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1 Introduction

When the players of a dynamic game can communicate before the
game starts, they are likely to exploit this opportunity to reach a pos-
sibly incomplete agreement! about how to play. In most cases, the
context allows them to reach only a non-binding agreement, which
cannot be enforced by a court of law. The only way a non-binding
agreement can affect the behavior of players is through the beliefs
it is able to induce in their minds. This paper sheds light on which
agreements players can believe in and, among them, which agree-
ments players will comply with. Moreover, in an implementation
perspective, the paper investigates which outcomes of the game can
be secured by some agreement. The paper will not deal with the
pre-play bargaining phase. Yet, assessing theircredibility has a clear

feedback on which agreements are likely to be reached.

I take the view that players believe in the agreement only if com-
patible with the beliefs in rationality? and their interaction with
the beliefs in the agreement of all orders. Ann will believe in the
agreement only if Bob may comply with it in case he is rational,

he believes in the agreement, he believes that Ann is rational and

! The formalization of agreements in this paper can also be given different in-
terpretations. For instance, the agreement can represent public announcements
(by a subset of players).

2The notion of rationality employed in this paper imposes expected utility
maximization, but it does not impose by itself any restriction on beliefs. See
Section 3 for details.



believes in the agreement (which may add non-agreed upon restric-
tions on what Bob expects Ann to do), and so on. Moreover, I take
the view that deviations, or more generally past actions, are not in-
terpreted as mistakes but as intentional choices. Suppose that for
Bob, in case he is rational and believes in the agreement, some move
makes sense only if he plans to play a certain action thereafter. Ann,
upon observing such move, will believe that Bob will play that action
(and Bob may use the move to signal this). This instance of forward
induction reasoning is based not just on the belief in Bob’s rational-
ity, but also on its interaction with the belief that Bob believes in
the agreement. Example 3 in Section 2 is a case in point. Consider
now a move that Bob, if he is rational and believes in the agreement,
cannot find profitable whatever he plays thereafter. Example 1 in
Section 2 illustrates a situation of this kind. Then Ann cannot keep
believing that Bob is rational and, at the same time, that he believes
in the agreement. Which belief will she maintain? Given the cheap
talk nature of the agreement, I take the view that Ann will keep be-
lieving that Bob is rational (if this is per se compatible with Bob’s
behavior). However, in Section 5 I argue that the main insights of
the paper go through under the opposite assumption. In addition, if
compatible with Bob’s behavior, Ann may maintain the belief that
Bob believes that she would have not violated the agreement before
him. In Section 6 I argue that the main insights go through also

under this additional assumption.



For notational simplicity, I restrict the attention to the class of
finite games with complete information, observable actions,® and no
chance moves. However, the methodology can be applied to all dy-
namic games with perfect recall and countably many information
sets,Y hence possibly infinite horizon. Which agreements will be
believed and complied with? Which outcomes of the game can be
achieved through some agreement? To answer these questions, the
concepts of credibility, self-enforceability (of agreements) and imple-
mentability (of outcomes) are introduced. An agreement is credible
if believing in it is compatible with the strategic reasoning hypothe-
ses. A credible agreement is self-enforcing if it induces players to
follow only paths of play that are allowed by the agreement itself.
An outcome is implementable if it is the only outcome induced by
some self-enforcing agreement.

In two-players games, I find that an outcome is implementable
if and only if it is induced by a Nash equilibrium in extensive-
form rationalizable strategies (Pearce [26]; Battigalli and Siniscalchi
[8]) that satisfies "realization-strictness": all the normal-form best
replies to co-players’ equilibrium strategies induce the equilibrium

outcome. Therefore, standard elimination procedure and fixed point

3Games where every player always knows the current history of the game, i.e.
— allowing for truly simultaneous moves — information sets are singletons. For
instance, all repeated games with perfect monitoring are games with observable
actions.

4This limitation allows to use Conditional Probability Systems (see Section
3), which require a countable set of conditioning events.



condition provide to the analyst (or to a mediator) the set of out-
comes that can be achieved through pre-play coordination. Also in
games with more than two players, an implementable outcome is
not necessarily induced by a subgame perfect equilibrium (hence-
forth, SPE). This result may be surprising for two reasons. First,
it is obtained under all the orders of belief in rationality which are
compatible with the observed behavior, also after deviations from
the agreed-upon path. Second, the literature has always assigned to
subgame perfection a dominating role. At the end of Section 6 I will
elaborate further on why I find this emphasis misplaced.’

