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Dividing goods and bads under additive utilities∗

When utilities are additive, we uncovered in our previous paper [1] many similarities
but also surprising differences in the behavior of the familiar Competitive rule (with equal
incomes), when we divide (private) goods or bads. The rule picks in both cases the critical
points of the product of utilities (or disutilities) on the efficiency frontier, but there is
only one such point if we share goods, while there can be exponentially many in the case
of bads.

We extend this analysis to the fair division of mixed items : each item can be viewed
by some participants as a good and by others as a bad, with corresponding positive
or negative marginal utilities. We find that the division of mixed items boils down,
normatively as well as computationally, to a variant of an all goods problem, or of an all
bads problem: in particular the task of dividing the non disposable items must be either
good news for everyone, or bad news for everyone.

If at least one feasible utility profile is positive, the Competitive rule picks the unique
maximum of the product of (positive) utilities. If no feasible utility profile is positive,
this rule picks all critical points of the product of disutilities on the efficient frontier.
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1 Introduction

In our previous paper [1] we consider fair division of (private, divisible) items under lin-
ear preferences, represented for convenience by additive utilities. We explain there the
appeal of this domain restriction for the practical implementation of division rules vindi-
cated by theoretical analysis. We focus there on the Competitive Rule (aka Competitive
Equilibrium with Equal Incomes) to divide the items, and contrast its behavior when
we divide goods (assets, such as family heirlooms, real estate, land, stocks), and when
we divide bads (chores, workloads, liabilities, noxious substances or facilities). Several
normative properties of this rule are identical in both contexts, e. g., No Envy and a
simple version of Maskin Monotonicity that we call Independence of Lost Bids. However
the unexpected finding is that several aspects of the rule are very different in the two
contexts: dividing bads is not a mirror image of dividing goods. The Competitive Rule
picks a unique welfare profile when it divides goods, but for dividing bads it often pro-
poses many (up to exponentially many in the number of agents and bads) allocations
with different welfare consequences; in the former case the competitive welfare profile is
continuous in the marginal rates of substitution, in the latter case such continuity is not
feasible. Also the rule makes every participant benefit from an increase in the goods to
divide, a monotonicity property that is out of reach when we divide bads.

Here we generalize this analysis to fair division problems involving (non disposable)
mixed items, i. e., both goods and bads, or even items about which participants disagree
whether they are good or bad. An inheritance may include good and bad real estate
(e. g., heavily mortgaged or not), divorcing couples must allocate jewellery as well as
obnoxious pets, workers sharing a multiple jobs relish certain jobs and loath others; and
managers facing the division of onerous tasks may deliberately add some desirable items
to “sweeten” the deal of the workers.

For a start we show that, upon adapting the standard definition to allow for the
coexistence of positive and negative prices and for individual budgets of arbitrary sign,
the Competitive Rule is always non empty, and its basic normative properties (No Envy,
Independence of Lost Bids, Core from Equal Split1) are preserved.2

The status quo ante situation with nothing to divide delivers in our model zero utility
to each participant. If all items are good, any feasible allocation brings (weakly) positive
utilities, so that the arrival of the “manna” is good news for everyone; similarly the task
of dividing non disposable, undesirable items is a chore for everyone bringing weakly
negative utilities to all. With mixed items, some good, some bad, allocations where some
participants enjoy positive utility and others negative utility are of course feasible, and
some interpretations of fairness pick such divisions (see an example below). Remarkably

1Although in a slightly weaker sense, see Lemma 1.
2Note that existence follows from (much) earlier results about competitive equilibrium under satiated

(not necessarily linear) preferences such as [2]. Our proof in our special domain is however simpler and
constructive.
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the Competitive Rule never does: in any problem mixing goods and bads, either it weakly
improves the welfare of all agents above the status quo ex ante, or it weakly decrease
everyone’s welfare below this benchmark. The rule enforces a strong solidarity among
agents: the task of dividing any bundle of non disposable items is either unanimously
good news or unanimously bad news.

