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1. Introduction 

During last years there has been a deep interest in the analysis of differ-
ent communities and complex networks, specially their structure and key 
elements detection. Most classical measures do not take into account indi-
vidual properties of each element. Additionally, they do not completely take 
into account the intensities of interactions between elements, especially, 
long-range interactions. One more problem arises from the fact that not only 
one node but also a group of nodes can influence other nodes. Consequently, 
the results of the application of classical measures inadequately represent the 
actual state of a system. 

Existing measures are not accurate even for small networks. There exist 
several simple network structures where classical indices do not elucidate 
hidden elements influential in the network. This can be explained by the fact 
that these indices do not fully take into account individual properties of 
nodes, the intensity level of direct connections and long-range interactions 
between nodes of the networks. For instance, classical centrality measures 
do not pay attention to the possibility of chain reactions of a system (so-
called domino or contagion effect). The incessant changes in composition 
and structure of groups and nets magnify the complexity of the problem.  

The main objective of our research is to develop new efficient methods 
of key nodes detection which take into account these particular aspects of 
the problem under consideration. 

The paper is organized as follows. In Section 2 we provide a review of 
existing methods of key nodes detection in networks and demonstrate some 
of their shortages. In Section 3 we formally describe the new method and 
show how it works on a simple example. We also emphasize advantages and 
weaknesses of the proposed method.  
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2. Literature review 

There have been developed many indices to measure the centrality level 
of each node. Some of them are based on the number of links to other nodes. 
Other techniques consider how close each node is located to other nodes of 
the network in terms of the distance, or how many times it is on the shortest 
paths connecting any given node-pairs. There are also some indices based on 
ideas from cooperative game theory and voting theory. These indices are 
called centrality measures. 

Consider network-graph 𝐺 = {𝑉,𝐸,𝑊}, where 𝑉 = {1,… , 𝑛} is the set of 
nodes, |𝑉| = 𝑁, 𝐸 ⊆ 𝑉×𝑉 is the set of edges, and 𝑊 = {𝑤!"} is the set of 
weights – real numbers prescribed to each edge 𝑖, 𝑗 ∈ 𝐸. Network-graph 𝐺 
is directed if ∀𝑖, 𝑗 ∈ 𝑉: 𝑖, 𝑗 ∈ 𝐸 ⇏ 𝑗, 𝑖 ∈ 𝐸   and is undirected otherwise. 
The graph is called unweighted if ∀𝑖!, 𝑖!, 𝑗!, 𝑗! ∈ 𝑉: 𝑖!, 𝑗! ∈ 𝐸  &   𝑖!, 𝑗! ∈
𝐸 ⇒ 𝑤!!!! = 𝑤!!!!, i.e. every edge has the same weight. Below we consider 
only directed weighted graphs, i.e., the set of pairs 𝑖, 𝑗 ∈ 𝐸 is ordered. 

A network-graph 𝐺  can also be represented in the form of matrix 
𝐴 = 𝑎!" !×!

, where 𝑎!" = 1 if 𝑖, 𝑗 ∈ 𝐸 and 𝑎!" = 0 otherwise, or in the 

form of matrix 𝑊 = 𝑤!" !×!
, where 𝑤!" is a weight that indicates the in-

tensity of connection of node i to node j. The matrix A is called an adjacency 
matrix of the network-graph 𝐺 while the matrix 𝑊 is called a weighted adja-
cency matrix of the network-graph  𝐺. In terms of influence, 𝑎!" = 1 means 
that node i influences node j; for weighted graphs, if 𝑤!" > 0 then node i 
influences node j with power 𝑤!", otherwise, node i does not influence node 
j (𝑎!" = 0 or 𝑤!" = 0). Additionally, the nodes can also have individual at-
tributes (for instance, weights) that will be denoted by 𝑢!

!, where i is a node 
number and k is the number of the attribute, 𝑘 ∈ 𝐾. 

Denote by 𝑁! = 𝑗 ∈ 𝑉:   𝑖, 𝑗 ∈ 𝐸  a set of neighbors of node i which i is 
connected to, 𝑁! = 𝑗 ∈ 𝑉:   𝑗, 𝑖 ∈ 𝐸  is a set of neighbors of node i that are 
connected to i, 𝑁! = 𝑁! + 𝑁! = 𝑗 ∈ 𝑉:   𝑖, 𝑗 ∈ 𝐸  𝑜𝑟   𝑗, 𝑖 ∈ 𝐸  is a set of all 
neighbors of node i in a network-graph 𝐺. 
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2.1. Degree centralities 
The simplest centrality measure is the degree centrality that is calculated 

for undirected network-graphs as the total number 𝐶!
!"#of i’s neighbors for 

each node i [Freeman, 1979]: 
 

𝐶!
!"# = 𝑁! . 

 
High values of the degree centrality identify nodes with the highest num-

ber of connections to other nodes, i.e. nodes for which it is easier to gain ac-
cess to and/or influence over other nodes. A central node occupies a structural 
position (network location) that serves as a source or conduit for larger vol-
umes of information exchange or other resource transactions with other nodes. 

For directed network-graphs four versions of degree centrality measure 
are possible 

• In-degree centrality – the number of in-coming edges to a node 
 

𝐶!
!"!!"# = 𝑁! . 

 
High values of in-degree centrality mean that a node is strongly affected 

by its neighbors. Alternatively, low values of in-degree centrality identify 
nodes that are not influenced by other nodes. 

• Out-degree centrality – the number of out-going edges from a node 

𝐶!
!"#!!"# = 𝑁! . 

 
High values of out-degree centrality represent the influence power of a 

node, i.e. the higher the value the more nodes are under its control. Con-
versely, low values of out-degree centrality mean that a node has a small 
effect on its neighbors.  

• Degree centrality – the total number of i’s neighbors 
 

𝐶!
!"!#$  !"# = 𝐶!

!"!!"# + 𝐶!
!"#!!"#. 

 
This measure is obtained by ignoring directions of edges and high values 

of total degree centrality identify the most active nodes. 
• Degree difference centrality – the difference between the number of 

out-going edges from a node and the number of in-coming edges to a node 
 

𝐶!
!"#  !"## = 𝐶!

!"#!!"# − 𝐶!
!"!!"#. 
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In power networks high values of degree difference show the relative in-
fluence of a node on its neighbors. 

For weighted degree network-graphs it is also possible to calculate the 
degree centrality with respect to the weights of adjacent edges. Then four 
measures are introduced 

• Weighted in-degree centrality 

𝐶!
!  !"!!"# = 𝑤!"!∈!:   !,! ∈! = 𝑤!"!

!!! . 

• Weighted out-degree centrality 

𝐶!
!  !"#!!"# = 𝑤!"!∈!:   !,! ∈! = 𝑤!"!

!!! . 

• Weighted degree centrality 

𝐶!
!"!#$  !  !"# = 𝐶!

!  !"!!"# + 𝐶!
!  !"#!!"#. 

• Degree difference centrality 

𝐶!
!  !"#  !"## = 𝐶!

!  !"#!!"# − 𝐶!
!  !"!!"#. 

The interpretation of weighted degree centralities is practically the same 
as for unweighted degree centralities but weighted measures are more repre-
sentative than unweighted ones due to the fact that weighted networks con-
sider the intensities of connections. 

Since the degree centrality measures do not consider the strength of adja-
cent nodes, i.e., information about the degree centrality of adjacent nodes, 
there have been developed several indices which take into account this fea-
ture. A generalization is what is known as an eigenvector centrality that con-
siders not only neighboring but also long-distance connections. Basically, 
this measure is applicable to symmetric relations. It assigns relative scores to 
all nodes in a network based on the concept that connections to high-scoring 
nodes contribute more to the score of the node in question than equal con-
nections to low-scoring nodes. If we talk about asymmetric relations as net-
works of influence it is more valuable to influence powerful nodes.  

The calculation of the centrality measure for each node is related to an 
eigenvalue problem with respect to weighted adjacency matrix W of a net-
work-graph: a vector of relative centrality 𝐶!"#!$ is an eigenvector of the 
adjacency matrix, i.e. 

𝑊 ∙ 𝐶!!"#$ = 𝜆 ∙ 𝐶!"#!$. 
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Generally, all eigenvectors of the matrix W can be considered as a cen-
trality measure. However, an eigenvector that corresponds to a maximal ei-
genvalue is more preferable: by Perron-Frobenious theorem this vector (and 
only this except its co-directional vectors) is positive and real for irreducible 
non-negative matrix W [Gantmacher, 2000], i.e., for a graph which is strong-
ly connected. 

