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Competitive division of a mixed manna∗†

A mixed manna contains goods (that everyone likes), bads (that everyone dislikes), as
well as items that are goods to some agents, but bads or satiated to others.

If all items are goods and utility functions are homothetic, concave (and monotone),
the Competitive Equilibrium with Equal Incomes maximizes the Nash product of utilities:
hence it is welfarist (determined utility-wise by the feasible set of profiles), single-valued
and easy to compute.

We generalize the Gale-Eisenberg Theorem to a mixed manna. The Competitive
division is still welfarist and related to the product of utilities or disutilities. If the zero
utility profile (before any manna) is Pareto dominated, the competitive profile is unique
and still maximizes the product of utilities. If the zero profile is unfeasible, the competitive
profiles are the critical points of the product of disutilities on the efficiency frontier, and
multiplicity is pervasive. In particular the task of dividing a mixed manna is either good
news for everyone, or bad news for everyone.

We refine our results in the practically important case of linear preferences, where
the axiomatic comparison between the division of goods and that of bads is especially
sharp. When we divide goods and the manna improves, everyone weakly benefits under
the competitive rule; but no reasonable rule to divide bads can be similarly Resource
Monotonic. Also, the much larger set of Non Envious and Efficient divisions of bads can
be disconnected so that it will admit no continuous selection.
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1 Introduction and main result

The literature on fair division of private commodities, with few exceptions discussed in
Section 3, focuses almost exclusively on the distribution of disposable commodities, i. e.,
desirable goods like a cake ([43]), family heirlooms ([36]), the assets of divorcing partners
([7]), office space between co-workers, seats in overdemanded business school courses ([42],
[10]), computing resources in peer-to-peer platforms ([19]), and so on. Obviously many
important fair division problems involve bads (non disposable items generating disutility):
family members distribute house chores, workers divide job shifts ([9]) like teaching loads,
cities divide noxious facilities, managers allocate cuts within the firm, and so on. Moreover
the bundle we must divide (the manna) often contains the two types of items: dissolving
a partnership involves distributing its assets as well as its liabilities, some teachers relish
certain classes that others loathe, the land to be divided may include polluted as well as
desirable areas, and so on. And the manna may contain items, such as shares in risky
assets, or hours of baby-sitting, over which preferences are single-peaked without being
monotone, so they will not qualify as either “good” or “bad”, they are “satiable” items.
Of course each item may be a good to some agents, a bad to others, and satiable to yet
other agents. We speak in this case of dividing a mixed manna.

Although the fair division literature pays some attention to the case of a “bad” manna,
our paper is, to the best of our knowledge, the first to address the case of a mixed manna.

To see why it is genuinely more complicated to divide a mixed rather than a good or
a bad manna, consider the popular fairness test of Egalitarian Equivalence (EE) due to
Pazner and Schmeidler ([35]). A division of the manna is EE if everyone is indifferent
between her share and some common reference share: with mixed items this property may
well be incompatible with Efficiency.1 The news is much better for the division proposed
by microeconomists four decades ago ([49]), the Competitive Equilibrium with Equal In-
comes (here competitive division, for short). Existence is guaranteed when preferences
are convex, continuous, but not necessarily monotonic and possibly satiated: see e. g.,
[40], [28]. And this division retains the key normative properties of Efficiency, No Envy,
and Core stability from equal initial endowments (see Lemma 1 Section 4).

A striking result by Gale, Eisenberg, and others ([17], [16], [12], [41]) shows that in
the subdomain of homothetic (as well as concave and continuous) utilities the competitive
division of goods obtains by simply maximizing the product of individual utilities. This
is remarkable for three reasons. First the “resourcist” concept of competitive division
guided by a price balancing Walrasian demands, has an equivalent “welfarist” interpre-
tation as the Nash bargaining solution of the feasible utility set. Second, the competitive
utility profile is unique because by the latter definition it solves a strictly convex opti-
mization program; it is also computationally easy to find and continuous with respect

1Two agents 1, 2 share (one unit of) two items a, b, and their utilities are linear: u1(z1) = z1a − 2z1b;
u2(z2) = −2z2a + z2b. The only efficent allocation gives a to 1 and b to 2. In an EE allocation (z1, z2)
there is some y ≥ 0 such that ui(zi) = ui(y) for i = 1, 2. This implies u1(z1) + u2(z2) = −(ya + yb) so
that z is not efficient.
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to the parameters of individual utilities ([50], [25]); all these properties fail under gen-
eral Arrow-Debreu preferences. Finally the result is broadly applicable because empirical
work relies mostly on homothetic utilities, that include additive, Cobb Douglas, CES,
Leontief, and their linear combinations. So the Gale Eisenberg theorem is arguably the
most compelling practical vindication of the competitive approach to the fair division of
goods.

We generalize this result to the division of a mixed manna under concave, continuous
and homothetic preferences. We show that the welfarist interpretation of the competitive
division is preserved: the set of feasible utility profiles is still all we need to know to
identify the competitive utility profiles (those associated with a competitive division of
the items). On the other hand there may be many different such profiles, and in that case
they no longer solve a convex program: computational simplicity and continuity as above
are lost.

We also show that division problems are of three types, and that a very simple welfarist
property determines their type. Keep in mind that, by homotheticity, the zero of utilities
corresponds to the ex ante state of the world without any manna to divide. Call an
agent “attracted” if there is a share of the manna giving her strictly positive utility, and
“repulsed” if there is none, that is to say zero is her preferred share.

If it is feasible to give a positive utility to all attracted agents, and zero to all repulsed
ones, we call this utility profile “positive” and speak of a “positive” problem. Then the
competitive utility profile is positive for attracted agents and maximizes the product of
the attracted agents’ utilities over positive profiles; just like in Gale Eisenberg this utility
profile is unique and easy to compute. Also, the arrival of the manna is (weakly) good
news for everyone.

If on the other hand the efficiency frontier contains allocations where everyone gets
a strictly negative utility, we call the problem “negative”. Then the competitive utility
profiles are the critical points (for instance local maxima or minima) of the product of
all disutilities on the intersection of the efficiency frontier with the (strictly) negative
orthant:2 we may have multiple such profiles, and we expect computational difficulties.3

Moreover, the arrival of the manna is strictly bad news for everyone.
Finally the “null” problems are those knife-edge cases where the zero utility profile is

efficient: it is then the unique competitive utility profile, and the arrival of the manna is
no news.

2See the precise definition in Section 5.
3Selecting the competitive utility profiles maximizing the product of disutilities on this part of the

efficiency frontier almost surely gives a unique utility profile (Lemmas 3 and 4), but does not eliminate
the computational and continuity issues, as explained by Proposition 3.
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2 The case of linear preferences

The simplest subdomain of the homothetic domain just discussed is that of linear pref-
erences, represented by additive utilities. Its practical relevance is vindicated by user-
friendly platforms like SPLIDDIT or ADJUSTED WINNER4, computing fair outcomes
in a variety of problems including the division of manna. Visitors of these sites must
distribute 100 points over the different items, and these “bids” are interpreted as fixed
marginal utilities, positive for goods, negative for bads, and zero for a satiated item. At
the cost of ignoring complementarities between items, this makes the report of prefer-
ences fairly easy, eschewing the complex task of reporting full fledged preferences when
we have more than a handful of items.5 The proof of the pudding is in the eating: tens
of thousands of visitors have used these sites since 2014, fully aware of the interpretation
of their bids ([20]).

If N is the set of agents and A that of items, a profile of additive utilities is described
by a N × A matrix u = [uia] with i ∈ N, a ∈ A; agent i’s utility for allocation zi ∈ RA+ is
ui(zi) =

∑
A uiazia. If all items are goods, the marginal utilities uia are all non negative

and in the terminology just introduced the problem is positive: the classic Gale Eisenberg
result applies and the competitive utility profile is the unique Nash bargaining solution.
If all items are bads, the marginal utilities uia are all non positive and the problem is
negative.

In the additive domain we evaluate first the potentially severe multiplicity of compet-
itive divisions in negative problems, illustrated in the numerical example below. Next we
propose an invariance property in the spirit of Maskin Monotonicity characterizing the
competitive division rule for any problem, positive, negative or null.

On the other hand we prove some strong impossibility results for all-bads problems
(hence for negative ones as well): they limit the appeal of any division rule guaranteeing
No Envy, or simply a fair share of the manna to every participants. Therefore the contrast
between positive and negative problems goes beyond the competitive approach, which is
somewhat counter-intuitive: just like labor is time not spent on leisure, allocating zia
units of bad a to i is the same as exempting her from eating ωa − zia units of a (where
ωa is the amount of bad a in the manna). But note that we must distribute (|N | − 1)ωa
units of the a-exemption, while each agent can eat at most ωa units of it: these additional
capacity constraints create the normative differences that we identify.

A numerical example We start with a two agent, three items sequence of examples
illustrating the complicated pattern of competitive allocations in negative problems. We
have two agents N = {1, 2}, three items A = {a, b, c}, one unit of each item, and marginal

4www.spliddit.org/; www.nyu.edu/projects/adjustedwinner/
5Similarly practical combinatorial auctions never ask buyers to report a ranking of all subsets of

objects, ([6], [51], [15]).

4

www.spliddit.org/
www.nyu.edu/projects/adjustedwinner/


-1

Feasible set and competitive allocations

3

4

0

1

2

-4 -3 -2 -1 1 2 3 4

-3

-2

0

utility of agent 1

u
ti

lit
y 

o
f 

ag
en

t 
2

-2

Feasible set and competitive allocations

2

3

0

-1

1

-4 -3 -2 -1 1 2 3

-3

0

utility of agent 1
u

ti
lit

y 
o

f 
ag

en
t 

2

-3

Feasible set and competitive allocations

1

2

0

-2

-1

-4 -3 -2 -1 1 2

0

utility of agent 1

u
ti

lit
y 

o
f 

ag
en

t 
2

1

Feasible set and competitive allocations

-1

1

0

-3

-2

-4 -3 -2 -1 0

utility of agent 1

u
ti

lit
y 

o
f 

ag
en

t 
2

Figure 1 (λ = 4, 3, 2, 1)

utilities are
a b c

u1 −1 −3 λ
u2 −2 −1 λ

Items a, b are bads; as λ takes all integer values from 4 to −3, item c goes from good
to satiated (λ = 0) to bad. For λ = 4, 3 the problem is positive; it is null for λ = 2,
then negative from λ = 1 to −3. Figure 1 shows in each case the set of feasible utility
profiles, and the competitive utility profiles. Their number varies from 1 to 4. For
instance if λ = −1 all items are bads and the four competitive utility profiles are (−1,−2),
(−1.5,−1.5), (−2,−1), (−2.5,−0.83). In Section 5 (Lemmas 3 and 4) we propose to
select the profile (−1.5,−1.5) maximizing the product of disutilities; the corresponding
allocation is z1 = (1, 0, 1

2
), z1 = (0, 1, 1

2
). Note that for λ = 1 (Figure 1.e) this maximum
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is achieved by the competitive allocation most favourable to agent 1.
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In Subsection 6.1 we estimate the maximal number of welfare-wise different com-
petitive allocations in an all bads (or negative) problem. This number grows at least
exponentially in the smallest of the number of agents or bads (Proposition 1).
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An axiomatic characterization of the competitive rule In the linear domain
agents report marginal utilities, which we can interpret as “bids” for the different items
(as in [42]). Thus agent i’s bid uia for item a is “losing” if she ends up not consuming
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any a. Independence of Lost Bids (ILB) means that nothing changes when we lower a
losing bid: it remains losing and the allocation selected by the rule does not change. The
ILB axiom implies a weak incentive property: misreporting on an item which I do not
consume anyway (whether I misreport or not) does not pay, and does not affect anyone
else either. Here is another consequence of ILB. Suppose item a is a good for agent 1,
uia > 0, but a bad for agent 2, u2a < 0; by Efficiency agent 2 consumes no a; then ILB
says that the selected allocations do not change if agent 2’s bid for a was zero instead of
u2a. In turn this means that if an item is strictly good for someone, we can assume that
it is either good or satiated for everyone else.