In games with more than two players, not all realization-strict
Nash equilibria in extensive-form rationalizable strategies induce an
implementable outcome: the threats of two players towards a de-
viator may be mutually incompatible. Thus, further conditions on
off-the-path behavior are required. To accomplish this task, I de-

fine a new, set-valued solution concept in reduced strategies: Self-

>The relationship between subgame perfection and strategic reasoning in ab-
sence of agreements has already been extensively studied for perfect information
games (i.e. without simultaneous moves) with no relevant ties. Reny [27] shows
that backward and forward induction strategies do not coincide. Nonetheless,
Battigalli [4] proves that backward and extensive-form rationalizability yield the
same unique outcome. This result is proved also by Heifetz and Perea [19] and
by Chen and Micali [12]. The latter show that in all games with perfect recall,
extensive-form rationalizability refines backward induction without equilibrium
reasoning in terms of outcomes. In a previous work I find an overlapping between
extensive-form rationalizability and SPE outcomes in games with observable ac-
tions.



Enforcing Set (henceforth, SES). Differently than in a SPE, in a
SES the plans of deviators are not exogenously given, but are deter-
mined by forward induction. To implement a SES outcome, players
can agree on the SES itself. Hence, they do not need to promise (and
co-players trust) what they would do after an own violation of the
agreement. That SES’s are set-valued reflects the incompleteness of
the agreement, which may be crucial for the implementation of an
outcome: see Example 2 in Section 2.

Sometimes, the implementation of an outcome is possible only if
players declare in advance what they would do after a own deviation.
To fully characterize implementable outcomes, SES’s are enriched
through the notion of tight agreement. Like SES’s, tight agreements
only require to verify one-step conditions instead of many steps of
reasoning, and implement exactly the outcomes they allow. In this
sense, tight agreements are truthful. Hence, the characterization of
implementable outcomes with tight agreements provides a revelation
principle for agreements design: players need not be vague about the
outcome they want to achieve.’

In many contexts, there are limitations to which agreements play-
ers can actually reach. On the one hand, players may be unable (or

unwilling) to coordinate on a precise outcome.” On the other hand,

6Thus, agreement incompleteness and the related uncertainty are useful only
off-path.

"For instance, Harrington [18] documents instances of "mutual partial un-
derstanding" among firms which leaves the exact path of price increase un-



in some contexts it may be natural to agree simply on an outcome
to reach, without discussing what to do in case of a deviation. The
methodology developed in the paper allows to evaluate agreements

with any kind of incompleteness.

This work is greatly indebted to the literature on rationalizability
in dynamic games. In this literature, restrictions to first-order beliefs
are usually accounted for through Strong-A-Rationalizability (Batti-
galli, [5]; Battigalli and Siniscalchi, [9]). Strong-A-Rationalizability
is based on the hypothesis that players do mot maintain the be-
lief in the rationality of the co-players when they display behavior
which cannot be optimal under their first-order belief restrictions.
Battigalli and Prestipino [7] show that Strong-A-Rationalizability
captures indeed transparency of the first-order belief restrictions,
i.e. the assumption that all orders of belief in the restrictions always
hold in the game. Battigalli and Friedenberg [6] interpret the re-
strictions as the context in which the game takes place; for instance,
a well-established convention.

To characterize the different hypotheses of this paper, another
rationalizability procedure with first-order belief restrictions, Selec-
tive Rationalizability, is constructed and analyzed epistemically in

[11]. Selective rationalizability captures common strong belief in ra-

determined to escape antitrust sanctions. Such mutual understanding can be
modeled as an incomplete agreement, whose consequences can be studied with
the methodology developed in this paper.



tionality (Battigalli and Siniscalchi [8]), i.e. the assumption that
any order of belief in rationality holds as long as not contradicted
by the observed behavior. Thus, it combines unconstrained strategic
reasoning (i.e. based only on beliefs in rationality) and constrained
strategic reasoning (i.e. based also on first-order belief restrictions).
In Section 5, I show how the assumptions and the notions adopted
in this paper explain the differences in the results with respect to

this literature.