The result We call a problem positive if the zero utility profile is strictly below the
efficient utility frontier; negative if it is strictly above; and null if it is on this frontier.
In a positive problem the Competitive Rule (CR for short) picks the unique allocation
maximizing the Nash product of utilities among positive profiles: it behaves as if there
are only goods, selects a unique utility profile, and enjoys the same regularity and mono-
tonicity properties as in the all-goods case (within the class of positive problems). In a
negative problem the CR picks all the critical points of the product of disutilities over
the efficient negative profiles: it behaves as if there are only bads, in particular it may
pick many different utility profiles, and loses its regularity and monotonicity properties.
In a null problem the rule implements the null utility profile.

Note that the familiar Fair Share utility still sets a lower bound on each agent com-
petitive utility, but these utilities are no longer a useful benchmark as they can be of
different signs in the same problem (see an example below).

Some simple examples Here is a two-agent, two-item example where a is a good and
b is a bad:

a b
u1 4 −2
u2 1 −5

There is one unit of each item to share. So a is very good for agent 1 compared to b, while
b is very bad relative to a for agent 2.3 Fair Share utilities obtain by giving one half unit
of each item to each agent: UFS

1 = 1, UFS
2 = −2. The familiar Egalitarian Rule equalizes

the utility gains above this benchmark relative to the maximal feasible gain:

UER
1 − UFS

1

UMAX
1 − UFS

1

=
UER
2 − UFS

2

UMAX
2 − UFS

2

where UMAX
1 = 4, UMAX

2 = 1

Combined with Efficiency this gives UER
1 = 22

7
, UER

2 = −5
7
: see Figure 1. Thus the

division task is good news for agent 1 but not for agent 2. By contrast the Competitive
Rule focuses on the interval of strictly positive and efficient utility profiles corresponding
to the allocations

a b
z1 x 1
z2 1− x 0

where
1

2
≤ x ≤ 1

3Recall interpersonal comparisons of utilities are ruled out, only the underlying preferences matter.
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It picks the midpoint x = 3
4

with corresponding utilities UCR
1 = 1, UCR

2 = 1
4
, where agent

1 gets only her Fair Share utility.
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Figure 1: Competitive (circle) and Egalitarian (square) utility profiles for the first exam-
ple.

Our next example is a negative problem

a b
u1 4 −5
u2 1 −5

where the efficient allocations with strictly negative utility profiles cover the interval

a b
z1 0 x
z2 1 1− x

where
4

5
≤ x ≤ 1

so the competitive allocation is at x = 9
10

with utilities UCR
1 = UCR

2 = −1
2
, where again

agent 1 gets only her Fair Share utility. The ER utilities are UER
1 = 2

5
, UER

2 = −7
5
.

In Section 5 we compute the competitive division in a sequence of problems with two
agents, two bads, and a third item starting as a good and becoming increasingly bad. The
initial problem is positive, then becomes negative; the number of competitive allocations
takes all values from 1 to 4.

We stress another key difference between the Competitive and Egalitarian Rules, im-
plied by Independence of Lost Bids. If an object a is a good for some agents and a bad
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Figure 2: Competitive (circle) and Egalitarian (square) utility profiles for the second
example.

for others, efficiency implies that only the former agents eat it. The CR ignores the de-
tailed disutilities of the latter agents: nothing changes if we set those disutilities to zero,
so that a becomes a good. This means that we need only to consider problems where
items are either (at least weakly) good for everyone, or (at least weakly) bad for everyone.
Obviously this simplification does not apply to the ER.

2 The model

The set of agents is N with cardinality n, that of objects is A. A problem is P = (N,A, u ∈
RN×A) where the utility matrix u has no null column.

With the notation zM =
∑

i∈M zi, and eB for the vector in RB with eBb = 1 for allb,
we define a feasible allocation as z ∈ RN×A+ such that zN = eA. Let F(P) be the set of
feasible allocations, and Φ(P) the corresponding set of utility profiles. We always omit P
if it is clear from the context.

We call a feasible utility profile efficient if it is not Pareto dominated4; also a feasible
allocation is efficient if it implements an efficient utility profile.

