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Abstract

We develop a simple partial-equilibrium model of endogenous city structure formation. No

production externalities are at work, the only two forces shaping the spatial configurations of

the city being love for variety (on the consumer side) and seeking for a better access to the mar-

ket (on the firm side). We show that, unlike in existing models of a similar nature, our model

generates clustering rather than co-agglomeration. Namely, if there are few firms relative to

the urban population size, then firms tend to cluster at the city center, while consumers choose

to reside on the outskirts. Otherwise, the opposite holds. Although a continuum of equilibrium

city structures may emerge, we show that all spatial equilibria are segregated. In addition, the

market outcome features spatial price dispersion, even though our framework does not involve

imperfect information and search costs on the consumer side.
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Introduction

The broad diversity of urban land-use patterns is well documented and represents a salient fea-
ture of modern cities. Uncovering the nature of dominant forces molding the spatial structures of
cities is therefore an important issue in urban economics. Fujita and Thisse (2013) singled out two
dominant approaches to endogenizing urban structure. In the first approach, developed by Fujita
and Ogawa (1980), Fujita and Ogawa (1982), and more recently in Lucas and Rossi-Hansberg
(2002), firms are involved in perfect competition and enjoy spatial production externalities. These
externalities form an agglomeration force which drives firms closer to the city center. The second
approach, used by De Palma et al. (1985) and Fujita (1988), rests on assuming imperfect compe-
tition, and stresses the role of demand side, product differentiation, and shopping costs as the key
factors shaping the urban landscape. This line of inquiry, however, has not been pursued much
since. One reason for that perhaps lies in the technical complexities of the approach developed in
Fujita (1988), which become insurmountable, unless one assumes a very specific utility function.

Meanwhile, as stressed by Schiff (2015), “easy access to an impressive variety of goods may
be one of the most attractive features of urban living”. That being said, variety-seeking consumer
behavior is among the key forces driving city structure formation. Moreover, recent theoretical
work on monopolistic competition (Behrens and Murata, 2007; Zhelobodko et al., 2012; Berto-
letti and Etro, 2016) and its applications to economic geography and international trade (Ottaviano
et al., 2002; Melitz and Ottaviano, 2008; Mrazova and Neary, 2013; Bertoletti and Epifani, 2014),
based on assuming variable elasticity of substitution on the consumer side, has spurred interest
in studying the impact of versatile patterns of variety-loving consumer behavior on market com-
petition and spatial distribution of economic activities. We therefore find it timely to revisit the
question of how the demand-side properties of urban economies affect the city structure under

monopolistic competition.
To achieve this, we consider a simple partial-equilibrium model of endogenous city structure

formation. Our model is similar to that developed by Fujita (1988), but differs in two respects: we
work with linear-quadratic preferences a lá Ottaviano et al. (2002) instead of using the entropy-type
utility, while transportation costs are assumed to be quadratic rather than linear. We prefer to work
with this type of setting because it yields an analytically tractable model of spatial monopolistic
competition with variable markups.

Our main findings may be summarized as follows. First, we show that only segregated land-

use equilibria exist. This differs from Picard and Tabuchi (2013), who find that firms and con-
sumers tend to co-agglomerate, meaning that the most appealing urban locations are neither pure
residential areas, nor pure business areas, but accommodate both. In other words, we find that,
unlike in Fujita (1988), consumers and firms never share land. This may be viewed as a form of
clustering, a type of spatial economic behavior for which Kerr and Kominers (2015) provide strong
evidence in a different context. Moreover, we argue that the non-existence of mixed equilibria is
not a vulnerable result stemming from restrictive properties of the quadratic preference specifica-
tion. As discussed at the end of Section 2, the same holds at least as long as both preferences and
transportation costs are described by analytic functions, which is quite a broad family.
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Second, we derive conditions which lead to an equilibrium spatial configuration where firms
cluster at the city centre, while consumers reside at the city outskirts. The key factor of such
city structures is the interaction between two forces: (i) the desire of firms to locate as close as
possible to the mass of consumers, i.e. to cover the largest possible market area; (ii) variety-
loving consumer behavior: individuals choose to locate closer to retailing districts in order to
reduce shopping costs. We also show that multiple spatial equilibria involving more complex city
structures may emerge.

Third, we show that, unlike in De Palma et al. (1985) and Fujita (1988), the market outcome
features spatial price dispersion. This may seem surprising at first glance, for unlike Wolinsky
(1983) and Schulz and Stahl (1996), where incomplete information on the consumer side works
as an agglomeration force, our framework involves no search costs. The only source of price
dispersion in our model is the locational advantage of more centrally located firms over the others:
since more accessible outlets have more market power, they charge higher prices.

The paper is structured as follows. Section 2 sets the baseline model and shows that only
segregated equilibria exist. Section 3 provides a characterization of spatial patterns in the base-
line model. Section 4 provides extensions of the baseline model for cases of linear (rather than
quadratic) transportation costs, and a non-zero substitution term in the utility function. Section 5
concludes.

The model

We consider a one-dimensional city X made up of N consumers, M firms, and absentee landlords.
For conciseness, we will call a consumer located at x ∈ X an x-consumer, and a firm located at
y ∈ X a y-firm.

Transportation costs, which we assume to be a quadratic function of distance4, are fully
borne by consumers. For this reason, in what follows we will also call these costs shopping costs.

The spatial distributions of firms and consumers across the city are described, respectively,
by the densities m(y), y ∈ X , and n(x), x ∈ X , which are non-negative and satisfy the following
balance conditions:

ˆ

X

m(y)dy = M,

ˆ

X

n(x)dx = N. (1)

These densities are endogenously determined by market interactions between consumers and
firms, which eventually shape the land use pattern in the city (see Section 3 for more details).

Following most literature in urban economics, we also assume that both n(x) and m(y) are
symmetric with respect to the origin:

n(x) = n(−x) for all x ∈ X , m(y) = m(−y) for all y ∈ X . (2)
4Ever since d’Aspremont et al. (1979), it has been well known that the functional form of transportation cost may

dramatically alter the market outcome. In Section 4, we discuss how assuming linear shopping cost changes our main
results.
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Consumers

Consumers share identical linear-quadratic preferences. More precisely, the utility function of an
x-consumer is given by

U(z; q(x,y), y ∈ X) = z+α

ˆ

X

q(x,y)m(y)dy− β

2

ˆ

X

[q(x,y)]2m(y)dy (3)

where z is the outside good consumption level and q(x,y) is the x-consumer’s consumption level
of a variety produced by a y-firm.

