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1. Background and motivation

Analysis of rankings and tied rankings as a topic in data analysis is receiv-
ing increasing attention, especially in relation to automated decision making 
and search. Considered initially as a model for human judgment in psychol-
ogy, ranking came to the attention of social scientists as a basis for voting and 
other social decisions. It was next adopted in economics as a model of utility 
and rational choice. Rankings are currently used in many areas of computa-
tional data analysis and decision making. Among abundant examples are: or-
dering alternatives in collaborative filtering, document ranking in information 
retrieval engines, similarity scoring of protein sequences in bioinformatics, 
and league tables in sports and in higher education. Important sources of such 
ranked data are social surveys in which respondents are asked to classify al-
ternatives using an ordered set of categories, such as “strongly agree”, “agree”, 
“neutral”, “disagree”, ”strongly disagree”. This type of scale is widely used 
for scoring the strength of complex phenomena, such as winds, earthquakes 
and sentiment expressions in texts.

The topic of comparing tied rankings was initiated by Charles Spearman 
(a junior collaborator of the founding fathers of multivariate statistics, Fran-
cis Galton and Karl Pearson), who was hired to further pursue the golden 
dream of Galton, a proof that human talent is inherited from oneʹs parents and, 
partly, from even more distant ancestors. Although ranking is non-quantita-
tive, Spearman proposed using ranks as numerical values, so that the Pearson 
correlation coefficient could be employed. This is straightforward when the 
observations being compared are linearly ordered. However, different obser-
vations can sometimes be assigned the same numerical rank value, which led 
to the introduction of the term “tied observations”, subsequently replaced by 
“tied rankings”. Formally, a tied ranking can be represented as an ordered par-
tition R = (R1, R2, …, Rp), that is, a partition whose parts are linearly ordered 
by their indices 1, 2,…, p.  We say that an element i precedes an element j in 
the tied ranking R if the part containing i precedes the part containing j. 
A clear-cut case of an ordered partition is given by the rank features in social 
surveys, as mentioned above. There is a difference between tied rankings and 
ordered partitions by rank features: as the number of objects grows, the length 
of a tied ranking will grow accordingly, whereas the number of categories of 
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a feature and, thus, parts in the corresponding ordered partition, remains con-
stant. However, this difference plays no role in this text, as we do not consid-
er processes in which the numbers of objects grow.

Despite the use of the Pearson correlation coefficient for non-metric judge-
ments having no theoretical foundation, it took another 35 years to develop a 
more satisfactory approach.  In 1938, Maurice Kendall introduced a different 
representation for rankings by using the relation of precedence between ranks 
rather than the ranks themselves.  Given a tied ranking R, we define a square 
observation-to-observation matrix (the Kendall matrix) in which the (i, j) en-
try is +1 if i precedes j in R, 0 if i and j have the same rank, or −1 if j precedes 
i. The Kendall rank correlation coefficient between two tied rankings is the 
Pearson correlation coefficient between the corresponding Kendall matrices, 
considered as vectors in an N×N-dimensional space, where N is the number 
of observations. This accords with the non-quantitative nature of tied rank-
ings. The 20th century saw intense work on the analysis of the relationship 
between the Kendall and Spearman correlation coefficients; these were prov-
en to be asymptotically equivalent under conventional statistical assumptions 
[Lehmann and DʹAbrera 2006]. This is also compatible with the finding that 
metrics based on the Spearman and Kendall representations are nearly equiv-
alent, that is, their ratio always lies in a fixed finite interval [Diaconis and 
Graham 1977]. Yet the similarity between them should not be overempha-
sized: in a more recent investigation, for a model in which a bivariate Gaus-
sian distribution is contaminated with a dose of high variation noise, these 
two rank correlation coefficients were found to behave differently [Xu et al. 
2013].

In the 1950s, John Kemeny approached the issue of comparing rankings 
from a social consensus perspective. Given a set of ordered partitions, a con-
sensus ordered partition should represent the major tendency in the set. A con-
ventional approach, the majority rule, may fail when determined by voting on 
pairs of alternatives. Specifically, the so-called Condorcet paradox holds: if 
there are three parties at a meeting, each supporting one of three cyclically 
related linear orderings of three alternatives, say, (a) ijk, (b) jki, and (c) kij, 
respectively, then the majority rule would lead to a cycle in the precedence 
relation: i would precede j because this is so for the majority, (a) and (c); sim-
ilarly, j would precede k, and k would precede i. This contradicts the require-
ment that the precedence relation corresponding to the majority consensus 
ranking should be transitive. This paradox is a basis of the celebrated “social 
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choice impossibility theorem” by Kenneth Arrow (see, for example, [Ales-
kerov and Monjardet 2002]).

John Kemeny proposed a different definition for consensus ranking using 
a distance measure between tied rankings. Rather than defining any specific 
distance measure ab initio, he formulated four axioms that should hold for any 
admissible distance measure. These axioms led Kemeny to derive the unique 
distance measure satisfying them. The Kemeny distance turned out to be the 
L1 distance between the Kendall matrices (see [Kemeny and Snell 1962] for 
a convincing exposition).

One of the current co-authors was so motivated by this derivation that he 
proceeded to extend this to unordered partitions as embodiment of nominal 
features. The world had moved on by then and was becoming more receptive 
to minority rights. For example: everybody knows that most people are “ear-
ly birds”, whereas some are “owls” preferring working long evenings and 
waking up late; thus the normative rule that “the early bird catches the worm” 
was changing to a less restrictive motto: “no matter which, early bird or owl, 
just behave accordingly”. This idea underlied the move from rankings to par-
titions and developing what later was called Mirkinʹs distance between parti-
tions, extended later to ordered and structured partitions [Mirkin, Cherny 1970, 
Mirkin 1974]. An extension of the Arrowʹs impossibility theorem to arbitrary 
classes of binary relations, as well as some other results, followed [Mirkin 
1974]. Then E.M. Braverman (1932-1977), one of the leaders of early Rus-
sian data analysis and machine learning developments, advised Boris Mirkin 
to write a monograph on social choice for the Soviet research community, 
bringing together his results and the body of knowledge that had been deve-
loped internationally: “This subject is getting popular, and it would be a good 
idea to show to our `cognoscentiʹ that there is no point in reinventing the 
wheel,” he said.  Subsequently, the monograph [Mirkin 1974, English trans-
lation 1979] did play a role in making the mathematics of group choice to be 
known in the USSR and in the Soviet bloc as a whole. In that monograph, a 
joint geometric space of ordered and unordered partitions was considered us-
ing the corresponding weak order and equivalence relations on the set of ob-
servations. The distance was introduced as the mismatch, or symmetric dif-
ference, distance between the binary relations as subsets of the Cartesian prod-
uct of the set of objects with itself. This distance can also be expressed as the 
L1 distance, or Hamming distance, between the 0-1 matrices of the relations.   
Unfortunately, the differences between the mathematical structures of rank-
ings and the corresponding binary relations were glossed over in [Mirkin 
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1974]. The ordered partitions were only considered via the corresponding bi-
nary relations. On the one hand, this was useful because of the greater flexi-
bility of binary relations (being just subsets of ordered pairs) over tied rank-
ings (being ordered sets of subsets). For example, the binary relation perspec-
tive allowed a reinterpretation of Arrowʹs impossibility theorem by using the 
fact that the set-theoretic union of transitive binary relations is not necessar-
ily transitive. On the other hand, the suppression of the ranking aspects led to 
ignoring the ways international developments were proceeding. For example, 
the fact that the mismatch and Kemeny distances were equal, although well 
known to the author (see [Mirkin and Cherny 1972]), was never proven, nor 
even formulated, in the book. This perhaps resulted in the distance between 
preference relations being excluded from the current ranking research dis-
course. The binary relations related to rankings play a more or less hidden 
role and are just used as auxiliary constructions in the derivations; [Fagin et 
al. 2006] can be considered a representative example of this.