This approach to centrality evaluation was proposed by P. Bonacich 
[Bonacich, 1972] and is sometimes known as Bonacich’s index. [Bonacich, 
1987] considers a generalization of this approach where a degree of nodes 
counted towards the centrality evaluation. As for an eigenvector centrality 
this measure is more representative for symmetric relation. For asymmetric 
graphs of influence the calculation is the same. Namely, a parametric family 
of centrality measures can be represented as 

 
𝐶!
!"#$%&%! 𝛼,𝛽 = 𝛼 + 𝛽 ∙ 𝐶!

!"#$%&%!(𝛼,𝛽) ∙𝑊!"
!

 

or in a matrix form 

𝐶!"#$%&%! 𝛼,𝛽 = 𝛼 ∙ 𝐼 − 𝛽 ∙𝑊 !! ∙𝑊 ∙ 1, 

where I is an identity matrix and 1 is the unit vector. 
Apparently, parameter α affects only the variance of a centrality vector. 

Parameter 𝛽 represents the degree to which a centrality of one node is a func-
tion of centralities of adjacent nodes. If a centrality of one node is a po-sitive 
function of its neighbors’ centralities then we select positive parameter β.  

The main innovation is that this approach also considers negative values of 
parameter 𝛽. This leads to the fact that centralities of neighbors are negatively 
counted in node centrality, i.e. it is not beneficial to be connected with central 
nodes. Negative 𝛽 is usually required in bargaining networks where it is more 
profitable to be connected with weak players because powerful players have 
more potential trading partners, which reduces your bargaining power.  

In practice, an eigenvector centrality is not very feasible especially for 
large networks because it gives a lot of zero centralities if there are many 
sparse cohesive components in a graph. There have been introduced (or used 
previously entered) other measures to overcome this shortage. Katz centrali-
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ty is one of such measures introduced in [Katz, 1953]. This centrality is de-
fined as the solution of the two-parameter equation 

 
𝐶!
!"#$(𝛼,𝛽) = 𝛼 ∙ 𝐶!

!"#$ 𝛼,𝛽 ∙𝑊!" + 𝛽
!

 

or in a matrix form 
 

𝐶!"#$ 𝛼,𝛽 = 𝛽 ∙ 𝐼 − 𝛼 ∙𝑊 !! ∙ 1, 
 
where 1 is the unit vector.  

The introduction of parameter β, which corresponds to the initial value of 
centralities, precludes the possibility of solution with zero components. In 
practice, parameter 𝛼 is selected so that 𝛼 < !

!!"#
, where 𝜆!"# is the largest 

eigenvalue of the matrix 𝑊. 
Katz centrality, in its turn, is not free from an essential fault: for a node 

with a high degree centrality value and a high Katz centrality value its 
neighboring nodes will also have high Katz centrality values even if their 
degree centrality values are not very high.  

Some modifications of Katz centrality are used to overcome this disad-
vantage. For example, the PageRank centrality was proposed where degrees 
of adjacent nodes are introduced 

 

𝐶!
!"#$%"&' = 𝛼 ∙

𝐶!
!"#$%"&'

𝐶!
!  !"#!!"#

!

∙𝑊!" + 𝛽 

 
or in a matrix form 
 

𝐶!"#$%"&' = 𝛽 ∙ 𝐼 − 𝛼 ∙𝑊 ∙ 𝐶!  !"#!!"# !! !! ∙ 1, 
 
where 𝐶!  !"#!!"# = 𝑑𝑖𝑎𝑔 𝐶!

!  !"#!!"#,… ,𝐶!
!  !"#!!"#  (if 𝐶!

!  !"#!!"# = 0 

then the corresponding summand is set to zero), 1 is the unit vector. This 
formula was taken as a basis in Google to rank search engine queries [Brin, 
Page, 1998]. 
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2.2. Closeness centralities 
Besides the degree centralities, there are also methods that consider how 

close each node is located to other nodes of a network in terms of a distance. 
These measures indicate the level of closeness of each node and are called 
closeness centrality indices. 

The standard closeness centrality measure for each node is equal to the 
value that is proportional to the harmonic mean of the length of the shortest 
paths between the i-th node and the rest of it in a network [Rochat, 2009] 

 
𝐶!
!" = !

!!"! . 

 
2.3. Betweenness centralities 
There are also indices that show how many times a node is on the short-

est paths connecting any given pair of nodes. These measures were proposed 
in [Freeman, 1977; Freeman et al., 1991; Newman, 2005] and are called the 
betweenness centrality measures. Versions for such centralities are 

• the number of shortest paths passing through a given node 
 

𝐶!
!"# = 𝜎!"(𝑖)!" , 

 
where 𝜎!"(𝑖) is the number of shortest paths that connect j and k and con- 
tain i; 

• the relative number of the shortest paths passing through a given 
node and connecting two nodes to the total number of shortest paths con-
necting these nodes 

𝐶!
!"#$%&'"  !"# = !!" !

!!"!" , 

 
where 𝜎!" is the number of shortest paths that connect j and k; 

• the sum (throughout all pairs of nodes) of maximum flows from the 
first node of pair to the second one passing through a given node [Freeman 
et al., 1991]: 

𝐶!
!"#$  !"# = 𝑚!"(𝑖)!" , 

 
where 𝑚!"(𝑖) is a maximum flow from j to k that passes through i; 
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• the sum (throughout all pairs of nodes) of the mathematical expecta-
tions of the number of random walks connecting a pair of nodes and passing 
through a given node [Newman, 2005]. 

 
2.4. Centralities from cooperative game theory 
Many attempts of key nodes detection in networks came from coopera-

tive game theory. In that case, a network is interpreted as a set of interacting 
individuals that contribute to a total productive value of a network and the 
problem is how to share generated value among them. In [Myerson, 1977] 
there was proposed a measure which is based on the power index and is a 
version of the Shapley-Shubik index [Shapley, Shubik, 1954] for communi-
cation games. The Myerson value has an allocation rule in the context of 
network games where the value of each individual depends on the value 
generated by a network with and without that individual. More precisely, the 
Myerson value is an average contribution of a node to all subgraphs of a 
graph with respect to some predefined values of subgraphs, i.e. 

 
𝐶!
!" 𝐺, 𝑣 = ! !! ! ! ! ! !

! !
𝑣 𝑆 − 𝑣(𝑆\{𝑖})!∈! , 

 
where S is a subgraph of graph G, v(S) is some predefined value of sub-
graph S and v(S\{i}) is a predefined value of subgraph S without node i. 

 
2.5. Centralities from voting theory 
Existing measures are not accurate even on small networks. There exist 

several simple network structures where classical indices do not elucidate 
hidden elements influential in the network. This can be explained by the fact 
that these indices do not fully take into account individual properties of 
nodes, the intensity level of direct connections and interactions between 
nodes of the networks. 

In [Aleskerov et al., 2014] a novel method for estimating the intensities 
of nodes’ interactions was proposed. This method is based on the power in-
dex analysis that was worked out in [Aleskerov, 2006] to find the most piv-
otal agents in Russian Parliament (1999–2003) and adjusted for the network 
theory. The index (originally called a key borrower index) is a Short-Range 
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Interaction Centrality (SRIC) that was employed to find the most pivotal 
borrower in a loan market in order to take into account some specific charac-
teristics of financial interactions. An important feature of SRIC index is that 
it does not take into account all edges in a graph which is logical for many 
cases in networks. The choice of edges that are influential in a network de-
pends on additional parameter 𝑞! which varies with the node i and represents 
some critical threshold value. 

The SRIC index is calculated for each node individually in order to de-
termine the influence of other nodes to it. In that case, only direct neighbors 
are considered to estimate the direct and indirect influence to him/her. The 
intensity of direct influence 𝑝!

!  of node j to node 𝑖 is calculated as 
 

𝑝!
! = !!"

!!"!
, 

 
where 𝑤!" is a weight of an edge from node k to node i, while the intensity 
of indirect influence 𝑝!"

!  of node 𝑗 to node 𝑖 through node 𝑦 is calculated as 
 

𝑝!"
! =

𝑤!"
𝑤!"!

, 𝑖𝑓  𝑤!" > 0,𝑤!" < 𝑤!"   and  𝑦 ≠ 𝑗,

𝑤!"
𝑤!"!

, 𝑖𝑓  𝑤!" > 0,𝑤!" > 𝑤!"   and  𝑦 ≠ 𝑗,

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.                        