The utility function (3) differs from the one used in the literature since Ottaviano et al. (2002)
by the absence of a substitution term. We show in Section 4 that our main results remain valid if
we allow for non-zero substitutability across varieties.

Each x-consumer seeks to maximize utility (3) subject to the budget constraint:

ˆ

X

[p(y)+ t(x− y)2]q(x,y)m(y)dy+R(x)+ z = Y. (4)

Here Y is consumer’s income, t is half the marginal transportation cost per unit of distance,
while p(y) is the price charged by à y-firm. Finally, R(x) is the rental price of land at location x.
We describe how R(x) is set in Section 3.

Using the budget constraint, the utility function of an x-consumer may be represented as
follows:5

V (x) = α

ˆ

X

q(x,y)m(y)dy− β

2

ˆ

X

[q(x,y)]2m(y)dy

−
ˆ

X

[p(y)+ t(x− y)2]q(x,y)m(y)dy−R(x)+Y,
(5)

The choke price α is assumed to be sufficiently high to rule out corner solutions of the
consumer’s program. To be precise, we show in Appendix 1 that the following condition renders
this solution interior for each consumer:√

α− c
2t

> M+N. (6)

The intuition behind (6) is easy to comprehend. There are two potential hindrances for
consumers to purchase all the available varieties: either their willingness-to-pay α is too low, or
high transportation costs restrain them from visiting remote shopping districts. Condition (6) rules
out both these possibilities.

Note that condition (6) is a sufficient, but not necessary condition. We provide below weaker
conditions of the same sort, which are necessary and sufficient for the consumer program to have
an interior solution in the special but relevant case of segregated spatial equilibria. As stated in

5To be precise, such representation requires the standard assumption that each consumer’s income Y is high enough
to guarantee positive consumption level of the numeraire.
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the Introduction, this is the case we focus on in this paper.
Given that (6) holds, the individual demands of an x-consumer are linear:

q(x,y) =
α− t(x− y)2− p(y)

β
. (7)

As implied by (7), an increase in the distance between an x-consumer and a y-firm triggers
a parallel downward shift of the corresponding individual demand curve. In other words, a larger
distance means a lower choke price, while the slope of the demand schedule is the same, both
across consumers and varieties.

Firms

It follows from (7) that the aggregate demand Q(y) faced by a y-firm is given by

Q(y) =
N
β
[α− tδ (y)− p(y)] , (8)

where δ (y) is the mean-squared distance from a y-firm to the whole mass of consumers across the
city:

δ (y)≡ 1
N

ˆ

X

(x− y)2n(x)dx. (9)

The intuition behind δ (y) is easy to grasp: it is a reverse measure of a y-firm’s market access.
Indeed, a lower δ (y) means that location y is “closer” to the whole mass of consumers, i.e. that a y-
firm enjoys better access to the market. To further clarify this idea, we use the symmetry condition
(2) and restate (9) as follows:

δ (y) = y2 +δ0, (10)

where δ0 is the population dispersion, defined as the mean-squared distance of the whole popula-
tion of consumers from the central location y = 0:

δ0 ≡
1
N

ˆ

X

x2n(x)dx. (11)

Observe that, as implied by (10), the further location y is from the city centre x = 0, the
higher is δ (y). In other words, more centrally located firms have better access to the market.

Each firm’s production technology exhibits a constant marginal cost c and a fixed cost f ,
both expressed in terms of the numéraire. In addition, a y-firm pays rent R(y). Hence, the profit of
a y-firm is given by

π(y) =
N
β
[α− tδ (y)− p(y)] [p(y)− c]−R(y)− f , (12)

Maximizing (12) with respect to p(y) yields the following expression for the profit-maximizing
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price of a y-firm:

p∗(y) =
1
2
[α + c− tδ (y)] . (13)

Plugging (13) into (12), we obtain the profit earned by a y-firm:

π
∗(y) =

N
4β

[α− c− tδ (y)]2− f −R(y). (14)

Equations (13) and (14) show that a lower value of δ (y) implies a higher price and a higher
profit for y-firms. It is well-known that the mean-squared error of a distribution with a finite
variance reaches a minimum at the mean. Hence, δ (y) achieves a minimum when y equals the
mean of the spatial distribution of consumers, i.e. at the central point y= 0 of the city. Furthermore,
the difference in prices between firms located, respectively, in y1 and y2 ∈ X , 0 < y1 < y2 equals

p∗(y1)− p∗(y2) =
t
2
[δ (y2)−δ (y1)] . (15)

Using (13) and (15) yields the following result.
Proposition 1.
(i) More centrally located firms charge higher prices and earn higher profits.
(ii) A reduction in transportation cost t leads to higher prices and higher profits for all firms,

and reduces spatial price differentials.

Proposition 1 shows that a firm’s pricing strategy depends on the firm’s location. This impact
is fully captured by the product of transportation cost t and the mean-squared distance δ (y) of a
y-firm from the whole urban population. Indeed, as shown by (15), a higher transportation cost
denerates more spatial price dispersion. Whatever the equilibrium distribution of firms, the market
outcome shows spatial price dispersion.6 This feature distinguishes our results from those obtained
in similar contexts (De Palma et al., 1985; Fujita, 1988) and echoes the industrial organization
literature where imperfectly informed consumers incur search costs (Wolinsky, 1983; Schulz and
Stahl, 1996). Claim (ii) of Proposition 1 also highlights that infrastructural improvements are
beneficial for all firms.

An object dual to δ (y) is the mean-squared distance σ(x) from an x-consumer to the whole
mass of firms across the city,7 defined by

σ(x)≡ 1
M

ˆ

X

(x− y)2m(y)dy. (16)

6Formally, this conclusion requires that the support of the distribution of firms contains at least three points. This
requirement is always fulfilled in our model, where any distribution of firms is given by a density. Hence, its support
must contain an open interval.