This report is aimed at bringing the distance between binary relations back 
onto the scene. Therefore, we formulate the Kemeny approach in terms of bi-
nary preference relations, the so-called weak orders, and derive some proper-
ties of the Kemeny consensus (or median) that so far have not appeared in the 
international literature. These include, in particular, the following: 

(i) A proof that the Kemeny distance between rankings is, in fact, the 
mismatch distance between the corresponding weak-order binary relations. 
The importance of this result stems from the fact that the former involves 
Kendall object-to-object matrices with three possible values for the entries: 
1 for preceding, –1 for following, and 0 for a tie; whereas the latter involves 
only two: 1 for the presence and 0 for the absence of a pair in the binary rela-
tion. This makes the result rather counter-intuitive. 

(ii) Explicit statements of some of the properties of the distance, espe-
cially those regarding the relationship between weak orders and their induced 
equivalence relations,  using the ternary relation “between” on the set of bi-
nary relations and the notion of  “refinement” on the set of tied rankings.

(iii) An explicit reformulation of the Kemeny consensus criterion in terms 
of the relational summary matrix, analogous to the so-called consensus ma-
trix in the problem of consensus clustering (see, for example, [Mirkin 2012]). 
In contrast to the analysis of consensus clustering, however, the (i, j) entry in 
this consensus matrix is not simply the number of partitions for which ele-
ments i and j belong to the same part, but also includes the number of rank-
ings for which i precedes j. The problem, which involves the subtraction 
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of a threshold, is equivalent to maximizing the sum of the consensus matrix 
entries minus the number of pairs in the corresponding equivalence relation 
(sometimes referred to as the partition concentration index), weighted with a 
penalty defined by the threshold. The subtracted part plays the role of a natu-
rally emerged regularizer. Of course, the regularizer does not affect the solu-
tion if it is restricted to a class of ranked partitions for which the partition 
concentration index is constant, like, for example, the class of linear rankings 
with no ties.

(iv) The sensitivity of the Kemeny median concept is tested by extending 
the so-called Muchnik test from the case of unordered partitions [Mirkin 2012] 
to the case of ordered partitions. Specifically, we apply the concept of median 
to the Likert scales popular in Psychology [Likert 1932]. Given an ordered 
partition R = (R1, R2, …, Rp), the Likert scale replaces R by the set of binary 
ordered partitions St 

 (t = 1, 2, …, p – 1) that separate the union of the first t 
parts of R from the rest. The question then arises as to whether R is a median 
for the set of binary rankings St

 (t = 1, 2, …, p – 1), as one might expect, or 
not. Perhaps surprisingly, it turns out that it is one of the “coarse” binary rank-
ings St

  that is a median, rather than R itself.
The remainder of the report is structured as follows. In Section 2 we de-

scribe the mathematical structures of tied rankings (ordered partitions) and 
the corresponding weak orders. This includes the operation of intersection and 
a ternary relation “between”. In Section 3 we analyse distances between rank-
ings and between weak orders, including a proof that the Kemeny distance 
between rankings and the mismatch distance between weak orders are equal. 
Various expressions for the distance in terms of the elements of the contin-
gency table are reviewed, and its representation as the sum of the “ordered” 
and “unordered” components is precisely formulated. In Section 4 we describe 
the Kemeny median consensus rankings in terms of a related “triangulation” 
problem, with a specific emphasis on the penalty coefficient and its effect on 
the distribution of the median ordered partition. We also demonstrate that the 
median is rather insensitive to the granularity of ties in the raw rankings. To 
this end, we utilize the Muchnik test from the theory of consensus clustering 
[Mirkin 2012], and apply it to the median ordered partition. Specifically, we 
analyse what median would emerge as a consensus for dichotomous versions 
of the Likert scale: unfortunately, as mentioned above, this is nothing more 
granular than one of the central binary rankings. Section 5 concludes the re-
port.  
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2. Ordered partitions and preference relations

a. Characterization of the preference relation for an ordered partition 

Given a finite set A of N elements, a collection of its subsets R = {R1,R2, …,
Rp} is referred to as a partition if the subsets Rs are all non-empty, non-over-
lapping, and cover the entire set A, so that each i∈A belongs to a unique sub-
set Rs, 1 ≤ s ≤ p. The subsets are called the parts of the partition R. A partition 
is said to be ordered if there is a linear order relation of precedence between 
its parts, Rs< Rt, that is transitive, anti-reflexive and complete. If the order co-
incides with the natural order between indices 1,2,…, p, we use parentheses  
to denote this, viz.  R = (R1,R2,…,Rp). In Decision Theory, an ordered parti-
tion is referred to as a tied ranking. In Computer Science, the terms “partial 
ranking” and “bucket partition” have sometimes been used [Fagin et al. 2006].
We consider that the term “partial ranking” should apply according to usage 
in the mathematical theory of partial orders: when the precedence relation bet-
ween parts is not complete, so that for some distinct s and t, the precedence 
between Rs and Rt is not defined. We do not consider here this type of partial 
ranking.

Each ordered partition R = (R1,R2, …, Rp) generates a binary preference 
relation
  ρ = {(i,j): i∈R

s
, j∈R

t
, and  s ≤ t}. (1)

Usually, two non-overlapping binary relations are defined with respect to 
a tied ranking R = (R1,R2,…, Rp):  the strict preference relation P = {(i,j): i∈Rs, 
j∈Rt, and s<t} and the indifference relation E = {(i,j): i,j∈Rs for some s }. The 
indifference relation E here is transitive, reflexive and symmetric, thus E is 
the equivalence relation corresponding to the unordered partition Ř having 
the same parts as R.  Obviously, ρ = P ∪ E, that is, ρ in (1) is a non-strict pref-
erence relation in which the strict preference and indifference relations are 
merged together.  Usually, researchers try to avoid such a “mix”; but we will 
see later that there is no problem with this merger. The next part of this sec-
tion is a brief reminder of some conventional concepts and facts about pref-
erence relations (see, for example, [Steele and Stefánsson 2015]).    

If ρ is a binary relation, its inverse ρ-1 is defined as  ρ-1  = {(i,j) :  (j,i)∈ ρ}. 
If ρ  is the preference relation corresponding to a tied ranking R  = (R1, R2,…, 
Rp), then its inverse ρ-1 corresponds to the reverse tied ranking R-1  = (Rp,…, 
R2, R1). It is easy to see that the indifference relation E corresponding to any 
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tied ranking R satisfies E =  ρ  ∩ ρ-1. Thus, the strict preference relation is the 
difference P =  ρ − E = ρ  − ρ-1.

It is clear that ρ in (1) is 
Reflexive, that is, (i,i)  – ∈ ρ for any i∈A,
Transitive, that is, if (i,j)  – ∈ ρ and (j,k) ∈ ρ, then (i,k) ∈ ρ for any 

i,j,k ∈ A, and
Complete, that is, (i,j)  – ∈ ρ or (j,i) ∈ ρ, or both, for any i,j ∈ A.

