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1. Background and motivation

Analysis of rankings and tied rankings as a topic in data analysis is receiv-
ing increasing attention, especially in relation to automated decision making
and search. Considered initially as a model for human judgment in psychol-
ogy, ranking came to the attention of social scientists as a basis for voting and
other social decisions. It was next adopted in economics as a model of utility
and rational choice. Rankings are currently used in many areas of computa-
tional data analysis and decision making. Among abundant examples are: or-
dering alternatives in collaborative filtering, document ranking in information
retrieval engines, similarity scoring of protein sequences in bioinformatics,
and league tables in sports and in higher education. Important sources of such
ranked data are social surveys in which respondents are asked to classify al-
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ternatives using an ordered set of categories, such as “strongly agree”, “agree”,
“neutral”, “disagree”, ”strongly disagree”. This type of scale is widely used
for scoring the strength of complex phenomena, such as winds, earthquakes
and sentiment expressions in texts.

The topic of comparing tied rankings was initiated by Charles Spearman
(a junior collaborator of the founding fathers of multivariate statistics, Fran-
cis Galton and Karl Pearson), who was hired to further pursue the golden
dream of Galton, a proof that human talent is inherited from one's parents and,
partly, from even more distant ancestors. Although ranking is non-quantita-
tive, Spearman proposed using ranks as numerical values, so that the Pearson
correlation coefficient could be employed. This is straightforward when the
observations being compared are linearly ordered. However, different obser-
vations can sometimes be assigned the same numerical rank value, which led
to the introduction of the term “tied observations”, subsequently replaced by
“tied rankings”. Formally, a tied ranking can be represented as an ordered par-
titionR=(R,R,, ..., Rp), that is, a partition whose parts are linearly ordered
by their indices 1, 2,..., p. We say that an element i precedes an element j in
the tied ranking R if the part containing i precedes the part containing j.
A clear-cut case of an ordered partition is given by the rank features in social
surveys, as mentioned above. There is a difference between tied rankings and
ordered partitions by rank features: as the number of objects grows, the length
of a tied ranking will grow accordingly, whereas the number of categories of



a feature and, thus, parts in the corresponding ordered partition, remains con-
stant. However, this difference plays no role in this text, as we do not consid-
er processes in which the numbers of objects grow.

Despite the use of the Pearson correlation coefficient for non-metric judge-
ments having no theoretical foundation, it took another 35 years to develop a
more satisfactory approach. In 1938, Maurice Kendall introduced a different
representation for rankings by using the relation of precedence between ranks
rather than the ranks themselves. Given a tied ranking R, we define a square
observation-to-observation matrix (the Kendall matrix) in which the (i, j) en-
try is +1 if i precedes j in R, 0 if i and j have the same rank, or —1 if j precedes
i. The Kendall rank correlation coefficient between two tied rankings is the
Pearson correlation coefficient between the corresponding Kendall matrices,
considered as vectors in an NxN-dimensional space, where N is the number
of observations. This accords with the non-quantitative nature of tied rank-
ings. The 20th century saw intense work on the analysis of the relationship
between the Kendall and Spearman correlation coefficients; these were prov-
en to be asymptotically equivalent under conventional statistical assumptions
[Lehmann and D’Abrera 2006]. This is also compatible with the finding that
metrics based on the Spearman and Kendall representations are nearly equiv-
alent, that is, their ratio always lies in a fixed finite interval [Diaconis and
Graham 1977]. Yet the similarity between them should not be overempha-
sized: in a more recent investigation, for a model in which a bivariate Gaus-
sian distribution is contaminated with a dose of high variation noise, these
two rank correlation coefficients were found to behave differently [Xu et al.
2013].

In the 1950s, John Kemeny approached the issue of comparing rankings
from a social consensus perspective. Given a set of ordered partitions, a con-
sensus ordered partition should represent the major tendency in the set. A con-
ventional approach, the majority rule, may fail when determined by voting on
pairs of alternatives. Specifically, the so-called Condorcet paradox holds: if
there are three parties at a meeting, each supporting one of three cyclically
related linear orderings of three alternatives, say, (a) ijk, (b) jki, and (c) kij,
respectively, then the majority rule would lead to a cycle in the precedence
relation: i would precede j because this is so for the majority, (a) and (c); sim-
ilarly, j would precede k, and k would precede i. This contradicts the require-
ment that the precedence relation corresponding to the majority consensus
ranking should be transitive. This paradox is a basis of the celebrated “social



choice impossibility theorem” by Kenneth Arrow (see, for example, [Ales-
kerov and Monjardet 2002]).

John Kemeny proposed a different definition for consensus ranking using
a distance measure between tied rankings. Rather than defining any specific
distance measure ab initio, he formulated four axioms that should hold for any
admissible distance measure. These axioms led Kemeny to derive the unique
distance measure satisfying them. The Kemeny distance turned out to be the
L1 distance between the Kendall matrices (see [Kemeny and Snell 1962] for
a convincing exposition).

One of the current co-authors was so motivated by this derivation that he
proceeded to extend this to unordered partitions as embodiment of nominal
features. The world had moved on by then and was becoming more receptive
to minority rights. For example: everybody knows that most people are “ear-
ly birds”, whereas some are “owls” preferring working long evenings and
waking up late; thus the normative rule that “the early bird catches the worm”
was changing to a less restrictive motto: “no matter which, early bird or owl,
just behave accordingly”. This idea underlied the move from rankings to par-
titions and developing what later was called Mirkin's distance between parti-
tions, extended later to ordered and structured partitions [Mirkin, Cherny 1970,
Mirkin 1974]. An extension of the Arrow’s impossibility theorem to arbitrary
classes of binary relations, as well as some other results, followed [Mirkin
1974]. Then E.M. Braverman (1932-1977), one of the leaders of early Rus-
sian data analysis and machine learning developments, advised Boris Mirkin
to write a monograph on social choice for the Soviet research community,
bringing together his results and the body of knowledge that had been deve-
loped internationally: “This subject is getting popular, and it would be a good
idea to show to our "cognoscenti’ that there is no point in reinventing the
wheel,” he said. Subsequently, the monograph [Mirkin 1974, English trans-
lation 1979] did play a role in making the mathematics of group choice to be
known in the USSR and in the Soviet bloc as a whole. In that monograph, a
joint geometric space of ordered and unordered partitions was considered us-
ing the corresponding weak order and equivalence relations on the set of ob-
servations. The distance was introduced as the mismatch, or symmetric dif-
ference, distance between the binary relations as subsets of the Cartesian prod-
uct of the set of objects with itself. This distance can also be expressed as the
L1 distance, or Hamming distance, between the 0-1 matrices of the relations.
Unfortunately, the differences between the mathematical structures of rank-
ings and the corresponding binary relations were glossed over in [Mirkin
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1974]. The ordered partitions were only considered via the corresponding bi-
nary relations. On the one hand, this was useful because of the greater flexi-
bility of binary relations (being just subsets of ordered pairs) over tied rank-
ings (being ordered sets of subsets). For example, the binary relation perspec-
tive allowed a reinterpretation of Arrow’s impossibility theorem by using the
fact that the set-theoretic union of transitive binary relations is not necessar-
ily transitive. On the other hand, the suppression of the ranking aspects led to
ignoring the ways international developments were proceeding. For example,
the fact that the mismatch and Kemeny distances were equal, although well
known to the author (see [Mirkin and Cherny 1972]), was never proven, nor
even formulated, in the book. This perhaps resulted in the distance between
preference relations being excluded from the current ranking research dis-
course. The binary relations related to rankings play a more or less hidden
role and are just used as auxiliary constructions in the derivations; [Fagin et
al. 2006] can be considered a representative example of this.