The ILB axiom is a weak form of Maskin Monotonicity as explained in Subsection
7.7. In combination with the requirement that all agents end up on the same side of their
zero utility, it promptly characterizes the competitive rule for all mixed manna problems
(Proposition 2).

Continuity and Monotonicity properties For a general problem with goods and
bads, the set of competitive utility profiles is an upper-hemi-continuous correspondence
in the matrix of marginal utilities. For positive problems it is single-valued, hence con-
tinuous, but for negative problems it does not admit a continuous single-valued selection.
Proposition 3 strengthens this statement by weakening the competitiveness requirement
to the much less demanding test of No Envy. In an all bads problem with three or more
agents, there is no continuous single valued selection of the set of efficient and Non Envi-
ous allocations; in particular with n agents and two bads the corresponding set of utility
profiles can have up to roughly 2

3
n connected components.

Our last result is also a (simple) impossibility statement. We use the familiar ax-
iom Resource Monotonicity (RM) to draw another wedge between positive and negative
problems. RM is a solidarity requirement when the manna improves: if we increase the
amount of a unanimous good (an item everyone likes), or decrease that of a unanimous
bad, everyone should benefit at least weakly.6 In a positive problem the (single-valued)
competitive rule is Resource Monotonic, but in an all bads problems (hence in negative
problems as well), no single-valued rule guaranteeing his Fair Share to every agent7 is
Resource Monotonic (Proposition 4).

Contents After reviewing the literature (Section 3) and defining the model (Section
4), Section 5 states our generalization of Gale Eisenberg to mixed manna. We focus in
Section 6 on the subdomain of linear preferences and the four propositions just described.
All substantial proofs are in Section 7.

6RM has been applied to many other resource allocation problems with production and/or indivisi-
bilities. See the recent survey [45].

7That is, no one is worse off than by consuming a 1
n -th share of every item. It is an uncontroversial

fairness requirement, much weaker than No Envy in the linear domain.
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3 Related literature

1. Steinhaus’ 1948 “cake-division” model ([43]), assumes linear preferences represented
by atomless measures over, typically, a compact euclidean set. It contains our model for
goods as the special case where the measures have piecewise constant densities. Sziklai
and Segal-Halevi ([38]) show that it preserves the equivalence of the competitive rule
and the Nash product maximizer, and that this rule is Resource Monotonic. The cake
division literature pays some attention to the division of a bad cake, to prove the existence
of envy-free divisions of the cake ([44], [3]), or to examine how the classic algorithms by
cuts and queries can or cannot be adapted to this case ([7], [37]). It does not discuss the
competitive rule for a bad cake.

2. The recent work in computational social choice discusses extensively the fair division
of goods (see the survey [8]), recognizing the practical convenience of additive utilities and
the conceptual advantages of the competitive solution in that domain (see [31], [50]). For
instance Megiddo and Vazirani ([30]) show that the competitive utility profile depends
continuously upon the rates of substitution and the total endowment; Jain and Vazirani
([25]) that it can be computed in time polynomial in the dimension n+m of the problem
(number of agents and of goods).

3. The fair division of indivisible goods with additive utilities is a much studied variant
of the standard model. The maximization of the Nash product loses its competitive
interpretation and becomes hard to compute ([26]), however it is envy-free “up to at most
one object” ([11]) and can be efficiently approximated for many utility domains ([14], [1],
[2], [13]). Also Budish ([9]) approximates the competitive allocation in problems with a
large number of copies of several good-types by allowing some flexibility in the number of
available copies.

4. Our Proposition 2 is closely related to several axiomatic characterizations of the
competitive rule for the fair division of private goods, in the much larger domain of Arrow-
Debreu preferences. The earliest results by Hurwicz ([23]) and Gevers ([18]) are refined
by Thomson ([46]) and Nagahisa ([33]): any efficient and Pareto indifferent rule meeting
(some variants of) Maskin Monotonicity (MM) must contain the competitive rule.8 Our
Independence of Lost Bids is weaker than MM in the linear domain, so our Proposition 2
is a variant of these results in the case of mixed items (and homothetic preferences).

5. The probabilistic assignment of goods with von Neuman Morgenstern utilities is
another fair division problem with linear and possibly satiated preferences where Hylland
and Zeckhauser ([24]) and the subsequent literature recommend (a version of) the com-
petitive rule: e. g., [21]. That rule is no longer related to the maximization of the product
of utilities.

6. The purely welfarist axiomatic discussion of non convex bargaining problems iden-
tifies the set of critical points of the Nash product among efficient utility profiles as a

8Another, logically unrelated characterization combines Consistency and Replication Invariance ([47])
or Consistency and Converse Consistency ([34]).
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natural generalisation of the Nash solution: [22], [39]. This solution stands out also in
the rationing model of [27] where we divide utility losses instead of gains. The latter is
closer in spirit to our results for the division of bads.

4 The model

The set of agents is N , that of items is A; both are finite. The domain H(A) consists
of all preferences on RA+ represented by a real-valued utility function v on RA+ that is
concave, continuous, and 1-homothetic: v(λy) = λv(y) for all λ ≥ 0, y ∈ RA+. It is easily
checked that if two such utility functions represent the same preference, they differ by a
positive multiplicative constant. All our definitions and results are purely ordinal, i. e.,
independent of the choice of the utility representations; we abuse language by speaking
of “the utility function v in H(A)”.

The graph of a concave and continuous function v on RA+ is the envelope of its sup-
porting hyperplanes, therefore it takes the form v(y) = mink∈K{αk · y + βk} for some
αk ∈ RA, βk ∈ R and a possibly infinite set K. It is easy to see that v is also homothetic if
and only if we can choose βk = 0 for all k. So the simplest examples are the additive utili-
ties v(y) = α ·y and the piecewise linear utilities like v(y) = min{ya+yb, 4ya−yb, 4yb−ya}
for A = {a, b}, of which the indifference contours are represented on Figure 2. Note that
this utility is not globally satiated, but for fixed yb it is satiated at ya = yb. For a smooth
example of a non monotonic function in H(A) consider for example v(y) = yb ln{ya

yb
+ 1

2
},

represented in Figure 3.
A fair division problem is P = (N,A, u, ω) where u ∈ H(A)N is the profile of utility

functions, and ω ∈ RA+ is the manna; we assume ωa > 0 for all a.
A feasible allocation (or simply an allocation) is z ∈ RN×A+ such that

∑
N zia = ωa

for all a, or in a more compact notation zN = ω. The corresponding utility profile
is U ∈ RN where Ui = ui(zi). Let F(N,A, ω) be the set of feasible allocations, and
U(P) the corresponding set of utility profiles. We always omit P or N,A if it creates no
confusion.
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We call a feasible utility profile U efficient if it is not Pareto dominated9; a feasible
allocation is efficient if it implements an efficient utility profile.

Definition 1: Given problem P a competitive division is a triple (z ∈ F , p ∈ RA, β ∈
{−1, 0,+1}) where z is the competitive allocation, p is the competitive price and β the
individual budget. The allocation z is feasible and each zi maximizes i’s utility in the
budget set B(p, β) = {yi ∈ RA+|p · yi ≤ β}:

zi ∈ di(p, β) = arg max
yi∈B(p,β)

{ui(yi)} (1)

Moreover zi minimizes i’s wealth in her demand set

zi ∈ arg min
yi∈di(p,β)

{p · yi} (2)

We write CE(P) for the set of competitive allocations, and CU(P) for the corresponding
set of utility profiles.

Existence of a competitive allocation can be derived from (much) earlier results that
do not require monotonic preferences (e.g., Theorem 1 in [28]; see also [40]), but our main
result in the next section gives instead a constructive proof.

In addition to utility maximization (1), property (2) requires demands to be parsi-
monious : each agent spends as little as possible for her competitive allocation. This
requirement appears already in [28]: in its absence some satiated agents in N− may inef-
ficiently eat some items useless to themselves but useful to others.10

Recall three standard normative properties of an allocation z ∈ F(N,A, ω). It is Non
Envious iff ui(zi) ≥ ui(zj) for all i, j. It Guarantees Fair Share utility iff ui(zi) ≥ ui(

1
n
ω)

for all i. It is in the Weak Core from Equal Split iff for all S ⊆ N and all y ∈ RS×A+ such

that yS = |S|
n
ω, there is at least one i ∈ S such that ui(zi) ≥ ui(yi). When we divide

goods competitive allocations meet these three properties, even in the much larger Arrow
Debreu preference domain. This is still true with mixed items.

Lemma 1 A competitive allocation is efficient; it is No Envious, Guarantees Fair Share,
and is in the Weak Core from Equal Split.
Proof. No Envy is clear. Fair Share Guaranteed holds because B(p, β) contains 1

n
ω. We

check Efficiency. If (z, p, β) is a competitive division and z is Pareto-dominated by some
z′ ∈ F , then for all i ∈ N we must have (p, z′i) ≥ (p, zi) because otherwise i can either
benefit or save money by switching to z′i (property (2)). Since z′ dominates z, some agent
j strictly prefers z′j to zj, and therefore z′j is outside his budget set, i.e., (p, z′j) > (p, zj).
Summing up these inequalities over all agents we get the contradiction (p, ω) > (p, ω).
The argument for the Weak Core property is similar. �

9That is U ≤ U ′ and U ′ ∈ U(P) =⇒U ′ = U .
10For instance N = {1, 2}, A = {a, b}, ω = (1, 1) and u1(z1) = 6z1a + 2z1b, u2(z2) = −z2b. The

inefficient allocation z1 = ( 1
3 , 1), z2 = ( 2

3 , 0) meets (1) for p = ( 3
2 ,

1
2 ) and β = 1. But z′2 = (0, 0) also

gives zero utility to agent 2 and costs zero, so z2 fails (2). The unique competitive division according
Definition 1 is efficient: z1 = (1, 1), z2 = 0, and p = ( 1

2 ,
1
2 ).
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Remark 1: A competitive allocation may fail the standard Core from Equal Split prop-
erty, where coalition S blocks allocation z if it can use its endowment |S|

n
eA to make

everyone in S weakly better off and at least one agent strictly more. This is because
“equal split” may give resources to agents who have no use for them. Say three agents
share one unit of item a with ui(zi) = zi for i = 1, 2 and u3(z3) = −z3. The competitive
allocation splits a equally between agents 1 and 2, which coalition {1, 3} blocks by giving
2
3

of a to agent 1.