Of course, reflexivity can be considered as the special case of complete-
ness for which i = j. A binary relation satisfying these properties is usually 
referred to as a weak order [Steele and Stefánsson 2015]. In fact, a converse 
statement also holds:

Theorem 1. A preference relation ρ corresponds to an ordered partition R 
if and only if it is a weak order.

Proof. Let ρ be a binary relation on the set A that is reflexive, transitive 
and complete. Consider any i ∈ A and define the subset ρ(i) = {j∈ A: (i,j) ∈ 
ρ}. Then, for any pair i,k ∈ A,  if (i,k) ∈ ρ then ρ(k) ⊆ ρ(i). This holds be-
cause whenever j ∈ ρ(k), i.e. (k,j) ∈ ρ, then (i,j)∈ ρ also, because ρ is transi-
tive. Therefore, since ρ is complete, for any pair i,k ∈ A, either ρ(k)⊆ρ(i) or 
ρ(i)⊆ρ(k), or both. It follows that the collection of sets ρ(i) is linearly ordered 
by set-theoretic inclusion, so they can be ordered as a sequence of sets 
St (t = 1, 2,…, p), where S1 ⊃ S2 ⊃ … ⊃Sp. Then the subsets Rt =  St − St+1, 
t = 1,2, …, p – 1, and Rp = Sp,, form an ordered partition R = (R1, R2, …, Rp). 
It is quite easy to check that its corresponding preference relation (1) coin-
cides with the given relation ρ. The reverse implication, that the relation (1) 
corresponding to an ordered partition is reflexive, transitive and complete, has 
already been established above. This completes the proof.  

Corollary 1. The subsets Rt = St − St+1 in the proof each satisfy Rt = ρ(i)  
∩ ρ-1(i) for some i∈A.  

Corollary 2. A binary relation ρ is a weak order if and only if its strict part 
P is anti-reflexive and transitive, its indifference part E is an equivalence re-
lation, and P, P-1, E form a partition of the Cartesian product A×A.

b. Refi nement and betweenness 

A tied ranking Rʹ is a refinement of a tied ranking R if it is obtained from 
the latter by subdividing some of its parts into smaller ones, and some order-
ing is defined between the smaller parts of each subdivided part of R. The 
corresponding preference relations, ρʹ and ρ, are related by set-theoretic in-
clusion:
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Theorem 2. A tied ranking Rʹ is a refinement of a tied ranking R if and 
only if ρʹ ⊂ ρ.

Proof.  Indeed, if Rʹ is a refinement of a tied ranking R then, for some pairs 
i, j of elements of A such that both (i,j) ∈ ρ and  (j,i)∈ ρ, only one of these 
holds for ρʹ. Conversely, suppose that  ρ and ρʹ correspond to tied rankings R 
and Rʹ, respectively, and that ρʹ ⊂ ρ. Then ρʹ(i) ⊆ ρ(i) for any i∈A, and, more-
over, the inclusion is proper for some i∈A. Consider any such i. Let {i1, i2,…, 
ik} be a maximal subset of A such that  ρ(i)  ⊃ ρʹ(i1 )  ⊃ ρʹ(i2)  ⊃ …  ⊃ ρʹ(ik). 
Then, by Corollary 1, every equivalence class Rʹtu = ρʹ(iu) ∩ ρʹ-1(iu) will be 
part of the equivalence class Rt = ρ(i) ∩ ρ-1(i) , which completes the proof.

We say that ρ is coarser than ρʹ, if ρʹ is a refinement of ρ. 
A binary relation τ on A is said to be between binary relations  ρ and ρʹ if 

and only if ρ∩ρʹ ⊆ τ ⊆ ρ∪ρʹ [Mirkin 1979 ]. A tied ranking T is said to be 
between tied rankings R and Rʹ if, for any i, j∈A, the ordering between them 
in T is compatible with their ordering in both R and Rʹ: that is, (i) if i precedes 
j in both R and Rʹ then i precedes j in T; (ii) if i precedes j in one of R and Rʹ,  
and i and j are indifferent in the other, then i either precedes j or is indifferent 
to j in T; (iii) if i and j are indifferent in both R and Rʹ, then i and j are indif-
ferent in T; lastly, (iv) if i precedes j in R but j precedes i in Rʹ, then anything 
can be true of the ordering between i and j in T:  i may precede j, or j may 
precede i, or i and j may be indifferent in T [Kemeny and Snell 1962]. It fol-
lows that T is between R and Rʹ if and only if the same is true for their weak 
orders, as stated in the following theorem.

Theorem 3. A preference relation τ on A, corresponding to the tied rank-
ing T, is between preference relations ρ and ρʹ, corresponding to tied rankings 
R and Rʹ, if and only if T is between R and Rʹ.

For preference relations ρ and ρʹ corresponding to tied rankings  R and Rʹ, 
usually neither ρ∩ρʹ nor ρ∪ρʹ corresponds to a tied ranking. There is a class 
of situations, however, for which the intersection does correspond to a tied 
ranking. We say that R and Rʹ are concordant if there exists a linear ordering 
that is a refinement of both R and Rʹ; so the parts of both are just intervals of 
the underlying linear ordering. In this case, ρ∩ρʹ does correspond to a tied 
ranking and the equivalence classes corresponding to ρ∩ρʹ are formed by the 
non-empty intersections of these intervals of the linear ordering.   

In the general case of two arbitrary tied rankings R and Rʹ, the relation 
ρ∩ρʹ is a partial preference relation because there can be i, j ϵ A such that i 
strictly precedes j in R, whereas j strictly precedes i in Rʹ, so that neither (i,j) 
nor (j,i) belongs to ρ∩ρʹ. Such a case, which is not uncommon, is exempli-
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fied by a proverbial question: “What is better: being poor but healthy or being 
rich but ill?” (with a proverbial answer that to be both rich and healthy is bet-
ter indeed.)

What is appealing about ρ∩ρʹ is that its indifference relation is always an 
equivalence relation, thus corresponding to the partition that is just the inter-
section of the unordered partitions Ř and Řʹ corresponding to the ordered par-
titions R and Rʹ, respectively. The intersection Ř ∩ Řʹ is the partition of A in 
which the parts are the intersections Rs∩Rtʹ of some part Rs of R and some 
part Rt‘ of Rʹ for which Rs and Rtʹ are not disjoint.

R1 R2 R3 R4 R5

R1ʹ
   

R1ʹ∩R1
R1ʹ∩R2 R1ʹ∩R3 R1ʹ∩R4 R1ʹ∩R5

R2ʹ R2ʹ∩R1 R2ʹ∩R2 R2ʹ∩R3 R2ʹ∩R4 R2ʹ∩R5

R3ʹ R3ʹ∩R1 R3ʹ∩R2 R3ʹ∩R3 R3ʹ∩R4 R3ʹ∩R5

R4ʹ R4ʹ∩R1 R4ʹ∩R2 R4ʹ∩R3 R4ʹ∩R4 R4ʹ∩R5

Figure 1. A visual representation of the intersection of two tied rankings Rʹ∩R, 

where Rʹ relates to rows and R to columns. It is assumed that the rows and columns 