This report is aimed at bringing the distance between binary relations back
onto the scene. Therefore, we formulate the Kemeny approach in terms of bi-
nary preference relations, the so-called weak orders, and derive some proper-
ties of the Kemeny consensus (or median) that so far have not appeared in the
international literature. These include, in particular, the following:

(i) A proof that the Kemeny distance between rankings is, in fact, the
mismatch distance between the corresponding weak-order binary relations.
The importance of this result stems from the fact that the former involves
Kendall object-to-object matrices with three possible values for the entries:
1 for preceding, —1 for following, and O for a tie; whereas the latter involves
only two: 1 for the presence and 0 for the absence of a pair in the binary rela-
tion. This makes the result rather counter-intuitive.

(i1) Explicit statements of some of the properties of the distance, espe-
cially those regarding the relationship between weak orders and their induced
equivalence relations, using the ternary relation “between” on the set of bi-
nary relations and the notion of “refinement” on the set of tied rankings.

(iii) An explicit reformulation of the Kemeny consensus criterion in terms
of the relational summary matrix, analogous to the so-called consensus ma-
trix in the problem of consensus clustering (see, for example, [Mirkin 2012]).
In contrast to the analysis of consensus clustering, however, the (i, j) entry in
this consensus matrix is not simply the number of partitions for which ele-
ments i and j belong to the same part, but also includes the number of rank-
ings for which i precedes j. The problem, which involves the subtraction
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of a threshold, is equivalent to maximizing the sum of the consensus matrix
entries minus the number of pairs in the corresponding equivalence relation
(sometimes referred to as the partition concentration index), weighted with a
penalty defined by the threshold. The subtracted part plays the role of a natu-
rally emerged regularizer. Of course, the regularizer does not affect the solu-
tion if it is restricted to a class of ranked partitions for which the partition
concentration index is constant, like, for example, the class of linear rankings
with no ties.

(iv) The sensitivity of the Kemeny median concept is tested by extending
the so-called Muchnik test from the case of unordered partitions [Mirkin 2012]
to the case of ordered partitions. Specifically, we apply the concept of median
to the Likert scales popular in Psychology [Likert 1932]. Given an ordered
partition R =(R,R,, ..., R), the Likert scale replaces R by the set of binary
ordered partitions S' (t =1, 2, ..., p — 1) that separate the union of the first t
parts of R from the rest. The question then arises as to whether R is a median
for the set of binary rankings S'(t=1, 2, ..., p — 1), as one might expect, or
not. Perhaps surprisingly, it turns out that it is one of the “coarse” binary rank-
ings S' that is a median, rather than R itself.

The remainder of the report is structured as follows. In Section 2 we de-
scribe the mathematical structures of tied rankings (ordered partitions) and
the corresponding weak orders. This includes the operation of intersection and
a ternary relation “between”. In Section 3 we analyse distances between rank-
ings and between weak orders, including a proof that the Kemeny distance
between rankings and the mismatch distance between weak orders are equal.
Various expressions for the distance in terms of the elements of the contin-
gency table are reviewed, and its representation as the sum of the “ordered”
and “unordered” components is precisely formulated. In Section 4 we describe
the Kemeny median consensus rankings in terms of a related “triangulation”
problem, with a specific emphasis on the penalty coefficient and its effect on
the distribution of the median ordered partition. We also demonstrate that the
median is rather insensitive to the granularity of ties in the raw rankings. To
this end, we utilize the Muchnik test from the theory of consensus clustering
[Mirkin 2012], and apply it to the median ordered partition. Specifically, we
analyse what median would emerge as a consensus for dichotomous versions
of the Likert scale: unfortunately, as mentioned above, this is nothing more
granular than one of the central binary rankings. Section 5 concludes the re-
port.



2. Ordered partitions and preference relations

a. Characterization of the preference relation for an ordered partition

Given a finite set A of N elements, a collection of its subsets R = {R ,R,,
R} is referred to as a partition if the subsets R are all non-empty, non-over-
lapping, and cover the entire set A, so that each iEA belongs to a unique sub-
set R, 1 <s<p. The subsets are called the parts of the partition R. A partition
is said to be ordered if there is a linear order relation of precedence between
its parts, R <R, that is transitive, anti-reflexive and complete. If the order co-
incides with the natural order between indices 1,2,..., p, we use parentheses
to denote this, viz. R =(R,R,,.. .,Rp). In Decision Theory, an ordered parti-
tion is referred to as a tied ranking. In Computer Science, the terms “partial
ranking” and “bucket partition” have sometimes been used [Fagin et al. 2006].
We consider that the term “partial ranking” should apply according to usage
in the mathematical theory of partial orders: when the precedence relation bet-
ween parts is not complete, so that for some distinct s and t, the precedence
between R and R is not defined. We do not consider here this type of partial
ranking.

Each ordered partition R = (R,R,, ..., R ) generates a binary preference
relation

p={(@,)):i€R, jER, and s=t}. @)

Usually, two non-overlapping binary relations are defined with respect to
atiedrankingR=(R,R,,...,R)): the strict preference relation P= {(i,j): i€R,
JER,, and s<t} and the indifference relation E = {(i,j): 1,)€R for somes }. The
indifference relation E here is transitive, reflexive and symmetric, thus E is
the equivalence relation corresponding to the unordered partition R having
the same parts as R. Obviously, p=P U E, that is, p in (1) is a non-strict pref-
erence relation in which the strict preference and indifference relations are
merged together. Usually, researchers try to avoid such a “mix”; but we will
see later that there is no problem with this merger. The next part of this sec-
tion is a brief reminder of some conventional concepts and facts about pref-
erence relations (see, for example, [Steele and Stefansson 2015]).

If p is a binary relation, its inverse p™' is defined as p! = {(i,j)): (j,)E p}.
If p is the preference relation corresponding to a tied ranking R =(R,R,,...,
R), then its inverse p! corresponds to the reverse tied ranking R™! = R
R,, R)). It is easy to see that the indifference relation E corresponding to any



tied ranking R satisfies E= p M p'. Thus, the strict preference relation is the
difference P= p-E=p - p'..

It is clear that p in (1) is

— Reflexive, that is, (i,1) € p for any iEA,

— Transitive, that is, if (i,j) € p and (j,k) € p, then (i,k) € p for any

1,j,k €A, and

— Complete, that is, (i,j) € p or (j,1) € p, or both, for any i,j € A.