The following two partitions, of N and A respectively, are critical:

N+ = {i|∃a : uia > 0}, N− = {i|∀a : uia ≤ 0}

A+ = {a|∃i : uia > 0}, A− = {a|∀i : uia < 0}, A0 = {a|max
i
uia = 0}

4That is U ∈ Φ(P), and if U ≤ U ′ and U ′ ∈ Φ(P), then U ′ = U .
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When no confusion may arise, we call an object in A+ good, one in A− bad, and one in
A0 neutral.

Definition 1: For any problem P a competitive division is a triple (z ∈ F , p ∈ RA, β ∈
{−1, 0,+1}) where z is the competitive allocation, p is the price and β the budget. The
allocation zi maximizes i’s utility in the budget set B(p, β) = {yi ∈ RA+|p · yi ≤ β}:

zi ∈ di(p, β) = arg max
B(p,β)

{ui · yi} (1)

Moreover zi minimizes i’s wealth in her demand set

zi ∈ arg min
di(p,β)

{p · yi} (2)

The Competitive Rule selects at each problem P the set CR(P) of all competitive alloca-
tions.

In addition to the usual demand property (1), we insist that an agent spends as
little as possible for her competitive allocation. This requirement appears already in
[2]: in its absence some satiated agents in N− may inefficiently eat some objects useless
to themselves but useful to others. For instance in the two agents-two item problem

u =
6 2
0 −1

the inefficient allocation z =
1/3 1
2/3 0

meets (1) for the prices p = (3
2
, 1
2
)

and budget β = 1. However z2 = (0, 0) guarantees the same (zero) utility to agent 2 and
costs zero, so it fails (2). The only competitive division according to the Definition is

z =
1 1
0 0

for p = (1
2
, 1
2
).

Check that in a competitive division we have

pa > 0 for a ∈ A+ ; pb < 0 for b ∈ A− ; pa = 0 for a ∈ A0 (3)

If the first statement fails an agent who likes a would demand an infinite amount; if the
second fails no one would demand b. If the third fails with pa > 0 the only agents who
demand a have uia = 0, so that eating some a violates (2); if it fails with pa < 0 an agent
such that uia = 0 gets an arbitrarily cheap demand by asking large amounts of a, so (2)
fails again.

Here is another consequence of (2), the importance of which is illustrated by the above
example:

∀a ∈ A+ : zia > 0 =⇒ uia > 0 (4)

Indeed if i eats some a ∈ A+ and uia = 0, she gets a cheaper competitive demand by
ignoring a; and if uia < 0 her allocation is not competitive (recall pa > 0).

We recall three standard normative properties of an allocation z ∈ F(P). It is Non
Envious iff ui·zi ≥ ui·zj for all i, j; it guarantees the Fair Share utilities iff ui·zi ≥ ui·( 1

n
eA)

for all i. It is in the Weak Core from Equal Split if for all S ⊆ N and all y ∈ RS×A+ such
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that yS = |S|
n
eA there is at least one i ∈ S such that ui · zi ≥ ui ·yi. When we divide goods

competitive allocations meet these three properties, even in the much larger Arrow-Debreu
preference domain.

Lemma 1 A competitive allocation is efficient; it meets No Envy, guarantees the Fair
Share utilities, and is in the Weak Core from Equal Split.

Proof.
Efficiency. The classic argument by contradiction can be adapted here. Let z be a
competitive allocation Pareto inferior to the feasible allocation y. Some agent i∗ strictly
prefers yi∗ to zi∗ which implies p · zi∗ < p · yi∗ by (1). So if we show p · zi ≤ p · yi for all i,
we contradict zN = yN by summing up these inequalities. Note that we can assume that
y itself is efficient which will be useful below.

First we have p · zi = β for i ∈ N+, or i could buy more of an object in A+ he likes;
moreover i prefers strictly zi to any yi such that p · yi < β, and weakly if p · yi ≤ β. So
p · zi ≤ p · yi for all i ∈ N+. It remains to show p · zj ≤ p · yj for all j ∈ N−.