Kohlberg and Mertens [20] were the first to introduce forward
induction considerations into equilibrium reasoning, through the set-
valued notion of strategically stable equilibria. Govindan and Wilson
[15] refine sequential equilibrium with a notion of forward induction.
However, these two prominent works and the related literature share
the two same shortcomings. First, they never question subgame per-
fection as a must-have for a "strategically stable" solution. Second,
the strategic reasoning that leads to playing such equilibria is un-
clear or limited.® The rationalizability approach adopted in this
paper, which is backed by epistemic foundations, allows to eliminate
both shortcomings. First, there is no constraint about how precisely
and on which kind of equilibrium behavior players agree. Second,
there is transparency about which particular agreements, beliefs,

and epistemic assumptions induce different lines of reasoning, with

8 A similar critique to strategic stability has been put forward by Van Damme
[29].



a clear demarcation between unconstrained and constrained forward
induction reasoning (missing in this literature).

In this sense, this work can also be interpreted as the axiomatic
realization of a program akin to Kohlberg and Mertens’ (see [20],
p. 1020).° Full-fledged forward induction reasoning is captured and
clarified. Agreements provide clear motivation and intuitive imple-
mentation, whereas strategic stability requires to retrieve hard-to-
guess mixed strategies for the verification of the most intuitive out-
comes. Implementable outcomes are proved (and not assumed) to
be realization-strict Nash, but not necessarily subgame perfect. In
Section 6, I take a class of strategically unstable equilibria and show
precisely which kind of forward induction reasoning is able to rule
them out. It turns out that the idea behind subgame perfection is
at deep contradiction precisely with this kind of forward induction

reasoning.

Section 2 discusses the three simple examples mentioned above.
More elaborate examples where the main ideas interact (Examples
4 and 5), along with an applied example, are presented in the Sup-

plemental Appendix. Section 3 introduces the theoretical framework

9Kohlberg and Mertens [20] write: "We agree that an ideal way to discuss
which equilibria are stable, and to delineate this common feeling, would be to
proceed axiomatically. However, we do not yet feel ready for such an approach;
we think the discussion in this section will abundantly illustrate the difficul-
ties involved." Nowadays, the achievements of epistemic game theory allow to
overcome many of these difficulties.

10



and the analytic tools for the formal treatment of Section 4. Sections
5 and 6 discuss the relationship with the literatures on rationaliz-
ability and on equilibrium in dynamic games, and the robustness of
the analysis to different kinds of forward induction reasoning. The

Appendix collects all the proofs.

2 Examples

Example 1 Consider the following game.

AB|wW | E AB| L | R
N |33 —|—| U [1,1]22
S 10,022 D |0,6]35

The subgame has only one equilibrium, where all actions are played
with equal probability. Hence, the unique SPE of the game induces
outcome (S, E), which is Pareto-dominated by (N,W). Suppose,
Ann and Bob agree to play (N,W) and that Ann should play U
in case of deviation of Bob. Is the agreement credible? If Bob is
rational, he may deviate only if he does not believe in N, or U, or
both. Then, after the deviation, Ann cannot believe at the same time
that Bob is rational and believes in the agreement. If she drops the
belief that Bob believes in the agreement and maintains the belief
that Bob is rational, she can believe that Bob does not believe in U

and that he will play L. Hence, she can react with U. Anticipating

11



this, Bob can expect N and U, and refrain from deviating. Further
steps of reasoning do not modify the conclusion: the agreement is
credible and, once believed, players will comply with it.

Example 4 provides a similar game where the unique SPE out-
come is Pareto-dominated by a just Nash one. While here the Nash
threat U is played with positive probability also in the SPE, the
credible threat that sustains the Nash outcome in Example 4 differs
from the unique equilibrium action of the subgame. Moreover, while
here the SPE outcome can be achieved without an explicit threat,'’
in Example 4 the unique SPE outcome cannot be secured without
explicit threats, just like the Nash.

Example 2. In this 4-players game,'! in the subgame, Cleo

chooses the matrix, Ann the row, and Bob the column (payoffs are

10Tf players agree on (S, E) and Ann deviates to IV, Bob can still believe that
she is rational and believes in the agreement. In this case, Ann would deviate
only under beliefs about Bob’s reaction which make her play D. But then, Bob
would always react with L.

