)

)
, λN(zN) = |ẑN − 1| (2.25)

where the new variable ẑN =
X̂N−1

XN

is the minimum of all the previous time steps expressed

in units of the terminal price. This parametrization is neat and the calculation turns out to

be very orderly. Integration is performed under the same measure as that for the European

option4 but the price function will be given in terms of the variable ẑt. Just as for the Asian

option, the payo� function in the variable ẑN has the slope of negative one. The recursive

4The payo� and price functions on every time step t are convex. This fact is better seen in the variable

Xt though.
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Figure 4: An example of a Lookback call option price expressed in terms of the current asset
price Xt.

solution at arbitrary time t is

vt(zt) =
1

2

(
1− ẑt

2s
+ λt(ẑt)

)
, t = 0, . . . , N

λt(ẑt) =
1

2
|ẑt − 1|+ α · a · λt+1

(
zat
)

+ β · b · λt+1

(
zbt
)
,

zat = a−1 min(1, ẑt), zbt = b−1 min(1, ẑt).

(2.26)

The corresponding expressions for the hedging strategy of the Lookback call are exactly as

those given by equation (2.21) with zat and zat replaced by those in equation (2.26).

Recall that s is the remaining time to maturity. The domain of the variable ẑt is a little

intricate to �gure out. We begin at t = 0 where it obviously takes on only one value ẑ0 = 1.

For time steps where t < N , we have to solve two inequalities corresponding to the extreme

behaviour of Xt. For ẑ1 we readily �nd the domain to be (b−1, a−1). For ẑ2 the domain is

(b−2, a−1); the right end expressed in ẑt does not charge. In general, at the time step t, the

allowed values of ẑt lie in (b−t, a−1).

Figure 4 illustrates what a typical solution to equation (2.26) behaves like. If we cascade

down along the vertical line ẑt = 1 the asset price does not change and gradually the option

value vanishes. The most left (right) point on each curve corresponds to the most increase

(decrease), i.e. Xt = Xt+1b
−1 (Xt = Xt+1a

−1) if expressed in absolute units. On any given
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curve we observe that the option price is higher if the asset price goes down rather than

remains unchanged. This makes sense and agrees with intuition because if the asset price

goes down and re-bounces back on consecutive steps than the potential payo� could be more

than if no asset price change occurred.

3 Piecewise Linear Payo�

In �nancial engineering, especially in the structured products domain, it is commonly prac-

tised to construct portfolios from combinations of European calls, puts and/or other com-

mon vanilla instruments. The payo� functions of the resulting instruments are typically

piecewise-linear but neither fully convex nor concave; they are mixed in concavity and may

even have jumps. For such contingent claims, in the context of guaranteed approach, there is

no unique measure that could be repeatedly used on the allowed integration domain Kt(·) of

the underlying and/or on every time step. Hence, this presents a challenge. In addition and

more importantly, the sub-additivity property of the class of measures Pt(·) implies that the

calculated super-hedging price of the combined payo� pro�le is always not greater than the

sum of the super-hedging prices of individual contingent claims. This does not occur when

one calculates prices in the traditional/probabilistic pricing frameworks where the prices add

up linearly. Therefore, we can quickly imagine that it is of a particular craving for portfolio

managers and central-counter parties to be able to calculate guaranteed prices of portfolios

of contingent claims.

From the technical point of view, it is impossible to determine the integration measure

analytically for instruments with piecewise linear payo�s of mixed concavity. At least we

do not know how it could be done succinctly. Fortunately, we have been able to devise

a numerical algorithm that it is capable of managing it for us. It solves both the task

of identifying the appropriate measure Q and performing integration simultaneously for

any piecewise linear European type payo� pro�le. In fact, we must not worry about the

particularities of Q as they are solely decided by the payo� function; we will see this shortly.

The accuracy of this algorithm is a controllable parameter which makes it very robust.

The extension of the pricing framework to piecewise linear payo� functions of mixed

concavity is based on the idea of fragmenting the support of the measure Kt, i.e. the inte-

gration interval, into several disjoint regions on which the integrand remains either concave
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or convex. To this end, symbolically, we can represent the measure in the following fashion:

Q(∆Xt+1 ∈ Kt) =
m∑
i=1

Qi(∆Xt+1 ∈ Ki)Q(∆Xt+1 |∆Xt+1 ∈ Ki) (3.1)

where m is the number of disjoint regions, Kt =
m⋃
i=1

Ki with the property Ki

⋂
Ki+1 = Xtc

i+1
t+1

for i 6= m in one dimension5. The boundary points of neighbouring regions Xtc
i+1
t+1 ∈ Xt[a, b]

are in written in this product form for convenience. We return to a subtle discussion on how

to determine boundary points and correspondingly ci+1
t+1 below.