Of course, reflexivity can be considered as the special case of complete-
ness for which i = j. A binary relation satisfying these properties is usually
referred to as a weak order [Steele and Stefansson 2015]. In fact, a converse
statement also holds:

Theorem 1. A preference relation p corresponds to an ordered partition R
if and only if it is a weak order.

Proof. Let p be a binary relation on the set A that is reflexive, transitive
and complete. Consider any i € A and define the subset p(i) = {J€ A: (i,)) €
p}. Then, for any pair i,k € A, if (1,k) € p then p(k) € p(i). This holds be-
cause whenever j € p(k), i.e. (k,j) € p, then (i,j)E p also, because p is transi-
tive. Therefore, since p is complete, for any pair i,k € A, either p(k)Sp(i) or
p(1)ESp(k), or both. It follows that the collection of sets p(i) is linearly ordered
by set-theoretic inclusion, so they can be ordered as a sequence of sets
St (t=1,2,..,p), where S DS O. DS Then the subsets R = S - S,

=1,2,..., p —l,andR = S form an ordered partitionR=(R,R,,...,R)).
It is qulte easy to check that 1ts corresponding preference relatlon (1) coin-
cides with the given relation p. The reverse implication, that the relation (1)
corresponding to an ordered partition is reflexive, transitive and complete, has
already been established above. This completes the proof.

Corollary 1. The subsets R =S - S in the proof each satisfy R = p(i)
N pl(i) for some iEA.

Corollary 2. A binary relation p is a weak order if and only if its strict part
P is anti-reflexive and transitive, its indifference part E is an equivalence re-
lation, and P, P!, E form a partition of the Cartesian product AxA.

b. Refinement and betweenness

A tied ranking R’ is a refinement of a tied ranking R if it is obtained from
the latter by subdividing some of its parts into smaller ones, and some order-
ing is defined between the smaller parts of each subdivided part of R. The
corresponding preference relations, p’ and p, are related by set-theoretic in-
clusion:



Theorem 2. A tied ranking R’ is a refinement of a tied ranking R if and
only if p' C p.

Proof. Indeed, if R’ is arefinement of a tied ranking R then, for some pairs
i, j of elements of A such that both (i,j) € p and (j,i)E p, only one of these
holds for p’. Conversely, suppose that p and p’ correspond to tied rankings R
and R, respectively, and that p’ C p. Then p'(i) € p(i) for any i€A, and, more-
over, the inclusion is proper for some i€A. Consider any suchi. Let {il, i2,...,
ik} be a maximal subset of A such that p(i) D p'(il ) D p'(i2) D... D p'(ik).
Then, by Corollary 1, every equivalence class R’ = p'(iu) N p"'(iu) will be
part of the equivalence class R = p(i) N p~'(i) , which completes the proof.

We say that p is coarser than p’, if p’ is a refinement of p.

A binary relation t on A is said to be between binary relations p and p’ if
and only if pNp’ €t C pUp’ [Mirkin 1979 ]. A tied ranking T is said to be
between tied rankings R and R’ if, for any i, JEA, the ordering between them
in T is compatible with their ordering in both R and R": that is, (i) if i precedes
jin both R and R’ then i precedes j in T; (ii) if i precedes j in one of R and R’,
and i and j are indifferent in the other, then i either precedes j or is indifferent
toj in T; (iii) if i and j are indifferent in both R and R’, then i and j are indif-
ferent in T; lastly, (iv) if i precedes j in R but j precedes i in R’, then anything
can be true of the ordering between i and j in T: i may precede j, or j may
precede i, or i and j may be indifferent in T [Kemeny and Snell 1962]. It fol-
lows that T is between R and R’ if and only if the same is true for their weak
orders, as stated in the following theorem.

Theorem 3. A preference relation T on A, corresponding to the tied rank-
ing T, is between preference relations p and p’, corresponding to tied rankings
R and R’, if and only if T is between R and R'.

For preference relations p and p’ corresponding to tied rankings R and R,
usually neither pNp’ nor pUp’ corresponds to a tied ranking. There is a class
of situations, however, for which the intersection does correspond to a tied
ranking. We say that R and R’ are concordant if there exists a linear ordering
that is a refinement of both R and R’; so the parts of both are just intervals of
the underlying linear ordering. In this case, pNp’ does correspond to a tied
ranking and the equivalence classes corresponding to pMp’ are formed by the
non-empty intersections of these intervals of the linear ordering.

In the general case of two arbitrary tied rankings R and R’, the relation
pNp’ is a partial preference relation because there can be i, j € A such that i
strictly precedes j in R, whereas j strictly precedes i in R’, so that neither (i,))
nor (j,i) belongs to pMNp’. Such a case, which is not uncommon, is exempli-
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fied by a proverbial question: “What is better: being poor but healthy or being
rich but ill?” (with a proverbial answer that to be both rich and healthy is bet-
ter indeed.)

What is appealing about pMp' is that its indifference relation is always an
equivalence relation, thus corresponding to the partition that is just the inter-
section of the unordered partitions R and R’ corresponding to the ordered par-
titions R and R’, respectively. The intersection R N R’ is the partition of A in
which the parts are the intersections R MR/ of some part R of R and some
part R ¢ of R’ for which R_and R are not disjoint.

R R R R R

1 2 3 4 s

R/ | g, | RO, | R/MR, | R/AR, | R/OR,

R, | R/NR, | R;/NR, [ R;NR, | R/NR, | R,/NR,

R, | R/NR, | R/NR, | R/NR, | R/NR, | R/NR,

R, | R/NR, | R/NR, | R;NR, | R/NR, | R,/NR,

Figure 1. A visual representation of the intersection of two tied rankings R'NR,
where R’ relates to rows and R to columns. It is assumed that the rows and columns
are permuted according to the rankings Rv and R, respectively

Both ordered and unordered intersections can be visualized as a block ma-
trix in which the blocks are formed by the subsets of rows and columns cor-
responding to the parts of the ordered partitions R’ and R, respectively (see
Figure 1). Of course, the blocks of the intersections are only partially ordered
so that, for example, blocks R,'MNR, and R,'MR are not comparable. Howe-
ver, a linear order can be imposed naturally by ordering the blocks first by
rows and then by columns, so that any block of the first row precedes the
blocks in all other rows. This is the so-called lexicographic product R'+R in-
troduced in [Mirkin 1979]. Similarly, an alternative lexicographic product
R#R’ is defined by ordering blocks first by columns and then by rows. Curi-
ously, in the ordered series R’, R'*R, R*R’ and R, the middle term of each tri-
plet is between the other two [Mirkin 1979]. A similar statement holds for the
corresponding relations p’, p"+p, p*p” and p.