 

 
After the intensity of influence to node i of its adjacent nodes is calculat-

ed, a set of all possible critical groups of nodes for node i is constructed.  
A group of nodes is critical if the total weight of edges from these nodes to 
the node i is more than or equal to some pre-defined threshold 𝑞!. The criti-
cal group is interpreted as a group that may influence a particular node. 

After a set of critical groups for node i is defined, we can identify a total 
number of groups where each node 𝑗 plays a pivotal role. A node 𝑗 is pivotal 
in a critical group if its exclusion from this critical group makes the group 
non-critical. The value of the index for each node reflects the magnitude of 
its pivotal role in the group. The higher the value, the more pivotal the node 
is. The most pivotal node will be the one that becomes pivotal in more criti-
cal groups than any other node does. 
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The total intensity of influence of node 𝑗 to node 𝑖 is aggregated over the 
intensities of all groups where the node 𝑗 is pivotal with respect to the size of 
the group. The influence of each node to node 𝑖 is equal to the normalized 
value of the final intensity measure. 

After the total intensity of connection between node 𝑖 and its adjacent 
nodes is calculated, the index is aggregated over all nodes taking into ac-
count individual attributes of each node. 

Unfortunately, the SRIC index also has some shortages. In the SRIC in-
dex only direct interactions of the first level are taken into account, which is 
not correct in some cases when long-range interactions play a pivotal role or 
where chain reactions are possible. Also, the SRIC index does not elucidate 
nodes that have a weak direct influence to particular node 𝑖 but are highly 
influential to its adjacent nodes (see Fig. 1). This is due to the fact that long-
range interactions are not taken into account. 

 

 
Fig. 1. SRIC: node 4 does not influence node 1 (∀𝑖 ∈ 1,2,3,4   𝑞! = 40) 
 
To demonstrate the shortages of existing measures consider the following 

Numerical Example 1 (see Fig. 2). There are 8 nodes in network-graph 𝐺 
and the weights of edges are given in Fig. 2. 

Let us evaluate classical centrality measures for Numerical Example 1 
(Table 1). 

According to weighted out-degree, weighted degree, degree difference 
and betweenness centrality measures (where high weights are better) nodes 
1 and 5 are the most powerful in the network. Closeness centrality measure 
(where small weights are better) considers nodes 7 and 8 as the most power-
ful. If we take into account the strength of the neighbors, then nodes 3 and 5 
will be chosen by PageRank, nodes 5 and 6 by eigenvector and, finally, 
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nodes 7 and 8 by Bonacich centrality. Overall, we can conclude that nodes 1 
and 5 are chosen by the most of centrality measures. 
	  

 
Fig. 2. Numerical Example 1 

 
Table 1. Classical centrality measures for Numerical Example 1 

Centra- 
lity 

 
Node 

𝑪𝒘  𝒊𝒏!𝒅𝒆𝒈 𝑪𝒘  𝒐𝒖𝒕!𝒅𝒆𝒈 𝑪𝒘  𝒅𝒆𝒈 𝑪𝒘  𝒅𝒆𝒈!𝒅𝒊𝒇𝒇 𝑪𝒃𝒕𝒘 𝑪𝒄𝒍 (*) 𝑪𝑷𝒂𝒈𝒆𝑹𝒂𝒏𝒌 𝑪𝒆𝒊𝒈 𝑪𝑩𝒐𝒏𝒂𝒄𝒊𝒄𝒉 

1 10 20,5 30,5 10,5 13 0,0160 0,128 0,725 –1,217 

2 10 5,5 15,5 –4,5 1,5 0,0126 0,103 0,589 –0,890 

3 10 10,5 20,5 0,5 6 0,0187 0,146 0,653 –0,835 

4 10 5,5 15,5 –4,5 1,5 0,0126 0,103 0,589 –0,890 

5 10 24 34 14 24 0,0227 0,248 1 –1,290 

6 10 12 22 2 9 0,0155 0,107 0,802 –1,253 

7 10 1 11 –9 0 0,0093 0,072 0,370 –0,708 

8 10 1 11 –9 0 0,0097 0,094 0,359 –0,708 

(*) Closeness centrality: inverse average maximal outflow ⇒ low values are 
more significant. 
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However, in most situations not all edges should be taken into account. 
Suppose now threshold level 𝑞! is 70% for each node i, i.e. node i is influ-
enced by individual node or a group of them only if their total influence to i 
is more than or is equal to 70% of the total influence to i. Such information 
is not taken into account by classical centrality measures contrary to SRIC 
index.  

In Fig. 3 we demonstrate substantial influence in the network for our 
Numerical Example 1. 

 

 
Fig. 3. Substantial influence for Numerical Example 1 (𝑞! = 70%) 

 

It should be mentioned that nodes 7 and 8 have no real influence on other 
nodes in the network. Such information is not taken into account by centrali-
ty measures, so the role of nodes 7 and 8 are overestimated. 

The results of SRIC index are provided in Table 2. 
 
Table 2. SRIC index for Numerical Example 1	  

Node 1 2 3 4 5 6 7 8 

SRIC 0,216 0,072 0,159 0,072 0,375 0,106 0 0 

 
SRIC index also identifies nodes 1 and 5 as the most influential in this 

network. The key improvement of SRIC index comparing to classical cen-
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trality measures is that SRIC index ignores insignificant connections (with 
respect to pre-defined thresholds 𝑞!) and considers short connections (of 
length 1 and 2). Generally, neither classical centrality measures nor SRIC 
index consider long connections as well as group influence and individual 
attributes (as pre-defined thresholds), which leads to the fact that existing 
methods may not detect hidden influential nodes. Hence, all these methods 
underestimate the role of node 3 which in turn controls node 5 and also in-
fluences node 8. Due to the fact that node 3 significantly influences node 5, 
and node 5 is central in this graph we suppose that node 3 is more influential 
than node 5 (node 3 in a wild card). 

 
3. Long-Range Interactions Centrality (LRIC) 

We propose a new method for assessing the nodes influence in the net-
work. Contrary to SRIC index, our methodology allows to consider interac-
tions between nodes not just on the first level, but also on some levels be-
yond.  

There are two different ideas on how to take into account long-range in-
teractions between nodes of the network. The first one is a distance-based 
approach where all different paths are considered for each node and some-
how aggregated into a single value. The second one is based on the idea of 
simulations where we analyze the influence of individual nodes and their 
combinations to a whole network. Both ideas have simple interpretations 
and can be applied to different networks.  

The formulation of a problem is as follows: consider network-graph 
𝐺 𝑉,𝐸 , where 𝑉 = {1,… , 𝑛} is a set of nodes, |𝑉| = 𝑁, 𝐸 = 𝑖, 𝑗 ,      𝑖, 𝑗 ∈
𝑉  is a set of weighted edges, and 𝑤!" is a weight of edge 𝑖, 𝑗 .  The issue is 
to define the most influential nodes in this graph. 

Let us consider the following graph where N = 10 (Fig. 4). 
We propose two approaches to find central nodes in a network. This con-

cept is motivated by the fact that indirect connections can play a significant 
role in different situations; however, classical centrality measures do not 
consider long interactions. For that reason we develop indices that take into 
account distant nodes. Generally, highly distant nodes do not influence other 
nodes of a graph; hence, we introduce a parameter s that defines the lengths 
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of connections we take into account. Accordingly, if long interactions do not 
influence indirect nodes then parameter s is equal to 1, and contrary, if all 
levels of indirect connections matter, then parameter s is unlimited. 

Primarily, we introduce some basic definitions.  
Let 𝑁! be a set of directly connected nodes of node i (incoming neigh-

bors), i.e. 𝑁! = 𝑗 ∈ 𝑉 𝑤!" ≠ 0}.  Let every node has an individual attri- 
bute – predefined threshold 𝑞!, i.e. the threshold level when a node becomes 
affected.  

 

 
Fig. 4. Numerical Example 2 

 

Definition 1. A group of neighbors of node i 𝛺 𝑖 ⊆ 𝑁!  is critical if 
𝑤!"!∈! ! ≥ 𝑞!. 

Definition 2. Node 𝑘 ∈ 𝛺 𝑖  is pivotal if 𝑤!"!∈! ! \{!} < 𝑞!. Then 𝛺! 𝑖  
is a set of pivotal nodes in group 𝛺 𝑖 , i.e. 
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𝛺! 𝑖 = 𝑘 ∈ 𝛺 𝑖 | 𝑤!"!∈! ! \{!} < 𝑞! . 
 