5 Main result

We define formally the partition of division problems alluded to in the Introduction. Given
a problem P we partition N as follows:

N+ = {i ∈ N |∃z ∈ F : ui(zi) > 0} ; N− = {i ∈ N |∀z ∈ F : ui(zi) ≤ 0}

We call agents in N+ attracted to the manna, and those in N− repulsed by it. All agents
in N−, and only those, are globally satiated, and for them zi = 0 is a global maximum,
not necessarily unique.

The partition is determined by the relative position of the set U of feasible utility
profiles and the cone Γ = RN+

+ × {0}N− , where attracted agents benefit while repulsed

agents do not suffer. Let Γ∗ = RN+

++ × {0}N−be the relative interior of Γ.

Lemma 2 Each problem P is of (exactly) one of three types:
positive if U ∩ Γ∗ 6= ∅; negative if U ∩ Γ = ∅; null if U ∩ Γ = {0}.

Given a smooth function f and a closed convex C we say that x ∈ C is a critical point
of f in C if the upper contour of f at x has a supporting hyperplane that supports C as
well:

∀y ∈ C : ∂f(x) · y ≤ ∂f(x) · x and/or ∀y ∈ C : ∂f(x) · y ≥ ∂f(x) · x (3)

This holds in particular if x is a local maximum or local minimum of f in C.

In the next statement we write U eff for the set of efficient utility profiles, and RN= for
the interior of RN− .

Theorem Competitive divisions exist in all problems P . Moreover
i) If P is positive their budget is +1; an allocation is competitive iff its utility profile
maximizes the product ΠN+Ui over U ∩ Γ∗; so CU(P) contains a single utility profile,
positive in N+ and null in N−.
ii) If P is negative their budget is −1; an allocation is competitive iff its utility profile is
in U eff ∩ RN

= and is a critical point of the product ΠN |Ui| in U ; so all utility profiles in
CU(P) are negative.
iii) If P is null their budget is 0; an allocation is competitive iff its utility profile is 0.

We see that the competitive utility profiles are entirely determined by the set of feasible
utility profiles: the competitive approach still has a welfarist interpretation when we divide
a mixed manna.

11



Moreover the Theorem implies that the task of dividing the manna is either good news
(at least weakly) for everyone, or strictly bad news for everyone.

The possible multiplicity of CU(P) for negative problems with linear preferences is
the subject of Subsection 6.1. Without backing up this proposal by specific normative
arguments, we submit that a natural selection of CU(P) obtains by maximizing the Nash
product of individual disutilities on the negative efficiency frontier.11

Lemma 3 If P is a negative problem, the profile U∗ maximizing the Nash product∏
i∈N |Ui| over U eff ∩ RN− is a critical point of the product on U and U∗i < 0 for all

i ∈ N ; hence U∗ ∈ CU(P).

This selection is almost always unique: we prove this in the linear domain.

Lemma 4 Fix N , A and ω. For almost all negative problems P = (N,A, u, ω) with
additive utilities (w.r.t. the Lebesgue measure on the space RN×A of utility matrices) the
utility profile U∗ defined in Lemma 3 is unique.

Remark 2 The Competitive Equilibrium with Fixed Income Shares (CEFI for short)
replaces in Definition 1 the common budget β by individual budgets θiβ, where the pos-
itive weights θi are independent of preferences. It is well known that in an all goods
problem, this asymmetric generalization of the competitive solution obtains by maximizing
the weighted product ΠNU

θi
i of utilities, so that it preserves the uniqueness, computational

and continuity properties of the symmetric solution. The same is true of our Theorem
that remains valid word for word for the CEFI divisions upon raising Ui to the power θi.
In particular the partition of problems in positive, negative or null is unchanged.

6 Additive utilities

A utility function is now a vector ui ∈ RA and corresponding utilities are Ui = ui · zi =∑
A uiazia. For agent i item a is a good (resp. a bad) if uia > 0 (resp. uia < 0); if uia = 0

she is satiated with any amount of a. Given a problem P the following partition of items
is key to understanding the competitive divisions.

A+ = {a|∃i : uia > 0} ; A− = {a|∀i : uia < 0} ; A0 = {a|max
i
uia = 0} (4)

We call an item in A+ a collective good, one in A− a collective bad, and one in A0 a neutral
item. In an efficient allocation an item in A+ is consumed only by agents for whom it is a
good, and a neutral item in A0 is consumed only by agents who are indifferent to it. We
note that the above partition determines the sign of competitive prices.

Fact: if (z, p, β) is a competitive division, we have

pa > 0 if a ∈ A+ ; pa < 0 if a ∈ A− ; pa = 0 if a ∈ A0 (5)

11Note that minimizing the
∏
i∈N |Ui| on U ∩ RN− picks a boundary point where this product is null,

not a competitive allocation.
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The proof is simple. If the first statement fails an agent who likes a would demand an
infinite amount of it; if the second fails no one would demand b. If the third fails with
pa > 0 the only agents who demand a have uia = 0, so that eating some a violates (2); if
it fails with pa < 0 an agent such that uia = 0 gets an arbitrarily cheap demand by asking
large amounts of a, so (2) fails again.

6.1 The multiplicity issue

Proposition 1 If utilities are additive in problem P , the number |CU(P)| of distinct
competitive utility profiles is finite. Set n = |N | and m = |A|, then
i) If n = 2 the upper bound of |CU(P)| is 2m− 1.
ii) If m = 2 the upper bound of |CU(P)| is 2n− 1.
iii) For general n,m, |CU(P)| can be as high as 2min{n,m} − 1 if n 6= m, and 2n−1 − 1 if
n = m.

We offer no guess about the upper bound of |CU(P)| for general n,m.
Three examples follow to illustrate the Proposition. For statement i) the agents in

N = {1, 2} share five bads A = {a, b, c, d, e, f}, one unit of each; utilities are

a b c d e f
u1 −1 −1 −2 −4 −8 −17
u2 −17 −8 −4 −2 −1 −1

Here |CE(P)| = |CU(P)| = 11. In five competitive allocations no bad is split between
the agents; agent 1 eats all the bads in a left interval of A, and agent 2 all those in the
complement right interval of A. For instance {a, b} for 1 and {c, d, e, f} for 2 is sustained
by the price p = −(1

2
, 1
2
, 1
2
, 1
4
, 1
8
, 1
8
) and β = −1. In addition we have six competitive

allocations where exactly one bad is shared between 1 and 2, while 1 gets the bads to its
left, if any, and 2 those to its right, if any. For instance if we split f agent 1 gets the five
other bads and 1

34
of f , while 2 eats 33

34
of f ; the price is p = − 1

33
(2, 2, 4, 8, 16, 34). Notice

that agent 1 gets exactly his Fair Share utility (from eating 1
2

of every item).
For statement ii) we take N = {1, 2, 3, 4, 5, 6}, two bads A = {a, b}, one unit of each,

and the utilities
u1 u2 u3 u4 u5 u6

a −1 −1 −2 −3 −3 −6
b −6 −3 −3 −2 −1 −1

Again |CE(P)| = |CU(P)| = 11. The five allocations where the left-most agents divide
a equally and eat no b, while the right-most ones divide b equally and eat no a, are
competitive. For instance 1 and 2 share a while 3, 4, 5, 6 share b corresponds to p = −(2, 4)
and β = −1. In the other six competitive divisions one agent eats some of both bads,
agents to his left eat only a and agents to his right only b. For instance the allocation

z1 z2 z3 z4 z5 z6
a 5/12 5/12 1/6 0 0 0
b 0 0 1/6 5/18 5/18 5/18
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is sustained by the price p = −(12
5
, 18

5
).

Finally for statement iii) we set N = {1, 2, 3, 4, 5, 6}, A = {a, b, c, d, e}, one unit of
each bad, and the utilities

a b c d e
u1 −1 −3 −3 −3 −3
u2 −3 −1 −3 −3 −3
u3 −3 −3 −1 −3 −3
u4 −3 −3 −3 −1 −3
u5 −3 −3 −3 −3 −1
u6 −1 −1 −1 −1 −1

We check that |CE(P)| = |CU(P)| = 31. The symmetric competitive division with
uniform price 6

5
for each bad gives to each of the first five agents 5

6
units of her preferred

bad, while agent 6 eats 1
6

of every bad, precisely his Fair Share. Now for each strict subset
of the first five agents, for instance {3, 4, 5}, there is a competitive allocation where each
such agent eats “his” bad in full, while agent 1 shares the rest with the other agents:

a b c d e
z1 2/3 0 0 0 0
z2 0 2/3 0 0 0
z3 0 0 1 0 0
z4 0 0 0 1 0
z5 0 0 0 0 1
z6 1/3 1/3 0 0 0

Here prices are p = −(3
2
, 3
2
, 1, 1, 1). This construction can be adjusted for each non trivial

partition of the first five agents. Note that agent 6’s utility goes from −1 (his Fair Share)
to −1

2
, when he shares a single bad with a single other agent; utilities of other agents vary

also between −1 and −1
2
.

Remark 3. It is easy to show that for n = 2 and/or m = 2, |CU(P)| is odd in
almost all problems (excluding only those where the coefficients of u satisfy certain simple
equations). We conjecture that a similar statement holds for any n,m.

6.2 Independence of Lost Bids

We offer a compact axiomatic characterization of competitive fair division. Because our
axioms compare the selected allocations across different problems, we define first division
rules. Notation: when we rescale each utility ui as λiui, the new utility matrix is written
λ ∗ u.

Definition 2 A division rule f associates to every problem P = (N,A, u, ω) a set of
feasible allocations f(P) ⊂ F(N,A, ω) such that for any rescaling λ, λi > 0 for all i, we
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have: f(N,A, λ ∗ u, ω) = f(N,A, u, ω). Moreover f meets Pareto-Indifference (PI). For
every P and z, z′ ∈ F(N,A, ω)

{z ∈ f(P) and ui · zi = ui · z′i for all i} =⇒ z′ ∈ f(P)

Note that PI implies that f is entirely determined by its utility correspondence F (P) =
{u · z|z ∈ f(P)}. The invariance to rescaling property makes sure that division rules are
ordinal constructs, they only depend upon the underlying linear preferences.

The competitive division rule P →CE(P) meets Definition 2. We give other examples
after Proposition 2. Definition 2 is not restricted to linear preferences, but our next axiom
is.

Definition 3 The division rule f is Independent of Lost Bids (ILB) if for any two prob-
lems P ,P ′ on N,A, ω where u, u′ are additive, differ only in the entry ia, and u′ia < uia,
we have

∀z ∈ f(P) : zia = 0 =⇒ z ∈ f(P ′) (6)

Recall from Section 2 our interpretation of uia as agent i’s bid for item a. ILB says that
the bid uia only matters if it is winning, i. e., agent i eats some of item a. It can be shown
that for a generic utility matrix u an efficient allocation z has no more than n + m − 1
non zero coordinates (see Lemma 1 in [4]): then ILB reduces considerably the number of
parameters relevant to describe the outcome selected by the rule.

