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We consider the problem of individual manipulation under incomplete information, i.e. the whole 

preference profile is not known to voters. Instead, voters know the result of an opinion poll (the 

outcome of a poll information function  , e.g. a list of scores or a set of winners). In this case, a 

voter has an incentive to misrepresent his preferences ( -manipulate) if he knows that he will not 

become worse off and there is a chance of becoming better off. We consider six social choice rules 

and eight types of poll information functions differing in their informativeness. To compare 

manipulability, first we calculate the probability that there is a voter which has an incentive to  -

manipulate and show that this measure is not illustrative in the case of incomplete information. 

Then we suggest considering two other measures: the probability of a successful manipulation and 

an aggregate stimulus of voters to manipulate which demonstrate more intuitive behaviour. We 

provide results of computational experiments and analytical proofs of some of the observed effects. 
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1 Introduction 

When a society needs to make a collective decision, one should apply a procedure 

aggregating individual preferences into a social choice. There are many aggregation procedures, but 

none are ideal, since all of them have some undesirable properties. One of these properties is the 

vulnerability of an aggregation rule to manipulation by voters. We say that a voter has an incentive 

to manipulate if he can achieve a better voting result by misrepresenting his preferences. Of course, 

it is better when all voters want to declare their sincere preferences, otherwise, a collective choice 

would be biased and, consequently, would not reflect the preferences of a society. Unfortunately, all 

social choice rules which have at least three possible outcomes are either manipulable or dictatorial 

[Gibbard, 1973], [Satterthwaite, 1975], [Gӓrdenfors, 1976]. This result is called Gibbard-

Satterthwaite theorem. 

In this regard, it is of interest to compare social choice rules in their vulnerability to 

manipulation. The most intuitive approach is to calculate the probability of manipulation for 

different rules and choose a rule which minimizes this probability. This probability of manipulation 

is also called Nitzan-Kelly's index, since it was first used in [Nitzan, 1985] and [Kelly, 1988]. There 

are a number of studies investigating social choice rules from this perspective. [Kelly, 1988] 

suggests considering the minimal number of manipulable preference profiles for a social choice rule 

satisfying some predefined properties. This research direction is continued in [Fristrup and Keiding, 

1998], and a series of studies [Maus et al., 2007a, 2007b, 2007c, 2007d]. 

In [Kelly, 1993] the manipulability of the Borda rule is compared with the manipulability of 

different classes of rules satisfying some predefined properties. An extended statistical investigation 

of individual manipulability of social choice rules using Monte-Carlo experiments was done in 

[Aleskerov and Kurbanov, 1999] and continued in [Aleskerov et al., 2009, 2011, 2012]. The 

manipulability of approval rule and a family of k-approval rules was studied in [Peters at al., 2012] 

both theoretically and using simulations. The same probabilistic approach was applied to studying 

coalitional manipulability [Lepelley and Valognes, 2003], [Pritchard and Wilson, 2007], [Slinko, 

2006]. 

In all these articles it is assumed that voters know each other’s sincere preferences, i.e. 

public information is reliable and complete. This is a rather strong assumption, but helps to simplify 

the comparative analysis of manipulability of social choice rules. Intuitively, incomplete 

information would make manipulation more difficult and rarer. 
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A more realistic assumption is that voters know some information from opinion polls held 

before voting. This information could be represented, for example, by preferences of a subset of 

voters, or a list of candidate scores, or the winner of the election. A mathematical model for the 

manipulation under poll information is presented in [Reijngoud and Endriss, 2012]. The authors 

show which rules and which types of public information make manipulation possible or not and 

study voter response to the repeated poll information. 

Using this model, we investigate to what extent social choice rules are susceptible to 

manipulation, calculating the share of preference profiles with at least one voter having an incentive 

to manipulate. One of our results is that social choice rules are manipulated almost everywhere in 

this model if we consider manipulation with information about the winner of the election. Having 

this, we propose two other indices of manipulability under incomplete information. The first is the 

proportion of preference profiles where at least one voter has an incentive to manipulate and this 

manipulation is successful. The second takes into account the stimulus level of each manipulating 

voter, which is calculated as the probability of success. We show that these measures are more 

representative than the first one when studying manipulability under incomplete information. 

 

2 The model 

2.1 Definitions and notations  

Let N  denote a finite set of voters, {1,2,..., }N n , and X  be a finite set of m  alternatives. 

The preferences of voter i  are represented by a linear order 
iP  on X , an element of ( )L X —the set 

of all linear orders. We write 
iaPb  if an alternative a  is preferred to an alternative b  for voter i . An 

upper contour set of an alternative a  in a preference order 
iP  is { : }i iPa b X bPa  . Similarly, a 

lower contour set of a  in 
iP  is { : }i iaP b X aPb  . A preference profile 

1( ,..., ) ( )N

nP P P L X   is 

an ordered set of individual preferences. A contraction of a preference profile onto the set A X  is 

1/ ( / ,..., / )nP A P A P A , where / ( )i iP A P A A   . A vector of positions for alternative a  

is
1( , ) ( ( , ),..., ( , ))mv a P v a P v a P , where ( , )jv a P  denotes the number of voters having a  on the j -th 

position in preferences. A matrix of a weighted majority graph for a profile P  is denoted by 

( )WMG P  and consists of elements  

( ) |{ : }|kl k i lWMG P i N a Pa  .  
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A matrix of a majority graph is ( )MG P , where 

1,  if ,

( ) 1,  if .

0,  otherwise.

k M l

kl l M k

a P a

MG P a P a




 



 

By 
MP  we denote majority relation: 

k M la P a  if ( ) ( )kl lkWMG P WMG P . 

A social welfare function (SWF) is the mapping : ( ) ( )NF L X W X , where ( )W X  is the 

set of all weak orders on X . SWF aggregates individual preferences represented by a preference 

profile into a social ordering ( )F P R P I   , where P  is a preference relation and I  is an 

indifference relation. A social choice rule (SCR) : ( ) 2 \N X

FC L X    chooses alternatives from 

the top of a social ordering, i.e. ( ) { :  s.t. }FC P a X b bPa   . 

Many social choice rules are not resolute, i.e. their result could consist of more than one 

alternative. One way to deal with this is to break ties according to some rule, : 2 \XT X . We 

consider an alphabetic tie-breaking rule: assume some linear order on X  to be predefined, 

...T TaP bP c , and when alternatives are tied, we choose the one which dominates all others by 
TP  (has 

a higher priority). In this case we sacrifice neutrality to obtain resoluteness. 