7Note that δ (y) and σ(x) have the same flavor as the “accessibility measures” introduced by Picard and Tabuchi
(2013).
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Because m(y) is a symmetric density, we have σ(x) = σ0 + x2, where

σ0 ≡
1
M

ˆ

X

y2m(y)dy (17)

is the mean-squared distance of the whole population of firms from the central location x = 0.
Combining (13) with (7) and using (10) implies that the quantity q∗(x,y) of a variety supplied

at y demanded by an x-consumer is given by

q∗(x,y) =
1
β

[
α− c

2
− t(x− y)2 +

t
2

δ (y)
]

(18)

Landlords and land use pattern formation

The land market works in the standard way: absentee landlords choose between renting land to
consumers and to firms, depending on whose bid is higher. We build on Fujita and Ogawa (1982)
in introducing the consumer bid rent function Ψ(x,U∗), which is defined as the maximum rental
price a consumer would agree to pay for locating at x, conditional on having the utility level at
least as high as U∗. In other words, it must be that

Ψ[x,V (x)] = R(x),

where V (x) is the utility level (5) gained by an x-consumer.
Similarly, Φ(y, π∗) stands for the firm bid rent function, i.e. it shows the maximum rent R(y),

which guarantees π∗(y)≥ π∗. Equivalently, Φ(y, π∗) must satisfy

Φ[y, π
∗(y)] = R(y). (19)

Because landlords seek to maximize their income, it must be that the rent at x ∈ X is given
by:

R∗(x) = max{Ψ(x,U∗), Φ(x, π
∗), Ra}, for all x ∈ X

where Ra is the land use opportunity cost (e.g. agricultural rent).
Following Fujita (1988), we define a spatial equilibrium as a dyad {n(·), m(·)}, which satis-

fies the following conditions:
(i) for all x,y ∈ X ,

n(x)> 0⇒Ψ(x,U∗) = R∗(x),

m(y)> 0⇒Φ(y,π∗) = R∗(y),

(ii) for all x ∈ X ,
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R∗(x)≥ Ra⇒ n(x)+m(x) = 1,

R∗(x)< Ra⇒ n(x)+m(x) = 0

Let [a,b] be a non-empty interval of the real line X . We call [a,b]

• a residential district if the equalities n(x) = 1 and m(x) = 0 hold for all x ∈ [a,b], but fail to
hold over an arbitrary open neighbourhood of [a,b];

• a shopping district if the equalities n(x) = 0 and m(x) = 1 hold for all x ∈ [a,b], but fail to
hold over an arbitrary open neighbourhood of [a,b];

• a mixed district if the inequalities 0 < m(x)< 1 and 0 < n(x)< 1 hold for all x ∈ [a,b], but
fail to hold over an arbitrary open neighbourhood of [a,b].

We call a spatial equilibrium segregated if it does not involve mixed districts. Otherwise, we call
a spatial equilibrium mixed. A mixed equilibrium is pooled if the city involves only one district.

Spatial equilibria: preliminary results

We now show that potential variety of spatial configurations can be substantially reduced. To do
so, we first establish a technical result which yields a clue to characterizing the urban patterns.

Lemma 1.
(i) The consumer bid rent function Ψ(x,U∗) is a polynomial of degree 4 with respect to x,

which involves only even degrees of x.

(ii) The firm bid rent function Φ(y,π∗) is a polynomial of degree 4 with respect to y, which

involves only even degrees of y.

Proof. Plugging (18) into (5), solving (5) for R(x) and using (19), we obtain after rearrang-
ing:

Ψ(x,U∗) =
Mt2

2β

[(
x2 +

5σ0−δ0

2
− α− c

2t

)2

+K

]
−U∗+Y, (20)

where K is independent of x, while δ0 and σ0 are given, respectively, by equations (11) and (17).
See Appendix 3 for details.

Along the same lines, we derive the firm bid rent function Φ(y, π∗). To do that, we solve
(14) for R(y) and apply (19), which yields

Φ(y, π
∗) =

Nt2

4β

(
y2 +δ0−

α− c
t

)2

− f −π
∗. (21)

Equations (20) and (21) imply directly both claims of the Lemma. �

Using Lemma 1, we come to the following Proposition.
Proposition 2.
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(i) Mixed spatial equilibria do not exist.
(ii) Any segregated equilibrium involves either three or five districts.

Proof. (i) Assume that, on the contrary, a mixed spatial equilibrium exists. In such an
equilibrium, Ψ(x,U∗) and Φ(x,π∗) must identically coincide over some non-degenerate interval
[a,b] ∈ X . This can happen if and only if these functions coincide over the whole urban space[
−M+N

2 , M+N
2

]
, for they are polynomial in x by Lemma 1. In other words, any mixed spatial

equilibrium is a pooled equilibrium. Moreover, because the coefficients by x4 in the expressions
for Ψ(x,U∗) and Φ(x,π∗) are, respectively, Mt2/(2β ) and Nt2/(4β ), a pooled equilibrium may
arise only when N = 2M, which is a zero-measure case, hence it can be ruled out without loss of
generality. This completes the proof of part (i).

(ii) By Lemma 1, the functions Ψ(x,U∗) and Φ(x,π∗) may have either two, or four, or
no intersection points over

[
−M+N

2 , M+N
2

]
. In the latter case the city accommodates either no

consumers or no firms, which cannot be true in equilibrium due to (1). �
The following comment is in order. It may seem at first sight that the non-existence of mixed

equilibria is a mere theoretical curiosity which stems from the very specific functional forms of
preferences and transportation costs. We believe, however, that our choice of preference and shop-
ping cost specifications does not undermine our main results. First, both linear-quadratic prefer-
ences and quadratic transportation costs have been extensively used in the literature. Although we
work here with an additive separable version of the linear-quadratic utility used by Ottaviano et al.
(2002), i.e. when γ , we show in Section 4.2 that our main results still hold when there is substi-
tutability across varieties, i.e. when γ > 0. Second, the argument used in the proofs of Lemma 1
and Proposition 2 keeps its relevance whenever Ψ(x,U∗) and Φ(x,π∗) are analytic functions in x.
This is due to the uniqueness of analytic continuation (Lang, Ch. 5, p. 160), which implies that
whenever two analytic functions defined over a connected domain coincide over a non-degenerate
subinterval of this domain, they have to coincide in the whole domain. Because Ψ(x,U∗) and
Φ(x,π∗) are obtained, respectively, from consumer and firm FOC, sufficient conditions for them
to be analytic in x are that (i) the cost of transporting a unit of the differentiated good from x to y

is given by T (x−y), where the function T (·) is analytic, and (ii) preferences of an x-consumer are
given by