That the competitive rule P → CE(P) meets ILB is clear by Definition 1: as a
becomes less attractive to i in the shift from P to P ′, i’s Walrasian demand can only
shrink, and it still contains zi.

The characterization requires the uncontroversial fairness property known as Equal
Treatment of Equals (ETE): for all P

ui = uj =⇒ Ui = Uj for all U ∈ F (P) and all i, j ∈ N

We also impose the solidarity property uncovered in our Theorem. Solidarity (SOL): for
all P

Ui · Uj ≥ 0 for all U ∈ F (P) and all i, j ∈ N

Finally we call the rule f Efficient (EFF) if it selects only efficient allocations in every
problem P .

Proposition 2 If a division rule meets Equal Treatment of Equals, Solidarity, Efficiency
and Independence of Lost Bids, it contains the competitive rule.

If problem P involves only goods (uia ≥ 0 for all i, a) or only bads (uia ≤ 0 for all i, a),
Solidarity is automatically true, so the characterization boils down to ETE, EFF and ILB.

We show after the proof (Subsection 7.7) that ILB is a strictly weaker requirement
than Maskin Monotonicity in the linear domain, thus connecting Proposition 2 to earlier
results mentioned in point 4 of Section 3.

We discuss the tightness of our characterization.
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Drop ETE. The CEFI division rule (Remark 1 Section 5) fails ETE for general weights.
It is straightforward to check that it meets ILB either by suitably adapting Lemma 6 or
directly in the general Definition 1. Solidarity follows from our (adapted) Theorem.
Drop ILB. Inspired by the Kalai-Smorodinsky bargaining solution we construct now an
efficient welfare rule F meeting SOL and ETE but failing ILB. Observe that if P is positive
we have Umax

i = maxU∈U Ui > 0 for all i ∈ N+, and if P is negative Umin
i = minU∈U Ui < 0.

In a positive problem the rule picks the unique efficient utility profile U such that Ui

Umax
i

is

constant for i ∈ N+, and Ui = 0 in N−; in a negative problem it picks the efficient profile
such that Ui

Umin
i

is constant for all i; and the null utility at a null problem.

We do not know if the statement is tight with respect to SOL, but recall that SOL is
not needed for all goods or all bads problems. We conjecture that the statement is tight
with respect to EFF. We know at least that we cannot drop both EFF and SOL, because
a constrained version of the competitive rule, where we impose

∑
A zia = 1

n

∑
A ωia as in

[24], satisfies ETE and ILB.

6.3 Single-valued Efficient and Envy-Free rules

In this section and the next we uncover some negative features of the competitive division
rule in negative problems. It will be enough to state them for “all bads” problems. The
first result follows from a careful analysis of the set A of efficient and envy-free allocations
in problems with two bads a, b, and any number of agents.

Lemma 5 If we divide at least two bads between at least three agents, there are problems
P where the set A of efficient and envy-free allocations, and the corresponding set of
disutility profiles, have b2n+1

3
c connected components.

In a two-agent problem (even with mixed manna), No Envy coincides with Fair Share
Guarantee, so the set A is clearly connected.

The proof of Lemma 5 makes clear that in a problem with exactly two bads the
maximal number of connected components of A is indeed b2n+1

3
c. But we have no clue

about the maximal number of components in general all-bads problems. Nor do we know
the answer for the division of goods: if we divide exactly two goods, one can easily check
that A is connected. But beyond this simple case we do not know if A remains connected
in every “all goods” problem.

We call the division rule f Continuous (CONT) if for each choice of N , A, the
corresponding welfare rule (N,A, u, ω) → F (N,A, u, ω) is a continuous function of u ∈
RN×A. If the division rule does not depend upon the units of items in A,12 CONT implies
that P → F (P) is also continuous in ω ∈ RA+.

We call the rule f Envy-Free (EVFR) if f(P) contains at least one envy-free alloca-
tion for every problem P .

12That is, for each λ > 0 the set F (P) is unchanged if we replace ωa by λωa and uia by 1
λuia. Clearly

CU meets this property.
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Proposition 3 If we divide at least two bads between at least four agents, no single-valued
rule can be Efficient, Envy-Free and Continuous.

This incompatibility result is tight. The equal division rule, Fi(P) = { 1
n
ui · ω} for all

P , is EVFR and CONT. A single-valued selection of the competitive rule CU meets EFF
and EVFR. The Egalitarian rule defined at the end of the previous subsection meets EFF
and CONT.

6.4 Resource Monotonicity

Adding more of an item that everyone likes to the manna, or removing some of one that
everyone dislikes, should not be bad news to anyone: the agents own the items in common
and welfare should be comonotonic to ownership. When this property fails someone has
an incentive to sabotage the discovery of new goods, or add new bads to the manna.

We say that problem P ′ improves problem P on item a ∈ A if they only differ in the
amount of item a and either {ωa ≤ ω′a and uia ≥ 0 for all i} or {ωa ≥ ω′a and uia ≤ 0 for
all i}.

Resource Monotonicity (RM): if P ′ improves upon P on item a ∈ A, then F (P) ≤
F (P ′)
Proposition 4
i) With two or more agents and two or more bads, no efficient single-valued rule can be
Resource Monotonic and Guarantee Fair Share (ui · zi ≥ 1

n
ui · ω).

ii) The competitive rule to divide goods is Resource Monotonic (as well as single-valued,
efficient and GFS).

The proof of statement i) is by means of a simple two-person, two-bad example. Fix

a rule F meeting EFF, RM and GFS. Consider the problem P with
a b

u1 −1 −4
u2 −4 −1

and

ω = (1, 1), and set U = F (P). As −(1, 1) is an efficient utility profile, one of U1, U2 is at
least −1, say U1 ≥ −1. Now let ω′ = (1

9
, 1) and pick z′ ∈ f(P ′). By GFS and feasibility:

−z′2b ≥ u2 · z′2 ≥
1

2
u2 · ω′ = −

13

18

=⇒ z′1b ≥
5

18
=⇒ u1 · z′1 = U ′1 ≤ −

10

9
< U1

contradicting RM. Extending this argument to the general case n ≥ 3,m ≥ 2 is straight-
forward.

We omit for brevity the proof of statement ii), available in [4] as well as in [38] for
the more general cake-division model. It generalizes easily to positive problems, when we
add a unanimous good to an already positive problem.

We stress that this positive result applies only to the linear domain, it does not extend
to general homothetic, convex and monotonic preferences. On the latter domain, precisely
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the same combination of axioms as in Proposition 4 cannot be together satisfied: see [32]
and [48] . This makes the goods versus bads contrast in the case of linear preferences all
the more intriguing.

7 Appendix: Proofs

7.1 Lemma 2

The three cases are clearly mutually exclusive; we check they are exhaustive. It is enough
to show that if U intersects Γ 6=0 = Γ�{0} then it intersects Γ∗ as well. Let z ∈ F be an
allocation with u(z) ∈ Γ6=0 and i+ be an agent with ui+(zi+) > 0. Define a new allocation
z′ with z′i+ = zi+ + ε

∑
j 6=i+ zj and z′j = (1− ε)zj for j 6= i+. By continuity we can select

a small ε > 0 such that u(z′) ∈ Γ6=0. By construction z′i+a > 0 for all a ∈ A.

For any j ∈ N+ \ {i+} we can find yj ∈ RA such that uj(z
′
j + δyj) > 0 for small δ > 0.

Indeed if uj(z
′
j) is positive we can take yj = 0. And if uj(z

′
j) = 0, assuming that yj does

not exist implies that z′j is a local maximum of uj. By concavity of uj it is then a global
maximum as well, which contradicts the definition of N+.

Consider an allocation z′′: z′′i+ = z′i+ − δ
∑

j∈N+\{i+} yj, z
′′
j = z′j + δyj for j ∈ N+ \ {i+}

and z′′k = z′k for k ∈ N−. For small δ > 0 this allocation is feasible and yields utilities in
Γ∗.

7.2 Main Theorem

Throughout the proof it is convenient to consider competitive divisions (z, p, β) with
arbitrary budgets β ∈ R (not only β ∈ {−1, 0, 1} ); this clearly yields exactly the same
set of competitive allocations CE(P) and utility profiles CU(P).

7.2.1 Positive problems: statement i)

Let N (V ) =
∏

i∈N+
Vi be the Nash product of utilities of the attracted agents. We fix a

positive problem P and proceed in two steps.

Step 1. If U maximizes N (V ) over V ∈ U ∩ Γ ∗ and z ∈ F is such that U = u(z), then
z is a competitive allocation with budget β > 0.
Let C+ be the convex cone of all y ∈ RN×A+ with u(y) ∈ Γ. For any λ > 0 put

Cλ =
{
y ∈ C+ | N (u(y)) ≥ λ|N+|

}
.

Since P is positive the set Cλ is non-empty for any λ > 0. Continuity and concavity of
utilities imply that Cλ is closed and convex. Homogeneity of utilities give Cλ = λC1.

Set λ∗ = (N (U))
1
|N+| . The set Cλ does not intersect F for λ > λ∗, and Cλ∗ touches F

at z.
Step 1.1 There exists a hyperplane H separating F from Cλ∗ .
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Consider a sequence λn converging to λ∗ from above. Since Cλn and F are convex sets
that do not intersect, they can be separated by a hyperplane Hn. The family {Hn}n∈N
has a limit point H. The hyperplane H separates F from Cλ∗ by continuity of u. Thus
there exist q ∈ RN×A and Q ∈ R such that

∑
i,a qiayia ≤ Q for y ∈ F and

∑
i,a qiayia ≥ Q

on Cλ∗ . The coefficients qia will be used to define the vector of prices p.
By the construction z maximizes N (u(y)) over BN(q,Q) = {y ∈ C+ |

∑
i,a qiayia ≤ Q}.

Think of the latter as a “budget set with agent-specific prices”.
Define the vector of prices p by pa = maxi∈N qia and B∗(p,Q) = {y ∈ C+ |

∑
i p · yi ≤

Q}. We show now that we do not need agent-specific pricing.
Step 1.2 The allocation z maximizes N (u(y)) over y ∈ B∗(p,Q).
It is enough to show the double inclusion z ∈ B∗(p,Q) ⊂ BN(q,Q). The second one is
obvious since

∑
i,a yiapa ≤ Q implies

∑
i,a yiaqia ≤ Q. Let us check the first inclusion.

Taking into account that z ∈ F and
∑

i,a qiayia ≤ Q for y ∈ F , we get∑
i

p · zi =
∑
a

pa
∑
i

zia =
∑
a

pa =
∑
a

max
i
qia = max

y∈F

∑
i,a

qiayia ≤ Q.