"'This game is freely inspired by the leading example in Greenberg [16], with
a fundamental difference: in that example, the mediating country remains silent,
and there simply exist beliefs about its behavior that make the warring countries
behave as desired; here the warring countries remain silent and the mediating
country speaks, and this suffices to pin down beliefs that all induce the desired
behavior by the first mover (here a fourth country).

12



in alphabetical order).

Dave — Out — 5,5,1,3

| Inst
Int Arm Not Not Arm Not
Arm | 4,4,0,2 | 4,3,2,1 | Arm | 0,0,1,9|6,1,1,6
Not | 3,4,2,1|5,5,0,0 | Not |1,6,1,6|5,5,1,3

Dave, a weapons producer, can instigate a conflict between Ann
and Bob. If he does, Cleo can intervene to avoid an escalation
and retaliate against Dave, with a cost of 1 for herself and 3 for
him. By doing so, if only Ann or only Bob participates to the arms
race, Cleo can extract 2 utils from the other for protection. Under
Cleo’s peacekeeping, the arms race transfers 1 from Ann/Bob to
Dave, and Ann and Bob prefer to adopt the same strategy; in case
of escalation, the arms race transfers 3, and Ann and Bob have the
incentive to be belligerent when the other is peaceful, and vice versa.
The unique equilibrium of the subgame assigns equal probability to
all actions and induces Dave to instigate. However, instead of looking
for a diplomatic solution that involves all parties, Cleo can simply
threaten Dave to intervene, while Ann and Bob remain silent. This
is credible: under belief in the intervention, both actions are rational
for Ann and Bob, who may fail to coordinate. Once Dave believes

in Cleo’s intervention, he has the incentive not to instigate.
Example 3. Consider now the twofold repetition of the follow-

13



ing game.

A\B | Work | FreeRide
W 2,2 1,3
FR | 3,1 0,0

Ann and Bob agree that only Ann will work in the first period and, if
this happens, only Bob will work in the second period. They do not
agree on what to do if the agreement is violated in the first period.
Suppose that Bob deviates to Work in the first period. Ann can
still believe that Bob is rational and believed in the agreement. But
then, she must believe that Bob will not work in the second period,
otherwise his deviation cannot be profitable. So, she reacts to the
deviation by working also in the second period. If Bob believes that
Ann believes that he is rational and believes in the agreement, he
anticipates this reaction and chooses to deviate. Anticipating this,
Ann cannot believe in the agreement. The agreement is not credible.
Suppose now that Ann and Bob agree that only Bob will work
in both periods. But then, Bob can signal with a deviation to Free
Ride his intention to free ride also in the second period, so that Ann
works in the second period and Bob benefits from the deviation.
Two objections may be raised at this point. First, Ann could
interpret the deviation as follows: "Bob believed that I would have
not complied with the agreement, and best replied by not comply-
ing himself." But then, if the beliefs of Ann are Bayes-consistent,

she must believe that Bob does not trust her from the start: the

14



deviation of Bob is not at odds with the belief that Ann complies
with the agreement. Second, Ann and Bob could agree beforehand
on what to do in case of deviation. For social convenience, they may
not be willing to do so. Or, when Bob displays disbelief in the agree-
ment, Ann may still believe that he believes that she would have not
violated the agreement before him. This belief gives rise to the ra-
tionalization of deviations depicted above and further discussed in
Section 6.

This example is analyzed formally in the Supplemental Appen-
dix.

3 Agreements, beliefs and strategic rea-

soning

3.1 Preliminaries

Primitives of the game.!? Let I be the finite set of players. For
any profile (X;);er and any 0 # J C I, T write X := Xe X, X =
X7, X = Xy Let (A;)ier be the finite sets of actions potentially
available to each player. Let H C Ut:l,.‘.,th U {0} be the set of
histories, where h? := () € H is the start of the game and T is the

finite horizon. For any h = (a',...,a') € H and [ < t, it holds A’ =

12The basic notation for games is mostly taken from Osborne and Rubinstein
[25].
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(al,....a") € HyandTwrite b < h.'® Let Z :={2 € H:Vh € H,z 4
h} be the set of terminal histories (henceforth, outcomes or paths)'*,
and H := H\Z the set of non-terminal histories (henceforth, just
histories). Let A; : H = A; be the correspondence that assigns
to each history h, always observed by player ¢, the set of actions
A;(h) # 0'° available at h to player i; as standard, for all h € H,
(h,a) € H if and only if a € A(h). Let u; : Z — R be the payoff
function of player i. The list I' = <I JH (u3)ie 1> is a finite game with

complete information and observable actions.