are permuted according to the rankings Rv and R, respectively 

Both ordered and unordered intersections can be visualized as a block ma-
trix in which the blocks are formed by the subsets of rows and columns cor-
responding to the parts of the ordered partitions Rʹ and R, respectively (see 
Figure 1). Of course, the blocks of the intersections are only partially ordered 
so that, for example, blocks R2ʹ∩R3 and R3ʹ∩R2 are not comparable. Howe-
ver, a linear order can be imposed naturally by ordering the blocks first by 
rows and then by columns, so that any block of the first row precedes the 
blocks in all other rows. This is the so-called lexicographic product Rʹ∗R in-
troduced in [Mirkin 1979]. Similarly, an alternative lexicographic product   
R∗Rʹ is defined by ordering blocks first by columns and then by rows. Curi-
ously, in the ordered series Rʹ, Rʹ∗R, R∗Rʹ and R, the middle term of each tri-
plet is between the other two [Mirkin 1979]. A similar statement holds for the 
corresponding relations ρʹ, ρʹ∗ρ, ρ∗ρʹ and ρ.
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3. Matrix representation of preference relations 
and distance between them

a. Correlation by Spearman and Kendall

Consider the Spearman rank correlation, that is, the Pearson correlation 
coefficient between ranks taken as numerical values. To deal with the case of 
tied rankings, each element of an equivalence class of indifference is assigned 
with the average within-class rank. The average rank of the elements in part 
Rs of the tied ranking R = {R1, R2, … , Rp} is L + (|Rs|+1)/2, where L is the 
cardinality of  R1∪R2∪ … ∪Rs-1, and |·| denotes the number of elements in a 
set. The Kendall rank correlation is based on the representation of tied rank-
ings on A by N×N matrices. Given a tied ranking R and the corresponding 
preference relation ρ = P ∪ E, we now define a skew-symmetric matrix 
K = (kij), for i, j∈ A, such that kij  = 1 if (i,j) ∈ P, kij = 0 if (i,j) ∈ E, and 
kij = –1, if (j,i) ∈ P. The Kendall rank correlation coefficient between R and 
Rʹ is the correlation coefficient between their Kendall matrices, K and Kʹ, 
considered as vectors in an N2-dimensional space. This is compatible with the 
non-quantitative nature of tied rankings, especially since the mean of a skew-
symmetric matrix is always 0. 

It should be noted that, soon after the Kendall matrix was defined, a some-
what similar skew-symmetric representation for quantitative features was pro-
posed by Daniels [Daniels 1944], who proved that, given a quantitative fea-
ture x on A, the matrix X = (xij), where xij = xi − xj, can be used to represent 
the feature in statistical computations. For example, the inner product of the 
matrices X and Xʹ corresponding to features x and xʹ is proportional to the in-
ner product of x and xʹ after they have been centred by subtracting their means, 
viz.  <X,Xʹ> = 2N<x−m(x), xʹ−m(xʹ)> , where m(x) is the mean of x.  This 
implies that the correlation coefficient between X and Xʹ is equal to the cor-
relation coefficient between x and xʹ. Therefore, the Spearman rank correla-
tion coefficient can also be defined as the Pearson correlation coefficient be-
tween the corresponding matrices of rank differences (rij), where rij = ri – rj. 
The Kendall matrix is then just the matrix of signs in the Daniels matrix X = 
(xij), where xij = xi − xj. The past century saw intense work on the analysis of 
the relationship between the Kendall and Spearman correlations; these were 
proven to be asymptotically equivalent under conventional statistical assump-
tions (see, for example, [Lehmann and DʹAbrera 2006]). 
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b. Kemeny distance

Rather than defining an ad hoc distance measure, Kemeny formulated four 
axioms that should hold for any acceptable distance measure d(R, Rʹ) between 
rankings R and Rʹ. These axioms require that the acceptable distance meas-
ures should:

A1. Be a mathematical metric, that is, have the following properties: 
(a) Symmetry:  d(R,Rʹ) = d(Rʹ,R);
(b) Non-negativity and definiteness: d(R,Rʹ) ≥0 and d(R,Rʹ) = 0 if and only 

if R = Rʹ;
(c) Strict triangle inequality: for any rankings R, Rʹ and Rʹʹ, d(R, Rʹʹ) ≤ 

≤d(R, Rʹ) + (Rʹ,Rʹʹ); moreover, equality holds if and only if Rʹ is between R 
and Rʹʹ.

A2. If Rʹ is obtained from R by a permutation of the set A and Sʹ from S 
by the same permutation, then d(Rʹ,Sʹ) = d(R,S).

To formulate the next axiom, let us say that a subset B ⊂ A is a segment 
of a tied ranking R if its complement A−B ≠ ∅ and each element i∈A−B ei-
ther precedes all the elements of B or is situated after all the elements of B. 
The tied ranking R restricted to a segment B will be denoted by RB.

A3. If R and Rʹ coincide on A−B and B is a segment of both R and Rʹ, then 
d(R,Rʹ) = d(RB,RBʹ).

A4. Unit of scale: The minimum positive distance is equal to 1.
Kemeny proved that the only distance satisfying all four axioms is the 

L1-metric between the corresponding skew-symmetric Kendall matrices di-
vided by 2 [Kemeny 1959], namely:

 kd(R,Rʹ) = 
   

1
2

kij − kij
'

i , j∈A∑ .  (2)

We see from (2) that the pairs of elements (i,j)  in A can be divided into 
three subsets:

(a) those contributing 1 to kd(R,Rʹ): pairs (i,j) such that i precedes j in ei-
ther R or Rʹ while j precedes i in the other;

(b) those contributing ½  to kd(R,Rʹ): pairs (i,j) such that i and j are indif-
ferent in either R or Rʹ whilst one precedes the other in the other ranking;

(c) those contributing 0 to kd(R,Rʹ): pairs (i,j), that are similarly related in 
both rankings -  either i precedes j, or j precedes i, or i and j are indifferent.              

In [Fagin et al. 2006], the family of so-called Kendall metrics is defined 
using the rules (a), (b), and (c), modified by replacing the contribution ½ in 
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rule (b) by some constant α, ½ ≤ α ≤ 1. Therefore, the Kemeny distance bet-
ween rankings is just the Kendall metric for α = ½. 

c. The mismatch distance between binary relations and the corresponding 
binary matrices

Binary relations considered as subsets of the Cartesian product A×A may 
be compared using any of the many measures of dissimilarity between sub-
sets that have been introduced over the years [Baulieu 1989, Snijders et al. 
1990, Morlini and Zani 2012]. One particularly simple measure is the number 
of pairs for which they differ, the so-called mismatch distance, i.e., the number 
of pairs in their symmetric difference:

 d(ρ, ρʹ) = |(ρ−ρʹ)∪(ρʹ−ρ)|. (3)

The geometric spaces of ordered and unordered partitions with respect to 
this distance have been described at length in [Mirkin 1979]. The mismatch 
distance between unordered partitions was described in earlier publications 
by B. Mirkin in Russian from 1969 onwards (see, for example, [Mirkin and 
Cherny 1972]); it is sometimes referred to as Mirkinʹs distance [Meila 
2007].

We note that d(ρ, ρʹ) is a metric on the space of all binary relations on A 
and satisfies Axiom A1, including the strict triangle inequality, even for bi-
nary relations that do not correspond to tied rankings.