Upon fragmentation, we have e�ectively introduced conditional probabilities and the

master equation (1.2) now translates into the following form:

vt(Xt) = sup
P

sup
Q

m∑
i

pi

∫
dQ(∆Xt+1 |∆Xt+1 ∈ Ki) vt+1(Xt,∆Xt+1), t = 0, . . . , N − 1

(3.2)

where P is the set of probabilities pi (i = 1, ...,m) of ∆Xt+1 falling into the corresponding

Ki. We insert Xt instead of (·) as the arguments of vt and vt+1 because, in this section, we

deal with contingent claims whose payo�s are independent of price history.

If the integrand vt+1 is strictly convex on each Ki, then we are led to the quadratic form

equation

vt(Xt) = sup
P

sup
Q

m∑
i

pi
(
qivt+1(Xtli) + (1− qi)vt+1(Xtri)

)
, t = 0, . . . , N − 1 (3.3)

with qi and 1− qi being the conditional probabilities of Xt+1 falling exactly at the left Xtli

and the right Xtri end points of the ith fragmentation region6. Obviously, we always have

a ≤ li < ri ≤ b for all i. Identically, the requirement of martingality for Pt becomes the

quadratic form restriction

m∑
i

pi
(
qiXtli + (1− qi)Xtri

)
= Xt, (3.4)

which casted in this form re�ects fragmentation of Kt. In general, we have the following

5We have dropped the obvious subscript t on Ki
6Again, we have dropped the t subscript from li and ri.
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important property and de�nition

Xtri = Xtli+1 ≡ Xtc
i+1
t+1, i 6= m (3.5)

which emerges from the fact that the regions Ki and Ki+1 neighbour each other. With

this property, the objective function (3.3) and the martingality restriction (3.4), after some

manipulation of the summation index, simpli�es to a linear form expression

vt(Xt) = sup
ki

m+1∑
i=1

ki vt+1(Xtc
i
t+1), t = 0, . . . , N − 1

m+1∑
i=1

kiXtc
i
t+1 = Xt,

(3.6)

where the leftmost Xtc
1
t+1 and the rightmost Xtc

m+1
t+1 are the end points of the overall inte-

gration region Kt and the remaining cit+1 for i = 2 . . .m are de�ned as the ratio of critical

points7 X̂j
t+1 for some j enumerating their quantity and the asset price Xt. The critical

points X̂j
t+1 consist of all their predecessors X̂

j′

t+2 plus new points generated recursively from

multiplication of X̂j′

t+2 by b
−1 and a−1 where j′ enumerates critical points at time t+2. Notice

that, in order to avoid multiplicity, the generation of additional points is actually equivalent

to X̂1
t+2b

−1 and X̂j′

t+2a
−1 for j′ 6= 1. Obviously, the index j takes on 2l + 1 values where

l is the number of values of the index j′. The quantity of critical points X̂j
N at maturity

N corresponds solely to m − 1 where m is the number of fragmentation regions as already

stated above. In short summary, before X̂j
t+1 get sorted in increasing order, we have

c1t+1 = l1 = a, cm+1
t+1 = rm = b

cit+1 =
X̂j

t+1

Xt

, i = 2, . . . ,m

X̂j
t+1 = X̂j′

t+2, j = 1, . . . , l

X̂ l+1
t+1 = X̂1

t+2b
−1, X̂j

t+1 = X̂j′
t+2a

−1, j = (l + 2), . . . , (2l + 1).

(3.7)

It is crucial to realize that, in calculation, we do not require all critical points to be invoked

at once but only those that happen to be contained in the integration interval, i.e. for those

i and j which produce X̂j
t+1 = Xtc

i
t+1 ∈ Xt[a, b]. Finally, the new unconditional probabilities

7In the sense that the �rst derivative of vt+1 is not de�ned at these points.
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ki in (3.6) are de�ned by

k1 = p1q1, km+1 = pm(1− qm),

ki = piqi + pi−1(1− qi−1) i = 2, . . . ,m.
(3.8)

In standard literature on linear programming, see for example Vanderbei [2001], equation

(3.6) together with the normalization and non-negativity conditions on ki is known as the

primal linear problem. By standard methods, it can be reformulated to its dual form, which

results in the following minimization problem

vt(Xt) = inf
k̃i

2∑
i=1

k̃i ξi = inf
k̃1,k̃2

(
k̃1 +Xtk̃2

)
, t = 0, . . . , N

2∑
j=1

Aij k̃j ≥ vt+1(Xtc
i
t+1), i = 1, . . . ,m+ 1

(3.9)

where the quantities k̃i are the dual variables to ki, of which there are only two due to

the martingality and normalization conditions. Note that k̃i may take on any values in