U(z; q(x,y), y ∈ X) = z+
ˆ

X

u [q(x,y)]m(y)dy, (22)

where the sub-utility function u(·) is increasing, concave, and analytic. Equation (22) embraces
a wide variety of preference specifications used in the literature, including (i) the CES under
u(q) = qρ with 0 < ρ < 1, (ii) the CARA (Behrens and Murata, 2007) under u(q) = 1−exp(−αq)

(with α > 0), and (iii) the Stone-Geary preferences giving rise to the linear expenditure system
(Simonovska, 2015) under u(q) = ln(1+ βq).8 To sum up, claim (i) of Proposition 2 holds far
beyond the linear-quadratic setting.9

8The function ln(1+βq) is analytic only for q < 1/β , so we have to assume β sufficiently large.
9This is not true, of course, regarding claim (ii).
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Spatial equilibria

In this section, we study the conditions for various spatial configurations of the city to emerge.
Recall that n(·) and m(·) are, respectively, the densities describing the distributions of consumers
and firms across the urban space. Due to Proposition 2, we may focus on segregated equilibria
without loss of generality.

Central business area

Consider first the case of a segregated spatial equilibrium in which the central area accommodates
firms, while peripheral areas are used for housing. Such an equilibrium involves one business
district, [−M

2 ,
M
2 ], and two symmetric residential districts, [−M+N

2 ,−M
2 ) and (M

2 ,
M+N

2 ].
When does an equilibrium of this type exist? In this case, the equilibrium population density

n(x) must be given by

n(x) =

1, if x ∈ [−M+N
2 ,−M

2 )∪ (
M
2 ,

M+N
2 ],

0, otherwise,
(23)

while the equilibrium density of firms is

m(y) =

1, if y ∈ [−M
2 ,

M
2 ],

0, otherwise.
(24)

Combining (23) – (24) with (9), we find that the mean squared distance is given by

δ (y) = y2 +
1

12
(
3M2 +3MN +N2) . (25)

The sufficient condition (6) for the consumer program to have an interior solution can be
considerably relaxed. Namely, as shown in Appendix 2, each consumer purchases the whole range
of available varieties if and only if:

α− c
t

> M2 +
5
4

MN +
5

12
N2. (26)

Plugging (25) into (21), we find that the firm bid rent function takes the form:

Φ(y, π
∗)=

Nt2

4β

[
y4−2

(
α− c

t
− 3M2 +3MN +N2

12

)
y2
]
+

Nt2

4β

(
α− c

t
− 3M2 +3MN +N2

12

)2

−π
∗− f .

(27)
Also, we show in Appendix 4 that the consumer bid rent function may be expressed as

follows:

Ψ(x,U∗) =
Mt2

2β

[
x4−

(
α− c

t
− 2M2−3MN−N2

12

)
x2
]
+ k−U∗+Y, (28)

where k depends on the parameters of the model, but not on x.
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When does a segregated spatial equilibrium involving shopping area in the centre exist? The
answer is most conveniently given in terms of the relative number of firms defined by µ ≡M/N.

Proposition 3. Assume that (26) holds. Then, there exists a threshold value µ̄ ∈ (0,1) of µ ,

such that10

(i) if 0 < µ ≤ µ̄ , then a segregated spatial equilibrium with a shopping area in the center

exists;

(ii) if µ̄ < µ < 1, then such a spatial equilibrium exists if and only if the following inequality

holds:

α− c
t

>
N2

24
−10µ3 +15µ2 +8µ +2

1−µ
; (29)

(iii) if µ ≥ 1, no such spatial equilibrium exists.

Proof. See Appendix 5. �
Note that (29) has the same nature as (6) and (26): either consumers have a high willingness-

to-pay, or transportation costs are low, or both.

Central residential area

At the other extreme is the segregated spatial configuration where the central area is residential.
In this case the urban space is composed by one residential district, [−N

2 ,
N
2 ], and two symmetric

business districts, [−M+N
2 ,−N

2 ) and (N
2 ,

M+N
2 ].

When does an equilibrium of this type exist? In this case, the equilibrium population density
n(x) must be given by

n(x) =

1, if x ∈ [−N
2 ,

N
2 ],

0, otherwise.
(30)

while the equilibrium density of firms is

m(y) =

1, if y ∈ [−M+N
2 ,−N

2 )∪ (
N
2 ,

M+N
2 ],

0, otherwise.
(31)

Plugging (68) into (21), we find that the firm bid rent function takes the form:

Φ(y,π∗) =
Nt2

4β

[
y4−2

(
α− c

t
− N2

12

)
y2
]
+

Nt2

4β

(
α− c

t
− N2

12

)2

−π
∗− f . (32)

We show in Appendix 6 that the consumer bid rent function boils down to

Ψ(x,U∗) =
Mt2

2β

[
x4−

(
α− c

t
− 5M2 +15MN +14N2

12

)
x2
]
+κ−U∗+Y, (33)

10Surprisingly, µ̄ is fully independent of the parameters of the model. The numerical value of µ̄ equals approxi-
mately 0.732982. See Appendix 5 for details.
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where κ is independent on x.
Setting ν ≡ N/M to be the relative number of consumers, we obtain the following result.
Proposition 4. A segregated spatial equilibrium with a residential area in the centre and

shopping areas at the outskirts exists if and only if

(i) ν < 1, and

(ii) the following inequality holds:

α− c
t

>
M2

24
16+39ν +34ν2−8ν3

1−ν
.

Proof. See Appendix 7. �
To sum up, a segregated spatial equilibrium in which the central area is residential exists

when the number of consumers per firm is relatively low, meaning that competition among firms
is tough.

More complex city structures and multiple equilibria

As implied by Propositions 3 and 4, the spatial equilibria having the simple structure considered
above do not always exist. In particular, this is the case when M = N, in which neither consumers
nor firms have unambiguous advantage in competing for land.