We distinguish two cases. If β = 0,+1 we have uj · zj = 0 (the best feasible utility for
j) and uj · yj = 0 as well. At z agent j can only consume objects in A0: by (4) j eats no
item in A+ and eating in A− strictly lowers her utility; agent j eats no object in A+ at y
either by efficiency of y, and by uj · yj = 0 she eats nothing in A− as well. Objects in A0

are free ((3)) so p · zj = p · yj = 0.
Now if β = −1 an agent j in N− must eat some objects in A− that he dislikes hence his

competitive demand zj has p · zj = β and as above he strictly prefers zj to yj if p · yj < β:
so p · zj ≤ p · yj as desired.
Other properties. No Envy is clear and it implies Fair Share by additivity of utilities.
We use again the standard argument to check the Weak Core property. Assume coalition
S ⊂ N has an objection y to the competitive division (z, p, β) where everybody in S
strictly benefits. So y ∈ RS×A+ and ui ·zi < ui ·yi for all i ∈ S. If β = 0,+1, this inequality
is impossible for i ∈ N− because ui · zi = 0 (see above), so S ⊆ N+. Then we sum over S
the inequalities p · zi < p · yi to get

|S|β = p · zS < p · yS = p · |S|
n
eA

which contradicts p · eA = p · zN ≤ nβ.
If β = −1 we have p · zi = β for all i, which simplifies the argument.�

Remark 1: For positive problems a competitive allocation may fail the standard Core
from Equal Split property, where coalition S blocks allocation z if it can use its endowment
|S|
n
eA to make everyone in S weakly better off and at least one agent strictly more. This

is because “equal split” gives resources to the agents in N− that they have no use for.
Say three agents share one unit of item a with u1 = u2 = 1, u3 = −1. Here CR splits a
between agents 1 and 2, which coalition {1, 3} blocks by giving 2

3
of a to agent 1.

Remark 2: It is easy to check that CR meets Independence of Lost Bids, the translation
of Maskin Monotonicity under linear preferences: see the precise definition in [1]. Just as
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in Proposition 2 of that paper, CR is characterized by, essentially, combining this property
with Efficiency.

3 The result

The key to classify our problems when N and A are given is the relative position of the
set of feasible utility profiles Φ and the cone Γ(N) = RN+

+ × {0}N− , which can only be of

three types. Write the relative interior of Γ as Γ∗(N) = RN+

++ × {0}N− .

Definition 2 We call the problem P = (N,A, u)
positive if Φ(P) ∩ Γ∗(N) 6= ∅;
negative if Φ(P) ∩ Γ(N) = ∅;
null if Φ(P) ∩ Γ(N) = {0}.

We fix P and check that these three cases are exhaustive and mutually exclusive. This
amounts to show that Φ ∩ Γ∗ = ∅ and Φ ∩ ∂Γ 6= ∅ together imply Φ ∩ Γ = {0}. Pick
U non zero in Φ ∩ ∂Γ and derive a contradiction. Let Ui > 0 for the agents in P ⊂ N+

and Uj = 0 for those in Q = N+�P . If some i ∈ Q eats some a he likes (uia > 0), he
must also eat some b he dislikes (uib < 0): then let someone in P take a small amount of
b from i and we get a new U ′ ∈ Φ ∩ ∂Γ where P ′ is larger than P . If no j in Q eats any
a she likes (so she does not eat any she dislikes either), we pick any i ∈ Q and an item a
she likes; a must be eaten at U exclusively by some agents in P ∪N−; if some j ∈ P eats
a we let j give a small amount of a to i and we have found U ′ ∈ Φ∩ ∂Γ with a larger P ′;
if some k in N− eats some a we have uka = 0 so again k can give his share of a to i and
P increases. Repeating this construction until P = N+ we reach U ∈ Φ ∩ Γ∗, the desired
contradiction.

Given a smooth function f and a closed convex C we say that x ∈ C is a critical point
of f in C if the supporting hyperplane of the upper contour of f at x supports C as well:

∀y ∈ C : ∂f(x) · y ≤ ∂f(x) · x or ∀y ∈ C : ∂f(x) · y ≥ ∂f(x) · x

This holds in particular if x maximizes or minimizes f in C.

In the statement we write Φeff for the set of efficient utility profiles, and RN= for the
interior of RN− .