Step 1.3 (z, p, β) is a competitive division for some β > 0.
Consider an agent i from N+. Check that the bundle zi belongs to his competitive
demand di(p, βi), where βi = p · zi. Indeed if there exists z′i ∈ RA+ such that p · z′i ≤ βi and
ui(z

′
i) > ui(zi), then switching the consumption of agent i from zi to z′i gives an allocation

in B∗(p,Q) and increases the Nash product, contradicting Step 1.2. Note that βi > 0 for
i ∈ N+ because otherwise we can take z′i = 2zi. Check now that zi is parsimonious: it
minimizes p · yi over di(p, βi). If not, pick yi ∈ di(p, βi) with p · yi < p · zi, then for δ small
enough and positive, the bundle z′i = (1 + δ)yi meets p · z′i ≤ βi and ui(z

′
i) > ui(zi).

We use now the classic equalization argument ([16]) to check that βi does not depend
on i ∈ N+. We refer to the fact that the geometric mean is below the arithmetic one as
“the inequality of means”.

Assume βi 6= βj and consider a new allocation z′, where the budgets of i and j

are equalized: z′i =
βi+βj
2βi

zi and z′j =
βi+βj
2βj

zj. This allocation belongs to B∗(p,Q) and

homogeneity of utilities implies

N (u(z′)) = N (U)

(
βi + βj

2βi

)(
βi + βj

2βj

)
.

Now the (strict) inequality of means gives
βi+βj

2
>
√
βiβj, therefore N (u(z′)) > N (U)

contradicting the optimality of z. Denote the common value of βi by β.
Turning finally to the repulsed agents we check that for any i ∈ N− there is no z′i such

that ui(z
′
i) = 0 and β′i = p ·z′i < p ·zi = βi, i.e., i can not decrease his spending. Assuming

that z′i exists we can construct an allocation z′ ∈ B∗(p,Q), where agent i switches to

z′i, consumption of other agents from N− remains the same, and z′j = zj
N+β+βi−β′i

N+β
for

j ∈ N+. In other words, money saved by i are redistributed among positive agents. By
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homogeneity N (u(z′)) > N (U), contradiction. A corollary is that βi must be zero: take
z′i = 0 if βi > 0, and z′i = 2zi if βi is negative. At zi agent i reaches his maximal welfare
of zero. Therefore, if i can afford zi, then zi is in the demand set. Since the price βi of zi
is zero, we conclude zi ∈ di(p, β). The proof of Step 1.3 and of Step 1 is complete.

Step 2 If (z, p, β) is a competitive division, then β > 0, and U = u(z) belongs to U ∩Γ ∗

and maximizes N over this set.
Check first β > 0. If β ≤ 0 the budget set B(p, β) contains zi and 2zi for all i, therefore
ui(2zi) ≤ ui(zi) implies Ui ≤ 0. Then U is Pareto-dominated by any U ′ ∈ U ∩ Γ ∗,
contradicting the efficiency of z (Lemma 1).

Now β > 0 implies U belongs to Γ ∗: every i ∈ N+ has a yi with ui(yi) > 0 and can
afford δyi for small enough δ > 0; every i ∈ N− can afford yi = 0, hence ui(zi) = 0 and
p · zi ≤ 0 (by (2)).

Consider U ′ = u(z′) that maximizes N over U ∩ Γ ∗. For any i ∈ N+ his spending
β′i = p · z′i must be positive. Otherwise δz′i ∈ B(p, β) for any δ > 0 and agent i can reach
unlimited welfare. Similarly β′i < 0 for i ∈ N− implies δz′i ∈ di(p, β) for any δ > 0, so the
spending in di(p, β) is arbitrarily low, in contradiction of parsimony (2).

For attracted agents β
β′i
z′i ∈ B(p, β) gives β

β′i
U ′i = ui

(
β
β′i
z′i

)
≤ Ui. Therefore if U is not

a maximizer of N , we have

N (U) < N (U ′) ≤ N (U)
∏
i∈N+

β′i
β

=⇒ 1 <

∏
i∈N+

β′i
β

 1
|N+|

≤
∑

i∈N+
β′i

|N+|β

where we use again the inequality of means. Now we get a contradiction from∑
i∈N+

β′i ≤
∑
i∈N

β′i = p · ω =
∑
i∈N

p · zi ≤
∑
i∈N+

β +
∑
i∈N−

0 = |N+|β

7.2.2 Negative problems: statement ii)

The proof is simpler because we do not need to distinguish agents from N+ and N−. We
define the Nash product for negative problems by N (V ) =

∏
i∈N |Vi| and focus now on

its critical points in U eff . We start by the variational characterization of such points. If
V ∈ RN= we have ∂

∂Vi
N (V ) = 1

Vi
N (V ). Therefore U ∈ U ∩ RN= is a critical point of N on

U that lay on U eff iff ∑
i∈N

U ′i
|Ui|
≤ −|N | for all U ′ ∈ U (7)

The choice of the sign in this inequality is determined by Efficiency. Set ϕU(U ′) =∑
i∈N

U ′i
|Ui| : inequality (7) says that U ′ = U maximizes ϕU(U ′) on U .

We fix a negative problem P and proceed in two steps.

20



Step 1. If a utility profile U ∈ U eff ∩RN= is a critical point of N on U , then any z ∈ F
implementing U is a competitive allocation with budget β < 0.
By (7) for any y ∈ F we have ϕU(u(y)) ≤ −|N |. Define

Cλ =
{
y ∈ RN×A+ | ϕU(u(y)) ≥ λ

}
For λ ≤ 0 it is non-empty (it contains 0), closed and convex. For λ > −|N | the set
Cλ does not intersect F and for λ = −|N | it touches F at z. Consider a hyperplane∑

i,a qiayia = Q separating F from C−|N | and fix the sign by assuming
∑

i,a qiayia ≤ Q
on F (existence follows as in Step 1.1 for positive problems). By the construction z
maximizes ϕU(u(y)) on BN(q,Q) = {y ∈ RN×A+ |

∑
i,a qiayia ≤ Q}. Defining prices by

pa = maxi∈N qia and mimicking the proof of Step 1.2 for positive problems we obtain that
z belongs to B∗(p,Q) = {y ∈ RN×A+ |

∑
i,a payia ≤ Q} and maximizes ϕU(u(y)) there.

We check now that z is a competitive allocation with negative budget. For any agent
i ∈ N the bundle zi belongs to his demand di(p, βi) (as before βi = p · zi). If not, i
can switch to any z′i ∈ B(p, βi) with ui(z

′
i) > Ui, thus improving the value of ϕU and

contradicting the optimality of z. The maximal spending βi must be negative, otherwise
i can afford yi = 0 and ui(zi) < ui(yi). If there is some z′i ∈ di(p, βi) such that p · z′i < βi,
the bundle z′′i = βi

p·z′i
z′i is still in B(p, βi) and ui(z

′′
i ) > Ui: therefore p · zi = βi and zi is

parsimonious ((2)).
Finally, βi = βj for all i, j ∈ N . If βi 6= βj, we use an unequalization argument dual

to the one in Step 1.3 for positive problems. Assume for instance βi > βj ⇔ |βi| < |βj|
and define z′ from z by changing only z′i to 1

2
zi and z′j to

2βj+βi
2βj

zj. Clearly z′ ∈ B∗(p,Q)

and we compute

ϕU(u(z′))− ϕU(U) = −1

2
− 2βj + βi

2βj
+ 2 =

1

2
− βi

2βj
> 0

But we showed that z maximizes ϕU(u(y)) in B∗(p,Q): contradiction.

Step 2. If (z, p, β) is a competitive division, then β < 0 and the utility profile U = u(z)
is a critical point of the Nash product on U that belongs to U eff ∩ RN= .
Check first that β < 0. If not each agent can afford yi = 0 so Ui ≥ 0 for all i, which is
impossible in a negative problem. Assume next Ui ≥ 0 for some i: we have 2zi ∈ B(p, β),
ui(2zi) ≥ ui(zi), and p · (2zi) < p · zi, which contradicts (1) and/or (2) in Definition 1.
Therefore U belongs to RN= . Finally p · zi < β would imply ui(zi) < ui(λzi) for λ ∈ [0, 1[,
and λzi ∈ B(p, β) for λ close enough to 1, a contradiction. Summarizing we have shown
U ∈ U eff ∩ RN= and p · zi = β < 0 for all i.

To prove that U is a critical point it is enough to check that it maximizes ϕU(u(y))
on F . Fix z′ ∈ F , set U ′ = u(z′) and p · z′i = β′i. To show ϕU(U ′) ≤ ϕU(U) we will prove

U ′i ≤
β′i
β
Ui for all i (8)
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This holds if β′i < 0 because β
β′i
z′i ∈ B(p, β) so β

β′i
U ′i = ui

(
β
β′i
z′i

)
≤ Ui. If β′i ≥ 0 we set

z′′i = αz′i + (1 − α)zi, where α > 0 is small enough that p · z′′i < 0. We just showed (8)
holds for ui(z

′′
i ), therefore

ui(z
′′
i ) ≤ p · z′′i

β
Ui = α

β′i
β
Ui + (1− α)Ui.

Concavity of ui gives αU ′i + (1− α)Ui ≤ ui(z
′′
i ) and the proof of (8) is complete. Now we

sum up these inequalities and reach the desired conclusion

ϕU(U ′) =
∑
i∈N

U ′i
|Ui|
≤ −

∑
i∈N β

′
i

β
= −

∑
i∈N p · z′i
β

= −p · ω
β

= −|N | = ϕU(U)

7.2.3 Null problems: statement iii)

The proof resembles that for positive problems, as we must distinguish N+ from N−, but
the Nash product no longer plays a role. Fix a null problem P .
Step 1. Any z ∈ F such that u(z) = 0 is competitive with β = 0.

Suppose first all agents are repulsed, N = N−. Then ui(yi) ≤ 0 for all i ∈ N and
yi ∈ RA+ and (z, 0, 0) is a competitive division: everybody has zero money, all bundles are
free and all agents achieve the best possible welfare with the smallest possible spending.
We assume from now on N+ 6= ∅.

Define ψ(y) = mini∈N+ ui(yi) for y ∈ RN×A+ and the sets Cλ = {y ∈ C+ | ψ(y) ≥ λ},
where C+ = {y ∈ RN×A+ |u(y) ∈ Γ} (as in the positive proof). For λ ≥ 0 the set Cλ
is non-empty, closed and convex. If λ > 0, the sets Cλ and F do not intersect. As in
Step 1.1 of the positive proof we construct a hyperplane separating F and C0, define the
set BN(q,Q), the vector of prices p, and the set B∗(p,Q). Similarly we check that the
allocation z maximizes ψ(y) over y ∈ B∗(p,Q), and ψ(z) = 0.