Generally, every node can have a vector of different attributes depending 

on the problem statement. These attributes can be estimated by their im-
portance and aggregated to some single value which is its personal threshold 
𝑞!. For a meaningful comparison of aggregated attributes and weights on 
nodes these values should be of the same origin. If we do not have individu-
al attributes in a network then we can use information from a graph itself. 
For example, 𝑞! can be a fraction of total in-degree influence on node i. 

Additionally, critical groups’ formation may have some probability, i.e. it 
is not necessary that some nodes truly want to or can cooperate with each 
other (depending on the problem statement). This means that some probabil-
ities are attributed to each critical group and they are taken into considera-
tion in the further analysis. 

For our Numerical Example 2 the sets of direct neighbors 𝑁! and critical 
groups when 𝑞! = 50%  of total influence for each node are shown in  
Table 3. Here we assume that critical groups are formed with probability 1. 

 
Table 3. Neighbors and critical groups for Numerical Example 2 

Node, i 𝑵𝒊 Critical groups, 𝛀 𝒊 , q = 50% 

1 {2, 3, 4, 6} 
{2, 3}, {2, 4}, {3, 4}, {4, 6}, {2, 3, 4}, {2, 3, 6}, {3, 4, 6}, 
{2, 3, 4, 6} 

2 {5, 6, 8} {5, 6}, {5, 8}, {6, 8}, {5, 6, 8} 

3 {4, 5, 9, 10} 
{4, 5}, {4, 10}, {5, 9}, {5, 10}, {9, 10}, {4, 5, 9}, {4, 5, 10}, 
{5, 9, 10}, {4, 5, 9, 10} 

4 {5, 7, 9, 10} 
{5, 7}, {5, 9}, {5, 10}, {7, 9}, {7, 10}, {9, 10}, {5, 7, 9},  
{5, 7, 10}, {7, 9, 10}, {5, 7, 9, 10} 

5 ∅ ∅ 

6 {4, 7} {7}, {4, 7} 

7 {1, 2, 3} {2}, {1, 2}, {2, 3}, {1, 2, 3} 

8 {1, 4, 7} {7}, {1, 7}, {4, 7}, {1, 4 ,7} 

9 {1, 7} {7}, {1, 7} 

10 {1, 7} {7}, {1, 7} 

 
Pivotal members for node 1 when 𝑞! = 50% is provided in Table 4. 
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Table 4. Critical groups and pivotal member for node 1 

Critical groups, Ω 1  Pivotal members, Ω! 1  

{2, 3} {2, 3} 

{2, 4} {2, 4} 

{3, 4} {3, 4} 

{4, 6} {4, 6} 

{2, 3, 4} ∅ 

{2, 3, 6} {2, 3} 

{3, 4, 6} {4} 

{2, 3, 4, 6} ∅ 

 
3.1. s-long-range interaction index based on paths (s-LRIC index) 
The first approach of the key nodes detection by s-LRIC index is based 

on paths.  
Now we construct intensity matrix 𝐶 = [𝑐!"] with respect to weights 𝑤!", 

thresholds 𝑞! and critical groups 𝛺 𝑗  as 
 

𝑐!" =

𝑤!"
min

! ! ⊆!!|!∈!! !
𝑤!"!∈! !

, 𝑖𝑓  𝑖 ∈ 𝛺! 𝑗 ⊆ 𝑁! ,

0, 𝑖 ∉ 𝛺! 𝑗 ⊆ 𝑁! ,
                                 (1) 

 
where 𝛺 𝑗 ⊆ 𝑁!  is a critical group of direct neighbors for node j, 
𝛺! 𝑗 ⊆ 𝛺 𝑗  is a group of pivotal members for 𝛺 𝑗 . 

We consider a critical group with the minimal sum of weights (in denom-
inator) to indicate the maximal possible direct influence of node i on node j. 
Obviously, if 𝑤!" ≥ 𝑞! then the direct influence of node i on node j is maxi-
mal and is equal to 1. Conversely, if node i does not have a direct connection 
to node j or it does not belong to any critical group then its direct influence 
is equal to 0. In other cases, if 0 < 𝑤!" < 𝑞! but node i is pivotal for node j 
then its direct influence is equal to 𝑐!", 0 < 𝑐!" < 1. 
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Let us construct matrix 𝐶 = [𝑐!"] for Numerical Example 2 according to 
formula (1). There are 8 critical groups for node 1 (see Table 4) and, for ex-
ample, node 3 is pivotal in 𝛺 1 = 2, 3 , 3, 4 , {2, 3, 6} ; but we consider 
a critical group with the minimal sum of weights which is {2, 3}; hence, 
𝑐!" =

!!"
!!"!!!"

= !""
!""

= 0.6. Similarly, we define direct influences for other 

nodes. 
Thus, we evaluated the direct influence of the first level on each node in 

a network. To define the total influence between nodes we need to redesign 
our graph by the replacement of weights 𝑤!" on edges with values of direct 
influences 𝑐!". A new graph of direct influences looks like 

 

 
Fig. 5. A graph representing matrix C for Numerical Example 2 

 

According to formula (1) node 1 does not influence other nodes with re-
spect to 𝑞! = 50% of total influence. 
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Generally, the construction of matrix 𝐶 is highly related to [Aleskerov et 
al., 2014] because it requires to consider separately each node j for which we 
ignore all outgoing edges while other nodes of the graph are assumed as po-
tentially influential on j.  

To evaluate indirect influences of nodes we need to introduce a concept 
of a path between a pair of nodes. 

Definition 3. A path between nodes i and j is a sequence of edges such 
that the end of one edge is the beginning of the next edge, i.e. 𝑃!

!" =
𝑖, 𝑙! , 𝑙!, 𝑙! , … , 𝑙! , 𝑙!!! ,… , 𝑙!!!, 𝑙!!! , 𝑙!!!, 𝑗  is k-th path be-

tween nodes i and j where 𝑙! is an intermediate node. The number of edges 
in the sequence is the length of a path (see Fig. 6). 

 

 
Fig. 6. A path in a graph 

 

To analyze the indirect influence of node i on node j we consider all sim-
ple paths between them, i.e. paths such that there are no nodes that occur on 
the path at least twice. For instance, for our Numerical Example 2 there are 
4 paths between nodes 7 and 3: {(7, 10), (10, 3)}, {(7, 4), (4, 3)}, {(7, 9), (9, 
3)}, {(7, 9), (9, 4), (4, 3)}. 

Here we can limit the maximal length of paths with some parameter s be-
cause very long paths usually are not representative in terms of indirect in-
fluence.  

Denote by 𝑃!" = {𝑃!
!" ,… ,𝑃!

!"} a set of all simple paths between i and j, 

where m is the total number of simple paths, and 𝑛 𝑘 = 𝑃!
!" ≤ 𝑠 is equal 

to the k-th path’s length. Then the influence of i on j via k-th path 𝑃!
!" is de-

fined as 
𝑓 𝑃!

!" = 𝑐!!!!   ×𝑐!!!!!!×…×𝑐!! ! !!
! !                                                                     (2) 

or 

𝑓 𝑃!
!" = min 𝑐!!!! , 𝑐!!!!!! ,… , 𝑐!! ! !!

! !                                                           (3) 
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where 𝑖, 𝑙!! , 𝑙!! ,… , 𝑙! ! !!
! , 𝑗 is an ordered sequence of nodes in the k-th path. 

According to the formula (2) the influence of node i on node j through 
the k-th path 𝑃!

!" is calculated as the aggregate value of direct influences be-
tween nodes which lie in this path. The formula (3) can be interpreted as the 
k-th path capacity of the influence (we cannot influence through the k-th 
path more than the minimal value of the influence is allowed on this path).  

After we considered the influence of node i on node j through all paths of 
length less than or equal to s (formula (2) or (3)) we need to aggregate the 
total influence of node i on node j. We propose three ways of the aggrega-
tion of the possible influence; the aggregated results form new matrix 
𝐶∗ = [𝑐!"∗ ]:  

1. The total influence via the sum of possible influences 
 

𝑐!"∗ (𝑠) = min 𝑓 𝑃!
!"

!: !!
!" !!

, 1                                                         (4) 

 
2. The total influence via maximum possible influence 
 

𝑐!"∗ (𝑠) = max
!: !!

!" !!
𝑓(𝑃!