A full characterization of the spatial configurations in our model is long and tedious. There-
fore, we focus here on the case when M = N. Although this case is very special, it is sufficient to
show that competition for central locations between consumers and firms (embodied in the bidding
process) may result in multiple equilibria.

Proposition 5. Assume that M = N. Then,

(i) there exists a continuum of segregated spatial equilibria with business areas given by[
−(1+θ)

M
2
,−θ

M
2

]
∪
[

θ
M
2
, (1+θ)

M
2

]
,

where θ ∈
(

0,
√

7/3−1
2

)
, and

(ii) no other spatial equilibria exist.

Proof. That no equilibria of the types discussed in Sections 3.1 and 3.2 exist is implied
directly by Propositions 3 and 4. For the rest of the proof, see Appendix 8. �

Proposition 5 highlights multiplicity of equilibria, which frequently shows up in spatial mod-
els (Fujita and Ogawa, 1982; Mossay and Picard, 2011). Note, however, that for a five-district
equilibrium with a residential (shopping) downtown area to exist, the bid-rent differential must
be a U-shaped (bell-shaped) function of x2 over [0, (M +N)2/4]. Hence, a necessary (but not
sufficient) condition for a five-district equilibrium with a residential (business) downtown area to
exist is that 2M > N (2M < N). In particular, neither of the five-district spatial configurations
exists under 2M = N. See Appendix 8 for the details. Relating this result to Propositions 3 and
4, we conclude that, under µ = 1/2, the three-district spatial configuration with the shopping area
downtown is the unique equilibrium.
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Extensions

In this section, we provide two extensions of the baseline model considered above. First, we
study the implications of replacing quadratic shopping costs with linear shopping costs. Second,
we introduce non-zero substitutability across varieties by considering the non-additive quadratic
utility a la Ottaviano et al. (2002).

Linear transportation costs

That changes in the specification of transportation costs may dramatically affect the behavior of
equilibria in models of imperfect competition where space matters is a well-known issue first raised
by d’Aspremont et al. (1979). Therefore, we discuss here the implications of assuming a linear

shopping cost t|x− y|. In this case, it is readily verified that, given the density n(·) describing the
distribution of individuals across the city, the profit-maximizing price of a y-firm given by

p∗(y) =
1
2
[α + c− t∆(y)] . (34)

where ∆(y) is the mean distance from firm’s location y to the whole population of consumers:

∆(y)≡ 1
N

ˆ

X

|x− y|n(x)dx.

It is well-known that ∆(y) is minimized in the median of the distribution given by n(·)
(Stroock, 2011). However, unlike the mean, a median may be non-unique. This implies the fol-
lowing result.

Proposition 6. Assume that the spatial equilibrium is segregated and involves a central

shopping area. Then, all firms in this shopping area charge the same price.

Proposition 6 shows that, when the shopping cost is linear, the equilibrium outcome no longer
exhibits spatial price dispersion across the central area. This is not the case, however, when the
city’s central district is residential.

Non-zero substitution term

Up to now, we have been assuming that preferences are additive. We now relax this assumption
by introducing a substitution term into the utility function, like in Ottaviano et al. (2002). In other
words, preferences are now given by

U (z; q)≡ z+α

ˆ

X

q(x,y)m(y)dy− β

2

ˆ

X

[q(x,y)]2m(y)dy− γ

2

ˆ
X

q(x,y)m(y)dy

2

,

where γ ∈ (0,β ) captures substitutability across varieties of the differentiated good, hence the
degree of competitive toughness in the market.

The inverse demand of an x-consumer for a variety produced by a y-firm is given by

14



p(y) = α−βq(x,y)− γQ(x)− t(x− y)2, (35)

where Q(x)≡
´

X q(x,y)m(y)dy is the consumption index of an x-consumer, while σ(x) is defined
by (16) and shows the mean-squared distance of consumer’s location x to the whole population of
firms.

Multiplying both parts of (35) by m(y) and integrating with respect to y across X , we obtain

P = Mα− (β + γM)Q(x)−Mtσ(x), (36)

where P is the price index defined by

P≡
ˆ

X

p(y)m(y)dy, (37)

while σ(x) stands for the mean-squared distance from an x-consumer to the whole mass of firms
given by (16).

Using (36), we obtain the following expression for Q(x):

Q(x) =
Mα

β + γM
− P

β + γM
− Mt

β + γM
σ(x), (38)

The first term in (38), Mα/(β + γM), shows that the x-consumer’s aggregate willingness
to pay increases with M, though less than proportionally to M. The second term, −P/(β + γM),
captures the negative effect of an increase in the price index on an x-consumer’s total consumption.
Finally, the third term, −Mtσ(x)/(β + γM), keeps track of the impact of consumer’s location x on
the volume of consumption.

Solving (35) with respect to q(x,y) and using (38), we find that the individual demand of an
x-consumer for a variety produced by a y-firm is given by

q(x,y) =
1
β

[
αβ

β + γM
+

γM
β + γM

(
tσ(x)+

P
M

)
− p(y)− t(x− y)2

]
. (39)

The aggregate demand faced by a y-firm is then given by

Q(y) =
N
β

[
αβ

β + γM
+

γM
β + γM

(
tθ +

P
M

)
− p(y)− tδ (y)

]
. (40)

where δ (y) is the mean-squared distance between firm’s location y and the population of consumers
defined by (9), while θ is the overall mean-squared distance between consumers and firms:11

θ ≡ 1
MN

ˆ

X

ˆ

X

(x− y)2n(x)m(y)dxdy. (41)

The presence of the price aggregate P in the right-hand side of (40) indicates that the market
of the differentiated good is no longer a collection of monopolists, but that the market structure

11Using symmetry of both densities, it can be shown that θ = δ0 +σ0.
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is now truly monopolistic competition. Indeed, the market demands faced by firms now depend
directly on the aggregate of the choices of other players.12 Because there is a continuum of firms,
each firm is negligible to the market. Hence, firms lack the ability to strategically manipulate the
value of the market aggregate P, which they treat parametrically. As a consequence, the profit-
maximizing price p̂(y,P) of a y-firm can be expressed as

p̂(y,P) =
1
2

[
αβ

β + γM
+ c+

γM
β + γM

(
tθ +

P
M

)
− tδ (y)