Another way is to extend voter i ’s preferences in such a way that he can compare all subsets 

of alternatives. There is a number of possible ways to do this [Karabekyan, 2009], but we restrict 

our attention to lexicographic preference extension methods (PEMs), Leximin and Leximax 

[Pattanaik, 1978]. We denote the extended preference relation of voter i  by 
iEP  (

iEI —extended 

indifference relation) and say that 
iA EP B  means “ 2 \XA   is preferred to 2 \XB   by 

individual i ”. 

Leximin. Let us enumerate the elements in A  and B  in ascending order of preferability for 

individual i . That is, 
1 | |{ ,..., }AA a a , {1,...,| | 1}j A   , 

1j i ja Pa 
 and 

1 | |{ ,..., }AB b b , 

{1,...,| | 1}j B    
1j i jb Pb 
. Then we compare sets A  and B  as follows: 

1. If {1,...,min(| |,| |)}h A B  , s.t. {1,..., 1}j h    
j ja b  and 

h i ha Pb , then 
iA EP B . 

2. If B A , then 
iA EP B . 
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Leximax. Now enumerate the elements in both subsets in descending order of preferability 

for individual i , 
1 | |{ ,..., }AA a a , {1,...,| | 1}j A  

1j i ja Pa 
 and 

1 | |{ ,..., }AB b b , {1,...,| | 1}j B    

1j i jb Pb 
. Similarly, 

1. If {1,...,min(| |,| |)}h A B  , s.t. {1,..., 1}j h    
j ja b  and  

h i ha Pb , then 
iA EP B . 

2. If A B , then 
iA EP B . 

In other words, with the Leximin method we assume that it is important for a voter to avoid 

worse alternatives, while under Leximax, to seek better alternatives. 

The alphabetic tie-breaking rule may also be interpreted as an extended preference relation. 

Let 
1a A  be s.t. 

1\{ }ja A a   
1 T ja P a  and 

1b B  be s.t. 
1\{ }jb B b   

1 T jb P b . If 
1 1ia Pb , then 

iA EP B , if 
1 1a b  then 

iA EI B . 

2.2 Poll Information Functions and Manipulation 

We use the model for poll information functions introduced in [Endriss and Reijngoud, 

2012]. Assume that before voting, an opinion poll is carried out which reveals voters’ sincere 

preferences, P . Thus, profile P  represents complete and exact information about preferences of all 

voters. However, for some reasons not all the information is available to voters. A poll information 

function (PIF) ( )P  puts into correspondence to a preference profile any piece of information 

about this profile. We consider the following types of PIF. 

1. Profile: ( )P P  . 

2. Anonymous profile (ballot): 
1 !( ) ( ) ( ,..., )mP p P n n   , where 

hn  is the number of 

ballots of h -th type in P . 

3. Position: 
1( ) ( ) ( ( , ),..., ( , ))mP v P v a P v a P    returns a vector of positions for each 

alternative in X . 

4. Score: 
1( ) ( ) ( ( , ),..., ( , ))mP S P S a P S a P    assigns to each alternative its score according 

to a given SWF F . It may be defined specifically or not defined for rules not using any 

scoring function. 

5. Rank: ( ) ( )P F P   returns a social ordering. 
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6. Winner: ( ) ( )FP C P  . 

7. Unique winner (1Winner): ( ) ( ( ))FP T C P  . 

8. Weighted majority graph (WMG): ( ) ( )P WMG P  . 

9. Majority graph (MG): ( ) ( )P MG P  . 

Having information about a preference profile ( )P  and knowing his own preference order, 

voter i  now has a set of profiles consistent with his knowledge. This set is called information set 

and defined as follows 

( ) \{ }{ ( ) : ( , ) ( )}P N i

i i i iW P L X P P P   
    . 

Given two PIFs   and   , if ( )NP L X   i N 
( ) ( )P P

i iW W   , then   is at least as 

informative as   . Of course, the most informative is Profile-PIF.  

Then, when is a voter willing to manipulate, i.e. misrepresent his preferences in order to 

achieve a more preferable result? It is assumed that if there is at least one possible situation, when 

manipulation makes him better off and nothing changes in all other possible situations, then a voter 

has a dominating strategy and, thus, an incentive to manipulate under PIF    [Reijngoud and 

Endriss, 2012]. 

Definition 1. Given a SWF F  and a preference profile P , we say, that voter i  has an 

incentive to  -manipulate, if there exists ( )iP L X  s.t. 

i) ( )P

i iP W 


   ( , ) ( )F i i i FC P P EPC P

  or ( , ) ( )F i i i FC P P EI C P
 ; 

ii) ( )P

i iP W 


  , s.t. ( , ) ( )F i i i FC P P EPC P

 . 

Definition 2. A SWF F  (together with a SCR 
FC ) is called susceptible to  -manipulation 

if there is a profile ( )NP L X  and a voter i N  who has an incentive to  -manipulate in P . 

Conditions for the susceptibility of social choice rules with alphabetic tie-breaking to  -

manipulation were found in [Reijngoud and Endriss, 2012] (a generalization of the Gibbard-

Satterthwaite theorem). The aim of this paper is to reveal the degree of manipulability of SCRs 

under different PIFs. The first measure considered is the simple probability of manipulation, i.e. 

how often at least one voter has an incentive to misrepresent his preferences. The sample space 
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consists of all preference profiles, that is, they are assumed to appear equally likely (the Impartial 

Culture assumption). 

Denote 
1( , , , )I m n F  as the probability that in a preference profile, randomly chosen from 

( )NL X  there exists at least one voter who has an incentive to  -manipulate under SWF F . 

2.3 Social Welfare Functions 

In this section we introduce formal definitions for SWFs in the study. We need to specify 

what to consider as “scores” (Score-PIF) and how a social ordering R P I   is defined. 

 Scoring rules. A scoring rule is defined by a scoring vector 
1( ,..., )ms s s , where 

js  denotes 

the number of scores assigned to alternative for the j -th position in individual preferences. The 

total number of scores for each alternative 
ja X  is calculated as a scalar product 

( , ) , ( , )j jS a P s v a P . 

Then, R P I   is defined as follows: ,k la a X   [i] ( , ) ( , )k l k la Pa S a P S a P  ; [ii] 

( , ) ( , )k l k la Ia S a P S a P  . 

- Plurality: (1,0,...,0)Pls  . 

- Veto (Antiplurality): (1,...,1,0)Vs  . 

- Borda: ( 1, 2,...,1,0)Bs m m   . 

 Run-off procedure. It has two stages: 

[1] The plurality score is calculated for each alternative. A first-stage vector of scores is 

1 1 1

1( ( ),..., ( ))mS S a S a , 

where  1( ) , ( , )j P l jS a s v a P . If 
ka X   s.t. 1( ) / 2kS a n , then a social ordering is 

j ha Ia  

, \{ }j h ka a X a   and the procedure terminates. Otherwise, procedure moves on to the stage [2].   