The mismatch distance can easily be translated into a distance between 
N×N matrices. Given a binary relation ρ∈A×A, we define its binary matrix r 
= (rij) by:

 
   

rij =
1 if (i, j) ∈ρ

0 if i, j( ) ∉ρ

⎧
⎨
⎪

⎩⎪  

Then the mismatch distance between R and Rʹ is the mismatch (Hamming) 
distance between the corresponding binary relations ρ and ρʹ, and is thus giv-
en by:

d(R, R′) = d(ρ, ρʹ) = |(ρ−ρ′)∪(ρ′−ρ)| =    
rij − rij

'

i , j∈A∑ = (rij − rij
' )2

i , j∈A∑ .    (4)

The right hand equality allows the original L1-distance to be transformed 
into the square of the more conventional, Euclidean or L2-distance because 
the absolute differences are either 1 or 0. 
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Obviously, the mismatch distance (4) is much simpler than the Kemeny 
distance (2) because the only possible non-zero contribution to d(R,R′) by an 
ordered pair (i,j) is 1, and this only occurs when j precedes i in one of the tied 
rankings but not in the other ranking. This happens when rij = 0 and rii′ = 1 or, 
vice versa, rij′ = 0 and rij  = 1. It may therefore be somewhat of a surprise that 
these two distance measures are, in fact, equal.

Theorem 4. The Kemeny distance (2) is equal to the mismatch dis -
tance (4).

Proof. We first analyse the contributions of pairs of elements i, j∈A to the 
Kemeny distance between R and Rʹ depending on their relative positions in 
the rankings R and R′; the various different cases are shown in Table 1. We 
note that the contribution of the pair (j,i) is exactly the same as that of the pair 
(i,j).

Now we have to take into account a subtle difference between the concepts 
of ranking and preference relation. The Kemeny distance is between two rank-
ings − it records disagreements in the relative positions between a pair of 
elements in the two rankings; the symmetry between i and j accounts for the 
factor ½ in the expression (2) for the Kemeny distance.

Table 1.  The contribution of a pair (i, j)∈A×A to the Kemeny distance (2) 
between R and R′

R′

R
Cases i precedes j i and j are indifferent j precedes i

i precedes j 0 ½ 1
i and j are indifferent ½ 0 ½ 
j precedes i 1 ½ 0

In contrast, the mismatch distance is between binary relations and counts 
the disagreements between the relations in respect of ordered pairs of ele-
ments. We, therefore, have to distinguish between the ordered pair (i,j) and 
the inverse pair (j,i), relative to the corresponding relation, ρ or ρ′ . The vari-
ous cases of the contributions to the mismatch distance are shown in Tables 
2 and 3, respectively.
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Table 2.  The contribution of the ordered pair (i, j)∈A×A to the mismatch distance (4) 
between R and Rʹ

Rʹ

R
Cases i precedes j i and j are indifferent j precedes i
i precedes j 0 0 1 
i and j are indifferent 0 0 1 
j  precedes i 1 1 0

 
Table 3.  The contribution of the ordered pair (j, i)∈A×A to the mismatch distance (4) 

between R and Rʹ

Rʹ

R
Cases i precedes j i and j are indifferent j precedes i
i precedes  j 0 1 1 
i and j are indifferent 1 0 0
j  precedes i 1 0 0

 
Returning to the analysis of the interrelation between two elements i, j∈A, 

we need to combine Tables 2 and 3 by adding them, which produces 
Table 4.  

Table 4.  Summary contribution of the ordered pairs (i,j) and (j,i) to the mismatch 
distance (4)

Rʹ

R
Cases i precedes j i and j are indifferent j precedes i
i precedes  j 0 1 2
i and j are indifferent 1 0 1 
j  precedes i 2 1 0

If we double the values in Table 1 to account for both ordered pairs (i,j) 
and (j,i), we observe that the resulting entries are identical to those in Tab le 4, 
which completes the proof.

Consider a simple example where A consists of three elements, 1, 2, and 
3 that are linearly ordered in R and all tied in Rʹ, so that R = ({1}, {2}, {3}) 
and Rʹ = ({1,2,3}). Their respective Kendall matrices are
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0 1 1
k = 1 0 1

–1 –1 0
and

 

0 0 0
kʹ = 0 0 0

0 0 0
, so that the Kemeny distance  

kd(R, Rʹ) =  6/2 = 3.

On the other hand, their respective weak order matrices are

1 1 1
r = 0 1 1

0 0 1
and 

1 1 1
rʹ = 1 1 1

1 1 1
, so so that the mismatch dis-

tance d(R, Rʹ) = 3 as well.

It is amazing how different are the Kendall and weak order matrices rep-
resenting the rankings.

d. The mismatch distance expressed in terms of the contingency table

Although the following results can be established directly, we now rely on 
Axiom A1(c), which states that d(R,R′) = d(R,R′′) + d(Rʹʹ,R′) if and only if 
R′′ is between R and R′, that is ρ∩ρ′ ⊆ ρ′′ ⊆ ρ∪ρ′ for the corresponding pref-
erence relations. By virtue of (4), we may use d(R, R′) and d (ρ, ρʹ) inter-
changeably.

Let us first consider a tied ranking R and its reverse R-1. Obviously, 
ρ∩ρ-1 = E, where E is the indifference relation of R, which is an equivalence 
relation, stripped of all ranking information. Similarly, ρ∪ρ-1 = U, the univer-
sal relation U = A×A, which contains all possible ordered pairs of elements 
of A. Both E and U are, therefore, between ρ and ρ-1 for any weak order ρ.

Let Ns be the number of elements in part Rs of the tied ranking R = (R1,R2, …, 
Rp). Then the mismatch distance between U and E is easily seen to be 

                                            d(E,U) =  N2 − ΣsNs
2,                                    (5)

since the first term on the right is the number of ones in the binary matrix of 
U and the second term is the number of ones in the binary matrix of E.

Curiously, the mismatch distance between U and R itself is exactly half 
the distance in (5).
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Theorem 5. The mismatch distance between a tied ranking R and the uni-
versal tied ranking U is given by

   d(R,U) =  ½ (N2 − ΣsNs
2 ). (6)

Proof. We first notice that d(R,U) = d(R-1,U) and d(R,E) = d(R-1,E). In-
deed, neither U nor E depend on the ranking information in R, and, moreover, 
the number of pairs in ρ and ρ-1, which is the number of ones in their respec-
tive matrices r and r-1, is the same. Since both U and E are between R and R-1, 
we have:

d(R, R-1) = d(R,U)+d(U, R-1) = 2d(R,U) 
and d(R, R-1) = d(R,E)+d(E, R-1) =  2d(R,E).

This implies that d(R,U) = d(R,E). So, since R is between E and U, d(E,U) =
=  d(E,R)+ d(R,U)  = 2d(R,U). Equation (6) now follows from this and (5), 
which completes the proof.

Corollary 1. The distance d(R, R-1) is equal to d(E,U) given by (5), where-
as the distance d(R,E) is equal to d(R,U), given by (6).

Proof. These results are included in the proof of Theorem 5.
Now we are in a position to prove a formula for the mismatch distance be-

tween a tied ranking R and its arbitrary refinement Rʹ. Like the previous re-
sults in this subsection, this does not depend on the ranking information.

Theorem 6. The mismatch distance between a tied ranking R = (R1, R2, …, 
Rp) and an arbitrary refinement R′ = (R′1, R′2, …, R′q) of R, where q > p,  is 
given by 
 d(R,R′) =  ½(ΣsNs

2 − ΣtN′t
2 ), (7)

where Ns and N′t are the numbers of elements in the parts Rs of R and R′t of 
R′, respectively.

Proof. Indeed, since R is between Rʹ and U, we have d(Rʹ,U) = d(Rʹ,R)+d(R,U), 
so d(Rʹ,R) = d(Rʹ,U)−d(R,U). Both distances d(Rʹ,U) and d(R,U) are deter-
mined by equation (6), adjusted for the corresponding parts of Rʹ and R, re-
spectively. This immediately yields (7), completing the proof.