We set βi = p · zi and show that (z, p, 0) is a competitive division in three substeps.
Step 1.1 for all i ∈ N and xi ∈ RA+: p · xi < βi =⇒ ui(xi) < 0.
Suppose p · xi < βi and ui(xi) ≥ 0 for some i ∈ N+. For each j in N+ pick a bundle
y+j such that uj(y

+
j ) > 0 and construct the allocation z′ as follows: z′i = xi + δy+i ; z′j =

zj + δy+j for any other j ∈ N+; z′j = zj for j ∈ N−. If δ > 0 is small enough z′ ∈ B∗(p,Q)
and for any j ∈ N+ we have uj(z

′
j) > 0, by concavity and homogeneity of uj. For instance

1

2
ui(z

′
i) = ui

(
1

2
xi +

1

2
δy+i

)
≥ 1

2
ui(xi) +

1

2
δui(y

+
i ) > 0

Therefore ψ(z′) > 0 contradicting the optimality of z.
The proof when p · xi < βi and ui(xi) ≥ 0 for some i ∈ N− is similar and left to the

reader.
Step 1.2 βi = 0 for all i ∈ N .
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If βi > 0 then xi = 0 is such that p · xi < βi and ui(xi) = 0, which we just ruled out. If
βi < 0 then p · (2zi) < βi yet ui(2zi) = 0, contradicting Step 1.1.

From Steps 1.1, 1.2 we see that for all i if yi ∈ di(p, 0) then p · yi = 0: so if we show
zi ∈ di(p, 0) the parsimony property (2) is automatically satisfied. Therefore our next
substep completes the proof of Step 1.
Step 1.3 zi ∈ di(p, 0) for all i ∈ N .

For i ∈ N− this is obvious since such agent reaches his maximal welfare ui = 0. Pick
now i ∈ N+ and assume zi 6∈ di(p, 0). Then di(p, 0) contains some yi with ui(yi) > 0.
Let w be a bundle with negative price. Such bundle exists since p · ω =

∑
i∈N βi = 0

and p 6= 0. Hence the bundle xi = yi + δw with small enough δ > 0 has negative price
p · xi < 0 and ui(xi) > 0. Contradiction.

Step 2. If (z, p, β) is a competitive division, then u(z) = 0 and (z, p, β′) with β′ = 0 is
also competitive.
If β < 0 we have ui(zi) < 0 for all i ∈ N . Otherwise ui(zi) ≥ 0 and p · zi < 0 implies as
before that z′i = 2zi improves Ui (at least weakly) while remaining in B(p, β) and lowering
i’s spending. But U ∈ RN= is not efficient in a null problem.

Thus β ≥ 0, hence ui(zi) ≥ 0 for all i ∈ N because the bundle 0 is in the budget
set. The problem is null therefore u(z) = 0, implying 0 ∈ di(p, β) and by parsimony (2)
p · zi ≤ 0, for all i. Hence zi ∈ di(p, 0) therefore (z, p, 0) is clearly a competitive division.

7.3 Lemma 3

We have ui(ω) < 0 for every i ∈ N , else the allocation z with zi = ω and zj = 0 for j 6= i
yields utilities in Γ.

Consider the set of utility profiles dominated by U ∩ RN− : U≤ = {U ∈ RN− |∃U ′ ∈
U ∩ RN− : U ≤ U ′}. This set is closed and convex and contains all points in RN− that are
sufficiently far from the origin. Indeed, any U ∈ RN− such that UN < mini ui(ω), where
UN =

∑
i Ui, is dominated by the utility profile z : zi = Ui

UN
ω, i ∈ N .

Fix λ ≥ 0 and consider the upper contour of the Nash product at λ: Cλ = {U ∈ RN− |
ΠN |Ui| ≥ λ}. For sufficiently large λ the closed convex set Cλ is contained in U≤. Let λ∗

be the minimal λ with this property. Negativity of P implies that U≤ is bounded away
from 0 so that λ∗ is strictly positive. By definition of λ∗ the set Cλ∗ touches the boundary
of U≤ at some U∗ with strictly negative coordinates. Let H be a hyperplane supporting
U≤ at U∗. By the construction, this hyperplane also supports Cλ∗ , therefore U∗ is a critical
point of the Nash product on U≤: that is, U∗ maximizes

∑
i∈N

Ui

|U∗i |
over all U ∈ U≤. So

U∗ belongs to the Pareto frontier of U≤, which is contained in the Pareto frontier of U .
Thus U∗ is a critical point of the Nash product on U and belongs to U eff ∩ RN= . By the
construction any U in the interior of Cλ∗ is dominated by some U ′ ∈ U ∩ RN− : so U∗

maximizes the Nash product on U eff ∩ RN− .
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7.4 Lemma 4

In the previous proof note that the supporting hyperplane H to U at U∗ is unique because
it is also a supporting hyperplane to Cλ∗ that is unique. Hence, if U is a polytope (e.g.,
for additive utilities), U∗ belongs to a face of maximal dimension.

When utilities are additive, both sets U and U≤ are polytopes. Let D ⊂ RN×A be
the set of all u such that the problem (N,A, u) is negative and U∗ is not unique. By the
above remark if u ∈ D then for some λ > 0 the set U≤ has at least two faces F and F ′

of maximal dimension that are tangent to the surface Sλ:
∏

i∈N |Ui| = λ, U ∈ RN= . The
condition that F is tangent to Sλ fixes λ. The set of all hyperplanes tangent to a fixed
surface Sλ has dimension |N | − 1 (for every point on S there is one tangent hyperplane)
though the set of all hyperplanes in RN is |N |-dimensional. Hence tangency of F ′ and
Sλ cuts one dimension. So D is contained in a finite union of algebraic surfaces and,
therefore, has Lebesgue-measure zero.

7.5 KKT conditions for additive utilities

The first order characterization of the competitive allocations is very useful in the proof
of Propositions 1,2 and 3. Recall the partition of A (4) and the correponding signs of the
competitive prices (5).
Lemma 6
i) If P is positive (z, p,+1) is a competitive division iff p meets (5) and:

for all i ∈ N−: Ui = 0 and p · zi = 0;
for all i ∈ N+: Ui > 0 and p · zi = 1 = 1

|N+|p · ω; moreover

for all a ∈ A+ ∪ A− {zia > 0} =⇒ uia
Ui

= pa = max
j∈N+

uja
Uj

(9)

ii) If P is negative (z, p,−1) is a competitive division iff for all i ∈ N : Ui < 0 and
p · zi = −1 = 1

|N |p · ω; moreover

for all a ∈ A+ ∪ A− {zia > 0} =⇒ uia
|Ui|

= pa = max
j∈N

uja
|Uj|

(10)

iii) If P is null z is a competitive allocation iff Ui = 0 for all i ∈ N . Then (p, 0) is a

corresponding price and budget iff p · zi = 0 = p · ω and there exists λ ∈ RN+

++ such that

for all a ∈ A+ ∪ A− {zia > 0} =⇒ λiuia = pa = max
j∈N+

λjuja (11)

A consequence of Lemma 6 is that for all a ∈ A+ and b ∈ A− and all i ∈ N we have

uia
pa
≤ |Ui| ≤

uib
pb
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with equality on the left if zia > 0 and on the right if zib > 0. Also an agent i ∈ N− eats
only in A0 if P is positive or null, and only in A− ∪ A0 if P is negative.

Proof Statement i). Assume P is positive. Assume (z, p,+1) is competitive: by our
Theorem it maximizes the product of utilities over U∩Γ∗. Therefore Uj = 0 in N− and
p · zj = 0 because such agent eats only in A0 which is free. Agent i ∈ N+ clearly spends
all his budget so p · zi = 0. If zia > 0 and we transfer a vanishingly small amount of item
a to agent j ∈ N+, inequality uia

Ui
≥ uja

Uj
guarantees that the product of utilities does not

increase; this implies uia
Ui

= maxj∈N+

uja
Uj

. Now for any a, b ∈ A+ ∪ A− such that zia > 0

and zib > 0 (1) implies uia
pa

= uib
pb

. Multiplying numerator and denominator by zia and
summing up over the support of zi in A+ ∪ A− we get

uia
pa

=

∑
A+∪A− uibzib∑
A+∪A− pbzib

=
Ui
1

(12)

where the second equality holds because extending the sum to A0 changes nothing because
pb = 0 and zib > 0 can only happen if uib = 0. This proves (9).

Conversely pick (z, p,+1) meeting (9) and the two properties just before. Items in
A+ ∪ A− are eaten exclusively by agents in N+. Check that an item a ∈ A0 can only be
eaten by i if uia = 0: for i ∈ N− this follows from Ui = 0, and for i ∈ N+ it follows from
writing (9) as uia

pa
= Ui for a ∈ A+ ∪ A− such that zia > 0 and summing up as in (12) to

get Ui =
∑

A+∪A− uibzib.
Therefore the maximization of ΠN+Ui in U∩Γ∗ is equivalent to that of ΠN+ui · zi when

those agents share the items in A+ ∪ A−, up to an arbitrary distribution of A0 to agents
who do not mind. The KKT optimality conditions of this latter problem obtain from (9)
by ignoring the prices pa. We conclude by our Theorem that (z, p,+1) is a competitive
division.
Statement ii) The proof is similar and simpler, because we do not have to distinguish
between agents in N+ and N−. It is omitted for brevity.
Statement iii) The first sentence, and the fact that the competitive budget is 0 with
p · zi = 0 for all i come from our Theorem. We check now that if P is null, and z ∈ F
implements the zero utility profile, there exists λ, p meeting (11). Recall that U intersects

Γ = RN+

+ ×{0}N− only at 0 (Lemma 2), and in fact U∩RN+ = {0} as well because no agent
in N− can get a positive utility. As U is a polytope, we can separate it from RN+ by a
strictly positive vector λ. The separation property is

∑
N λi(ui · yi) ≤ 0 =

∑
N λi(ui · zi)

for any y ∈ F , which implies λiuia = maxj∈N λjuja whenever zia > 0. So if we define
pa = maxj∈N λjuja for all a ∈ A+ ∪ A−, property (11) follows at once. Clearly pa is null
if a ∈ A0 and the price of other items is non zero: then (11) implies that zi is agent i’s
competitive demand at p (property (1)).

We omit the simple proof of the converse statement: if (z, p, 0) is a competitive division,
there exists λ meeting (11).
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7.6 Proposition 1

Step 1. Check that CU(P) is finite. If P is positive or null, this follows from the Theorem,
even without assuming linear preferences. If P is negative the set B = U(P) ∩ RN− is a
polytope and the Theorem says that at each profile U ∈ CU(P) the function ΠN |Ui| is
critical in B. Clearly this function has at most one critical point in the interior of each
face of B, and there is a finite number of such interiors.

Step 2. Statement iii). We generalize the numerical example with 6 agents and 5 bads
just after the Proposition to n agents and m bads with n > m. We set A = {a1, · · · , am}
and use the notation eS for the vector in RA with eSi = 1 if i ∈ S and zero otherwise. For
agent i, 1 ≤ i ≤ m, set as before uiai = −1, uiaj = −3 for j 6= i, and for agents m + 1 to
n pick uia = −1 for all a. Then for any q, 1 ≤ q ≤ m, the allocation

zi =
m

n
eai for 1 ≤ i ≤ q ; zj = eaj for q + 1 ≤ j ≤ m ; zj =

1

n
e{a1,··· ,aq} for m+ 1 ≤ j ≤ n

is competitive for the prices pai = − q+1
q

for 1 ≤ i ≤ q and paj = −1 for q + 1 ≤ j ≤ m.
Similarly in the case m > n we set uiak = −1 for k = i or n + 1 ≤ k ≤ m, and

uiak = −3 for k ≤ n, k 6= i. Then for any subset of agents N∗ ⊆ N the allocation where
those agents share equally the bads an+1, · · · , am, while bad ai, 1 ≤ i ≤ n goes to agent i,
is competitive with prices pan+1 = pai = − n∗

n∗+1
for i ∈ N∗, paj = −1 for j ∈ N�N∗.