Theorem Fix a problem P = (N,A, u).
i) The problem P has a competitive division with a positive budget if and only if it is
positive. In this case an allocation is competitive iff it maximizes the product ΠN+Ui over
Φ ∩ Γ∗; thus the corresponding utility profile is unique, positive in N+ and zero in N−.
ii) The problem P has a competitive division with a negative budget if and only if it is
negative. In this case an allocation is competitive iff it is a critical point of the prod-
uct ΠN |Ui| in Φ that belongs to Φeff ∩ RN= . All utilities are negative in any competitive
allocation.
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iii) The problem P has a competitive allocation with a zero budget if and only if it is null.
In this case an allocation is competitive iff its utility profile is zero.

Note that the Theorem implies in particular that CR(P) is non empty for all P .

4 Proof

First we give a closed form description of the competitive demands per Definition 1, i. e.,
the solutions of (1) plus (2).

Lemma 2 Fix P a budget β ∈ {−1, 0,+1} and a price p such that pa > 0 in A+,
pb < 0 in A−, and pa = 0 in A0.
i) if i ∈ N− and β = 0,+1, the allocation zi ∈ RA+ is competitive iff ui · zi = 0 (for
instance zi = 0)
ii) if i ∈ N− and β = −1, zi ∈ RA+ is competitive iff p · zi = −1, zia = 0 on A+, zia > 0
on A0 only if uia = 0, and

{b ∈ A− and zib > 0} =⇒ |uib|
|pb|
≤ |uib

′|
|pb′ |

for all b′ ∈ A− (5)

iii) if i ∈ N+ the problem (1) has a bounded solution iff

uia
pa
≤ |uib|
|pb|

for all i ∈ N+, a ∈ A+, b ∈ A− (6)

Then the allocation zi is competitive iff p · zi = β, and zi meets (5) and the two following
properties:

{a ∈ A+ and zia > 0} =⇒ uia
pa
≥ uia′

pa′
for all a′ ∈ A+ (7)

{a ∈ A+, b ∈ A−, and zia > 0, zib > 0} =⇒ uia
pa

=
|uib|
|pb|

(8)

Statement i) is clear upon noticing that eating some object in A0 is free so that (2)
holds. For ii) observe that to meet the budget constraint i must be buying some b ∈ A−;
if i buys some a ∈ A+ she can increase her utility by buying less of b and of a; and (2)
still holds because objects in A0 are free. Property (5) simply says that she buys objects
in A− with the smallest disutility per unit of (fiat) money.

For statement iii) pick agent i in N+ and note that a budget balanced purchase of

both objects a ∈ A+ and b ∈ A− increases strictly i’s utility iff uia
pa

> |uib|
|pb|

, in which

case (1) has no bounded solution. As already noted in the proof of Lemma 1, i can buy
some object he likes in A+ with any slack budget, therefore p · zi = β, which implies (2).
Properties (5) follow as for agents in N− and (7) is similar. Finally if i eats both a ∈ A+

9



and b ∈ A−, inequality uia
pa

< |uib|
|pb|

implies that a budget neutral reduction of zia and zib
increases Ui: thus we need (8) as well. �

Proof of the Theorem
Step 1 : Statement i). Let P = (N,A, u) be a positive problem. We show that the max-
imization of the Nash product on Φ ∩ Γ finds a Competitive allocation with a positive
budget.
As Φ ∩ Γ is compact and convex, there is a unique U∗ maximizing in Φ ∩ Γ the product
ΠN+Ui; clearly U∗i > 0 for all i ∈ N+. Let z∗ be an allocation implementing U∗. By
efficiency the items in A0 are only eaten by agents in N+ and/or N−, who do not care
about them (uia = 0); this implies

∀i ∈ N+ : uiA0 · z∗iA0
= 0 (9)

(with the notation uiB · ziB =
∑

B uibzib).
By efficiency the items in A+ are eaten in full by N+ (property (4)); ditto for the items

in A− because for such items and any i ∈ N−, we have uia < 0 and U∗i = 0. We define
prices as follows:

∀a ∈ A+ : pa = max
N+

uia
U∗i

> 0; ∀b ∈ A− : pb = −min
N+

|uib|
U∗i

< 0 (10)

and pa = 0 on A0.
Pick any a ∈ A+ and i ∈ N+ eating a (such i exists by the argument above): then

uia > 0 by efficiency, so the FOC of the maximization program implies ∂
∂zja

ln(uj · z∗j ) ≤
∂

∂zia
ln(ui · z∗i ) ⇐⇒ uia

U∗i
≥ uja

U∗j
for all j ∈ N+. This is property (7). Checking (5) is similar:

assume i ∈ N+ eats b ∈ A− and recall uib < 0, so the FOCs give |uib|
U∗i
≤ |ujb|

U∗j
for all j ∈ N+.