Consider now two ordered partitions, R and R′, and their lexicographic 
products R∗R′ and R′∗R. We shall show that the entire ranking component 
contributing to the distance between R and Rʹ is accounted for by the distance 
between R∗Rʹ and Rʹ∗R. First of all, consider the intersection R∩Rʹ, as pre-
sented in Fig. 1. Letting Nst = |Rs∩Rʹt|, for s = 1,2, …, p and t = 1,2,…,q, de-
note the numbers of elements in the parts of the intersection, we can present 
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these cardinalities as the so-called contingency table, or cross-classification, 
bet ween R and Rʹ − a popular concept in statistics (see, for example, [Mirkin 
1979, 2012]). 

The distance between R∗Rʹ and Rʹ∗R is equal to half of the total of the 
products of the cardinalities of those parts in the intersection R∩Rʹ for which 
the orderings in R and Rʹ are contradictory:

 d(R∗Rʹ, Rʹ∗R) = ½   
N st N s 't 't<t '∑s>s '∑ . (8)

Considering the rankings R and Rʹ as unordered partitions, denoted above 
by Ř and Řʹ, respectively, the mismatch distance between the corresponding 
equivalence relations, E and Eʹ, can be expressed as

 d(E,Eʹ) =   
N s

2
s∑ + N 't

2
t∑ − 2 N st

2
s ,t∑ ,  (9)

where Ns, Nʹt , and Nst are, as above, the numbers of elements in parts Rs of 
R, Rʹt of Rʹ and Rs∩Rʹt of R∩Rʹ, respectively.

Theorem 7. The mismatch distance between tied rankings R and Rʹ can 
be decomposed into ranking and equivalence parts as follows:

 d(R, Rʹ) =  ½ d(E, Eʹ) + d(R∗Rʹ, Rʹ∗R). (10)

Proof.  Consider the corresponding binary relations ρ, ρʹ, and ρ∩ρʹ. Since 
the intersection ρ∩ρʹ is between ρ and ρʹ, d(ρ, ρʹ) =  d(ρ, ρ∩ρʹ)+d(ρ∩ρʹ, ρʹ). 
On the other hand, ρ∗ρʹ is between ρ∩ρʹ and ρ, and ρʹ∗ρ is between ρ∩ρʹ 
and ρʹ, so d(ρ, ρ∩ρʹ)  = d(ρ, ρ∗ρʹ)+d(ρ∗ρʹ, ρ∩ρʹ) and d(ρ∩ρʹ, ρʹ) = d(ρ∩ρʹ, 
ρʹ∗ρ)+d(ρʹ∗ρ, ρʹ). But ρ∩ρʹ is between ρ∗ρʹ and ρʹ∗ρ, so d(ρ∗ρʹ, ρʹ∗ρ) = 
d(ρ∗ρʹ, ρ∩ρʹ)+d(ρ∩ρʹ, ρʹ∗ρ). Substituting these in the equation d(ρ, ρʹ) =  
d(ρ, ρ∩ρʹ)+d(ρ∩ρʹ, ρʹ), we obtain

 d(ρ, ρʹ) =  d(ρ, ρ∗ρʹ) + d(ρ∗ρʹ, ρʹ∗ρ) + d(ρ∗ρʹ, ρʹ).  (11)

Since ρ∗ρʹ is a refinement of ρ , and ρʹ∗ρ is a refinement of ρʹ, d(ρ, ρ∗ρʹ) 
= ½(Σs Ns

2 − Σs,t Nst
2) and d(ρʹ∗ρ,ρʹ) =  ½(Σt Nʹt

2 − Σs,t Nst
2) by Theorem 6 . This 

implies, by (9), that d(ρ, ρ∗ρʹ) + d(ρʹ∗ρ, ρʹ) = ½d(E,Eʹ). Together with (11), 
this completes the proof.
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4. Consensus among tied rankings

a. Consensus matrix

Let us consider the concept of consensus ranking formulated by John Ke-
meny as follows. Given a set of tied rankings R1, R2,…, Rn, find a ranking R, 
referred to by Kemeny as a median, that minimizes the summary distance 
D(R) = Σmkd(R,Rm). Such a problem, for unordered partitions, has been wide-
ly accepted as a consensus rule in the literature on data analysis and machine 
learning (see, for example, [Guenoche 2011]).  

Given a set of tied rankings R1, R2,…, Rn, let us define a ranking consen-
sus matrix C = (cij) as follows:  for any pair (i,j), cij is the number of those 
rankings Rm, 1 ≤ m ≤ n, in which i either precedes j or is indifferent to j. This 
means that C = Σm rm , where rm is the binary matrix of the binary relation ρm 
corresponding to Rm, for 1 ≤ m ≤ n.

This matrix can be used to obtain an explicit criterion for the concept of 
median.

Theorem 8. A ranking R = (R1, R2, …, Rp) is a median of the set of tied 
rankings R1, R2,…, Rn if and only if it maximizes

 F(R) = 
  

(cij −
n
2

)riji , j∈A∑ = (cij −
n

2 )
j∈Rt

∑i∈Rs
∑t≥s∑s=1

p
∑  (12)

with respect to a pre-specified set of admissible rankings R.
Proof. By Theorem 4, we may use the mismatch distance in the definition 

of median,  and thus D(R) = Σm d(R,Rm). Substituting the right-most expres-
sion in (4) for d( , ), we get

   

D(R) = (rij − rij
m )2 =

i , j∈A∑m=1

n
∑

= (rij + rij
m − 2rijrij

m ) = (nrij + cij − 2rijcij )i , j∈A∑m=1

n
∑i , j∈A∑ ,  

since squaring does not change the binary 0/1 values. The last expression fol-
lows by the definition of the consensus matrix C. Rearranging this, we obtain  

   
D(R) = ciji , j∈A∑ − 2 (cij −

n
2

)riji , j∈A∑ , which is equal to a constant minus 2F(R). 

Therefore, to minimize D(R), we need to maximize F(R), which completes 
the proof.
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We note that the subtracted value n/2 can be moved out of the summation 
in (12), so that the expression for F(R) becomes

 
  
F (R) = cijj∈Rt

∑i∈Rs
∑ −

t≥s∑s=1

p
∑ n

4 (N 2 + N s
2 )

s=1

p
∑ , (13)

where Ns is the cardinality of Rs, 1 ≤ s ≤ p. This follows because 
  

riji , j∈A∑ is 

the number of  pairs (i,j)∈ρ, that is, the cardinality of the binary relation ρ 
corresponding to R,  which is given by

 |ρ| = 
  
(N 2 + N s

2 )
s=1

p
∑ / 2 . (14)

To prove this, we recall from the previous section that ρ∩ρ-1 = E and ρ∪ρ-1 
= U. Since |ρ| = |ρ-1|, using the fact that |ρ∪ρ-1| = |ρ| + |ρ-1| – |ρ∩ρ-1|, it follows 
that |ρ| = ½(|U| + |E|). Equation (14) now follows immediately from the re-
mark following equation (5).

Since nN2/4 is a constant, maximization of F(R) in (13) is equivalent to 
the modified criterion of maximizing

 
  
G (R,a) = cijj∈Rt

∑i∈Rs
∑ −

t≥s∑s=1

p
∑ a N s

2 )
s=1

p
∑ , (15)

where a = n/4.  
The criterion (12), or equivalently (15), is an extension of the following 

criterion of linear ordering, sometimes referred to as the triangulation of a 
square matrix, which was popular a few decades ago: find a simultaneous per-
mutation of the rows and columns that maximizes the sum of the above-diag-
onal entries in the matrix (see, for example, [Grötschel, Jünger and Reinelt  
1983], [Charon and Hudry 2007]). Obviously, for a linear ordering all parts 
Rs are singletons and u = N in (15), and thus the right-most term in (15) is a 
constant. In this case the solution does not depend on the value n/2 that is sub-
tracted from all the entries in (12). 