[2] Two alternatives with maximal number of scores are chosen; 

1arg max( ( ))
j

k j
a X

a S a


 , 1

\{ }
arg max ( ( ))

j k

l j
a X a

a S a


 .   
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If there are ties, they are broken according to the alphabetical tie-breaking rule T . Then a 

second-stage vector of scores is calculated: 

2 2 2( ( ), ( ))k lS S a S a ,  

Where 

2 ( ) (1,0), ( , /{ , })k k k lS a v a P a a , 2 ( ) (1,0), ( , /{ , })l l k lS a v a P a a . 

The alternative with the higher score is considered better, 
k la Pa  if 2 2( ) ( )k lS a S a  and 

l ka Pa  

if 2 2( ) ( )l kS a S a . Both of them are better than all other alternatives, \{ , }j k la X a a   
k ja Pa , 

l ja Pa . All other alternatives are considered as indifferent, , \{ , }j h k la a X a a   
j ha Ia . 

The output of Score-PIF is 1 2( , )S S S . 

 Single Transferable vote (STV). This is a multi-stage procedure, which we define in an 

iterative form. 

[0] : 1t  , :tX X , tP P ; 

[1] t

ja X    ( ) : , ( , )t

j Pl jS a s v a P ; 

[2] If t

ja X   s.t. ( ) / 2t

jS a n , then , \{ }t

h l ja a X a   
j ha Pa , 

h la Ia , the procedure 

terminates. arg min( ( ))
t

l

t

k l
a X

a S a


 , \{ }t

j ka X a   
j ka Pa . 

[3] : 1t t  , : \{ }t t

kX X a , /t tP P X . Go to step 1. 

The output of Score-PIF is 1 *( ,..., )tS S S , where *t  is the number of cycles done by 

procedure. 

 Copeland. A majority graph is computed. Then scores of alternatives are computed as 

follows 

1

( , ) ( )
m

k kl

l

S a P MG P


 . 

Ranking R P I   is defined as usual: ,k la a X   [i] ( , ) ( , )k l k la Pa S a P S a P  ; [ii] 

( , ) ( , )k l k la Ia S a P S a P  . 
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3 Computability and strong computability 

A PIF gives a voter some information about a preference profile and sometimes uses a SWF 

to obtain it. Some of these PIFs provide all the necessary information to calculate the result of the 

procedure. They are, of course, those PIFs, which make use of SWF, profile-PIF, and Anonymous 

Profile-PIF (for anonymous SWF). A SCR is computable from  -images if there is a function 

: 2 \XH I   , s.t. 
FC H  . If the information provided by   is sufficient for voter i  to 

compute the result of 
FC  for every possible preference ( )iP L X , then 

FC  is called strongly 

computable from  -images. 

Obviously, 
FC  is computable from  -images iff  -PIF is at least as informative as Winner-

PIF (for any two preference profiles ( ), P

iP P W    the winner is the same ( ) ( )F FC P C P ). 

Another useful observation: if   is at least as informative as    and F  is strongly computable from 

  -images, then F  is also strongly computable from   -images. Now we study computability and 

the binary relation “being at least as informative as” for six SWFs from the previous section and 

illustrate them with directed graphs. 

For all scoring rule ( )NP L X  , i N  ,   

( ) ( ( ))( ) ( ) ( ) ( ) F FC P T C PP p P v P S P F P

i i i i i i iW W W W W W W      .  

For the Runoff procedure and STV rule, Positions-PIF is dropped from this chain, since 

information provided by ( )v P  is not enough to compute the winner. Consequently, scoring rules are 

computable from  -images for all PIFs of this chain. Obviously, ( ) ( )P WMG P MG P

i i iW W W   is true 

for any rule. However, all the considered positional social choice rules are not computable from 

MG-PIF (see Fig.1–3). 

For the Borda rule WMG-PIF contains all the necessary information to compute the winner 

and is at least as informative as Score-PIF, ( ) ( )WMG P S P

i iW W . Let us prove it. 

1 1( , ) ( , ) ( 1) ... ( , ) 1B j j m jS a P v a P m v a P        

1

: : 1 :
| | 1 | | 1 | |

1 ( 1) ... 1 1 | |

j i j i j i

m

j i

i N i N k i N i N
a P m a P a P k

m k a P


    
   

   
   

           
   
   

      
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1 1 |{ : } | ( )
l l l l

j i lj i l

j i l jl

i N a A a A i N a A a A
a Paa Pa

i N a Pa WMG P
     

          

 

Fig. 1. Informativeness of PIFs for plurality and veto 

 

Fig. 2. Informativeness of PIFs for Borda rule 

 

Fig. 3. Informativeness of PIFs for STV and Runoff 

 

Fig. 4. Informativeness of PIFs for Copeland rule 

 

 

For the Copeland rule, scores are computed from a majority graph. Thus, we have the 

following chain 

( ) ( ( ))( ) ( ) ( ) ( ) ( ) F FC P T C PP p P WMG P MG P S P F P

i i i i i i i iW W W W W W W W       . 
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However, a majority graph does not provide sufficient information for a voter to compute 

the winner for any way of voting, while a weighted majority graph does. 

Further we make use of strong computability. The PIFs, for which SWFs are strongly 

computable from  -images, are denoted by circles on Fig. 1–4. The Runoff procedure and STV are 

strongly computable from  -images only for Profile-PIF and Ballot-PIF. For both rules, if 

alternatives eliminated at the first stage in ( , )i iP P  are different from those eliminated in P , then it 

is impossible to compute a second-stage scoring vector for ( , )i iP P , and thus, to compute the 

winner. 

Scoring rules are strongly computable from Score-images. Let us explain this by the short 

argument. Suppose voter i  receives information about the score of each alternative, 

1( ) ( ( , ),..., ( , ))mS P S a P S a P . If voter i ’s preferences are 
1 2 3 1...i i m i ma Pa Pa a Pa

, then alternative 
ja  

gets 
js  scores from voter i . Then voter i  changes his preferences to 

iP , 

(1) (2) (3) ( 1) ( )...i i m i ma P a P a a P a    
  

.
 

Since voters know the rule, then the new vector of scores is also known to voter i . For each 

alternative 
ja X  the new number of scores is 1 ( )

( , )j j j
S a P s s

 
   . Thus, voter i  can compute 

the winner for any ( )iP L X  . 