11



3. Matrix representation of preference relations
and distance between them

a. Correlation by Spearman and Kendall

Consider the Spearman rank correlation, that is, the Pearson correlation
coefficient between ranks taken as numerical values. To deal with the case of
tied rankings, each element of an equivalence class of indifference is assigned
with the average within-class rank. The average rank of the elements in part
R, of the tied ranking R = {R, R,, ... , R} is L + (IR [+1)/2, where L is the
cardinality of R UR,U ... UR_,, and |-| denotes the number of elements in a
set. The Kendall rank correlation is based on the representation of tied rank-
ings on A by NxN matrices. Given a tied ranking R and the corresponding
preference relation p = P U E, we now define a skew-symmetric matrix
K= (k,), for i, JE A, such that k, = 1if (i,j) € P, k, = 0 if (i,j) € E, and
kij = -1, if (j,i) € P. The Kendall rank correlation coefficient between R and
R’ is the correlation coefficient between their Kendall matrices, K and K/,
considered as vectors in an N?-dimensional space. This is compatible with the
non-quantitative nature of tied rankings, especially since the mean of a skew-
symmetric matrix is always 0.

It should be noted that, soon after the Kendall matrix was defined, a some-
what similar skew-symmetric representation for quantitative features was pro-
posed by Daniels [Daniels 1944], who proved that, given a quantitative fea-
ture x on A, the matrix X = (xij), where X; = X; - X, can be used to represent
the feature in statistical computations. For example, the inner product of the
matrices X and X' corresponding to features x and x’ is proportional to the in-
ner product of x and x' after they have been centred by subtracting their means,
viz. <X,X'>=2N<x-m(x), x'-m(x")> , where m(x) is the mean of x. This
implies that the correlation coefficient between X and X' is equal to the cor-
relation coefficient between x and x'. Therefore, the Spearman rank correla-
tion coefficient can also be defined as the Pearson correlation coefficient be-
tween the corresponding matrices of rank differences (rij), where r,=r-1,
The Kendall matrix is then just the matrix of signs in the Daniels matrix X =
(x;), where x; =x, - x.. The past century saw intense work on the analysis of
the relationship between the Kendall and Spearman correlations; these were
proven to be asymptotically equivalent under conventional statistical assump-
tions (see, for example, [Lehmann and D’Abrera 2006]).
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b. Kemeny distance

Rather than defining an ad hoc distance measure, Kemeny formulated four
axioms that should hold for any acceptable distance measure d(R, R") between
rankings R and R'. These axioms require that the acceptable distance meas-
ures should:

Al. Be a mathematical metric, that is, have the following properties:

(a) Symmetry: d(R,R") =d(R’,R);

(b) Non-negativity and definiteness: d(R,R") =0 and d(R,R") =0 if and only
ifR=R";

(c) Strict triangle inequality: for any rankings R, R’ and R"”, d(R, R") =
=d(R, R") + (R',R"); moreover, equality holds if and only if R’ is between R
and R".

A2. If R’ is obtained from R by a permutation of the set A and S’ from S
by the same permutation, then d(R’,S") = d(R,S).

To formulate the next axiom, let us say that a subset B C A is a segment
of a tied ranking R if its complement A-B = & and each element iEA-B ei-
ther precedes all the elements of B or is situated after all the elements of B.
The tied ranking R restricted to a segment B will be denoted by R ..

A3.IfR and R’ coincide on A-B and B is a segment of both R and R, then
d(R,R") =d(R,R}).

Ad. Unit of scale: The minimum positive distance is equal to 1.

Kemeny proved that the only distance satisfying all four axioms is the
L -metric between the corresponding skew-symmetric Kendall matrices di-
vided by 2 [Kemeny 1959], namely:

1
KdRR)= 53, ok )

We see from (2) that the pairs of elements (i,j) in A can be divided into
three subsets:

(a) those contributing 1 to kd(R,R’): pairs (i,j) such that i precedes j in ei-
ther R or R’ while j precedes i in the other;

(b) those contributing 2 to kd(R,R"): pairs (i,j) such that i and j are indif-
ferent in either R or R’ whilst one precedes the other in the other ranking;

(c) those contributing 0 to kd(R,R"): pairs (i,j), that are similarly related in
both rankings - either i precedes j, or j precedes i, or i and j are indifferent.

In [Fagin et al. 2006], the family of so-called Kendall metrics is defined
using the rules (a), (b), and (c¢), modified by replacing the contribution Y% in

-k |
ij i
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rule (b) by some constant a, %2 < a < 1. Therefore, the Kemeny distance bet-
ween rankings is just the Kendall metric for a = Y.

c. The mismatch distance between binary relations and the corresponding
binary matrices

Binary relations considered as subsets of the Cartesian product AxA may
be compared using any of the many measures of dissimilarity between sub-
sets that have been introduced over the years [Baulieu 1989, Snijders et al.
1990, Morlini and Zani 2012]. One particularly simple measure is the number
of pairs for which they differ, the so-called mismatch distance, i.e., the number
of pairs in their symmetric difference:

d(p, p) =(p-pHU(p"-p)I- A3)

The geometric spaces of ordered and unordered partitions with respect to
this distance have been described at length in [Mirkin 1979]. The mismatch
distance between unordered partitions was described in earlier publications
by B. Mirkin in Russian from 1969 onwards (see, for example, [Mirkin and
Cherny 1972]); it is sometimes referred to as Mirkin's distance [Meila
2007].

We note that d(p, p’) is a metric on the space of all binary relations on A
and satisfies Axiom A1, including the strict triangle inequality, even for bi-
nary relations that do not correspond to tied rankings.

The mismatch distance can easily be translated into a distance between
NxN matrices. Given a binary relation pEAxA, we define its binary matrix r
= (r,) by:

1if (i, j) Ep
r. =
7 oif (i.)) &

Then the mismatch distance between R and R’ is the mismatch (Hamming)
distance between the corresponding binary relations p and p’, and is thus giv-
en by:

dR, R) = d(p, p') = |(p-p NP = D1 sl

=D = @

The right hand equality allows the original L -distance to be transformed
into the square of the more conventional, Euclidean or L -distance because
the absolute differences are either 1 or 0.

P
7 J
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Obviously, the mismatch distance (4) is much simpler than the Kemeny
distance (2) because the only possible non-zero contribution to d(R,R’) by an
ordered pair (i,j) is 1, and this only occurs when j precedes i in one of the tied
rankings but not in the other ranking. This happens whenr, =0 and /=1 or,
vice versa, r,'=0 and r, = 1. It may therefore be somewhat of a surprise that
these two distance measures are, in fact, equal.

Theorem 4. The Kemeny distance (2) is equal to the mismatch dis-
tance (4).

Proof. We first analyse the contributions of pairs of elements i, JEA to the
Kemeny distance between R and R’ depending on their relative positions in
the rankings R and R’; the various different cases are shown in Table 1. We
note that the contribution of the pair (j,i) is exactly the same as that of the pair
(1))

Now we have to take into account a subtle difference between the concepts
of ranking and preference relation. The Kemeny distance is between two rank-
ings — it records disagreements in the relative positions between a pair of
elements in the two rankings; the symmetry between i and j accounts for the
factor % in the expression (2) for the Kemeny distance.