Now we fix i ∈ N+ and apply (7), (5):

{a ∈ A+ and z∗ia > 0} =⇒ U∗i =
uia
pa

; {b ∈ A− and z∗ib > 0} =⇒ U∗i =
|uib|
|pb|

(11)

Summing up numerator and denominator over the support of z∗i (the items he eats) and
invoking (9) as well as pa = 0 on A0, we get

U∗i =

∑
A+
uiaz

∗
ia −

∑
A−
|uib|z∗ib∑

A paz
∗
ia

=
ui · z∗i
p · z∗i

=⇒ p · z∗i = 1

as required by Lemma 2.
If A− is non empty, there is at least one agent i ∈ N+ eating a ∈ A+ and b ∈ A−. For

any such i property (11) gives uia
pa

= U∗i = |uib|
|pb|

, which proves (8), and

for all a′ ∈ A+, b
′ ∈ A− :

uia′

pa′
≤ U∗i ≤

|uib′|
|pb′ |

10



implying (6).

Step 2: Statement i). Suppose the problem P = (N,A, u) has a competitive division
(z, p,+1). We show that P is positive and z maximizes the Nash product as in Step 1.

Because zi = 0 is in the budget set, all agents in N− must get zero utility. If they
consume anything, it must be an object in A0 by assumption (4). Each i in N+ can buy
some amount of any object, so at z her utility is positive: Ui = ui · zi > 0. Therefore P
is positive.

Fix i ∈ N+ and recall objects in A0, if any, have zero price (assumption (3)). Thus if
i eats some a ∈ A0 we have uia = 0, otherwise i benefits by simply stop eating a. This
gives uiA0 · ziA0 = 0 (as in (9)), and pA0 · ziA0 = 0 as well.

We also know that p is positive on A+ and negative on A−, and that p · zi = 1 for all
i ∈ N+ (by efficiency of z). Write the sets of objects i eats in A+ ∪ A−as A+(i) ∪ A−(i):
A+(i) is non empty because Ui > 0 (A−(i) can be empty). By Lemma 2 uia

pa
is constant

on A+(i), and equal to |uib||pb| on A−(i) if the latter is non empty. Thus this common ratio
is also

uiA+(i) · ziA+(i) + uiA−(i) · ziA−(i)
pA+(i) · ziA+(i) + pA−(i) · ziA−(i)

=
Ui
p · zi

= Ui (12)

(where the first equality uses uiA0 · ziA0 = pA0 · ziA0 = 0). Therefore

uia
Ui

= pa for all a ∈ A+(i);
|uib|
Ui

= |pb|for all b ∈ A−(i)

Then (7) implies uia
pa
≤ Ui for all a ∈ A+ while (6) implies Ui ≤ |uib|

|pb|
for all b ∈ A−. These

two facts together give for all i ∈ N+:

uia
Ui
≤ pa for all a ∈ A+ and

|uib|
Ui
≥ |pb| for all b ∈ A− (13)

From this we derive that U maximizes ΠN+Ui in Φ ∩ Γ, or equivalently that it is critical
for the product of utilities in Φ ∩ Γ: the restriction to N+ of any feasible utility profile is
below the hyperplane supporting ΠN+Ui at (the restriction of ) U :

for all U ′ ∈ Φ :
∑
i∈N+

U ′i
Ui
≤ n

Pick z′ ∈ F implementing U ′ and use (13) to compute (recalling that p is zero on A0)∑
i∈N+

ui · z′i
Ui

=
∑
a∈A

∑
i∈N+

uiaz
′
ia

Ui
≤

∑
a∈A+

∑
i∈N+

paz
′
ia −

∑
a∈A−

∑
i∈N+

|pb|z′ib =
∑
a∈A

pa = n

Step 3: Statement ii). Let P = (N,A, u) be a negative problem. We show there exists a
critical point U∗ of the product ΠN |Ui| in Φ that belongs to Φeff ∩ RN= . The profile U∗
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we construct maximizes this product on Φeff ∩ RN− , and any allocation z∗ implementing
it is competitive.
Substep 3.1: If U∗ ∈ Φeff ∩ RN= is a critical point of ΠN |Ui| in Φ, then any z∗ imple-
menting U∗ is competitive.