 

4 Manipulability 

4.1 Theoretical results  

In this Section we answer the question of how often there exists a voter which has an 

incentive to misrepresent his preferences. First, we provide some theoretical results and then 

compare the manipulability of rules using different PIFs by conducting computational experiments. 

It is of interest to know how incomplete information influences manipulability: does it 

reduce the probability of manipulation compared to complete information case? The first result 

shows under which PIFs the degree of manipulability does not differ from manipulability under 

Profile-PIF. 
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Theorem 1. If SCR 
FC  is strongly computable from  -images, then 

1( , , , )I m n F   

1( , , , )I m n Profile F . 

Proof. The truthful vote of voter i  is 
iP . Voter i  receives information ( )P . Since 

FC  is 

strongly computable from  -images, for all untruthful votes ( ( ) \{ })i iP L X P  for every two 

preference profiles ( ), P

i i iP P W 

 
   , ( , ) ( , )F i i F i iC P P C P P 

   and the result ( , )F i iC P P  is known for 

voter i . Thus, given an untruthful vote ( ) \{ }i iP L X P , either ( , ) ( )F i i i FC P P EPC P
  is true for all 

( )P

i iP W 


  , or it is not true also for all ( )P

i iP W 


  . 

If ( ) \{ }iP L X P   s.t. ( )P

i iP W 


  , ( , ) ( ) ( , )F i i i F F i iC P P EPC P C P P 

  , then in all 

preference profiles P  where there is a voter who has an incentive to  -manipulate, there is also a 

voter (the same one) who has an incentive to Profile-manipulate, and vice versa. And other 

direction, if a voter has an incentive to Profile-manipulate in P , then it has an incentive to  -

manipulate. Consequently, the number of manipulated preference profiles will be the same under 

 -PIF and Profile-PIF, and 1 1( , , , ) ( , , , )I m n F I m n Profile F  . Q.E.D. 

An especially interesting case is the vulnerability of SCF to manipulation under Winner-PIF, 

the least informative non-zero information function. The following result reveals the asymptotic 

susceptibility of the most popular social choice rule, the plurality rule to Winner-manipulation. 

Theorem 2. 
1lim ( , , , ) 1

n
I m n Winners Plurality


  under Leximin and Leximax PEMs. 

1lim ( , , , ) 1
n

I m n Winner Plurality


  with alphabetic tie-breaking. 

Proof. Let ( ) ( )FP C P  . Suppose, the winner is alternative d , and for voter i  alternative 

d  is the least preferable. Try to find a strategy 
iP  for voter i  which is not worse (in terms of the 

voting result) than his sincere preferences ...i i iaPbP Pd . 

Since the plurality rule counts only the first alternatives in preferences, we could simply say 

that sincerely voter i  votes for a . Any other preference order with a  on the top does not differ 

from his sincere preference. Moreover, there is no strategy for i  to make a  win, so, a  could not be 

on the top of 
iP . 

Then, let voter i  vote for his second-best alternative, ...i ibP Pd . ( , ) ( , ) ( , )iS d P S b P S b P  . 

( , ( , )) ( , ) 1i i iS b P P S b P   . ( )P

i iP W 

  , ( , ( , )) ( , ( , ))i i i iS d P P S b P P  , and ( )P

i iP W 

   s.t. 
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( , ( , )) ( , ( , ))i i i iS d P P S b P P  . Consequently, if voter i  votes for b , then either ( , ) { }F i iC P P d
   or 

( , ) { , }F i iC P P b d
  . According to Leximin and Leximax, for voter i  outcome { , }b d  is better than 

{ }d . Thus, voter i  has an incentive to Winner-manipulate by voting for his second-best alternative. 

If ties are broken alphabetically and   is 1Winner-PIF, then outcome ( ( )) { }FT C P d  may 

be obtained two possible ways. Either ( ) { }FC P d , or | ( ) | 1FC P   and ( ) \{ }Fc C P d  , 
TdP c . 

Both cases are possible and voter i  cannot distinguish between them. If 
TbP d , then voting for b  

will make b  the winner in case of tie ( , ) { , }F i iC P P b d
  . If 

TdP b , then there is a possibility that 

( )Fb C P  and voting for b  will make b  the winner ( , ) { }F i iC P P b
  . Thus, for a voter having the 

winning alternative on the last position in preferences voting for his second-best alternative is never 

worse than voting sincerely for a . 

Now consider the set of preference profiles with a single-valued outcome. The proportion of 

such profiles tends to 1 as n  goes to infinity.
3
 If ties are broken, then the winner is always unique. 

Our aim is to find the share of profiles where at least one voter has the winning alternative as their 

worst preference, because all these profiles will be manipulable. 

Let us consider the set of preference profiles with n  voters, where alternative 
1a  has 

1p % of 

votes from 
1 1n̂ np  voters, 

2a  has 
2p %  from 

2 2n̂ np  voters, etc. (thus, 
1̂

ˆ... mn n n   ). 

The number of such preference profiles is 

1 2

!
(( 1)!)

ˆ ˆ ˆ! !... !

n

m

n
D m

n n n
  . 

The number of preference profiles where alternative 
1a  does not take the last position in any 

preference order is 

1 2 ˆˆ ˆ

1

1 2

!
(( 1)!) (( 1)! ( 2)!) ...(( 1)! ( 2)!)

ˆ ˆ ˆ! !... !
mnn n

m

n
D m m m m m

n n n
        . 

The share of profiles where 
1a  cannot take the last position 

                                                           
3
 As shown in [Gehrlein and Fishburn, 1981], the probability of a tie between any pair of alternatives with 

plurality rule tends to 0 as the number of voters goes to infinity (by Central Limit Theorem). As a 

consequence, the probability of any tie goes to zero and the probability of a single-valued outcome tends to 

1. 
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1 2

1 2

ˆˆ ˆ

1

ˆˆ ˆ

(( 1)!) (( 1)! ( 2)!) ...(( 1)! ( 2)!)

(( 1)!) (( 1)!) ...(( 1)!)

m

m

nn n

nn n

D m m m m m

D m m m

      
 

  
 

2 1ˆ ˆ ˆ1
1 1 1

1 ... 1 1
1 1 1

mn n n

m m m



     
         

       
. 

Finally, 

1 1ˆ1 (1 )
1 1

lim 1 1 lim 1 1 1
1 1

n n p

n nm m

 

 

      
                     

. 

Thus, in a set of preference profiles with a given distribution of votes 
1( ,..., )mp p  the share 

of profiles with at least one voter having a particular alternative as their worst preference tends to 1 

as n goes to infinity. Consequently, in the union of profile sets for different vote distributions (the 

set of profiles with a unique winner), this proportion also tends to 1 as n goes to infinity. Therefore, 

1lim ( , , , ) 1
n

I m n Winners Plurality


  under Leximin and Leximax PEMs and 

1lim ( , , , ) 1
n

I m n Winner Plurality


  with alphabetic tie-breaking. Q.E.D. 