]
. (42)

Integrating (42) with respect to y across X and using (37), we come to the following fixed-
point condition for the average price-index P/M:

P
M

=
1
2

[
c+

β (α− tθ)
β + γM

+
γM

β + γM
P
M

]
,

solving which for P/M yields

P
M

= c+
β (α− c− tθ)

2β + γM
. (43)

Plugging (43) into (42), we obtain the profit-maximizing price set by a y-firm:

p∗(y) = c+
[
(α− c)β
2β + γM

+
γM

4β +2γM
θ t− t

2
δ (y)

]
. (44)

The bracketed term in (44) is the markup of a y-firm. The first term in brackets, (α −
c)β/(2β + γM), captures the non-spatial component of the markup, which decreases in both the
number M of firms and the degree γ of substitutability across varieties, reflecting the standard
competition effect. The second term, [γM/(4β + 2γM)] · θ t, represents the global shopping cost

effect, which increases with transportation cost but is independent of firm’s location y. This effect
is in line with the common wisdom of spatial competition theory: local monopoly power increases
over the space when the shopping costs increase. Finally, the third term, tδ (y)/2, captures the
firm’s location effect: moving further away from the center to a location with a higher δ (y) results
in an erosion of firm’s monopoly power.

It is legitimate to ask how markups change in response to an increase in toughness of com-
petition γ and to a reduction in transportation cost t. The answer is given by the following result.

Proposition 7.
(i) The markups of all firms increase/decrease with γ if and only if the following inequality

holds/does not hold:

c+ tθ > α.

(ii) The markup of a y-firm increases in response to a reduction in t if and only if the following

condition is fulfilled:

12See Anderson et al. (2015) for a discussion of the relationship between monopolistic competition and aggregative
games.
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δ (y)>
γM

2β + γM
θ . (45)

The intuition behind (45) is as follows. When γ > 0, infrastructural imrpovements are al-
ways beneficial for less centrally located firms (i.e. those with high values of δ (y)), but may be
detrimental for more centrally located firms (i.e. those with low values of δ (y)). In other words,
higher substitutability across varieties dampens the role of locational advantage.

How do spatial equilibria look like when γ > 0? In the same vein as in Section 2, it can
be shown using (39) and (44) that Lemma 1, hence Proposition 2, hold for the case when γ > 0
without any changes. Thus, we again end up with only segregated spatial equilibria.

Concluding remarks

We have developed a model that contributes to studying agglomeration forces which Fujita and
Thisse (2013) describe as “created through market interactions between firms and consumers”.
We have shown that clustering may occur without any production externalities, fully driven by the
demand-side factors. Furthermore, we have demonstrated that imperfectly informed consumers
and search costs are not essential ingredients for spatial price dispersion.

Our results imply that equilibrium patterns depend crucially on the assumptions imposed on
variety-loving consumer behavior. These considerations, emphasized by the growing literature on
variable markups, suggest a new agenda for empirical urban economists, for little has been done
as yet to study the impact of these factors on urban structure.

We believe that our model is flexible enough to study industrial specialization of cities. In-
deed, the approach proposed in this paper reveals the fundamental role of modelling assumptions
on the type of resulting spatial equilibria (see the discussion at the end of Section 2). Therefore,
we find it potentially interesting to blend our setting with that developed by Helsley and Strange
(2014) in order to obtain further clear-cut theoretical results regarding the conditions of cluster-
ing. Another possible line of further inquiry is to study whether the array of city structures arising
in equilibrium becomes richer if we allow for heterogeneities across consumers not only in loca-
tions, but also in tastes (as in Tarasov, 2014; Osharin et al. 2014). We leave these tasks for future
research.
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Appendix

Appendix 1: (6) is sufficient for consumer’s interior solution.
In what follows, we use suppφ(·) to denote the support of a function φ : R→ R. Using (7),

we find that
α− t(x− y)2− p(y)> 0 (46)

is necessary and sufficient to hold for all x ∈ suppn(·) and for all y ∈ suppm(·), for the solution of
each consumer’s program to be interior.

By definition of the spatial equilibrium, the urban space is confined to [−M+N
2 , M+N

2 ], no
matter what the equilibrium land use pattern is. Using (13), we may restate (46) as follows:

α− c
t

> 2(x− y)2−δ (y) for all x, y ∈
[
−M+N

2
,

M+N
2

]
. (47)

Observe that, because x, y∈ [−M+N
2 , M+N

2 ], we have (i) (x−y)2 < (M+N)2, and (ii) δ (y)≥
0, regardless of a particular shape of the population density n(x). Hence, if (6) holds, then (47)
holds. In other words, (6) is sufficient for each consumer’s program to possess an interior solution.
Q.E.D.

Appendix 2 . Deriving (26) and (73).
Consider first the case of such segregated spatial equilibrium where the central area is a shop-

ping district, while the outskirt areas are residential. In this case, we have suppn(·)= [−M+N
2 ,−M

2 ]∪
[M

2 ,
M+N

2 ] and suppm(·) = [−M
2 ,

M
2 ]. Combining this with (25) and using symmetry, we find that

(47) boils down to

α− c
t

> λ (x,y)− 3M2 +3MN +N2

12
, (48)

where λ (x,y) ≡ 2x2− 4xy+ y2. A necessary and sufficient condition for (48) to hold for all x ∈
[M

2 ,
M+N

2 ] and for all y ∈ [−M
2 ,

M
2 ] is

α− c
t

> λ (x̂, ŷ)− 3M2 +3MN +N2

12
, (49)

where (x̂, ŷ) is a global maximizer of λ (x,y) over [M
2 ,

M+N
2 ]× [−M

2 ,
M
2 ]. Because all admissible

values of x are strictly positive, ŷ has to be non-positive. Indeed, otherwise λ (x,−ŷ) > λ (x, ŷ)

for any x, which is a contradiction. Moreover, for any given x0 ∈ [M
2 ,

M+N
2 ], λ (x0,y) is a strictly

decreasing function of y over [−M
2 , 0]. Hence, we have ŷ =−M/2. As for x̂, it is a maximizer for
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λ (x,−M/2) = 2x2 +2Mx+M2/4 over x ∈ [M
2 ,

M+N
2 ]. Because λ (x,−M/2) is increasing in x, we

have x̂ = (M+N)/2. Plugging x̂ and ŷ into (49) yields (26).
The proof of (73) is fully analogous to the above proof of (26).