!")                                                                                           (5) 

 
3. The total influence via the threshold aggregation 
The model of the threshold aggregation was proposed in [Aleskerov et 

al., 2007]. Each node in a graph with n nodes is evaluated by n grades that 
may have m different values. Then for each node k we calculate values 
𝑣! 𝑘 ,… 𝑣!(𝑘) where 𝑣!(𝑘) is the number of i-th grades that node k re-
ceived, i=1,…,m. According to the threshold rule node x V-dominates node y 
if 𝑣! 𝑥 < 𝑣!(𝑦)  or ∃𝑑 ≤ 𝑚:∀ℎ < 𝑑  𝑣! 𝑥 = 𝑣! 𝑦  and 𝑣! 𝑥 < 𝑣! 𝑦 . 
In other words, firstly we compare the number of the worst grades; if they 
are equal then we compare the number of the second worst grades, etc. If 
some node is not V-dominated by other nodes then this node is considered as 
the best one. 
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Considering the threshold rule as one of possible ways on how the indi-
rect influence can be evaluated, we propose the following aggregation pro-
cedure 

𝑐!"∗ 𝑠 = 𝑓 𝑃!
!"                                                                                                 (6) 

where 
𝑧 = argmin

!:  !(!)!!
𝑣(𝑃!

!")                                                                                         (7) 

and 
𝑣 𝑃!

!" = 𝑣! 𝑃!
!" ∗ (𝑠 + 1)!!!!

!!! + 𝑠 − 𝑛 𝑘                 (8) 
 
Formula (6) – (8) are identical to the threshold rule [Aleskerov et al. 

2010]. 
Hence, we construct a matrix 𝐶∗ 𝑠 = [𝑐!"∗ (𝑠)] where 𝑐!"∗ 𝑠  is a total in-

fluence of node i on node j with respect to paths of length less than s. Note 
that if there are no paths between nodes i and j then ∀𝑠  𝑐!"∗ 𝑠 = 0.  

As a result, we propose two methods of path power estimation and three 
methods of the aggregation of possible influence. Hence, we can assume that 
there are 6 ways of the estimation of long-range interactions in a graph. 
However, not all combinations of (2) – (3) and (4) – (6) are reasonable. 
Thus, we propose the following combinations (see Table 5): 

• (2) – (4): an influence of i on j goes through all paths with respect to 
all layers in these paths; 

• (2) – (5): an influence of i on j goes through a maximal path with 
respect to all layers in this path; 

• (2) – (6): an influence of i on j goes through the best paths accord-
ing to the threshold rule with respect to all layers in these paths; 

• (3) – (5): an influence of i on j goes through a maximal path with 
respect to one minimal layer in this path; 

• (3) – (6): an influence of i on j goes through the best paths accord-
ing to the threshold rule with respect to one minimal layer in this path. 

The combination (3) – (4) is not very reasonable because, firstly, for eve-
ry path we evaluate the capacity of the influences which can confine on one 
edge for different paths; then we sum up these influences, which means that 
we may consider the same influence several times. 
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Table 5. Possible combinations of methods for indirect influence 

 
Paths aggregation 

Sum of paths 
influences 

Maximal path 
influence 

Threshold rule 

Pa
th

  
in

flu
en

ce
 Multiplication  

of direct influence 
SumPaths MaxPath MultT 

Minimal direct 
influence 

– MaxMin MaxT 

 
 
For our Numerical Example 2 we evaluate the indirect influence of node 

7 on node 1 through all existing paths in the graph (see Table 6). 
 

Table 6. The indirect influence of node 7 on node 1 via paths 

 
If we do not limit the length of a path with parameter s then there are 9 

ways of the influence of node 7 on node 1; otherwise, if we limit the length 
of a path with, for example, s = 2, then we will consider the influence of 7 
on 1 only through 2 paths (1st and 3rd ones). 

ID Simple Paths 
Multiplication of paths’  

influences (2) 
Minimal direct  

influence (3) 

1 7
!,!
4
!,!"

1 0,375 0,5 

2 7
!,!
4
!,!
3
!,!
1 0,12 0,4 

3 7
!
6
!,!"

1 0,25 0,25 

4 7
!
6
!,!"

2
!,!
1 0,024 0,06 

5 7
!
8
!,!"

2
!,!
1 0,376 0,4 

6 7
!
9
!,!
3
!,!
1 0,24 0,4 

7 7
!
9
!,!
4
!,!"

1 0,375 0,5 

8 7
!
10

!,!
3
!,!
1 0,36 0,6 

9 7
!
10

!,!
4
!,!"

1 0,375 0,5 
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To compare different paths by the threshold rule the following grades of 
direct influence are proposed. 

Grades: 
0. 0 ≤ 𝑐!" < 0.2; 
1. 0.2 ≤ 𝑐!" < 0.5; 
2. 0.5 ≤ 𝑐!" < 0.7; 
3. 0.7 ≤ 𝑐!" ≤ 1. 
Now we can define the path between node 7 and node 1 according to the 

threshold rule. Note that for the threshold rule the values on the edges are 
equal to the grades which were proposed above. The results are provided in 
Table 7. 

 
Table 7. Paths aggregation by the threshold rule, s=3, m=4 

ID, k Path Path 
(grades on edges) 

Paths influence, 
𝒗 𝑷𝒌𝟕𝟏  

1 7
!,!
4
!,!"

1 7
!
4

!
1 21* 

2 7
!,!
4
!,!
3
!,!
1 7

!
4

!
3

!
1 96 

3 7
!
6
!,!"

1 7
!
6

!
1 69 

4 7
!
6
!,!"

2
!,!
1 7

!
6

!
2

!
1 324 

5 7
!
8
!,!"

2
!,!
1 7

!
8

!
2

!
1 72 

6 7
!
9
!,!
3
!,!
1 7

!
9

!
3

!
1 84 

7 7
!
9
!,!
4
!,!"

1 7
!
9

!
4

!
1 24 

8 7
!
10

!,!
3
!,!
1 7

!
10

!
3

!
1 36 

9 7
!
10

!,!
4
!,!"

1 7
!
10

!
4

!
1 24 

* is the path chosen by the threshold rule. 

 
Thus, there are 9 possible ways how node 7 influences node 1. Let us 

now aggregate this information into a single value by different methods. The 
overall results are provided in Table 8. 
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Table 8. The total influence of node to node 1 by different methods 

Method Considered paths IDs Influence 

SumPaths 1–9 1 

MaxPath 5 0,376 

MaxMin 8 0,6 

MultT 1 0,375 

MaxT 1 0,5 

 
Similarly, we can estimate the influence of any other elements and con-

struct the matrix 𝐶∗ according to different methods. The results are provided 
in Tables 9–13. 

 
Table 9. Matrix C* for Numerical Example 2, SumPaths 

 
Table 10. Matrix C* for Numerical Example 2, MaxPath 

 
1 2 3 4 5 6 7 8 9 10 

1 0 0 0 0 0 0 0 0 0 0 
2 0,4 0 0,6 0,5 0 1 1 1 1 1 
3 0,6 0 0 0 0 0 0 0 0 0 
4 0,75 0 0,4 0 0 0 0 0 0 0 
5 0,377 0,942 0,6 0,5 0 0,942 0,942 0,942 0,942 0,942 
6 0,25 0,058 0,035 0,029 0 0 0,058 0,058 0,058 0,058 
7 0,377 0,942 0,6 0,5 0 1 0 1 1 1 
8 0,377 0,942 0,565 0,471 0 0,942 0,942 0 0,942 0,942 
9 0,375 0 0,4 0,5 0 0 0 0 0 0 

10 0,375 0 0,6 0,5 0 0 0 0 0 0 

 
1 2 3 4 5 6 7 8 9 10 

1 0 0 0 0 0 0 0 0 0 0 
2 1 0 1 1 0 1 1 1 1 1 
3 0,6 0 0 0 0 0 0 0 0 0 
4 0,99 0 0,4 0 0 0 0 0 0 0 
5 1 0,942 1 1 0 0,942 0,942 0,942 0,942 0,942 
6 0,381 0,058 0,093 0,087 0 0 0,058 0,058 0,058 0,058 
7 1 1 1 1 0 1 0 1 1 1 
8 1 0,942 1 1 0 0,942 0,942 0 0,942 0,942 
9 0,735 0 0,6 0,5 0 0 0 0 0 0 

10 0,855 0 0,8 0,5 0 0 0 0 0 0 
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Table 11. Matrix C* for Numerical Example 2, MaxMin 