Theorem 2 shows that less information does not always lead to less manipulability and 

sometimes manipulation almost always occurs. Moreover, there is a case when manipulation takes 

place in 100% of preference profiles. 

Theorem 3. Under Leximin PEM, 
1(3,3, , ) 1I MG Borda  . 

Proof. Since 3n   and 3m  , there are two possible structures of majority graphs. [1] 

( )Sym n   (a permutation of the symmetric group on N ), s.t. 
(1), (2)( ) 1MG P    , 

(2), (3)( ) 1MG P    , 
(1), (3)( ) 1MG P     (the majority relation is transitive). [2] ( )Sym n  , s.t. 

(1), (2)( ) 1MG P    , 
(2), (3)( ) 1MG P    , 

(3), (1)( ) 1MG P     (a cyclic majority relation). 

Let us consider the first case. Without loss of generality, assume that (1) 1  , (2) 2  , 

(3) 3  . In any preference profile corresponding to this majority graph, P , 
1 2|{ : }| 2ii N a Pa  , 

suppose, those are voters 
1i  and 

2i . At the same time, 
2 3|{ : } | 2ii N a Pa  , and these could be voters 

1i , 3i , or 2i , 3i , or 
1i , 2i . Thus, in any case, there is at least one voter, i , with preferences

1 2ia Pa , 

2 3ia Pa . By transitivity, 
1 3ia Pa . For this voter, all preference profiles \{ }( )N i

iP L X  , s.t. ( , )i iMG P P  

is of type [1] constitute voter i ’s information set ( )MG P

iW . 
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For this majority graph, a weighted majority graph satisfies the following inequalities: 

1,23 ( ) 2WMG P  , 
1,33 ( ) 2WMG P  , 

2,11 ( ) 0WMG P  , 

2,33 ( ) 2WMG P  , 
3,11 ( ) 0WMG P  , 

3,21 ( ) 0WMG P  . 

Since 
,( , ) ( )

l
B j j la A

S a P WMG P


 , then the Borda score of 
1a  is a value from {4,5,6} , for 

2a  - {2,3,4} , and for 
3a  - {0,1,2} . Consequently, in all preference profiles of ( )MG P

iW  the outcome of 

the Borda rule is either 
1{ }a , or 

1 2{ , }a a . If voter i  changes his preferences to 
iP , s.t. 

1 3 2i ia Pa Pa  , then 

2a  loses the chance to win, but 
3a  still does not have enough scores to compete with 

1a . Thus, in all 

preference profiles with the majority graph [1] there is at least one voter, for whom voting 

insincerely is more preferable. 

There could also be two types of cyclic majority graph: 
1,2( ) 1MG P  , 

2,3( ) 1MG P  , 

3,1( ) 1MG P  , or 
1,3( ) 1MG P  , 

3,2( ) 1MG P  , 
2,1( ) 1MG P  . In all 12 profiles producing a cyclic 

majority relation the outcome of the Borda rule is 
1 2 3{ , , }a a a , and every voter i  having preferences 

1 2 3j i j i ja Pa Pa  will benefit from misrepresenting preferences 
2 1 3j i j i ja Pa Pa , since the outcome 

2
{ }ja  is 

better for i  according to Leximin. Q.E.D. 

Finally, we provide an immunity result for the Copeland rule. 

Theorem 4. Under Leximax PEM, 
1(3, , , ) 0I n Winner Copeland   for an odd number of 

voters. 

Proof. Since the number of voters is odd, the result of the Copeland rule may consist of 

either one alternative or all three alternatives { , , }a b c  (the Condorcet paradox). 

If ( ) ( ) { }FP C P a   , then there are two possible majority graphs: [a] MaP b , MaP c , MbP c  

and [b] 
MaP b , 

MaP c , 
McP b . 

Obviously, voters having preferences aPbPc  and aPcPb  would not manipulate.  

For a voter having a  on the second place in their preferences, bPaPc  (cPaPb ), the only 

achievable outcome is { , , }a b c . This outcome can be produced by majority relation [i] 
MaP b , 

McP a , MbP c  or [ii] 
MbP a , MaP c , McP b . If it is case a (b), then the majority relation [i] (majority 

relation [ii]) can be obtained, if the voter tries to manipulate by voting bPcPa  (cPbPa ). He either 
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changes the majority relation to 
MaP b , 

McP a , 
MbP c  (

MbP a , 
MaP c , 

McP b ) or does not change 

anything. But if it is case b (a) then voting bPcPa  ( cPbPa ) may lead to 
MaP b , 

McP a , 
McP b   

(
MbP a , 

MaP c , 
MbP c ) and the winner would be c  (b ) which is the least preferred alternative for the 

voter. The majority relation [ii] ([i]) cannot be obtained, since the voter cannot change majority 

relation from 
MaP b  to

MbP a . Thus, voters with a  on the second place in their preferences do not 

have an incentive to Winner-manipulate. 

For voters having a  on the last place any other outcome is better than { }a . But neither of 

these outcomes is achievable: if a  wins despite that voters having preferences bPcPa  or cPbPa  

vote sincerely, then no other vote can change majority relation to 
MbP a  or 

McP a . Therefore, there is 

no voter having an incentive to  -manipulate if the winner is unique. 

Consider the case when the outcome is { , , }a b c . Suppose, the favourite alternative of a voter 

is a , and suppose 
MbP a . For the voter the only outcome which is better than { , , }a b c  by Leximax is 

{ }a . However, the voter cannot do anything to change majority relation 
MbP a . 

Consequently, if there are an odd number of alternatives, then the Copeland rule is immune 

to Winner-manipulation under Leximax PEM. Q.E.D. 

4.2 Computational experiments 

This section presents the results of computational experiments on the susceptibility of SCFs 

to  -manipulation. We study the case of multiple choice with Leximin and Leximax PEMs and the 

case when ties are broken alphabetically. The last case includes consideration of the 1Winner-PIF. 

Since all the SCFs we consider are anonymous, we do not calculate indices for Ballot-PIF. 

Moreover, by Theorem 1, we do not calculate 
1I  of scoring rules for Profile-PIF and Position-PIF, 

since they will be the same as for Score-PIF. The same argument works for 1I  of the Copeland rule 

with WMG-PIF.  