Appendix 3: deriving Ψ(x,U∗):
Using (5) yields

Ψ(x,U∗)=α

ˆ

X

q(x,y)m(y)dy− β

2

ˆ

X

[q(x,y)]2m(y)dy−
ˆ

X

[p(y)+t(x−y)2]q(x,y)m(y)dy−U∗+Y.

Combining this with (7), we obtain:

Ψ(x,U∗) =
α

β

ˆ

X

(
α− c

2
− t(x− y)2 +

t
2

δ (y)
)

m(y)dy− 1
2β

ˆ

X

(
α− c

2
− t(x− y)2 +

t
2

δ (y)
)2

m(y)dy

− 1
β

ˆ

X

[
1
2
(α + c− tδ (y))+ t(x− y)2

](
α− c

2
− t(x− y)2 +

t
2

δ (y)
)

m(y)dy

−U∗+Y,

which yields (20) after rearranging.

Appendix 4. Deriving (28).
Integrating the right-hand side of (16), we obtain

σ(x) = x2 +
M2

12
, (50)

while carrying out double integration in (41) yields

θ =
M2

3
+

MN
4

+
N2

12
. (51)

Plugging (23) – (25) and (50) – (51) into (20) and setting

k≡ Mt2

8β

[(
α− c

t

)2

+
(M+N)(2M+N)

6

(
α− c

t

)
+

24M4 +60M3N +65M2N2 +30MN3 +5N4

720

]
,

(52)
we obtain (28).

Appendix 5. Proof of Proposition 2.
Setting

Φ̃(y)≡ Nt2

4β

[
α− c

t
− 1

12
(
3M2 +3MN +N2)− y2

]2

, (53)
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Ψ̃(x)≡ Mt2

2β

[
x4−

(
α− c

t
− 2M2−3MN−N2

12

)
x2
]
+ k, (54)

where k is given by (52), we may state the existence conditions for a segregated spatial equilibrium
with firms in the center as follows:

Ψ̃

(
M+N

2

)
−U∗+Y = Ra, (55)

Φ̃

(
M
2

)
−π

∗− f = Ψ̃

(
M
2

)
−U∗+Y, (56)

Φ̃(x)−π
∗− f > Ψ̃(x)−U∗+Y for all x : 0 < x <

M
2
, (57)

Φ̃(x)−π
∗− f < Ψ̃(x)−U∗+Y for all x :

M
2

< x <
M+N

2
. (58)

As seen from (53) – (54), Φ̃(x) and Ψ̃(x) are both quadratic functions of solely x2. Hence,
(57) – (58) may be restated as follows:

Φ̃(0)−π
∗− f > Ψ̃(0)−U∗+Y (59)

Φ̃

(
M+N

2

)
−π

∗− f < Ψ̃

(
M+N

2

)
−U∗+Y (60)

From (55) and (56) we obtain:

U∗ = Ψ̃

(
M+N

2

)
+Y −Ra, (61)

π
∗ = Φ̃

(
M
2

)
− Ψ̃

(
M
2

)
+ Ψ̃

(
M+N

2

)
−Ra− f . (62)

Using (61) – (62), we find that (59) – (60) boil down to:
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Φ̃(0)− Ψ̃(0)> Φ̃(
M
2
)− Ψ̃(

M
2
), (63)

Φ̃(
M+N

2
)− Ψ̃(

M+N
2

)< Φ̃(
M
2
)− Ψ̃(

M
2
). (64)

Restating (63) and (64) as

Φ̃(0)− Φ̃

(
M
2

)
> Ψ̃(0)− Ψ̃

(
M
2

)
,

Φ̃

(
M
2

)
− Φ̃

(
M+N

2

)
> Ψ̃

(
M
2

)
− Ψ̃

(
M+N

2

)
,

and using (53) – (54), we find that shown abowe inequalities hold if and only if

24(N−M)
α− c

t
>−10M3 +15M2N +8MN2 +2N3

24(N−M)
α− c

t
>−16M3 +6M2N +8MN2 +5N3

A crucial role is played by total numbers of consumers and firms. In case N > M we get
existence condition: 

α− c
t

>
−10M3 +15M2N +8MN2 +2N3

24(N−M)
α− c

t
>
−16M3 +6M2N +8MN2 +5N3

24(N−M)

(65)

Otherwise, 
α− c

t
<
−10M3 +15M2N +8MN2 +2N3

24(N−M)
α− c

t
<
−16M3 +6M2N +8MN2 +5N3

24(N−M)

(66)

To sum up, a segregated spatial equilibrium with a shopping district in the center exists if
and only if

(A) µ < 1, where µ ≡M/N;
(B) (26) and (65) hold. Using µ , we can restate (B) as follows:

24
N2

α− c
t

>
1

1−µ
max{G1(µ),G2(µ),G3(µ)}, for all µ ∈ (0,1),

where
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G1(µ)≡
(
24µ

2 +30µ +10
)
(1−µ), G2(µ)≡−10µ

3 +15µ
2 +8µ +2,

G3(µ)≡−16µ
3 +6µ

2 +8µ +5.

Figure 1A plots G1(µ), G2(µ), and G3(µ)
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Figure 1A. The plots of G1(µ), G2(µ), and G3(µ). N > M case.

Solving the equation G1(µ) = G2(µ) numerically yields a unique solution µ̄ ≈ 0.732982
over (0,1). As seen from Figure 1A, when 0 < µ < µ̄ , we have

G1(µ) = max{G1(µ),G2(µ),G3(µ)},

hence, (B) boils down to (26). However, Figure 1A also shows that, when µ̄ < µ < 1, (B), we have

G2(µ) = max{G1(µ),G2(µ),G3(µ)}.

In this case, (B) amounts to (29). Combining this with (A) completes the proof of Proposition
2.