This construction can be repeated for any subset of m bads, thus generating 2m − 1
different competitive divisions. We omit for brevity the similar argument for the case
m > n.

For the longer proof of the statements i) and ii) Lemma 6 is critical.

Step 3. Statement i)

We fix a negative problem P = (N = {1, 2}, A, u, ω). If A0 is non empty, it is easy
to check that CU(P) does not change if we simply drop those items; so we assume from
now on that A+ and A− partition A, and A− is non empty. If u1a and u2a are of strictly
opposite signs for some item a, for instance u1a > 0 > u2a, then by Efficiency item a goes
entirely to agent 1 and if we replace u2a by u′2a = 0 then again CU(P) is unchanged, so
we can assume that all items in A+ have uia ≥ 0 for i = 1, 2 with at least one strictly
(for an item with u1a = u2a = 0 can be discarded as well). For all items in A− we have as
usual uia < 0 for i = 1, 2. If a ∈ A+ (resp. A−) we say for clarity that a is a good (resp.
a bad). We keep in mind that prices are positive for goods and negative for bads.

We label the items k ∈ {1, · · · ,m} so that the ratios u1k
u2k

increase weakly in k. with

the convention 1
0

=∞. We will prove the statement first when the sequence u1k
u2k

increases
strictly in k.
Step 3.1 We fix a competitive division (z, p,−1) and show three properties of z:
a) if k, k′ are bads and z1k, z2k′ > 0 then k < k′

b) if `, `′ are goods and z1`, z2`′ > 0 then `′ < `
c) if k is a bad, ` is a good, and z1k, z1` > 0 then k < `; if z2k, z2` > 0 then ` < k
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Condition a), b) follow directly from Efficiency. Pick k, k′ as in the premises of a) but
such that k′ < k: then transferring ε units of k from 1 to 2, against δ units of k′ from 2
to 1 (which is feasible for ε, δ small enough) is beneficial to both if

u1k′
u1k

< ε
δ
<

u2k′
u2k

which

is feasible as k′ < k. The argument for b) is similar.
For condition c) we must use the competitiveness assumption in particular property

(10).13 Fix a bad k and a good ` s. t. z1k, z1` > 0. Buying 1
|pk|

unit of k and 1
p`

unit

of ` is budget neutral so by competitiveness it is not profitable to agent 2: u2k
|pk|

+ u2`
p`
≤

0 ⇐⇒ u2`
u2k
≥ p`

pk
. But z1 is 1’s competitive demand so u1`

p`
= u1k

pk
: combining the last two

inequalities gives u1`
u1k
≤ u2`

u2k
implying k < ` as claimed.

Together these three properties imply that at most one item a can be shared by both
agents in the sense z1a, z2a > 0. Moreover if Gi (resp. Bi) is the set of goods (resp. bads)
consumed by agent i, then all items in B1 and G2 are ranked below all items in B2 and
G1, with at most one common item to both Bi-s or to both Gi-s.

Step 3.2 We show |CU(P)| ≤ 2m− 1
Consider a competitive allocation where no item is shared. By Step 1 there is an index

k such that agent 2 eats all goods in {1, · · · , k} and all bads in {k + 1, · · · ,m}, while
agent 1 eats the bads of {1, · · · , k} and the goods of {k + 1, · · · ,m}. There are at most
m− 1 such allocations.

Now consider a competitive allocation where our agents split (only) item k. The
assignment of all other items to one agent or the other is determined as in the previous
paragraph. Thus the relative prices of all items eaten by agent i are determined by her
marginal utilities, and the equality of both budgets clinches the price and a single division
of item k. Hence there are at most m competitive divisions splitting an item.

Step 3.3 An example where |CU(P)| = 2m− 1
There are only bads and the utilities generalize the example given just after Proposition

1 in Subsection 6.1. We use the notation (x)+ = max{x, 0}:

u1k = −2(k−2)+ for 1 ≤ k ≤ m− 1 ; u1m = −2m−2 + 1

u21 = −(2m−2 + 1) ; u2k = −2(m−1−k)+ for 2 ≤ k ≤ m

We let the reader check that giving bads 1 to k to agent 1 and the rest to agent 2 is a
competitive allocation for budget −1 and the price:

p = −(
u11
2k
, · · · , u1k

2k
,
u2(k+1)

2m−k
, · · · , u2m

2m−k
)

whereas splitting equally bad k, giving bads 1 to k − 1 to agent 1, and bads k + 1 to m
to agent 2, is a competitive allocation for budget −1 and the price:

p = −1

3
(
u11
2k−3

, · · · ,
u1(k−1)
2k−3

,
u1k
2k−3

=
u2k

2m−2−k
,
u2(k+1)

2m−2−k
, · · · , u2m

2m−2−k
)

13Efficiency would only imply that a bad k and a good ` cannot be both consumed by both agents.
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This example is clearly robust: small perturbations of the disutility matrix preserve
the number of competitive allocations.

Step 3.4 It remains to consider the case where the sequence u1k
u2k

increase weakly but not

strictly. Suppose u1k
u2k

=
u1(k+1)

u2(k+1)
. Then in an competitive allocation with price p we have

uik
pk

=
ui(k+1)

pk+1

for i = 1, 2

Indeed if one of i = 1, 2 eats both k and k + 1, this follows by (1). If on the contrary i
eats item k and j eats item k + 1, then (1) again implies uik

pk
≤ ui(k+1)

pk+1
and

uj(k+1)

pk+1
≤ ujk

pk
.

So for a given amount of money spent by i on items k and k + 1, she gets the same
utility no matter how she splits this expense between the two items.14 Therefore there is
an interval of competitive allocations obtained by shifting the consumption of k and k+1
while keeping the total expense on these two items fixed for each agent. They all give the
same utility profile and use the same price. If we merge k and k + 1 with endowments
ωk, ωk+1 into an item k∗ with one unit of endowment, ωk∗ = 1, and utilities uik∗ = uikωk +
ui(k+1)ωk+1, the above interval of competitive allocations becomes a single competitive
allocation for the new price pk∗ = pkωk + pk+1ωk+1, with p unchanged elsewhere. By
successively merging all the items sharing the same ratio u1k

u2k
, we do not change the

number of competitive allocations distinct utility-wise, and reach a problem with fewer
items where the ratios u1k

u2k
increase strictly in k. So we only need to prove the statement

in this case.

Step 4. Statement ii)

We fix a negative problem P = (N,A = {a, b}, u). By our Theorem there is at least
one bad, i. e., A− is non empty. Suppose first that b is a bad, while a is a good: a ∈ A+.
As in the previous proof we can assume uia ≥ 0 for all i, with at least one strict inequality.
In a competitive allocation z everyone consumes b because all utilities are negative. Some
agent i consumes a as well, and by genericity and Efficiency no other agent does. Moreover
i must have the highest ratio uia

uib
: this determines the competitive price and it is then

easy to check that CU(P) is unique, no matter how many agents have the highest ratio
uja
ujb

. We omit the details.

We turn the case where both items are bads. We label the agents i ∈ {1, · · · , n} in
such a way that the ratios uia

uib
increase weakly in i. We describe first the efficient and

non envious allocations (which will be useful in the proof of Proposition 3), then the
competitive allocations in step 4.3.

Step 4.1. Assume uia
uib

increases strictly in i. If z is an efficient allocation, then for all

i, j, {zia > 0 and zjb > 0} implies i ≤ j. In particular at most one agent is eating both
bads, and we have two types of efficient and envy-free allocations. For 1 ≤ i ≤ n − 1
the i/i + 1-cut zi/i+1 is the allocation z

i/i+1
j = (1

i
, 0) for j ≤ i, and z

i/i+1
j = (0, 1

n−i) for

14If one item is a good and the other a bad, shifting money between them either increase both con-
sumptions or decrease both.
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j ≥ i + 1. For 2 ≤ i ≤ n − 1 the allocation z is an i-split if there are numbers x, y such
that

zj = (
1− x
i− 1

, 0) for j ≤ i− 1 ; zj = (0,
1− y
n− i

) for j ≥ i+ 1 (13)

zi = (x, y) with 0 ≤ x ≤ 1

i
, 0 ≤ y ≤ 1

n− i+ 1
(14)

Also, z is a 1-split if z1 = (1, y) and zj = (0, 1−y
n−1) for j ≥ 2; and z is a n-split if zn = (x, 1)

and zj = ( 1−x
n−1 , 0) for j ≤ n−1. Note that the cut zi/i+1 is both an i-split and an i+1-split.

We have shown that, if uia
uib

increases strictly, an efficient and envy-free allocation must
be an i-split. We turn to the case where the increase is not strict.

Step 4.2. Assume the sequence uia
uib

increases only weakly, for instance uia
uib

=
u(i+1)a

u(i+1)b
. Then

if z is efficient and envy-free we may have z(i+1)a > 0 and zib > 0, however we can
find z′ delivering the same utility profile and such that one of z′(i+1)a and z′ib is zero.
Indeed No Envy and the fact that ui and ui+1 are parallel gives ui · zi = ui · zi+1 and
ui+1 · zi+1 = ui+1 · zi, from which the claim follows easily. We conclude that the i-split
allocations contain, utility-wise, all efficient and envy-free allocations.

Step 4.3. If the cut zi/i+1 is a competitive allocation, the corresponding price is p =
−(i, n − i), and property (10) reads

uja
i
≥ ujb

n−i for j ≤ i,
ujb
n−i ≥

uja
i

for j ≥ i + 1, which
boils down to

uia
uib
≤ i

n− i
≤
u(i+1)a

u(i+1)b

for 1 ≤ i ≤ n− 1 (15)

Next for 2 ≤ i ≤ n− 1 if the i-split allocation z (13) is competitive, the (normalized)
price must be p = −n( uia

uia+uib
, uib
uia+uib

) and each agent must be spending exactly −1:

pa
1− x
i− 1

= pb
1− y
n− i

= pax+ pby = −1

which gives

x =
1

nuia
((n− i+ 1)uia − (i− 1)uib) ; y =

1

nuib
(iuib − (n− i)uia) (16)

We let the reader check that these formulas are still valid when i = 1 or i = n− 1.
An i-split allocation z is strict if it is not a cut, i. e., both x, y in (13) are strictly pos-

itive. By (16), for any i ∈ {1, · · · , n} there is a strict i-split allocation that is competitive
if and only if

i− 1

n− i+ 1
<
uia
uib

<
i

n− i
(17)

(with the convention 1
0

=∞).