 
1 2 3 4 5 6 7 8 9 10 

1 0 0 0 0 0 0 0 0 0 0 

2 0,6 0 0,6 0,5 0 1 1 1 1 1 

3 0,6 0 0 0 0 0 0 0 0 0 

4 0,75 0 0,4 0 0 0 0 0 0 0 

5 0,6 0,942 0,6 0,5 0 0,942 0,942 0,942 0,942 0,942 

6 0,25 0,058 0,058 0,058 0 0 0,058 0,058 0,058 0,058 

7 0,6 0,942 0,6 0,5 0 1 0 1 1 1 

8 0,6 0,942 0,6 0,5 0 0,942 0,942 0 0,942 0,942 

9 0,5 0 0,4 0,5 0 0 0 0 0 0 

10 0,6 0 0,6 0,5 0 0 0 0 0 0 

 
Table 12. Matrix C* for Numerical Example 2, MultT 

 
1 2 3 4 5 6 7 8 9 10 

1 0 0 0 0 0 0 0 0 0 0 

2 0,375 0 0,6 0,5 0 1 1 1 1 1 

3 0,6 0 0 0 0 0 0 0 0 0 

4 0,75 0 0,4 0 0 0 0 0 0 0 

5 0,375 0,942 0,6 0,5 0 0,942 0,942 0,942 0,942 0,942 

6 0,25 0,058 0,035 0,029 0 0 0,058 0,058 0,058 0,058 

7 0,375 0,942 0,6 0,5 0 1 0 1 1 1 

8 0,353 0,942 0,565 0,471 0 0,942 0,942 0 0,942 0,942 

9 0,375 0 0,4 0,5 0 0 0 0 0 0 

10 0,375 0 0,6 0,5 0 0 0 0 0 0 
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Table 13. Matrix C* for Numerical Example 2, MaxT 

 
1 2 3 4 5 6 7 8 9 10 

1 0 0 0 0 0 0 0 0 0 0 

2 0,5 0 0,6 0,5 0 1 1 1 1 1 

3 0,6 0 0 0 0 0 0 0 0 0 

4 0,75 0 0,4 0 0 0 0 0 0 0 

5 0,5 0,942 0,6 0,5 0 0,942 0,942 0,942 0,942 0,942 

6 0,25 0,058 0,058 0,058 0 0 0,058 0,058 0,058 0,058 

7 0,5 0,942 0,6 0,5 0 1 0 1 1 1 

8 0,5 0,942 0,6 0,5 0 0,942 0,942 0 0,942 0,942 

9 0,5 0 0,4 0,5 0 0 0 0 0 0 

10 0,5 0 0,6 0,5 0 0 0 0 0 0 

 
After we constructed the matrix of node-to-node influence 𝐶∗(𝑠) we can 

estimate the influence of a node within the whole graph. The aggregation of 
a matrix to a single vector of the influence 𝑐(𝑠) depends on the problem 
statement. Generally, we can use some pre-defined attributes of nodes or any 
other factors. For a network of influence we can, for example, estimate a 
relative independence of a node on other nodes, i.e. a weight of a node is 
higher if a smaller number of nodes influences this node with respect to the 
total influence through a graph. 

For Numerical Example 2 we can use the following aggregation ap-
proach: a weight of node i is its relative influence on other nodes with re-
spect to the whole graph influence, i.e.  

 
𝑢! =

!!"!

!!"!!
. 

 
The higher the influence of a node on other nodes the higher its weight 

is. Then the vector of influence 𝑐(𝑠) is 
 

𝑐 𝑠 = 𝐶∗ ∙ 𝑢, 
 
where 𝑢 = (𝑢!,… , 𝑢!"). 
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For Numeric Example 2 vector u is calculated in Table 14. 
 

Table 14. Individual weights of nodes 

Node, i 1 2 3 4 5 6 7 8 9 10 

Weight, ui 0,17 0,079 0,054 0,145 0,115 0,017 0,254 0,054 0,05 0,061 

 

In Table 15 we compare results that are obtained by proposed approaches 
(5 versions). 

 

Table 15. Aggregated values for Numerical Example 2 

Node 
LRIC 

SumPaths MaxPath MaxMin MultT MaxT 
1 0 0 0 0 0 
2 0,806 0,610 0,644 0,606 0,627 
3 0,102 0,102 0,102 0,102 0,102 
4 0,190 0,149 0,149 0,149 0,149 
5 0,855 0,655 0,693 0,654 0,676 
6 0,112 0,078 0,083 0,078 0,083 
7 0,631 0,426 0,464 0,425 0,447 
8 0,804 0,598 0,642 0,594 0,625 
9 0,230 0,158 0,179 0,158 0,179 

10 0,261 0,169 0,207 0,169 0,190 

 
We can see that all versions of the LRIC index detect nodes 2, 5, 8 as the 

most influential.  
 
3.2. s-long-range interactions index based on simulations 
The second approach of key node detection by s-LRIC index is based on 

simulations. The idea of this method is as follows: suppose that we unite 
some group of nodes and influence other nodes by this group; some influ-
enced nodes join the first group with respect  to their thresholds; the expand-
ed group again influences the rest of nodes and some of them join this ex-
panded group. We continue this procedure step by step until all nodes join 
the first group or there are no more nodes that are affected by final expanded 
group. Additionally, we can limit the number of steps with some parameter s 
and we can stop the procedure when we reach this limit. On the next stage, 
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we unite another group of nodes and follow their effect of the influence on 
other nodes. When we study all groups that can be chosen on the first step, 
for each node we summarize the information about nodes that joined the 
first group afterwards due to the fact that this node was in the first group. 
Thus, we get node-to-node influences and this information can be aggregat-
ed into a single vector.  

Formally, we have the network-graph 𝐺 𝑉,𝐸 , where 𝑉 = {1,… , 𝑛} is a 
set of nodes, |𝑉| = 𝑁, 𝐸 = 𝑖, 𝑗 ,      𝑖, 𝑗 ∈ 𝑉  is a set of weighted edges, and 
𝑤!" is a weight of edge 𝑖, 𝑗 . Let us illustrate the approach using Numerical 
Example 2. 

Firstly, we construct matrix 𝐶 = [𝑐!"] with respect to weights 𝑤!"  and 
predefined thresholds 𝑞! (a level of absolute influence) 

 

𝑐!" = min
𝑤!"
𝑞!
, 1                                                                                             (9) 

 
Matrix C indicates the share of the influence of node j on node i with re-

spect to threshold 𝑞! . For Numerical Example 2 consider thresholds 
𝑞! = 50%   of the total influence on node i. A graph of relative influences for 
Numerical Example 2 is provided on Fig. 7. 

Here we introduce a concept of minimal direct critical groups of node i. 
Definition 4. A group of neighbors of node i 𝛺! 𝑖 ⊆ 𝑁! is a minimal di-

rect critical group if 𝑐!"!∈!! ! ≥ 1and ∀𝑘 ∈ 𝛺! 𝑖 𝑐!"!∈!! ! \{!} < 1, i.e. 
according to Definition 2 all members are pivotal. 

In Table 16 nodes’ neighbors and minimal direct critical groups are rep-
resented for Numerical Example 2. 

Now we activate some group of nodes to follow its effect on the graph. It 
is unreasonable to choose a group that does not contain any minimal direct 
critical group, because such groups are not influential. For instance, for Nu-
merical Example 2 it is useless to choose nodes 1, 3 and 10 because they do 
not influence other nodes enough (with respect to thresholds). Contrary, if 
we choose nodes 2 and 7, then they influence nodes 6, 8, 9, 10 (because of 
node 7); expanded group {2, 6, 7, 8, 9, 10} influences node 4 (because of 
critical groups {7, 9}, {7, 10} or {9, 10}). A new expanded group {2, 4, 6, 
7, 8, 9, 10} influences node 1 (because of the critical groups {2, 4} or {4, 
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6}) and node 3 (because of the critical group {4, 10}). Final expanded group 
{1, 2, 3, 4, 6, 7, 8, 9, 10} does not influences the rest node 5 and we stop at 
this stage. Hence, nodes 2 and 7 explicitly affect all nodes except node 5. 
However, if we limit the number of steps with parameter s and assume s = 2 
then nodes 2 and 7 will not influence nodes 1 and 3 either. 