In order to check whether a preference profile is susceptible to  -manipulation we need to 

have all profiles from the relevant information set. This makes a statistical test with randomly 

chosen preference profiles inconvenient. For this reason we conduct experiments using the whole 

set of preference profiles, but reduce enumeration largely with the help of IAC culture. Instead of 

preference profiles, we generate the set of all ballots (anonymous preference profiles), construct a 

representative preference profile for each ballot and further use the set of representatives,  .  
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Obviously, all preference profiles generated from a given ballot are equally susceptible to 

 -manipulation (all susceptible or none). Consequently, we need to check only representatives. We 

check each voter in a representative profile. For voter i  in profile P  we are looking for profiles P  

in  , s.t. ( ) ( )P P    and ( )i P N    s.t. 
( )i i P

P P
 
 . Denote these profiles by ( )P

iW    . This is 

not an information set of voter i , because a voter i  might not be i , but profiles of ( )P

iW 
 could be 

obtained from profiles of ( )P

iW 
 by permuting voters. Then we are looking for a manipulation 

strategy s.t. ( )P

iP W    voter ( )i P   does not make the result worse for himself and there is at least 

one ( )P

iP W   where voter ( )i P   makes the result better by using this strategy. If there is such a 

strategy, then the voter has an incentive to  -manipulate. We mark this preference profile P  and 

all profiles of ( )P

iW 
 as susceptible to  -manipulation and we do not need to check other voters in 

these profiles. If a representative profile of a ballot 
1 !( ,..., )mp p p  is susceptible to  -

manipulation, then all other 
1 2 !! !..., !/ !mp p p n  profiles with the same ballot are also susceptible to 

 -manipulation. 

The algorithm was implemented in MatLab, and computational experiments were done for 3 

alternatives and the number of voters up to 15. Although this number is not large it turns out to be 

sufficient for our analysis. Results are illustrated by Figs. 6–23, Fig. 5 is the legend. 

The first observation is that manipulability does not decrease when we consider less 

informative PIFs. Quite the contrary, although there is no clear monotonic dependence between 

informativeness and 
1I , we could easily see that  

1 1 1(3, , , ) (3, , , ) (3, , , )I n Winner F I n Rank F I n Profile F   

for plurality and Borda, and 

1 1 1 1(3, , , ) (3, , , ) (3, , , ) (3, , , )I n Winner F I n Rank F I n Score F I n Profile F    

for Runoff and STV almost for all n  considered (both for Leximin and Leximax). For an alphabetic 

tie-breaking rule the same inequalities hold, and 

1 1(3, ,1 , ) (3, , , )I n Winner F I n Winner F , 

i.e. maximal manipulability corresponds to the 1Winner-PIF, the least informative PIF which allows 

us to compute the result. Moreover, 
1I  for the Winner-PIF with Leximin and Leximax and 

1Winner-PIF with an alphabetic tie-breaking gets closer and closer to 1 as the number of voters 
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grows for plurality (here experiments illustrate the result of Theorem 2), Borda, Runoff and STV. 

Manipulability is weakly increasing along the chain of PIFs (Fig. 4) for the Copeland rule with 

Leximin PEM. With Leximax and with alphabetic tie-breaking 

1 1 1(3, , , ) (3, , , ) (3, , , )I n Rank Copeland I n Score Copeland I n MG Copeland    

1 1(3, , , ) (3, , , )I n WMG Copeland I n Profile Copeland   

for all n  from 3 to 15. A curious effect observed is a stable periodicity with high amplitude of 
1I  for 

the Copeland rule. While the peaks of 
1(3, , , )I n Winner Copeland  and 

1(3, ,1 , )I n Winner Copeland  

approach 1, its lowest value is almost constant and minimum over all PIFs. With Leximax, the 

Copeland rule is immune to Winner-manipulation for an odd number of voters (Theorem 4). The 

figures for the veto rule look different. With Leximin/Leximax, PEM 
1I  for Winner-PIF is lower 

than Profile-PIF and Rank-PIF. The highest values of 
1I  correspond to Rank-PIF. With alphabetic 

tie-breaking, the veto rule is immune to 1Winner-manipulation, which illustrates the result of 

Theorem 6 in [Reijngoud and Endriss, 2012] (the corresponding line is not shown on Fig. 20, since 

it is always zero-valued). 

 

Fig. 5. The legend for Figs. 6-23 

 

Other immunity results are obtained for the cases where SCR is not computable from  -

images. Manipulability index 
1I  turns to zero for plurality, veto, and STV for MG-PIF in all three 

series. On the contrary, 
1I  for the MG-manipulation is very high for the Borda rule (with a partial 

case of 100%-manipulation for 3m  , 3n   and Leximin PEM). 
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Fig. 6. 
1I  for plurality rule, Leximin Fig. 7. 

1I  for Borda rule, Leximin 

  

Fig. 8. 
1I  for veto rule, Leximin Fig. 9. 

1I  for Runoff, Leximin 

  

Fig. 10. 
1I  for STV, Leximin Fig. 11. 

1I  for Copeland rule, Leximin 
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Fig. 12. 
1I  for plurality rule, Leximax Fig. 13. 

1I  for Borda rule, Leximax 

 
 

Fig. 14. 
1I  for veto rule, Leximax Fig. 15. 

1I  for Runoff, Leximax 

  

Fig. 16. 
1I  for STV, Leximax Fig. 17. 

1I  for Copeland rule, Leximax 
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Fig. 18. 
1I  for plurality rule, alphabetic tie-

breaking 

Fig. 19. 
1I  for Borda rule, alphabetic tie-

breaking 

 
 

Fig. 20. 
1I  for veto rule, alphabetic tie-

breaking 

Fig. 21. 
1I  for Runoff, alphabetic tie-breaking 

 
 

Fig. 22. 
1I  for STV, alphabetic tie-breaking Fig. 23. 

1I  for Copeland rule, alphabetic tie-

breaking 
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To sum up, the susceptibility of SCRs to  -manipulation is not sufficient: when a rule is 

computable from  -images, then it is almost always susceptible to  -manipulation. Then we 

studied the proportion of preference profiles with at least one voter who has an incentive to  -

manipulate. This gave us an interesting result: the manipulability measured this way in most cases 

increased compared to the complete information case. 

 

5 Manipulation success and stimulus to manipulation  

Having the results of the previous Section, we try to extend the analysis of manipulability 

under incomplete information by introducing two other measures. As we have seen, the probability 

that at least one voter would deviate could be high enough, but not in all situations this leads to 

success (achieving the goal of manipulation). Thus, the second index measures the probability that 

in a preference profile there is a manipulating voter and his manipulation is successful in this 

preference profile. 