(−∞,+∞) unlike its counterparts ki. The two column matrix A contains +1 in all m + 1

entries of the �rst column and all Xtc
i
t+1 in the second column. The familiar form of the

solution suggests that k̃1 is the intercept and k̃2 is the slope of a line; and we have explicitly

shown how they can be calculated. Not accidentally then, k̃1 and k̃2 represent the super-

hedging strategy, i.e. the quantities H0
t of the riskless and H

1
t of the risky assets, respectively,

over a single time period from t to t + 1. The dual form of linear optimization (3.9) and

the geometric interpretation we assign to k̃i agree with the work of Carassus and Vargiolu

[2010].

It should be recognized that, say, the price of a European call option from a previous

section can also be calculated using the extended theory algorithm with the critical points

being absent. It would lead to the same results, although it would be computationally more

involved.

3.1 Digital Option

Digital options are considered very risky and di�cult to hedge. They come in the European,

American or even Asian �avour but have limited usefulness; if any, Digital options are

traded OTC. In this article though, they serve as a vivid example of the piecewise linear
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Figure 5: An example of a Digital call option price expressed in terms of the strike K.

payo� function algorithm described above.

The payo� of a Digital call is unity if the asset price XN ends up above the strike K and

zero otherwise. Mathematically, it is represented by a discontinuous step function

vN(XN) =

 0,

1,

XN < K

XN ≥ K
= K

 0,

1,

zN < 1

zN ≥ 1
(3.10)

where in the second equality we have introduced a dimensionless variable zN =
XN

K
. A

digital call payo� has a single critical point ẑ1N = 1 at maturity.

We apply the general payo� algorithm to the digital call payo� in equation (3.10). Figure

5 illustrates the price of a digital call at various times prior to maturity. These prices are

depicted as piecewise arc segments. Even though they are obtained purely pointwise, it

is instructive to comment on several of its properties. First, the discontinuity gradually

disappears with each earlier curve and the trend suggests it would vanish altogether at

in�nite time from maturity. And second is that the number of kinks, i.e. critical points,

on each earlier curve also increases. Thus the curve would not be di�erentiable at each

point below unity at in�nite time to maturity. If we now return to the European call option

in Figure 1, then we notice that the second property (i.e. in�nitely many kinks and non-

di�erentiability) is also present there.

22



3.2 Call Spread

A call spread combination is popular among portfolio managers who wish to lock in a poten-

tial �xed pro�t for a wide range of the underlying's price in exchange for the risk of gaining

nothing. It is constructed by buying a European call option with a strike K1 and selling a

European call option with K2 both maturing at the same time and K2 > K1. The payo� of

this combined portfolio is

vN(XN) = max(0, XN −K1)−max(0, XN −K2) =
1

2

(
K2 −K1 + |XN −K1| − |XN −K2|

)
.

We express it in terms of the dimensionless variables zN =
XN

K1

and the ratio of the strikes

k =
K2

K1

vN(zN) =
K1

2

(
k − 1 + |zN − 1| − |zN − k|

)
. (3.11)

Even though there are two kinks in the payo� function there is still a single critical point at

ẑ1N = k; the payo� function maintains its convexity on intervals (−∞, k) and (k,+∞). Thus

the call spread shares the same computational complexity as the digital call. The shape of

the price curves depends on the relative lengths of the integration interval ending at the

point zNb = k, i.e. zN(b − a), and the segment over which the payo� function rises from

zero to unity, i.e. k − 1. Figure 6 shows the case when k − 1 is larger than the integration

interval. Here, the curves are almost piecewise linear with the property that the later curve

is always less or equal to the earlier one. The other case, when k − 1 is less than zN(b− a),

would yield arc curves similar to the digital option except that the discontinuities would be

smoothed by linear segments with positive slopes.

It is compelling to recognize that the digital option and the European call are both

limiting cases of the call spread combination. Consider the payo� of a call spread with an

equal number L of longed and shorted contracts and the parameters K1 and K2 controlling

the strikes

vNN (XN) = L
(

max
(
0, XN −K1

)
−max

(
0, XN −K2(1 + L−1)

))
=
LK1

2

(
k(1 + L−1)− 1 +

∣∣zN − 1
∣∣− ∣∣zN − k(1 + L−1)

∣∣) (3.12)

where zN =
XN

K1

is the same dimensionless variables introduced for the European call, the
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Figure 6: An example of a call spread option price expressed in terms of the strike K1.

digital option and the call spread option in the examples above. The digital option can be

retrieved in the limit where L becomes very large and K1 = K2. On the other hand, the

European option is obtained in the limit when K2 grows large and L = 1. In fact, one may

continuously transform a digital call payo� to a European call payo� according to equation

(3.12). An identical connection between these three instruments maybe established at times

prior to maturity as well.