 

 
Fig. 7. Influence intensities for Numerical Example 2 

Table 16. Minimal direct critical groups for Numerical Example 2 
Node, i Neighbors, 𝑵𝒊 Minimal direct critical groups, 𝜴𝒅 𝒊  

1 {2, 3, 4, 6} {2, 3}, {2, 4}, {3, 4}, {4, 6} 
2 {5, 6, 8} {5, 6}, {5, 8}, {6, 8} 
3 {4, 5, 9, 10} {4, 5}, {4, 10}, {5, 9}, {5, 10} 

4 {5, 7, 9, 10} 
{5, 7}, {5, 9}, {5, 10}, {7, 9}, {7, 10}, 
{9, 10} 

5 ∅ ∅ 
6 {4, 7} {7} 
7 {1, 2, 3} {2} 
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Node, i Neighbors, 𝑵𝒊 Minimal direct critical groups, 𝜴𝒅 𝒊  
8 {1, 4, 7} {7} 
9 {1, 7} {7} 

10 {1, 7} {7} 

 
Let 𝐾!!  be some group of nodes that are chosen on the first step, and 𝐾!! 

be a final expanded group that is obtained from 𝐾!!. When we consider all 
possible 𝐾!! (in the worst case we need to consider 2! − 2 groups of nodes) 
we can form resulting matrix of node-to-node influence 𝐶∗ 𝑠 = 𝑐!"∗ 𝑠  
where 

 

𝑐!"∗ 𝑠 =
𝑙:  𝑗   ∈ 𝐾!!|  𝑖 ∈ 𝐾!!, 𝑖 ∈ 𝛺!(𝑗)
𝑙:  𝑖 ∈ 𝐾!! − 𝑙:  𝑖, 𝑗 ∈ 𝐾!!

.                                              (10) 

 
In other words, the influence of node i on node j is the number of times 

node j hits into final broaden group when node i is chosen on the first step 
and node i is contained in minimal direct critical group of node j divided by 
the number of times node i is chosen on the first step but not together with 
node j. Apparently, if 𝑖 ∉ 𝛺!(𝑗) then 𝑐!"∗ 𝑠 = 0. 

Note that if we consider all possible groups on the first step then each 
node is met there in a half of the instances, and any pair of nodes is met in a 
quarter of the instances. Hence, denominator in formula (10) is equal to 
!!!!
!

− !!!!
!

= 2!!! − 2!!! − 2!!. 

The interpretation of the matrix 𝐶∗(𝑠) is straightforward. If value 𝑐!"∗  is 
close to 1 then node i tremendously influences node j. On the contrary, if 
value 𝑐!"∗  is close to 0 then node i poorly influences node j. Again, we can 
aggregate node-to-node influences to a single vector as was described above. 

The results of simulation approach for Numerical Example 2 are present-
ed in Table 17. 

 
Table 17. Simulations results for Numerical Example 2 

Node, i 1 2 3 4 5 6 7 8 9 10 
LRIC 
(Simul) 0 0,239 0,01 0,047 0,16 0,119 0,187 0,124 0,053 0,062 
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Simulations detect nodes 2, 5 and 7 as the most influential in the graph. 
We can see that this approach detects pivotal node 7 that is chosen by most 
of the classical measures and two implicit influential nodes 2 and 5 that are 
chosen by all versions of LRIC index. 

One of the key advantages of this approach is that it accurately takes into 
account all chain reactions of a graph, so-called domino or contagion effect. 

On the other hand, as this method is highly memory consuming (in the 
worst case we need to consider all combinations) this brings up the question 
of the limitation of considered combinations, i.e. which node’s combinations 
should be chosen on the first stage and which ones can be ignored. Usually, 
in most real-life situations the formation of nodes groups has some probabil-
ity; this means that depending on the problem statement it is not always 
practical to consider combinations with a low probability to emerge.  

If there are no natural limitations on the number of combinations then it 
is reasonable to introduce some general limitations, for example, we can 
limit the size of 𝐾!! with some predefined parameter 𝑛!, i.e. 𝐾!! ≤ 𝑛!; or 
we can set limits on the number of combinations and chain reactions with 
parameter s, etc. 

Let us compare our results with classical centrality measures and SRIC 
index.  In Table 18 classical centrality measures and SRIC index are calcu-
lated for Numerical Example 2. 

 
Table 18. Classical centrality measures and SRIC index for Numerical 

Example 2 

Cent- 
rality 

 
Node 

𝑪𝒘  𝒊𝒏!𝒅𝒆𝒈 𝑪𝒘  𝒐𝒖𝒕!𝒅𝒆𝒈 𝑪𝒘  𝒅𝒆𝒈 𝑪𝒘  𝒅𝒆𝒈!𝒅𝒊𝒇𝒇 𝑪𝒃𝒕𝒘 𝑪𝒄𝒍 (*) 𝑪𝑷𝒂𝒈𝒆𝑹𝒂𝒏𝒌 𝑪𝒆𝒊𝒈 𝑪𝑩𝒐𝒏𝒂𝒄𝒊𝒄𝒉 SRIC 

1 1000 1530 2530 530 11 0,00069 0,176 0,826 –1,034 0 

2 1000 710 1710 –290 18 0,00124 0,105 0,565 –1,034 0,315 

3 1000 490 1490 –510 1 0,00040 0,109 0,494 –1,034 0,041 

4 1000 1305 2305 305 11 0,00060 0,109 0,717 –1,034 0,123 

5 0 1035 1035 1035 0 0,00103 0,015 0,303 –1,330 0,102 

6 1000 155 1155 –845 0 0,00025 0,077 0,494 –0,887 0,009 

7 1000 2290 3290 1290 22 0,00117 0,144 1 –1,182 0,264 
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Cent- 
rality 

 
Node 

𝑪𝒘  𝒊𝒏!𝒅𝒆𝒈 𝑪𝒘  𝒐𝒖𝒕!𝒅𝒆𝒈 𝑪𝒘  𝒅𝒆𝒈 𝑪𝒘  𝒅𝒆𝒈!𝒅𝒊𝒇𝒇 𝑪𝒃𝒕𝒘 𝑪𝒄𝒍 (*) 𝑪𝑷𝒂𝒈𝒆𝑹𝒂𝒏𝒌 𝑪𝒆𝒊𝒈 𝑪𝑩𝒐𝒏𝒂𝒄𝒊𝒄𝒉 SRIC 

8 1000 485 1485 –515 9 0,00099 0,084 0,586 –0,443 0,043 

9 1000 450 1450 –550 1,5 0,00030 0,090 0,601 –0,887 0,042 

10 1000 550 1550 –450 6,5 0,00031 0,090 0,626 –0,887 0,059 

 
(*) Closeness centrality: inverse average maximal outflow ⇒ low values are 

more significant. 
 
We can see that classical centrality measures detect nodes 1, 4, 7 as the 

most influential while SRIC index detects nodes 2, 4, 7. None of these indi-
ces (except Bonacich) indicate node 8 as the influential one, however it af-
fects node 2 very strong which in its turn influences nodes 1 and 7. Moreo-
ver, node 5, which is not considered by classical measures and SRIC index, 
influences nodes 2, 3 and 4, which are very influential too. Additionally, 
node 1 does not play a significant role in the graph because its outgoing in-
tensities are relatively small. Hence, classical centrality measures are not 
very appropriate for the influence estimation; SRIC index can be applied to 
small graphs with short paths between nodes (due to the fact that SRIC in-
dex consider only one layer between nodes). LRIC index can identify hidden 
nodes that are very important in terms of the influence. 

In order to compare rankings, we used a correlation analysis. Since the po-
sition in the ranking is a rank variable, to assess the consistency of different 
orderings other than traditional Pearson coefficient rank correlation coeffi-
cients should be used. In our work it is applied the idea of Kendall metrics 
[Kendall, 1970], that counts the number of pairwise disagreements between 
two ranking lists. We have used Goodman and Kruskal γ rank coefficient as 
well, which shows the similarity of the orderings of the data when ranked by 
each of the quantities [Goodman, Kruskal, 1954]. This coefficient looks as 
𝛾 = !!!!!

!!!!!
, where 𝑁! is the number of pairs of cases ranked in the same order 

on both variables (number of concordant pairs) and 𝑁! is the number of pairs 
of cases ranked in reversed order on both variables (number of reversed pairs). 

The results are provided below (see Tables 22–23). 



34

Ta
bl

e 
22

. K
en

da
ll 
ττ

-c
oe

ffi 
ci

en
t

Cw in–deg

Cw out–deg

Cw deg

Cw deg–diff

Cbtw

Ccl

CPageRank

Ceig

CBonacich

SRIC

SumPaths

MaxPath

MaxMin

MultT

MaxT

Simul

Cw 
in

–d
eg

–
–0

.1
5

0.
45

–0
.3

5
0.

41
0.

25
0.

46
0.

45
0.

50
–0

.1
5

–0
.4

5
–0

.4
5

–0
.4

5
–0

.4
5

–0
.4

5
–0

.2
5

Cw 
ou

t–
de

g
–

0.
73

0.
91

0.
52

–0
.5

1
0.