Let 
2 ( , , , )I m n F  be the probability that in a preference profile randomly chosen from 

( )NL X  there is at least one voter who has an incentive to  -manipulate under SWF F  and his 

manipulation is successful in this preference profile. Formally, 

( )

2 ( , , , ) { ( ) :  s.t. } / ( !)N P n

i iI m n F P L X i N P WS m 
     , 

where 

( ) ( ){ :  s.t. ( , ) ( )}P P

i i i i F i i i FWS P W P C P P EPC P 

 
    . 

Another observation is that the cardinality of the voter’s information set could be quite large, 

while the share of profiles where manipulation is successful could tend to 0. This explains the high 

values of 
1I  under incomplete information. In order to take this into account we suggest measuring 

the stimulus to manipulation for each voter. This function would reflect the level of willingness to 

manipulate, which is assumed to be proportional to the probability of success. Let us denote this by 

( , , ( ))stimulus i P P  and define as follows  

( )

( )

| |
,  if voter  has an incentive to -maniulate,

( , , ( )) | |

0, otherwise.

P

i

P

i

WS
i

stimulus i P P W











 


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Instead of a binary measure of manipulability for a preference profile as in 
1I , we set a 

number from the interval [0,1] , calculated as the maximum stimulus among all voters having an 

incentive to  -manipulate in this preference profile. Index 
3I  is a summation of such manipulation 

measures over all preference profiles normalized by ( !)nm . 

3( , , , )I m n F  is an aggregated voter stimulus to manipulation, calculated as follows 

3

( )

( , , , ) max( ( , , ( ))) / ( !)
N

n

i N
P L X

I m n F stimulus i P P m 




  . 

By definition, 
2 1( , , , ) ( , , , )I m n F I m n F   and 

3 1( , , , ) ( , , , )I m n F I m n F  . In the case of 

complete information, ( )P P  , all three indices are the same  

1 2 3( , , , ) ( , , , ) ( , , , )I m n Profile F I m n Profile F I m n Profile F 
.
 

Theorem 5. If SWR F is strongly computable from  -images, then 

1 2 3( , , , ) ( , , , ) ( , , , )I m n F I m n F I m n F    . 

Proof. Suppose, voter i  has an incentive to  -manipulate in P  by voting 
iP . Since F  is 

strongly computable from  -images, then ( ), P

i i iP P W 

 
    ( , ) ( , )F i i F i iC P P C P P 

   and 

( , ) ( )F i i i FC P P EPC P
 . 

Consequently, ( ) ( )P P

i iWS W   and ( , , ( )) 1stimulus i P P  . Obviously, if there is no i N , 

s.t. i  has an incentive to  -manipulate, then max( ( , , ( ))) 0
i N

stimulus i P P


 . Thus, 

3 1( , , , ) ( , , , )I m n F I m n F   and by Theorem 1, 1 1( , , , ) ( , , , )I m n F I m n Profile F  . By the 

argument provided above, if there is a voter having an incentive to  -manipulate in P , then his 

manipulation is successful in all preference profiles of his information set ( )P

iW  , including P . 

Therefore, 2 1 1( , , , ) ( , , , ) ( , , , )I m n F I m n F I m n Profile F   . Q.E.D. 

Further we consider indices 
2I  and 

3I  just for the plurality rule as the most typical example 

of a social choice rule. First, we find the limit of the aggregate stimulus measure for the Winner-PIF 

and 1Winner-PIF to compare it with the result of Theorem 2.  

Theorem 6. 3lim ( , , , ) 0n I m n Winner Plurality   under Leximin and Leximax PEMs. 

3lim ( , ,1 , ) 0n I m n Winner Plurality   with alphabetic tie-breaking rule. 
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Proof. Suppose that voter i  has preferences 
1 2 3...i i ma Pa Pa a . With both Leximin and Leximax 

PEMs voter i  has an incentive to  -manipulate in two cases: [1] a unique winner is an alternative 

from 
3 4{ , ,..., }ma a a ; [2] | ( ) | 1FC P   & 

1 ( )Fa C P . For Leximin there is a third one: [3] | ( ) | 1FC P   

& ( )j Fa C P  , 
j ma a . 

1) Consider case [1] and take alternative 
3a  as a winner. In ( )FC P

iW  there is a profile 
iP , s.t. 

the number of scores of the second best alternative 
2a  is one score less than of 

3a , 

2 3( , ( , )) ( , ( , )) 1i i i iS a P P S a P P 
   . Then voting for 

2a  either does not change anything, or leads to a 

tie 
2 3{ , }a a , which is more preferable than 

3{ }a  for voter i  by both Leximin and Leximax. The 

stimulus of voter i  for this manipulation, ( , , ( ))stimulus i P P , is the share of preference profiles 

\{ }( )N i

iP L X
  , s.t. 

2 3( , ( , )) ( , ( , )) 1i i i iS a P P S a P P 
    in the set of preference profiles s.t. 

3( , ) { }F i iC P P a
  . 

First, we consider sets of ballots 
1( ,..., )mn n  s.t. 

1 ... 1mn n n    , where 
jn  is the number of 

voters voting for the j -th alternative. 

1 1 3{( ,..., ) : ... 1, {1,... }\{3} }m

m m jB n n n n n j m n n         , 

1 1 1 3 2 3{( ,..., ) : ... 1, {1,... } \{3} , 1}m

m m jA n n n n n j m n n n n           . 

And then sum up the number of preference profiles for all ballots in the sets using function 

 . 

1

11

( ,..., ) 1

( ... )!
( ) (( 1)!)

!... !
m

nm

n n A m

n n
A m

n n
 



 
  , 

1( , , ( )) ( ) / ( )stimulus i P P A B   . 

Consider the following set: 

1 1 1{( ,..., ) : ... 1,  , ,  s.t. }m

m m i jA n n n n n i j n n        . 

The total number of preference profiles is ( !)nm . Thus, the share of preference profiles 

where plurality rule produces a tie is 
2( ) / ( !)nA m . Since the probability of any tie goes to zero 

[Gehrlein and Fishburn, 1981], 
2lim ( ) / ( !) 0n

n A m  . 
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Take a point from 
1A , 

1 2 2( , , 1,..., )mn n n n n  , and map it to the point form 
2A , 

1 2 2( 1, , ,..., )mn n n n n   . Therefore, for any point from 
1A  there is only one point from 

2A . 

2

1 2 2 4 1 2 2 4 1

1( ) ! !
0

( 1)! ! ! !... ! ! !( 1)! !... !( ) 1m m

nn n n

n n n n n n n n n nn n





 
  

  
, 

i.e. ( ) ( )n n   , and thus, 
1lim ( ) / ( !) 0n

n A m  . Since the probability of a tie between 

winners also tends to zero, lim ( ) / ( !) 1/n

n B m m   and  

1 1

1 1

( ) / ( !) ( )
lim lim 0

( ) / ( !) ( )

n

nn n

A m A

A m A

 

  
  . 