We pick an allocation z∗ implementing U∗ and mimick the argument in Step 1 above.
While objects in A+ are still eaten exclusively by N+, those in A− are eaten by anyone
(and everyone eats at least one object in A−). If a ∈ A+ and z∗ia > 0 for i ∈ N+, a transfer
of some a from i to j ∈ N+ leaves the allocation on the same side of H as Φ, i. e., below:
this implies uia

|U∗i |
≥ uja
|U∗j |

; if z∗ib > 0 for b ∈ A− (and i ∈ N), we consider similarly a transfer

of some b from i to j to get |uib||U∗i |
≤ |ujb|
|U∗j |

. Then we define p in A+ ∪ A− as in (10), upon

replacing U∗ by |U∗| and minimizing over all N instead of just N+ when defining p in
A−. The analog of (11) follows, with the same changes, and the same computation yields
p · z∗i = −1, this time for all i.

Setting pa = 0 on A0, we now use Lemma 2 to check as in Step 1 that z∗i is i’s
competitive for p and β = −1.

Substep 3.2: We show that the profile U∗ maximizing ΠN |Ui| in Φeff ∩ RN− is a critical
point of this product in Φ (and is in RN= ).

We have ui · eA < 0 for every i ∈ N , else the allocation zi = eA yields utilities in Γ.
Consider the set F of utility profiles dominated by Φ: F = {U ∈ RN− |∃U ′ ∈ Φ : U ′ ≤ U}.
This set is closed and convex, and contains all points in RN− that are sufficiently far from
the origin: any U ∈ RN− such that UN ≤ mini ui · eA is dominated by the utility profile of

z : zi = |Ui|
|UN |

eA, i ∈ N .

Fix τ ≥ 0 and consider the upper contour of the Nash product at τ : K(τ) = {U ∈
RN− |ΠN |Ui| ≥ τ}. For sufficiently large τ the closed convex set K(τ) is contained in F .
Let τ0 be the minimal τ with this property. Negativity of P implies that F is bounded
away from 0 so that τ0 is strictly positive. By definition of τ0 the set K(τ0) touches the
boundary of F at some U∗ with strictly negative coordinates. Let H be a hyperplane
supporting F at U∗. By the construction, this hyperplane also supports K(τ0), therefore
U∗ is a critical point of the Nash product on F : that is, U∗ maximizes

∑
i∈N

Ui

|U∗i |
over

all U ∈ F . So U∗ belongs to Pareto frontier of F , which is clearly contained in the
Pareto frontier of Φ Thus U∗ is a critical point of the Nash product on Φ and belongs to
Φeff ∩RN= . Any U in the interior of K(τ0) is clearly dominated by some U ′ in K(τ0) ⊂ F ,
hence by some U ′′ ∈ Φ ∩ RN− : so U∗ maximizes the Nash product on Φeff ∩RN

− .
Remark 3: Note that the supporting hyperplane H to Φ at U∗ is unique because it is

also a supporting hyperplane to K(τ0) that is unique. This means that U∗ belongs to a
face of a polytope Φ of maximal dimension.

Step 4: Statement ii). Suppose the problem P = (N,A, u) has a competitive division
(z, p,−1). We show that P is negative and the corresponding utility profile U is a critical
point of the product ΠN |Ui| in Φ that belongs to Φeff ∩ RN= .

The utility of any agent in N− at z is negative: goods in A0 are free ((3)), he does not

12



eat any object in A+ ((4)), and his budget is negative. Applying Lemma 2 to an agent

in N+ we see, as in Step 2, that the ratio uia
pa

is constant on A+(i), and equal to |uib||pb| on

A−(i) The same computation (12) gives uia
pa

= |uib|
|pb|

= Ui

p·zi = −Ui, so Ui < 0 in N+ as well.