Table 1. The contribution of a pair (i, j)JEAXA to the Kemeny distance (2)
between R and R’

R
Cases i precedes j i and j are indifferent j precedes i
R’ |iprecedes j 0 iz 1
iand j are indifferent | /2 0 V2
j precedes i 1 Vs 0

In contrast, the mismatch distance is between binary relations and counts
the disagreements between the relations in respect of ordered pairs of ele-
ments. We, therefore, have to distinguish between the ordered pair (i,j) and
the inverse pair (j,1), relative to the corresponding relation, p or p’ . The vari-
ous cases of the contributions to the mismatch distance are shown in Tables
2 and 3, respectively.
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Table 2. The contribution of the ordered pair (i, j)EAXA to the mismatch distance (4)

between R and R’
R
Cases i precedes j iand j are indifferent j precedes i
R’ |iprecedes j 0 0 1

i and j are indifferent

0

0

1

j precedes i

1

0

Table 3. The contribution of the ordered pair (j, 1)EAxA to the mismatch distance (4)

between R and R’

R’

R

Cases

iprecedes j

iand j are indifferent

j precedes i

i precedes j

0

1

1

i and j are indifferent

1

0

0

j precedes i

1

0

0

Returning to the analysis of the interrelation between two elements i, JEA,
we need to combine Tables 2 and 3 by adding them, which produces
Table 4.

Table 4. Summary contribution of the ordered pairs (i,j) and (j,i) to the mismatch

distance (4)

R’

R
Cases i precedes j i and j are indifferent j precedes i
i precedes j 0 1 2
iand j are indifferent | 1 0 1
j precedes i 2 1 0

If we double the values in Table 1 to account for both ordered pairs (i,j)
and (j,1), we observe that the resulting entries are identical to those in Table 4,
which completes the proof.

Consider a simple example where A consists of three elements, 1, 2, and
3 that are linearly ordered in R and all tied in R’, so that R = ({1}, {2}, {3})
and R"=({1,2,3}). Their respective Kendall matrices are

16




0 1 1 0 0 O

k= 1 0 1 and K= 0 0 0 | sothatthe Kemeny distance
-1 -1 0 0O 0 o0

kd(R, R') = 6/2=3.

On the other hand, their respective weak order matrices are

1 1 1 1 1 1
r= 0 1 I and = 1 1 1 | soso thatthe mismatch dis-
0 o0 1 1 1 1

tance d(R, R") = 3 as well.

It is amazing how different are the Kendall and weak order matrices rep-
resenting the rankings.

d. The mismatch distance expressed in terms of the contingency table

Although the following results can be established directly, we now rely on
Axiom Al(c), which states that d(R,R") = d(R,R"”) + d(R",R’) if and only if
R" is between R and R’, that is pNp" C p"” C pUp' for the corresponding pref-
erence relations. By virtue of (4), we may use d(R, R’) and d (p, p’) inter-
changeably.

Let us first consider a tied ranking R and its reverse R'. Obviously,
pNp"' =E, where E is the indifference relation of R, which is an equivalence
relation, stripped of all ranking information. Similarly, pUp™' = U, the univer-
sal relation U = AxA, which contains all possible ordered pairs of elements
of A. Both E and U are, therefore, between p and p™! for any weak order p.

Let N_be the number of elements in part R of the tied ranking R =(R,R,, ...,
R). Then the mismatch distance between U and E is easily seen to be

d(E,U)= N> - I N2, (5)

since the first term on the right is the number of ones in the binary matrix of
U and the second term is the number of ones in the binary matrix of E.

Curiously, the mismatch distance between U and R itself is exactly half
the distance in (5).
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Theorem 5. The mismatch distance between a tied ranking R and the uni-
versal tied ranking U is given by

d(R,U)= 4 (N - =N2). (6)

Proof. We first notice that d(R,U) = d(R",,U) and d(R,E) = d(R',E). In-
deed, neither U nor E depend on the ranking information in R, and, moreover,
the number of pairs in p and p-!, which is the number of ones in their respec-
tive matrices r and r', is the same. Since both U and E are between R and R,
we have:

dR, R = d(R,U)+d(U, R") = 2d(R,U)
and d(R, R") = d(R,E)+d(E, R") = 2d(R,E).

This implies that d(R,U) = d(R,E). So, since R is between E and U, d(E,U) =
= d(E,R)+ d(R,U) =2d(R,U). Equation (6) now follows from this and (5),
which completes the proof.

Corollary 1. The distance d(R, R!) is equal to d(E,U) given by (5), where-
as the distance d(R,E) is equal to d(R,U), given by (6).

Proof. These results are included in the proof of Theorem 5.

Now we are in a position to prove a formula for the mismatch distance be-
tween a tied ranking R and its arbitrary refinement R'. Like the previous re-
sults in this subsection, this does not depend on the ranking information.

Theorem 6. The mismatch distance between a tied ranking R = (R, R,,
Rp) and an arbitrary refinement R"= (R", R’,, ..., R’q) of R, where q > p, is
given by

dR,R) = (ENZ-2N'?), (7)

where N_and N’ are the numbers of elements in the parts R_of R and R’, of
R’, respectively.

Proof. Indeed, since R is between R’ and U, we have d(R’,U)=d(R',R)+d(R,U),
so d(R’,R) = d(R’,U)-d(R,U). Both distances d(R’,U) and d(R,U) are deter-
mined by equation (6), adjusted for the corresponding parts of R’ and R, re-
spectively. This immediately yields (7), completing the proof.

Consider now two ordered partitions, R and R’, and their lexicographic
products R#R’ and R’*R. We shall show that the entire ranking component
contributing to the distance between R and R’ is accounted for by the distance
between R+R’ and R'*R. First of all, consider the intersection RNR’, as pre-
sented in Fig. 1. Letting N_ = [R NR’|, fors = 1,2, ...,pand t = 1,2,...,q, de-
note the numbers of elements in the parts of the intersection, we can present
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these cardinalities as the so-called contingency table, or cross-classification,
between R and R’ — a popular concept in statistics (see, for example, [Mirkin
1979, 2012)).

The distance between R#R' and R'+R is equal to half of the total of the
products of the cardinalities of those parts in the intersection RMR’ for which
the orderings in R and R’ are contradictory:

dRARLRHR) =% 3 3 NN, (8)

Considering the rankings R and R’ as unordered partitions, denoted above
by R and R/, respectively, the mismatch distance between the corresponding
equivalence relations, E and E’, can be expressed as

dEE)= B N+ Y NT-2) No ©)

where N, N’ , and N are, as above, the numbers of elements in parts R of
R, R’ of R"and R MR’ of RNR’, respectively.