The share of preference profiles with a unique plurality winner where at least one voter has 

an incentive to Winner-manipulate tends to 1 (as shown in Theorem 3), but the stimulus to 

manipulation of this type tends to 0. 

2) Cases [2] and [3] assume a tie between some alternatives, a manipulating voter should 

vote for the best alternative in ( )FC P  in case [2] and for an alternative which is in ( )FC P  and is 

better than the worst alternative in ( )FC P . Although the stimulus to vote insincerely is 1 in these 

two cases, the share of preference profiles producing ties tends to 0. 

Finally, we get that 
3lim ( , , , ) 0n I m n Winner Plurality  under Leximin and Leximax PEM. 

3) If alphabetic tie-breaking is used and the winner is 
3a , then either [i] 

3( ) { }FC P a  or [ii] 

( ) 1FC P   and 
3( ) \{ }Fc C P a   

3 Ta P c . Voting for 
2a  again is a dominating strategy for voter i . In 

case [i] if 
3 2Ta P a , then the voter does not change anything, if 

3 2( , ) { , }F i iC P P a a
   and 

2 3Ta P a , then 

voter makes 
2a  a winner. In case [ii] the voter makes 

2a  a winner only if 
2 ( )Fa C P . Thus, the 

share of preference profiles where manipulation is successful is even less than under Leximin and 

Leximax PEM, and consequently, it also tends to 0. Q.E.D. 

 

5.1 Computational experiments  

To illustrate the difference between manipulability indices 
1I , 

2I , and 
3I , we conduct 

several computational experiments for plurality rule with 3 alternatives and the number of voters 

from 3 to 20. Fig. 24 is the legend, results are presented in Figs. 25–33. Since the plurality rule is 

strongly computable from  -images for Ballot-PIF, Positions-PIF, and Score-PIF, 2I  and 3I  for 
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these PIFs are equal to 
1( , , , )I m n Profile Plurality , the probability of manipulation under complete 

information (by Theorem 5). We do not calculate 
2I  and 

3I  for MG-PIF, because 

1( , , , )I m n MG Plurality  is almost always zero-valued.  

The index of manipulation success, 
2I , calculated for Rank-PIF and Winner-PIF turns out to 

be equal to 
1( , , , )I m n Profile Plurality . This means that if for voter i  there are preference profiles 

( )P

i iP W 


  , where manipulation is successful ( ( )P

iWS    ), then there is no such 
iP , where the 

same manipulation makes the voter worse off. Indeed, the plurality rule is computable from  -

images for these PIFs and monotonic, which means that the voter knows who wins and has 

opportunity to achieve a better outcome without the possibility of being worse off. Of course, this 

does not hold for WMG-PIF, 2 1( , , , ) ( , , , )I m n WMG Plurality I m n Profile Plurality , because the 

winner cannot be computed from a weighted majority graph and misrepresenting preferences could 

lead both to a better and a worse outcome. 

Indices 
2I  and 

3I  are almost always strictly lower than 
1I . Moreover, for Rank-PIF, Winner-

PIF, and 1Winner-PIF the difference between 
1I  and two other indices seems to become greater as 

the number of voters grows, since 
1I  gets closer to 1, while 

2I  and 
3I  decrease. 

In most cases the index of stimulus to manipulation 
3I  is lower for Winner-PIF than for 

Rank-PIF (and in case of alphabetic tie-breaking 
3I  for 1Winner-PIF is the lowest). This shows that 

the lack of information does not increase the manipulability measure, which takes into account the 

willingness of voters to manipulate. The most significant difference between 
1I  and 

3I  is for 

1Winner-PIF with alphabetic tie-breaking: more than 0.75 for 10n  . Finally, if a social choice rule 

is not computable from p -images, as in the case of WMG-PIF, then the indices of manipulation 

success and stimulus to manipulation are very low, and with an increasing number of voters can be 

regarded as negligible. 

 

 

Fig. 24. The legend for Figs. 25-33 
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Fig. 25. Leximin, Rank-PIF 

 

Fig. 26. Leximin, Winner-PIF 

 

Fig. 27. Leximin, WMG-PIF 

 

 

Fig. 28. Leximax, Rank-PIF 
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Fig. 29. Leximax, Winner-PIF 

 

Fig. 30. Leximax, WMG-PIF 

 

 

Fig. 31. Alphabetic tie-breaking, Rank-PIF 

 

Fig. 32. Alphabetic tie-breaking, Winner-PIF 
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Fig. 33. Alphabetic tie-breaking, 1Winner-PIF 

 

Fig. 34. Alphabetic tie-breaking, WMG-PIF 

 

Conclusion 

We studied the vulnerability of social choice rules to voter manipulations under incomplete 

information using the model of opinion polls. We realized that the fact of susceptibility of SCRs to 

 -manipulation is not enough and considered the probability of such manipulation to compare 

SCRs and the influence of different PIFs on manipulability.  

It turned out that many rules are susceptible to  -manipulation not only when they are 

strongly computable from  -images, but even when they are not computable from  -images. For 

example, information about a weighted majority graph allows for manipulation in about 40% of 

preference profiles. The values of the first manipulability measure with information about the 

winner grow very fast and approach 100% in some cases. Another interesting observation is that 

less information leads to greater manipulability for many rules. 

Thus, we also could not be satisfied with the analysis of the probability of  -manipulation, 

because it does not show what is behind the high values of the manipulability measure. The second 

manipulability measure we considered counts only preference profiles where manipulation is 

successful. For all parameters used in experiments we revealed that incomplete information does 

not influence the probability of manipulation success for the plurality rule when it is computable 

from  -images.  
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The third manipulability index measures the stimulus of voters to manipulate. For the 

plurality rule, the greater the growth of the manipulation probability, the less the aggregate stimulus 

to manipulation. In asymptotics, for an infinite number of voters, while the probability of the 

manipulation of the plurality rules is 1, the willingness of voters to manipulate is zero. For the PIF 

which does not allow to compute the winner, this index gives the least values among other PIFs.  

The analysis of manipulation under incomplete information made in this study allows us to 

view the problem from different perspectives. Importantly, it shows that a formal approach like the 

calculation of manipulation probability has its drawbacks: the values are high, but we do not see 

what kind of manipulation takes place. Another, more subjective, criterion may be needed which 

shows that manipulation is not such a dramatic problem as seemed earlier.  
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