By Lemma 1 the negative profile U is efficient, so Φ cannot intersect � and P is negative.
We derive now the criticality of U for ΠN |Ui|much like we did in Step 2. The difference

is that now everyone eats some object in A−, and i in N+ may or may not eat some object
in A+ (but i in N− still doesn’t).

From |Ui| = uia
pa

on A+(i), = |uib|
|pb|

on A−(i) we get (2) (for all i, and with |Ui| instead

of Ui). Because any i ∈ N must eat some b∗ in A−, properties (5) and (2) yield |Ui| =
|uib∗ |
|pb∗ |
≤ |uib|
|pb|

for all b ∈ A−. Then (6) gives uia
pa
≤ |Ui| for all a ∈ A+, and this implies the

analog of property (13): for all i ∈ N

uia
|Ui|
≤ pa for all a ∈ A+ and

|uib|
|Ui|
≥ |pb| for all b ∈ A− (14)

The criticality of U ∈ Φeff ∩ RN= for ΠN |Ui| in Φ means now that all feasible utility
profiles are below the hyperplane supporting ΠN |Ui| at U

for all U ′ ∈ Φ :
∑
i∈N

U ′i
|Ui|
≤ −n

(but this time U does not maximize ΠN |Ui| on all of Φ). The derivation of this inequality
from (14) proceeds exactly as in Step 2.

Step 5: Statement iii). Let P = (N,A, u) be a null problem. We show there exists a price
p such that (z, p, 0) is competitive iff ui · zi = 0 for all i.

As Φ ∩ Γ = {0} we can separate the projection of Φ on RN+ from RN+

+ : there exists

λ ∈ RN+

+ �{0} such that
∑

i∈N+
λiUi ≤ 0 for all U ∈ Φ. If λi = 0 for some i ∈ N+ we pick

j ∈ N+ such that λj > 0 and the allocation where j eats an object she likes and i eats all
the rest yields a contradiction. Thus λ is strictly positive.

Pick any z∗ ∈ F implementing U = 0: it is efficient therefore uiA0 · z∗iA0
= 0. We have

z∗ ∈ arg max{
∑
N+

λi(ui · zi)|z ∈ F} =

= arg max {
∑
a∈A+

(
∑
N+

λiuiazia)−
∑
b∈A−

(
∑
N+

λi|uib|zib)|z ∈ F}

We define the price p as

∀a ∈ A+ : pa = max
N+

λiuia; ∀b ∈ A− : pb = −min
N+

λi|uib|

13



and as usual p = 0 in A0. Clearly p is positive on A+and negative on A−. On the support
of z∗i we have

∀a ∈ A+ ∪ A− : z∗ia > 0 =⇒ pa = λiuia (15)

implying p · z∗i = λi(ui · z∗i ) = 0. The definition of p implies pa ≥ λiuia and |pb| ≤ λi|uib|
for all i ∈ N+, a ∈ A+, b ∈ A−. This implies (6) at once; together with (15) it gives (7);
the proof of (5) and (8) is similar.

Step 6: Statement iii). Suppose the problem P = (N,A, u) has a competitive division
(z, p, 0). We show that P is null.

Let U be the utility profile of z. Clearly Ui = 0 for i ∈ N−. Fix i ∈ N+ such that
zi 6= 0: because p · zi = 0 (Lemma 2) i must eat at least one object in A+ and one in A−.

By Lemma 2 again we have uia
pa

= |uib|
|pb|

for all a ∈ A+(i), b ∈ A−(i). Writing 1
λi

for this
common ratio, we have

ui · zi =
1

λi
(p · zi) = 0

and we conclude U = 0. As U ∈ Φeff the intersection Φ ∩ Γ contains nothing more.
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Appendix: a monotonic sequence of examples

We have N = {1, 2}, A = {a, b, c} and

a b c
u1 −1 −3 λ
u2 −2 −1 λ

and λ takes all integer values from 4 to −3. The first two problems, for λ = 4, 3 are
positive; for λ = 2 the problem is null, then negative from λ = 1 to −3.
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