Theorem 7. The mismatch distance between tied rankings R and R’ can
be decomposed into ranking and equivalence parts as follows:

d(R,R) = % d(E, E') + d(R*R’, R'*R). (10)

Proof. Consider the corresponding binary relations p, p’, and pMNp’. Since
the intersection pMNp' is between p and p’, d(p, p") = d(p, pNp')+d(pNp’, p’).
On the other hand, p*p’ is between pNp’ and p, and p'*p is between pMNp’
and p’, so d(p, pMp") =d(p, p*p")+d(p=*p’, pNp’) and d(pMNp’, p) = d(pNp’,
p'=p)+d(p'=p, p'). But pNp’ is between p=p’ and p'*=p, so d(p*p’, p'=p) =
d(p=p’, pNp")+d(pNp’, p"#p). Substituting these in the equation d(p, p’) =
d(p, pNp")+d(pNp’, p’), we obtain

d(p, p) = d(p, p*p") + d(p*p’, p"#p) + d(p*p’, p"). (11)

Since p*p'is a refinement of p , and p"+p is a refinement of p’, d(p, p*p")
=YEN?-Z N andd(p"#p,p) = Y2(ZN'? -2 N_?) by Theorem 6 . This
implies, by (9), that d(p, p=p’) + d(p'=p, p") = %2d(E,E"). Together with (11),
this completes the proof.
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4. Consensus among tied rankings

a. Consensus matrix

Let us consider the concept of consensus ranking formulated by John Ke-
meny as follows. Given a set of tied rankings R!, R2,..., R", find a ranking R,
referred to by Kemeny as a median, that minimizes the summary distance
D(R)=Z_kd(R,R™). Such a problem, for unordered partitions, has been wide-
ly accepted as a consensus rule in the literature on data analysis and machine
learning (see, for example, [Guenoche 2011]).

Given a set of tied rankings R', R2,..., R", let us define a ranking consen-
sus matrix C = (c;) as follows: for any pair (i,)), ¢, is the number of those
rankings R™, 1 <m < n, in which i either precedes j or is indifferent to j. This
means that C =X 1™, where 1™ is the binary matrix of the binary relation p™
corresponding to R™, for 1 <m <n.

This matrix can be used to obtain an explicit criterion for the concept of
median.

Theorem 8. A ranking R = (R, R, ..., Rp) is a median of the set of tied
rankings R', R%,..., R"if and only if it maximizes

F(R) = Ei,jeA(cij _g)rij = EilErstiER;EjeR,(c"f - %) (12)

with respect to a pre-specified set of admissible rankings R.

Proof. By Theorem 4, we may use the mismatch distance in the definition
of median, and thus D(R) =X _d(R,R™). Substituting the right-most expres-
sion in (4) for d( , ), we get

D(R) = 2;=12i,_iEA(rlf - rljm)z =

n
= 2 ) 2 (r.+r"=-2rr")= 2 _(nr,+c. -2rc)
i,jJEA m=1"1Y J 7y i,jJEA J J /AR/AE)

since squaring does not change the binary 0/1 values. The last expression fol-
lows by the definition of the consensus matrix C. Rearranging this, we obtain

D(R) = E erCi ™ 22 e (¢; - g)rij’ which is equal to a constant minus 2F(R).

Therefore, to minimize D(R), we need to maximize F(R), which completes
the proof.
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We note that the subtracted value n/2 can be moved out of the summation
in (12), so that the expression for F(R) becomes

FR=D S S oS oY N 13

where N_is the cardinality of R, 1 < s =< p. This follows because EijeAr is

i

the number of pairs (i,j)Ep, that is, the cardinality of the binary relation p
corresponding to R, which is given by

= (N*+ 3" N2, (14)

To prove this, we recall from the previous section that pNp' = E and pUp!
= U. Since |p| = |p™'], using the fact that [pUp™!|=|p| + |[p”'| — [pNp7, it follows
that |p| = %2(|U| + |E|). Equation (14) now follows immediately from the re-
mark following equation (5).

Since nN%4 is a constant, maximization of F(R) in (13) is equivalent to
the modified criterion of maximizing

G(R’a)= EL.EMEER:EH,% _aE;st)’ (15)
where a = n/4.

The criterion (12), or equivalently (15), is an extension of the following
criterion of linear ordering, sometimes referred to as the triangulation of a
square matrix, which was popular a few decades ago: find a simultaneous per-
mutation of the rows and columns that maximizes the sum of the above-diag-
onal entries in the matrix (see, for example, [Grotschel, Jinger and Reinelt
1983], [Charon and Hudry 2007]). Obviously, for a linear ordering all parts
R_ are singletons and u = N in (15), and thus the right-most term in (15) is a
constant. In this case the solution does not depend on the value n/2 that is sub-
tracted from all the entries in (12).

Curiously, the subtracted term on the right in (15) does not depend on the
ordering information. It depends just on the indifference relation E or, more
precisely, the distribution of elements over tied parts of the median ranking.

The expression E il N SZ for the cardinality of ‘E ’ is not unusual in statis-

tics of categorical variables. To explain its meaning, consider the relative fre-
quency f = N/N of part R, and the entire frequency profile f(R) = (f,f,,...,
fp) of an arbitrary p-part partition R. The inner product, c(R) = <f(R),
f(R)> = X f?, may be referred to as the concentration index. Its maximum
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value 1 is attained for the profile in which all the frequencies are 0, except one
that is equal to unity. Its minimum value 1/p is attained for the uniform pro-
file in which all the frequencies are equal, so f = 1/p for all s, 1 <s < p.
Obviously, |[E| = N2c(R). A precise meaning of ¢(R) can be given in terms of
the so-called proportional prediction rule. The proportional prediction rule is
a classifier defined according to profile f(R). A classifier assigns a category s,
1 = s = p, to any object randomly supplied, according to the distribution f(R).
The proportional prediction classifier assigns the categories randomly, each
category s with probability £ . It is easy to see that the average accuracy of this
classifier is ¢(R). Its complement to unity, d = 1 — ¢(R), is well known in so-
cial economics as the Gini index, a measure of inequality of social groups in
which f is the proportion of the s-th income group in the population.

Since the concentration part in (15) is subtracted, we can safely claim that
criterion (15), other things being equal, leads to a more uniform median rank-
ing than it would have had nothing been subtracted from ¢, in (12). In fact, it
can be proved that, when the weight a of the subtracted value in (15) is in-
creased above n/4, the concentration of a ranking R that maximizes the ex-
pression corresponding to (15) can only decrease. Indeed, the following strong-
er statement holds.

Theorem 9. If R and R’ are maximizers of G(R, @) in (15) for a = a, and
a = a,, respectively, and a, > a, then ¢(R’) = ¢(R).

Proof. From (15), G(R,a) = G(R,0) — aN*c(R) for any R and a. Since R
maximizes G(R,a,) and R’ maximizes G(R,a,), we have G(R',a)) = G(R,a))
and G(R,a,)= G(R',a,). Therefore, G(R',0) — a,N*c(R") = G(R,0) — a,N*c(R)
and G(R,0) - a,N’c(R) = G(R',0) — a,N°c(R"). Combining these two inequal-
ities, we obtain

aN’c(R) - aN*c(R") = G(R,0) - G(R",0) =a,N°c(R) -a,N*c(R"),

so (a, — a) N°c(R) = (a, — a,) N°c(R). Since a,> a, it follows that
c(R’) = ¢(R), which completes the proof.