Step 4.4. Counting competitive allocations. There are at most n competitive (strict)
i-split allocations, and n − 1 cuts zi/i+1, hence the upper bound 2n − 1. An example
where the bound is achieved uses any sequence uia

uib
meeting (17) for all i ∈ {1, · · · , n}, as

these inequalities imply (15) for all i ∈ {1, · · · , n− 1}.
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7.7 Proposition 2

We pick a division rule f with associated welfare rule F meeting ETE, SOL and ILB, and
we fix an arbitrary problem P = (u, ω) (omitting N,A that stay constant throughout the
proof). We choose a competitive division (z, p, β) at P with associated utility profile U ,
and must show that z ∈ f(P).
Case 1: P is null. Then there is no feasible profile U ′ in RN+�{0} so SOL implies
F (P) ∈RN− . There the null utility if Pareto dominant, so F (P) = {0} by Efficiency.
Case 2: P is positive. Then β = 1 and p · zi = 1 or 0, respectively when i is in N+ or
N−. Consider the positive problem Q = (w, ω) where wi = p for i ∈ N+, and wi = 0
for i ∈ N−. Efficiency implies that at least one coordinate of F (Q) is strictly positive,
so by SOL they are all non negative. Thus Fi(Q) = 0 in N−. By ETE Fi(Q) does not
depend on i ∈ N+, moreover W equal to 1 in N+ and 0 in N− is Pareto optimal at Q: we
conclude that F (Q) = W .

Now we set wi = U ip for all i ∈ N (so wi = wi = 0 in N−), and P = (w, ω). By the
scale invariance property in Definition 2 we have F (P) = U , moreover wi ·zi = U i(p ·zi) =
U i in N . By Pareto-Indifference (Definition 2) we conclude z ∈ F (P).

We compare now u and w. Fix a ∈ A+ ∪ A−; for all i ∈ N we claim

zia > 0 =⇒ uia = U ipa = wi ; zia = 0 =⇒ uia ≤ U ipa = wia

Both claims are from (10) in Lemma 6 for i ∈ N+; for i ∈ N− we must have zia = 0 and
we know uia ≤ 0. The two statements remain true for a ∈ A0 because if i eats some a
then uia = 0, and pa = 0 implies wia = 0 for all i.

Finally we apply ILB by lowering each wia to uia whenever possible and z ∈ f(P)
follows.
Case 3: P is negative. The omitted proof is similar, only simpler because we do not need
to distinguish between N+ and N−.

We check finally that ILB is a consequence of Maskin Monotonicity (MM; see [29])
in the additive domain. We do this in the case of bads only, as both cases are similar.
Individual allocations zi vary in the rectangle [[0, ω]] (0 ≤ z ≤ ω) and utilities in RA−, so
MM for the division rule f means that for any two problems P ,P ′ on N,A and z ∈ f(P)
we have

∀i ∈ N{∀w ∈ [[0, ω]]: ui · zi > ui · w =⇒ u′i · zi > u′i · w} =⇒ z ∈ f(P ′) (18)

We fix P , i ∈ N and z ∈ f(P). We write A0 = {a|zia = 0}, A1 = {a|zia = ωa} and
A2 = A�(A0 ∪ A1). The implication in the premises of (18) reads

∀w ∈ [[0, ω]] ui · (w − zi) < 0 =⇒ u′i · (w − zi) < 0

The cone generated by the vectors w− zi when w covers [[0, ω]] is C = {δ ∈ RA|δa ≥ 0 for
a ∈ A0, δa ≤ 0 for a ∈ A1}. By Farkas Lemma the implication {∀δ ∈ C : ui · δ < 0 =⇒
u′i · δ < 0} means that, up to a positive scaling factor,

u′ia = uia on A2 ; u′ia ≤ uia on A0 ; u′ia ≥ uia on A1
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Thus MM says that after lowering a lost bid on item a, or increasing one that gets the
all of a, the initial allocation will remain in the selected set. Now ILB only considers
lowering a lost bid, so it is only “half” of MM. The competitive rule fails the other half.

7.8 Lemma 5

Step 1 Only two bads
We use the notation and results in Step 4 of the proof of Proposition 1. Fix a problem
(N, {a, b}, u) where the ratios ri = uia

uib
increase strictly in i ∈ {1, · · · , n} and write Si

for the closed rectangle of i-split allocations (13), (14): we have Si ∩ Si+1 = {zi/i+1} for
i = 1, · · · , n − 1, and Si ∩ Sj = ∅ if i and j are not adjacent. We saw that envy-free
and efficient allocations must be in the connected union B = ∪ni=1S

i of these rectangles.
Writing EF for the set of envy-free allocations, we describe now the connected components
of A = B ∩ EF . Clearly the set of corresponding utility profiles has the same number of
connected components.

We let the reader check that the cut zi/i+1 is EF (envy-free) if and only if it is com-
petitive, i. e. inequalities (15) hold, that we rewrite as:

ri ≤
i

n− i
≤ ri+1 (19)

If zi/i+1 is EF then both Si∩EF and Si+1∩EF are in the same component of A as zi/i+1,
because they are convex sets containing zi/i+1. If both zi−1/i and zi/i+1 are EF, so is the
interval [zi−1/i, zi/i+1]; then these two cuts as well as Si ∩ EF are in the same component
of A. And if zi/i+1 is EF but zi−1/i is not, then the component of A containing zi/i+1 is
disjoint from any component of A in ∪i−11 Sj (if any), because Si ∩ ∪i−11 Sj = {zi−1/i}; a
symmetrical statement holds if zi−1/i is EF but zi/i+1 is not.

Finally if Si ∩EF 6= ∅ while neither zi−1/i nor zi/i+1 is in EF , the convex set Si ∩EF
is a connected component of A because it is disjoint from Si−1 ∩ EF and Si+1 ∩ EF , and
all three sets are compact. In this case we speak of an interior component of A. We claim
that Si contains an interior component if and only if

i− 1

n− i+ 1
< ri−1 < ri < ri+1 <

i

n− i

where for i = 1 this reduces to the two right-hand inequalities, and for i = n to the two
left-hand ones. The claim is proven in the next Step.

Now consider a problem with the following configuration:

r1 < r2 <
1

n− 1
<

3

n− 3
< r3 < r4 < r5 <

4

n− 4
<

<
6

n− 6
< r6 < r7 < r8 <

7

n− 7
<

9

n− 9
· · ·
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Figures 4A, 4B, 4C

By inequalities (19) we have zi/i+1 ∈ EF for i = 3q − 1, and 1 ≤ q ≤ bn
3
c, and no two of

those cuts are adjacent so they belong to distinct components. Moreover Si contains an
interior component of A for i = 3q − 2, and 1 ≤ q ≤ bn+2

3
c, and only those. So the total

number of components of A is bn
3
c+ bn+2

3
c = b2n+1

3
c as desired.

We let the reader check that we cannot reach a larger number of components.

Step 2: {Si contains an interior component} ⇐⇒ {inequalities (2) hold}
Pick z ∈ Si as in (13), (14) and note first that for 2 ≤ i ≤ n − 1, the envy-freeness
inequalities reduce to just four inequalities: agents i − 1 and i do not envy each other,
and neither do agents i and i+ 1 (we omit the straightforward argument). Formally

1

ri+1

(
1

n− i
− n− i+ 1

n− i
y) ≤ x ≤ 1

ri
(

1

n− i
− n− i+ 1

n− i
y) (20)

ri−1(
1

i− 1
− i

i− 1
x) ≤ y ≤ ri(

1

i− 1
− i

i− 1
x)

In the (non negative) space (x, y) define the lines ∆(λ): y = λ( 1
i−1 −

i
i−1x) and Γ(µ):

x = µ( 1
n−i −

n−i+1
n−i y). As shown on Figure 4 when λ varies ∆(λ) pivots around δ = (1

i
, 0),

corresponding to zi/i+1, and similarly Γ(µ) pivots around γ = (0, 1
n−i+1

), corresponding

to zi−1/i. The above inequalities say that (x, y) is in the cone ∆∗ of points below ∆(ri)
and above ∆(ri−1), and also in the cone Γ∗ below Γ( 1

ri
) and above Γ( 1

ri+1
). Thus δ ∈ Γ∗

if and only if zi/i+1 is EF, and γ ∈ ∆∗ if and only if zi−1/i is EF. If neither of these is true
γ is above or below ∆∗ on the vertical axis and δ is to the left or to the right of Γ∗ the
horizontal axis. But if γ is below ∆∗ while δ is right of Γ∗, the two cones do not intersect
and Si ∩ EF = ∅; ditto if γ is above ∆∗ while δ is left of Γ∗ (see Figures 4A,4B,4C).
Moreover γ above ∆∗ and δ right of Γ∗ is impossible as it would imply

1

n− i+ 1
>

ri
i− 1

and
1

i
>

1

ri(n− i)

a contradiction. We conclude that {Si ∩ EF 6= ∅ and zi−1/i, zi/i+1 /∈ EF} holds if and
only if γ is below ∆∗ and δ is to the left of Γ∗, which is exactly the system (2).

In the case i = 1 the EF property of z reduces to (20) and the i-split allocation has
x = 1. If r1 >

1
n−1 the right-hand inequality in (20) is impossible with x = 1, therefore

32



r1 <
1

n−1 ; but then the fact that z1/2 is not EF gives (see (19)) r2 <
1

n−1 as desired. A
similar argument applies for the case i = n.

Step 3: Any number of bads
Fix a problem (N, {a, b}, u) with d2n+1

3
e connected components as in Step 1. Given any

m ≥ 3, construct a problem (N, Ã, ũ) with Ã = {a, b1, · · · , bm−1} and for all agents i

ũia = uia ; ũibk =
1

m− 1
uib for all 1 ≤ k ≤ m− 1

The bads bk are smaller size clones of b. If some z̃ is efficient and EF in the new problem,
then the following allocation z is efficient and EF in the initial problem:

zib =
m−1∑
1

z̃ibk ; zia = z̃ia

and z, z̃ deliver the same disutility profile. Therefore in the two problems the sets of
efficient and EF allocations have the same number of components.

7.9 Proposition 3

Fix a division rule f meeting EFF and EVFR, and such that F is single-valued. In the
problems discussed below, no two efficient and envy-free allocations have the same utility
profile, so f is single valued as well. Assume first n = 4, m = 2. Consider P1 where, with
the notation in the previous proof, we have

r1 < r2 <
1

3
< 1 < 3 < r3 < r4

(note that the numerical example at the beginning of Section 5 is of this type)
By (19) and (2) A has three components: one interior to S1 (excluding the cut z1/2),

one around z2/3 intersecting S2 and S3, and one interior to S4 excluding z3/4. Assume
without loss that f selects an allocation in the second or third component just listed, and
consider P2 where r1, r2 are unchanged but the new ratios r′3, r

′
4 are

r1 < r2 < 3 < r′3 < 1 < r′4 <
1

3

Here, again by (19) and (2), A has a single component interior to S1, the same as in P1:
none of the cuts zi/i+1 is in A anymore, and there is no component interior to another
Si. When we decrease continuously r3, r4 to r′3, r

′
4, the allocation z1/2 remains outside A

and the component interior to S1 does not move. Therefore the allocation selected by f
cannot vary continuously in the ratios ri, or in the underlying utility matrix u.

We can clearly construct a similar pair of problems to prove the statement when n ≥ 5
and m = 2. And for the case m ≥ 3 we use the cloning technique in Step 3 of the previous
proof.
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