52
0.

45
–0

.6
0

0.
42

0.
11

0.
16

0.
16

0.
16

0.
16

0.
02

Cw 
de

g
–

0.
64

0.
75

–0
.3

3
0.

80
0.

72
–0

.3
0

0.
24

–0
.1

6
–0

.1
1

–0
.1

1
–0

.1
1

–0
.1

1
–0

.1
6

Cw 
de

g–
di

ff
–

0.
43

–0
.6

0
0.

43
0.

36
–0

.7
0

0.
42

0.
20

0.
24

0.
24

0.
24

0.
24

0.
11

Cbt
w

–
–0

.4
8

0.
54

0.
64

–0
.1

8
0.

43
0.

11
0.

16
0.

16
0.

16
0.

16
0.

11

C
cl

–
–0

.2
1

–0
.1

4
0.

45
–0

.5
6

–0
.4

2
–0

.4
7

–0
.4

7
–0

.4
7

–0
.4

7
–0

.4
2

CPa
ge

Ra
nk

–
0.

60
–0

.3
6

0.
02

–0
.3

9
–0

.3
4

–0
.3

4
–0

.3
4

–0
.3

4
–0

.3
9

Cei
g

–
–0

.0
8

0.
14

–0
.2

3
–0

.2
3

–0
.2

3
–0

.2
3

–0
.2

3
–0

.2
3

CBo
na

ci
ch

–
–0

.2
5

–0
.1

0
–0

.1
5

–0
.1

5
–0

.1
5

–0
.1

5
0.

00

SR
IC

–
0.

60
0.

64
0.

64
0.

64
0.

64
0.

60

Su
m

Pa
th

s
–

0.
96

0.
96

0.
96

0.
96

0.
73

M
ax

Pa
th

–
1.

00
1.

00
1.

00
0.

69

M
ax

M
in

–
1.

00
1.

00
0.

69

M
ul

tT
–

1.
00

0.
69

M
ax

T
–

0.
69

Si
m

ul
–



35

Ta
bl

e 
23

. G
oo

dm
an

, K
ru

sk
al

 γ
γ-

co
ef
fi c

ie
nt

Cw in–deg

Cw out–deg

Cw deg

Cw deg–diff

Cbtw

Ccl

CPageRank

Ceig

CBonacich

SRIC

SumPaths

MaxPath

MaxMin

MultT

MaxT

Simul

Cw 
in

–d
eg

–
–0

.3
3

1.
00

–0
.7

8
1.

00
0.

56
1.

00
1.

00
1.

00
–0

.3
3

–1
.0

0
–1

.0
0

–1
.0

0
–1

.0
0

–1
.0

0
–0

.5
6

Cw 
ou

t–
de

g
–

0.
73

0.
91

0.
54

–0
.5

1
0.

54
0.

46
–0

.6
8

0.
42

0.
11

0.
16

0.
16

0.
16

0.
16

0.
02

Cw 
de

g
–

0.
64

0.
77

–0
.3

3
0.

81
0.

73
–0

.3
3

0.
24

–0
.1

6
–0

.1
1

–0
.1

1
–0

.1
1

–0
.1

1
–0

.1
6

Cw 
de

g–
di

ff
–

0.
44

–0
.6

0
0.

44
0.

36
–0

.7
8

0.
42

0.
20

0.
24

0.
24

0.
24

0.
24

0.
11

Cbt
w

–
–0

.4
9

0.
56

0.
67

–0
.2

0
0.

44
0.

12
0.

16
0.

16
0.

16
0.

16
0.

11

Ccl
–

–0
.2

1
–0

.1
4

0.
50

–0
.5

6
–0

.4
2

–0
.4

7
–0

.4
7

–0
.4

7
–0

.4
7

–0
.4

2

CPa
ge

Ra
nk

–
0.

62
–0

.3
9

0.
02

–0
.4

0
–0

.3
5

–0
.3

5
–0

.3
5

–0
.3

5
–0

.4
0

Cei
g

–
–0

.0
9

0.
14

–0
.2

3
–0

.2
3

–0
.2

3
–0

.2
3

–0
.2

3
–0

.2
3

CBo
na

ci
ch

–
–0

.2
8

–0
.1

1
–0

.1
7

–0
.1

7
–0

.1
7

–0
.1

7
0.

00

SR
IC

–
0.

60
0.

64
0.

64
0.

64
0.

64
0.

60

Su
m

Pa
th

s
–

0.
96

0.
96

0.
96

0.
96

0.
73

M
ax

Pa
th

–
1.

00
1.

00
1.

00
0.

69

M
ax

M
in

–
1.

00
1.

00
0.

69

M
ul

tT
–

1.
00

0.
69

M
ax

T
–

0.
69

Si
m

ul
–



	  
	  

36	  

4. Computational complexity of centrality measures 

We will discuss here a computational complexity of classical and pro-
posed centrality measures. An important issue of classical centrality 
measures is the scope of information they aggregate: the more information 
about nodes they consider, the more difficult it is to calculate them for large 
networks.  

Since in-degree, out-degree and degree centralities calculate the number 
of edges for each node, the computational complexity of these measures is 
linear. In order to calculate the closeness and betweenness centralitities, the 
shortest paths between all node-pairs should be considered (total number is 
|𝑉| ∙ ( 𝑉 − 1)). The fastest known single-source shortest-path algorithm is 
the Dijkstra's algorithm proposed in [Dijkstra, 1959] that has a worst case 
performance equal to 𝑂( 𝐸 + |𝑉| ∙ log   |𝑉|). Thus, closeness and between-
ness centralities are more difficult to calculate for large networks since they 
require a polynomial time. As for the eigenvector centrality and its counter-
parts, these measures have a polynomial computational complexity since 
they require to compute the eigenvector of adjacency matrix A. However, 
many approximate algorithms with a low computational complexity that 
implement the main idea of these centrality measures were proposed and 
integrated in standard software packages.  

As for the Myerson value, this measure requires to consider all subgraphs 
(the total number is 2|!| − 1) which is impossible to do for a large number 
of nodes. There have been developed some approximate algorithms to calcu-
late the Shapley value (which provides a basis for the Myerson value); in 
[Fatima et al., 2008] there is an extended benchmark study of some approx-
imation methods. 

As to proposed models, SRIC and LRIC consider all possible pivotal 
groups for each node the total number of which in the worst case is 
2|!|!! − 1. Distant interactions require the enumeration of all simple paths 
in a graph, which can reach more than |𝑉|! operating cycles. However, some 
simplifications can be introduced, as the limitation of the size of groups and 
path length. Simulations require the consideration of all subgroups of nodes; 
however, it is not rational to enumerate all of them, because not all sub-
groups are influential. 
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The calculation of classical centrality measures was performed in R 3.2.2 
software package with the use of embedded functions (“igraph” package). 
The calculation of proposed measures was produced with the help of 
MATLAB R2015. 

5. Conclusion 

Network analysis plays a significant role in many problem areas. When 
we study different relationships between elements we often need to identify 
the most powerful participants, or in terms of graph theory, we need to de-
tect key nodes. 

We explored two approaches of the influence measure in a network-
graph. The key advantage of this approach with comparison to existing 
methods is that we consider long-distance connections as well as special 
attributes of nodes (in the form of thresholds) and group influence on nodes. 
This allows us to detect hidden key nodes: while classical measures detect 
explicit powerful nodes our methods also detect nodes that influence other 
nodes in groups or by long-range interactions.  

Another important aspect is that our approach also allow us to estimate 
the intensity of influence of nodes: due to the fact that on one of the stages 
of the calculation we get node-to-node influences we can not only estimate 
the level of influence on other nodes for each node but also the level of in-
fluence of all nodes on each node. In other words, the methods admit many 
ways of aggregation which lead to different interpretations of nodes power. 

The first approach is based on the analysis of all simple paths between all 
pairs of nodes in a graph; such methodology allows us to control all chan-
nels of influence. As a result, we obtain 5 versions of long-range interaction 
index (LRIC index). The second approach is based on the idea of simula-
tions: we sequentially consider different influential groups and track the 
changes in a graph. This allows us to consider all possible scenarios of 
nodes cooperation. 

As our methods are complex for the calculation we suggest some natural 
limitations as the length of considered paths, the size of groups, etc. 

We demonstrate the consistency of our approaches on some numerical 
examples which confirm that existing measures do not detect hidden nodes 
but LRIC indices and simulations are able to identify them. 



	  
	  

38	  

The developed new centrality measures can be successfully applied to 
many real life processes. 
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