This result supports the view that the second term in (15) is a regularizer
of the distribution of elements in the parts of the sought ordered partition R:
the greater the weight a, the greater the number of (non-empty) parts and the
more uniform the distribution of elements among the parts.

b. The Muchnik test over Likert scales

Ranking practitioners have noticed that the concept of median is not that
sensitive to their interest in a few leaders rather than an entire consensus rank-
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ing [Cook, 2006]. We focus here upon an even less desirable property: insuf-
ficient sensitivity to the differences in similar opinions.

Let us consider a test example, akin to the so-called Muchnik test in con-
sensus clustering [Mirkin 2012]. In 1969, after hearing of Mirkin's distance
between partitions (see, for example, [Mirkin, Cherny, 1970]), I. Muchnik
proposed the following benchmark test for consensus partitioning models, as
described in [Mirkin, 2012]. The test follows the procedure for enveloping
any nominal feature into a set of binary “dummy” attributes, each correspond-
ing to a category. Consider a partition, R = {R, } with K parts R, k=1, 2
K, to have been pre-specified on A. Now define R* as a two-cluster partition
to comprise two clusters, R, and its complement, A -~ R, (k= 1, ..., K). The
pre-specified R should be considered consensus for the set of binary partitions
RX. On the one hand, the R¥s can be considered ensemble clusterings found in
the conditions at which only rather coarse granularity of two-cluster solutions
is feasible. On the other hand, R"k can be thought of as different aspects
making up the concept represented by partition R. Relating to a criterion of
consensus partition, the question is whether that leads to R as the only con-
sensus for the set R, k =1, ..., K. If the criterion fails this test, there remains
little to support it. The Muchnik’s test should be considered as a first hurdle
to be overcome by a consensus criterion.

Let us apply the test to the concept of consensus according to Mirkin's dis-
tance, that is the mismatch distance (9) between the equivalence relations cor-
responding to partitions. A partition S minimizing the summary distance Y d(S,
R¥) can be shown to maximize f(S) =} ea 8@y —K/2) where S; is 1 if'i,j are
in the same part of partition S, and s; =0, otherwise, whereas a is the number
of ensemble partitions at which both i and j belong to the same part.

First of all, let us take a look at the matrix (aij) for the test. Obviously, if i
and j belong to the same part R, of R, then they belong to the same part in
every two-class partition R¥ so that a, = K in this case. If, in contrast, i and ]
belong to different classes, say R, and R, respectively, they will belong to dif-
ferent parts in the corresponding two- class partitions R*and R, and they would
belong to the same part in all the other two-class partitions. This would make
a, =K -2 in the case when i and j belong to different classes in R.

This implies that the consensus partition according to Mirkin's distances
fails Muchnik’s test if K>4. Indeed, in this case all the elements of the con-
sensus matrix are all positive: a, — K2z (K-2)-K/2=(K-4)/2>0. There-
fore, the maximum of criterion f(S) is reached at the universal partition con-
sisting of the only universal cluster A, not at partition R.
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In the context of ordered partition, we apply the very same idea, slightly
modified to accommodate the order. Consider the so-called Likert scale
[Likert 1932, Allen and Seaman 2007]. This scale is applied when an indi-
vidual cannot reproduce an entire ranking. A psychologist then specifies
a number of attributes, each of which splits the ordering in question into two
complementary fragments — the beginning and the end. For each object or ob-
servation, the psychologist asks the individual, in respect of a specific attribute,
whether the object falls within the beginning or end part of the scale. Math-
ematically, the situation can be described as follows.

There is a ranking with p tied parts, R= (R, R, ..., R). This ranking is
used to produce p-1 binary rankings S', S%, ..., SP!. Each binary ranking St
consists of just two parts, so S'= (U, V) fort=1, 2, ..., p— 1. The first part
U, is the set-theoretic union of the first t parts of R,so U, =U, R and the

second part V is the union of the remaining parts of R, so V = A - U.. These
binary rankings completely determine the underlying ranking R. Therefore,
we may pose the problem of finding a consensus ranking or median S for the
set of binary rankings S', S% ..., S'. In particular, will the underlying ordered
partition R be a solution to this problem?

31313133 |3]|3 3 1313|133 |3]|3
2 (313 (3[3(3]3 213131333713
1 213|133 |3]|3 1 2131313 |3]|3
0 1 21313 |3]|3 0 1 21313 |3]|3
-1 0] 1 213]13]3 -1] 0 1 2 13|33
2|1-1]0 1 2133 2|-1]0 1 21313
3|-2|-1|0 1 213 3|-2|-1|0 1 213
(@) (b)

Figure 2. Values ¢, — (p —1)/2 for the blocks of the consensus matrix for the Likert scale
consensus problem when p = 7. The bold line represents the boundary separating entries
summed in criterion (12), i.e. those above and to the right of it, from the rest. Fig.2 (a)
shows the case in which the seven parts are merged into three aggregated parts:

(1) the first two parts, (ii) the next three parts, and (iii) the last two parts.

Fig. 2(b) shows the case in which the seven parts are merged into two aggregated parts:
(i) the first four parts, and (ii) the last three parts
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Fig. 2 shows two cases representing the ranking consensus matrix for the
set of binary rankings corresponding to a ranking with p = 7 tied parts, with
the value (p — 1)/2 = 3 subtracted from each of the entries. Rather than show-
ing individual elements of A, we show just the block structure of the matrix,
where the (s,t)-th block, 1 <'s, t < p, corresponds to the pairs (i, )€ R x R,
with each entry having the constant value ¢, — (p — 1)/2. There are only 6 neg-
ative blocks in the matrix. Of course, the number of negative entries (i,j) clear-
ly depends on the sizes of the corresponding parts of R. Let us consider, for
the sake of simplicity, a case in which each part R ,R.,..., Rp of R contains
the same number of elements. To maximize the criterion (12), we just need to
minimize the sum of the entries below the diagonal. It is fairly evident that
the parts of R cannot be split in an optimal ranking S — this, of course, can be
proven formally. Therefore, a median S can be obtained by merging some
parts of R, that is, R should be a refinement of S. The best option would, if
it were possible, be to merge the parts in such a way that these negative blocks
of entries, and only they, should be excluded from the upper part of the ma-
trix in Fig. 2. However, this is not possible, because, however the parts are
aggregated, some positive entries must be present below the diagonal — more
precisely, below a borderline delineating the aggregated parts. This is shown
in Fig. 2(a) for the case in which the candidate ranking has three parts obtained
by merging (i) R, and R,, (ii) R,, R, and R, and (iii) R, and R.. The border-
line between the entries included in and excluded from the sum in (12) is
shown in bold. We can see there are 6 positive entries below the borderline,
which almost cancel out the negative values. In this sense, the binary ranking
S* that merges R, R,, R, and R, into the first part of S, and R, R, and R, into
the second part of S, as shown in Fig. 2(b), is better as it excludes all the neg-
ative entries and only 3 positive entries. It is not difficult to prove that this
ranking is optimal, and that another optimal ranking is the binary ranking S°.
Similarly, in the general case with a different number of equal-size parts in
the underlying ranking R, a binary ranking that splits R into two equal-size
parts (or as equal as possible) is an optimal ranking.