Notice that when we have N <M, analogously, using µ ≡M/N, (26) and (66) form following
conditions on the existence of the equilibrium:

24
N2

α− c
t

>
1

1−µ
G1(µ),
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24
N2

α− c
t

<
1

1−µ
max{G2(µ),G3(µ)}

for all µ ≥ 1.
Figure 2A illustrates that there is no solution for the case when µ ≥ 1:
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Figure 2A. The plots of G1(µ), G2(µ), and G3(µ). N < M case.

Appendix 6. Deriving (32).
Integrating the right-hand sides of (16) and (9), we obtain

σ(x) = x2 +
M2 +3MN +3N2

12
, (67)

δ (y) = y2 +
N2

12
(68)

while carrying out double integration in (41) yields

θ =
M2

12
+

MN
4

+
N2

3
. (69)

Plugging (31) – (68) and (67) – (69) into (20) and setting

κ ≡ Mt2

8β

[(
α− c

t

)2

− (M+N)(2M+N)

6

(
α− c

t

)
+

9M4 +45M3N +80M2N2 +60MN3 +20N4

720

]
,

(70)
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we obtain (33).
Appendix 7. Proof of Proposition 4.

One can derive

Φ̃(y) =
Nt2

4β

[
y4−2

(
α− c

t
− N2

12

)
y2
]
+

Nt2

4β

(
α− c

t
− N2

12

)2

(71)

Ψ̃(x) =
Mt2

2β

[
x4−

(
α− c

t
− 5M2 +15MN +14N2

12

)
x2
]
+κ (72)

Very much in the spirit of proving (26) (see Appendix 2), it can be shown that

α− c
t

>
1
2

M2 +2MN +
5
3

N2 (73)

is a necessary and sufficient condition for the choices of consumers to be interior.
The same bunch of conditions for the existence of an equilibrium with consumers in the

center is as follows:

Φ̃(
M+N

2
)−π

∗ = Ra (74)

Φ̃(
N
2
)−π

∗ = Ψ̃(
N
2
)−U∗ (75)

Φ̃(0)−π
∗ < Ψ̃(0)−U∗ (76)

Φ̃(
M+N

2
)−π

∗ > Ψ̃(
M+N

2
)−U∗ (77)

Which results in:

π
∗ = Φ̃(

M+N
2

)−Ra

U∗ = Ψ̃(
N
2
)− Φ̃(

N
2
)+ Φ̃(

M+N
2

)−Ra

From the last equations follows:
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Ψ̃(0)− Φ̃(0)> Ψ̃(
N
2
)− Φ̃(

N
2
)> Ψ̃(

M+N
2

)− Φ̃(
M+N

2
) (78)

Using (78), we derive the existence conditions for a segregated spatial equilibrium with
consumer’s center. Deriving (71)–(72), we can show that (78) holds if the following inequalities
hold simultaneously:

24(M−N)
α− c

t
> 10M3 +30M2N +34MN2−5N3 (79)

24(M−N)
α− c

t
> 16M3 +39M2N +34MN2−8N3 (80)

Then, if (73), (79), and (80) simultaneously hold, ν < 1, where ν ≡ N/M.
For a segregated equilibrium with residential central area to exist, (73), (79), and (80) must

hold simultaneously. When ν < 1 (where ν ≡ N/M), this is equivalent to

(1−ν)
α− c

t
>

M2

24
max{H1(ν),H2(ν),H3(ν)},

where

H1(ν)≡
(
40ν

2 +48ν +12
)
(1−ν), H2(ν)≡−5ν

3 +34ν
2 +30ν +10,

H3(ν)≡−8ν
3 +34ν

2 +39ν +16.

When ν > 1, simultaneous holding of (73), (79), and (80) may be stated as

M2

24
max{H2(ν),H3(ν)}< (1−ν)

α− c
t

<
M2

24
H1(ν).

Figure 2B shows that there is no solution for the case when ν ≥ 1:
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Figure 2B. The graphs of H1(ν), H2(ν), and H3(ν).

Appendix 8: Proof of Proposition 5.
First, observe that

Mσ0 =
(M+N)3

12
−Nδ0. (81)

Second, we also have

N2

12
≤ δ0 ≤

N2

12
+

M
4
(M+N), (82)

which is implied by definition (11) of δ0 and the fact that a more concentrated (dispersed) popula-
tion implies a lower (higher) value of δ0.

Finally, set ξ ≡ x2 ∈ [0, (M +N)2/4]. Combining this with (20) and (21) implies that the
bid-rent differential is given (up to a positive affine transformation) by:

∆(ξ )≡ 2M
(

ξ +
5σ0−δ0

2
− α− c

2t

)2

−N
(

ξ +δ0−
α− c

t

)2

.

5 districts, business downtown. For this configuration to emerge in equilibrium, the fol-
lowing inequalities must hold:

∆
′(0)> 0 > ∆

′

(
(M+N)2

4

)
.

Since ∆(ξ ) is a quadratic function, it is straightforward to check that this cannot be true when
2M > N. This proves part (ii) of Proposition 5.
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5 districts, residential downtown. This configuration emerges in equilibrium iff ∆(ξ ) is
U-shaped over [0, (M +N)2/4]. Hence, the necessary and sufficient conditions for such an equi-
librium to exist are given by the following system of inequalities:∆′(0)< 0 < ∆′

(
(M+N)2

4

)
,

N2

12 < δ0 <
N2

12 + M
4 (M+N).

Using (81) – (82), this system of inequalities can be shown to hold iff at least one of the
following chains of inequalities (or maybe both of them) is satisfied:

5(M+N)3 < N2(M+6N)+12(M−N)
α− c

t
< 5(M+N)3 +3(2M−N)(M+N)2,

5(M+N)3 <N2(M+6N)+3M(M+N)(M+6N)+12(M−N)
α− c

t
< 5(M+N)3+3(2M−N)(M+N)2.

Note that, when M = N, the second chain of inequalities amounts to

40N3 < 49N3 < 52N3,

hence it trivially holds. Therefore, a 5-district equilibrium configuration exists for M = N regard-

less of the value of (α − c)/t. Moreover, a continuum of such equilibria exists. To see this, we
check by direct computation for which symmetric distributions of population (82) holds under
M = N. This yields part (i) of Proposition 5.�
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