Curiously, the subtracted term on the right in (15) does not depend on the 
ordering information. It depends just on the indifference relation E or, more 
precisely, the distribution of elements over tied parts of the median ranking.

The expression 
  

N s
2

s=1

p
∑  for the cardinality of 

 
E is not unusual in statis-

tics of categorical variables. To explain its meaning, consider the relative fre-
quency fs = Ns/N of part Rs, and the entire frequency profile f(R) = (f1,f2,…, 
fp) of an arbitrary p-part partition R. The inner product, c(R) = <f(R), 
f(R)> = Σsfs

2, may be referred to as the concentration index. Its maximum 
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value 1 is attained for the profile in which all the frequencies are 0, except one 
that is equal to unity. Its minimum value 1/p is attained for the uniform pro-
file in which all the frequencies are equal, so fs = 1/p for all s, 1 ≤ s ≤ p. 
Obviously, |E| = N2c(R). A precise meaning of c(R) can be given in terms of 
the so-called proportional prediction rule. The proportional prediction rule is 
a classifier defined according to profile f(R). A classifier assigns a category s, 
1 ≤ s ≤ p, to any object randomly supplied, according to the distribution f(R). 
The proportional prediction classifier assigns the categories randomly, each 
category s with probability fs. It is easy to see that the average accuracy of this 
classifier is c(R). Its complement to unity, δ = 1 − c(R), is well known in so-
cial economics as the Gini index, a measure of inequality of social groups in 
which fs is the proportion of the s-th income group in the population.

Since the concentration part in (15) is subtracted, we can safely claim that 
criterion (15), other things being equal, leads to a more uniform median rank-
ing than it would have had nothing been subtracted from cij in (12). In fact, it 
can be proved that, when the weight α of the subtracted value in (15) is in-
creased above n/4, the concentration of a ranking R that maximizes the ex-
pression corresponding to (15) can only decrease. Indeed, the following strong-
er statement holds.

Theorem 9. If R and Rʹ are maximizers of G(R, a) in (15) for a = a1 and 
a = a2, respectively, and a2 > a1 then c(Rʹ) ≤ c(R).

Proof. From (15), G(R,a) = G(R,0) − aN2c(R)  for any R and a. Since R 
maximizes G(R,a1) and Rʹ maximizes G(R,a2), we have G(Rʹ,a1) ≤ G(R,a1) 
and G(R,a2)≤ G(Rʹ,a2). Therefore, G(Rʹ,0) − a1N

2c(Rʹ) ≤ G(R,0) − a1N
2c(R) 

and G(R,0) − a2N
2c(R) ≤ G(Rʹ,0) − a2N

2c(Rʹ). Combining these two inequal-
ities, we obtain

a1N
2c(R) − a1N

2c(Rʹ)  ≤  G(R,0) − G(Rʹ,0)  ≤ a2N
2c(R) − a2N

2c(Rʹ), 
so (a2  − a1) N

2c(Rʹ) ≤ (a2  − a1) N
2c(R). Since a2 > a1, it follows that 

c(Rʹ) ≤ c(R), which completes the proof.
This result supports the view that the second term in (15) is a regularizer 

of the distribution of elements in the parts of the sought ordered partition R: 
the greater the weight a, the greater the number of (non-empty) parts and the 
more uniform the distribution of elements among the parts.

b. The Muchnik test over Likert scales

Ranking practitioners have noticed that the concept of median is not that 
sensitive to their interest in a few leaders rather than an entire consensus rank-



23

ing [Cook, 2006]. We focus here upon an even less desirable property: insuf-
ficient sensitivity to the differences in similar opinions.

Let us consider a test example, akin to the so-called Muchnik test in con-
sensus clustering [Mirkin 2012]. In 1969, after hearing of Mirkinʹs distance 
between partitions (see, for example, [Mirkin, Cherny, 1970]), I. Muchnik 
proposed the following benchmark test for consensus partitioning models, as 
described in [Mirkin, 2012]. The test follows the procedure for enveloping 
any nominal feature into a set of binary “dummy” attributes, each correspond-
ing to a category. Consider a partition, R = {Rk} with K parts Rk, k = 1, 2, ..., 
K, to have been pre-specified on A. Now define Rk as a two-cluster partition 
to comprise two clusters, Rk and its complement, A – Rk (k = 1, ..., K). The 
pre-specified R should be considered consensus for the set of binary partitions 
Rk. On the one hand, the Rks can be considered ensemble clusterings found in 
the conditions at which only rather coarse granularity of two-cluster solutions 
is feasible. On the other hand, R^k can be thought of as different aspects 
making up the concept represented by partition R. Relating to a criterion of 
consensus partition, the question is whether that leads to R as the only con-
sensus for the set Rk, k = 1, ..., K. If the criterion fails this test, there remains 
little to support it. The Muchnikʹs test should be considered as a first hurdle 
to be overcome by a consensus criterion.

Let us apply the test to the concept of consensus according to Mirkinʹs dis-
tance, that is the mismatch distance (9) between the equivalence relations cor-
responding to partitions.  A partition S minimizing the summary distance ∑d(S, 
Rk) can be shown to maximize f(S)  = ∑i, j∈A sij(aij –K/2) where sij is 1 if i,j are 
in the same part of partition S, and sij  = 0, otherwise, whereas aij is the number 
of ensemble partitions at which both i and j belong to the same part. 

First of all, let us take a look at the matrix (aij) for the test. Obviously, if i 
and j belong to the same part Rk  of R, then they belong to the same part in 
every two-class partition Rk so that aij = K in this case. If, in contrast, i and j 
belong to different classes, say Rk and Rl, respectively, they will belong to dif-
ferent parts in the corresponding two-class partitions Rk and Rl, and they would 
belong to the same part in all the other two-class partitions. This would make 
aij = K – 2 in the case when i and j belong to different classes in R.

This implies that the consensus partition according to Mirkinʹs distances 
fails Muchnikʹs test if K>4. Indeed, in this case all the elements of the con-
sensus matrix are all positive: aij – K/2≥ (K – 2) – K/2 = (K – 4)/2 > 0. There-
fore, the maximum of criterion f(S) is reached at the universal partition con-
sisting of the only universal cluster A, not at partition R.
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In the context of ordered partition, we apply the very same idea, slightly 
modified to accommodate the order. Consider the so-called Likert scale 
[Likert 1932, Allen and Seaman 2007]. This scale is applied when an indi-
vidual cannot reproduce an entire ranking. A psychologist then specifies 
a number of attributes, each of which splits the ordering in question into two 
complementary fragments – the beginning and the end. For each object or ob-
servation, the psychologist asks the individual, in respect of a specific attribute, 
whether the object falls within the beginning or end part of the scale. Math-
ematically, the situation can be described as follows.

There is a ranking with p tied parts, R = (R1, R2, …, Rp). This ranking is 
used to produce p-1 binary rankings S1, S2, …, Sp-1. Each binary ranking St 
consists of just two parts, so St = (Ut, Vt) for t = 1, 2, …, p – 1. The first part 
Ut  is the set-theoretic union of the first t parts of R, so   U t = U m=1

t Rm  and the 
second part Vt is the union of the remaining parts of R, so Vt = A − Ut. These 
binary rankings completely determine the underlying ranking R. Therefore, 
we may pose the problem of finding a consensus ranking or median S for the 
set of binary rankings S1, S2, …, Sp-1.  In particular, will the underlying ordered 
partition R be a solution to this problem?