As we can see, the median rule for the Likert scale cannot reproduce the
original ranking R when p>2. The median S in this case is just a coarser bi-
nary version of R, which is a very rough model of the original.
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5. Conclusion

Human intuition handles summation of positive numbers rather well. An
issue emerges when some of the numbers are negative. This report can be
looked at as an attempt to find some structure in the -1 entries in the Kendall
matrices occurring in the formula for the Kemeny distance between tied rank-
ings. These entries appear whenever a pair of elements, i and j, are inversely
related so that j precedes i in a ranking. First of all, we showed, in Theorem 4,
that the Kemeny distance can be expressed in terms of the mismatch distance
between the preference relations (weak orders) corresponding to the tied rank-
ings, in which no negative entries appear. The mismatch distance is defined
in terms of the 0-1 matrices of weak orders, rather than the Kendall matrices
of the rankings, containing entries 1, 0 and —1. Our next claim is that, in the
problem of finding a consensus between tied rankings, all the negative items
relate to the subtracted regularizer term in (15), an expression depending only
on the distribution of the sizes of the parts in the consensus ranking, not on
the precedence relation between them (see Theorems 8 and 9). The structure
of the subtracted term relates the problem of finding a consensus tied ranking
to the well-known linear ordering problem. Moreover, when applied to the is-
sue of consensus ranking in the Likert scale case, the concept of Kemeny me-
dian, or consensus ranking, appears to be less sensitive than one would have
hoped, resulting in a solution being one of the central Likert binary rankings
rather than the hidden multi-part ranking.

Following this line of narrative, we have explicitly formulated properties
of'the Kemeny distance, especially those related to its decomposition into “or-
dered” and “unordered” parts (see Theorem 7) and its computation via the
contingency table, popular in statistics (see (8), (9) and (10)).

Among possible directions for further research, two are quite straightfor-
ward. First, to try to solve numerically the problem of consensus ranking. For
example, the additive structure in (15) suggests that one might first find an
optimal linear ordering and then aggregate some of its parts to form a tied
ranking. Second, the failure of the Muchnik test on Likert scales suggests
some ways for formulating more sensitive criteria for consensus.
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YnopsiioueHHbIe pa30UeHNS, CBI3aHHbBIC PAHKUPOBAHHSI, OTHOILICHHUS CJIa00T0 MOPS/IKa: METPH-
3auust U KoHceHeyc [Teker] : mpenpunt WP7/2016/08 / B. I. Mupkun, T. . ®ennep ; Hai. uccnen.
yH-T «Brlcmias mxona skoHOMHKH». — M. : W3a. mom Beiciuei mkonsr sxoHOMUKH, 2016. — (Cepus
WP7 «Maremarnueckue METO/Ibl aHAJIN3a PEIICHUH B SKOHOMUKE, OU3HECE U MOIUTHKE»). — 32 C.
— 15 7x3. (Ha anrmn. s13.)

PamkxnpoBaHHs MHPOKO HCIIONB3YIOTCS B HECKOIBKHX O0ACTIX COBPEMCHHOW HayKH, BKITIOYAs
COILMOJIOTHIO, IPHHSTHE PEIICHHH, aHalU3 JaHHBIX U U3BIedeHre nHpopmanuu. Llemb nanHo# pabo-
TBI — yBSI3aTh Pa3pabOTKHU, MPOBOMSIIHECS B PaMKaX KOJIMYECTBEHHOH COLIMONIOIMU M METOJOJIOTUH
TIPHHSTHSA PEIICHHH, C JOCTIKCHUAMH HHGOPMATHKH, a TAKKe IIPEICTABUTH HEKOTOPHIEC HOBBIE PE3YIlb-
Tarhbl, NOJyYeHHbIE aBTOpaMH. MBI paccMaTpyuBaeM OWHApHbIE OTHOIICHHS IPEANOYTCHUS, KOTOpHIE
COOTBETCTBYIOT PAHXXUPOBAHUSM (YIIOPSJOYEHHBIM PAa30UEHHSM ) — TAK Ha3bIBAEMBIE CITA0bIE MTOPSIIKH.
M5 oKa3bIBaeM, 4TO OOBIYHOE PACCTOSIHHE MEX/Y CIa0BIMU MOPSAKAMH KaK MHOKECTBAMH yIIODS-
JOYCHHBIX Map 00BEKTOB — YHCICHHOCTh X CUMMETPUUYECKOH Pa3HOCTH — COBIAAACT C U3BECTHBIM
paccrosiHneM KeMeHn Mex 1y COOTBETCTBYIOIINMH PAaHXHPOBAHUSIMH, HECMOTPSI Ha 3HAYUTENIBHO 00-
Jiee CIIOKHYIO CTPYKTYpy paHXupoBaHuil. Vcronb3ys 3TOT (akT, Mbl paccMaTpHBaeM CBOMCTBA Ieo-
METPHYECKOTO IPOCTPAHCTBA CIA0BIX IIOPSAKOB € HCIIONB30BaHUEM TEPHAPHOTO OTHOIICHHS «MEXKITY»
¥ TaOJIHIL CONPSKEHHOCTH JIIS YIIOPSIJOYCHHBIX Pa30MEHUN. 3aTeM MBI IPEICTaBIsIEM POOIIEMY OThI-
CKaHHS1 KOHCEHCYCHOTO PaHKHPOBAHUS KaK BapHAHT NMPOOIEMBI ONITUMAIIBHOTO YIIOPSIOUCHHS «KOH-
CEHCYCHOW» MaTPHIIBI CBsi3eil MexkIy oObekTaMu. PasHuna — B BBIMMTaeMOM WICHE, KKOHICHT DAL
pa3OueHHs, KOTOPBIH He 3aBUCHUT OT YHOPSJOYCHHUS X UTPAET POJIb PETyISIPU3aTOpa BEITNUHHBI KOHIICH-
TpalUH ONTUMATIBHOTO PAHXKUPOBAHHS. MBI IPHEMEHseM 3TH Pe3y/IbTaThl K TPaJHIIHOHHOH B ICHXOME-
Tpuke mxane Jlaiikepra, 4ToOBI MOKa3aTh, YTO MPABUIIO KOHCEHCYCa 0 KeMeHH HeTyBCTBHTENBHO K
JaHHBIM H, CIICI0BATENBHO, JODKHO OBITh JOMOIHEHO 60JIee TOHKHIMH HHCTPYMEHTaMH.

KiroueBble coBa: paH)KMpPOBaHHE; yNOPSIOYCHHOE pa3OHeHue; caalblil MOPAI0K; METPHKA;
KOHCEHCYC; TeCT My4HHKa
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