3.3 Call Step

The �nal example is to illustrate the key advantage of pricing in the guaranteed framework,

i.e. the price of a portfolio is always less or equal to the prices of its individual constituents.

To this end, we consider a portfolio consisting of European calls: one long with the strike

K1, one short with the strike K2 and one long with the strike K3; where K1 < K2 < K3.

We are not aware of a special name for this payo� combination but it makes sense to dub it

the Step option. The payo� function may be written as

vN(XN) = max
(

0, XN −K1

)
−max

(
0, XN −K2

)
+ max

(
0, XN −K3

)
(3.13)

=
K2

2

(
zN −

(
k1 − k3 − 1

)
+
∣∣zN − k1∣∣− ∣∣zN − 1

∣∣+
∣∣zN − k3∣∣)
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Figure 7: An example of a European call step option price expressed in terms of the strike
K2.

where zN =
XN

K2

is the dimensionless variable in this example. The price curves of the

combined contingent claim in Figure 7 are digital-option-like (i.e. arc-like) in the region

around the strikes and European-like (i.e. piecewise-linear) on either ends. The right end

of the curves is cut o� to make the middle region more discernible for viewing. The same

goes for the number of time steps; it is su�cient to illustrate the property of sub-additivity

with only three time steps. The sum of the individual prices is straightforward to �nd using

equation (2.11) for the long options and (2.6) for the short one. Figure 8 shows the di�erence

between the the sum of the guaranteed constituent prices and the guaranteed price; it shows

that the sub-additivity property holds.

4 Concluding Remarks

This article addressed the problem of super-hedging contingent claims in incomplete markets

for practical considerations. We applied the results from the deterministic game theoretic

(guaranteed) approach due to Smirnov [2016] for the case of contingent claims with one

underlying asset. A distinct feature of the guaranteed approach is the fact that the reference

probability measure describing dynamics of the asset price is not required to be speci�ed;

all that is required are the ranges representing the allowable changes in the price. Other
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Figure 8: An example of the di�erence between the sum of the constituent prices and the
guaranteed price for a European step combination; expressed in terms of the strike K2.

guiding principles in Smirnov's derivations are game equilibrium, absence of arbitrage and

the martingale property of the asset price.

For convenience, and as a �rst run, we expressed the asset prices in terms of the riskless

asset in order to avoid dealing with the complications arising from the interest rate. Fur-

ther down, we also found it convenient to introduce new changes of variables speci�c for

each example that we studied. It turned out that to solve the master equation (1.2) implies

�nding an integration measure which attains supremum, i.e. maximizes the result of inte-

gration. In the case of contingent claims with convex payo�s, equation (1.2) is a recursive

Bellman equation that has a tractable solution due to the fact that the integration measure is

straightforward to identify. Furthermore, in the case of vanilla contingent claims, i.e. such as

European call and put or their convex combinations, the recursive solution can be re-summed

to a simple one-liner. On the contrary, for portfolios of European contingent claims where

the payo� function is piecewise-linear with possible discontinuities, it is required to solve a

linear programming problem. The solution may or may not be purely numerical (depending

on the method of solution of the linear programming problem) and the computation times

depend on the nature of the payo� function, i.e. the critical points.

We have presented a total of seven examples of various contingent claims of the European

type. The goal was to show the general characteristics of the solutions and exhibit a wider
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applicability of the proposed methodology. The theoretical framework is highly intuitive

even without the understanding of heavy mathematical machinery. It should be easy to

grasp for practitioners and non-experts. However, a downside of our methodology, which is

typical of anything nowadays, is extensive computation times. There could be yet unexplored

ways to decrease computation times with clever tricks involving parallel computation or

analytic/combinatoric simpli�cation. They remain to be found.

A natural extension of this research would be to price contingent claims of the American

type; they dominate over their European counterparts in organized markets. For American

type contracts, it is imperative to incorporate the interest rate into the dynamics of the asset

price and to account for a potential premature payo�. In fact, the key equation (1.2) to super-

price European contracts was obtained as a limiting case of the expression to super-price

American contracts when the potential premature exercise payo�s are set to negative in�nity.

Thus, the theoretical means of pricing American contract is already available. A practical

application and continuation of this research would be to examine portfolios of contingent

claims expiring at di�erent times such as the calendar spread. This is readily feasible with

European contracts and largely amounts to revamping the code. Likewise, it would be

tempting to consider super-hedging of exotic derivatives with only vanilla instruments which

requires further theoretical research.
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