3 3 3 3 3 3 3

2 3 3 3 3 3 3

1 2 3 3 3 3 3

0 1 2 3 3 3 3

–1 0 1 2 3 3 3

–2 –1 0 1 2 3 3

–3 –2 –1 0 1 2 3
                

3 3 3 3 3 3 3

2 3 3 3 3 3 3

1 2 3 3 3 3 3

0 1 2 3 3 3 3

–1 0 1 2 3 3 3

–2 –1 0 1 2 3 3

–3 –2 –1 0 1 2 3

(a)                                                       (b)                             

Figure 2. Values cij – (p –1)/2 for the blocks of the consensus matrix for the Likert scale 
consensus problem when p = 7. The bold line represents the boundary separating entries 
summed in criterion (12), i.e. those above and to the right of it, from the rest. Fig.2 (a) 

shows the case in which the seven parts are merged into three aggregated parts: 
(i) the first two parts, (ii) the next three parts, and (iii) the last two parts. 

Fig. 2(b) shows the case in which the seven parts are merged into two aggregated parts: 
(i) the first four parts, and (ii) the last three parts  
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Fig. 2 shows two cases representing the ranking consensus matrix for the 
set of binary rankings corresponding to a ranking with p = 7 tied parts, with 
the value (p – 1)/2 = 3 subtracted from each of the entries. Rather than show-
ing individual elements of A, we show just the block structure of the matrix, 
where the (s,t)-th block, 1 ≤ s, t ≤ p, corresponds to the pairs (i, j)∈ Rs × Rt, 
with each entry having the constant value cij – (p – 1)/2. There are only 6 neg-
ative blocks in the matrix. Of course, the number of negative entries (i,j) clear-
ly depends on the sizes of the corresponding parts of R. Let us consider, for 
the sake of simplicity, a case in which each part R1, R2,…, Rp of R contains 
the same number of elements. To maximize the criterion (12), we just need to 
minimize the sum of the entries below the diagonal. It is fairly evident that 
the parts of R cannot be split in an optimal ranking S – this, of course, can be 
proven formally.  Therefore, a median S can be obtained by merging some 
parts of R, that is, R should be a refinement of S.  The best option would, if 
it were possible, be to merge the parts in such a way that these negative blocks 
of entries, and only they, should be excluded from the upper part of the ma-
trix in Fig. 2. However, this is not possible, because, however the parts are 
aggregated, some positive entries must be present below the diagonal – more 
precisely, below a borderline delineating the aggregated parts. This is shown 
in Fig. 2(a) for the case in which the candidate ranking has three parts obtained 
by merging (i) R1 and R2, (ii) R3, R4 and R5, and (iii) R6 and R7. The border-
line between the entries included in and excluded from the sum in (12) is 
shown in bold. We can see there are 6 positive entries below the borderline, 
which almost cancel out the negative values. In this sense, the binary ranking 
S4 that merges R1, R2, R3 and R4 into the first part of S, and R5, R6 and R7 into 
the second part of S, as shown in Fig. 2(b), is better as it excludes all the neg-
ative entries and only 3 positive entries. It is not difficult to prove that this 
ranking is optimal, and that another optimal ranking is the binary ranking S3. 
Similarly, in the general case with a different number of equal-size parts in 
the underlying ranking R, a binary ranking that splits R into two equal-size 
parts (or as equal as possible) is an optimal ranking.

As we can see, the median rule for the Likert scale cannot reproduce the 
original ranking R when p>2. The median S in this case is just a coarser bi-
nary version of R, which is a very rough model of the original. 
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5. Conclusion

Human intuition handles summation of positive numbers rather well. An 
issue emerges when some of the numbers are negative. This report can be 
looked at as an attempt to find some structure in the -1 entries in the Kendall 
matrices occurring in the formula for the Kemeny distance between tied rank-
ings. These entries appear whenever a pair of elements, i and j, are inversely 
related so that j precedes i in a ranking. First of all, we showed, in Theorem 4, 
that the Kemeny distance can be expressed in terms of the mismatch distance 
between the preference relations (weak orders) corresponding to the tied rank-
ings, in which no negative entries appear. The mismatch distance is defined 
in terms of the 0-1 matrices of weak orders, rather than the Kendall matrices 
of the rankings, containing entries 1, 0 and –1. Our next claim is that, in the 
problem of finding a consensus between tied rankings, all the negative items 
relate to the subtracted regularizer term in (15), an expression depending only 
on the distribution of the sizes of the parts in the consensus ranking, not on 
the precedence relation between them (see Theorems 8 and 9). The structure 
of the subtracted term relates the problem of finding a consensus tied ranking 
to the well-known linear ordering problem. Moreover, when applied to the is-
sue of consensus ranking in the Likert scale case, the concept of Kemeny me-
dian, or consensus ranking, appears to be less sensitive than one would have 
hoped, resulting in a solution being one of the central Likert binary rankings 
rather than the hidden multi-part ranking.

Following this line of narrative, we have explicitly formulated properties 
of the Kemeny distance, especially those related to its decomposition into “or-
dered” and “unordered” parts (see Theorem 7) and its computation via the 
contingency table, popular in statistics (see (8), (9) and (10)).  

Among possible directions for further research, two are quite straightfor-
ward. First, to try to solve numerically the problem of consensus ranking. For 
example, the additive structure in (15) suggests that one might first find an 
optimal linear ordering and then aggregate some of its parts to form a tied 
ranking. Second, the failure of the Muchnik test on Likert scales suggests 
some ways for formulating more sensitive criteria for consensus.
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Ранжирования широко используются в нескольких областях современной науки, включая 
социологию, принятие решений, анализ данных и извлечение информации. Цель данной рабо-
ты – увязать разработки, проводящиеся в рамках количественной социологии и методологии 
принятия решений, с достижениями информатики, а также представить некоторые новые резуль-
таты, полученные авторами. Мы рассматриваем бинарные отношения предпочтения, которые 
соответствуют ранжированиям (упорядоченным разбиениям) – так называемые слабые порядки. 
Мы доказываем, что обычное расстояние между слабыми порядками как множествами упоря-
доченных пар объектов – численность их симметрической разности – совпадает с известным 
расстоянием Кемени между соответствующими ранжированиями, несмотря на значительно бо-
лее сложную структуру ранжирований. Используя этот факт, мы рассматриваем свойства гео-
метрического пространства слабых порядков с использованием тернарного отношения «между» 
и таблиц сопряжённости для упорядоченных разбиений. Затем мы представляем проблему оты-
скания консенсусного ранжирования как вариант проблемы оптимального упорядочения «кон-
сенсусной» матрицы связей между объектами. Разница – в вычитаемом члене, «концентрации» 
разбиения, который не зависит от упорядочения и играет роль регуляризатора величины концен-
трации оптимального ранжирования. Мы применяем эти результаты к традиционной в психоме-
трике шкале Лайкерта, чтобы показать, что правило консенсуса по Кемени нечувствительно к 
данным и, следовательно, должно быть дополнено более тонкими инструментами. 

Ключевые слова: ранжирование; упорядоченное разбиение; слабый порядок; метрика; 
консенсус; тест Мучника
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