Derived objects. A strategy of player ¢ is a function s; : h €
H — s;(h) € A;(h). Let S; denote the set of all strategies of i. A
strategy profile s € S naturally induces a unique outcome z € Z.
Let ¢ : S — Z be the function that associates each strategy profile
with the induced outcome. For any h € H, the set of strategies of i

compatible with A is:

Si(h) = {s; € S;: 32 = h,3s_; € S_i, ((ss,5-4) = 2}

13H endowed with the precedence relation < is a tree with root h°.

14Tn many papers, paths and outcomes are different objects and a map from
paths to outcomes is assumed. Since this distinction is immaterial for this paper,
outcomes will be identified with paths. The term "path" will be used with em-
phasis on the sequence of moves, and "outcome" with emphasis on the conclusion
of the game.

15When player i is not truly active at history h, A;(h) consists of just one
"wait" action.

16



For any (S;)jer and i € I, let S;(h) := S;(h) N S;. For any J C
I, let H(S;) = {h€ H:S;(h)#0} denote the set of histories
compatible with S;. For any h = (h',a) € H, let p(h) denote the
immediate predecessor A’ of h.

Throughout the paper, what a strategy prescribes at histories
that are precluded by the strategy itself will be completely immate-
rial. Therefore, the domain of each strategy s; is restricted to H (s;);
however, the term strategy rather than reduced strategy or plan of
actions is kept for brevity. At times, the domain of strategies will
be further restricted to the histories that follow a given one. The
restriction of a strategy s; € S;(h) to the histories following h is
denoted by s;|h and is called continuation plan. A continuation plan
can also be seen as a strategy of the subgame with root h, denoted
by T'(h). Let S" be the set of player i’s continuation plans from h
on (or, equivalently, the strategies of I'(h)). For any S; C Sy, let

g]’h = {S}} S Sf} :dsy €§J<h),SJ|h: S}}}

Histories and outcomes of I'(h) will be identified by those that follow
h in the whole game, and not redefined as shorter sequences of action

profiles.

Realization-strictness. A Nash equilibrium s = (s;)ie; € S
is realization-strict (r-strict) if, for all ¢ € I and s, & S;(((s)),
u;(C(s)) > ui(C(s5: 5-i))-

17



3.2 Agreements

Players discuss publicly how to play before the game starts. I assume
that:

e Players do not coordinate explicitly as the game unfolds: All

the opportunities for coordination are discussed beforehand.

e No subset of players can reach a private agreement, secret to

co-players.

e Players do not agree on the use of randomization devices. Play-
ers would lack the incentive to (set the agreed-upon odds and)
stick to the output of a (artificial) randomization device over
the own actions.!® Players also lack the ability to commit, oth-
erwise it would not make sense to talk of non-binding agree-
ments. Agreeing on the use of joint randomization devices, in-
stead, would expand the set of outcomes players can achieve,'”

and could be analyzed with the methodology developed in this
paper.

Players can leave two kinds of strategic uncertainty, i.e. agree-

ment incompleteness. First, and more importantly, players can be

16For this reason, I will talk of outcome sets instead of outcome distributions.
As Pearce [26] puts it, "this indeterminacy is an accurate reflection of the diffi-
cult situation faced by players in a game." In games like matching pennies, an
agreement is hardly conceivable.

17Similarly to how correlated equilibrium expands the set of Nash equilibrium
outcome distributions.

18



vague about which action they intend to play at some history. Sec-
ond, players can claim to be planning a certain action at only one
of two unordered histories, without revealing at which one. This
second kind of vagueness (which can also arise naturally from ratio-
nality: see Section 3.4) can be profitably exploited in agreements:
see Example 5. A player can also declare what she plans to do in
case she deviates from her initial plans. And so on. Also the trust in
a player who has already violated the agreement can be strategically
exploited:'® see again Example 5. Thus, agreements are formally

modeled as follows.

Definition 1 An Agreement is a profile of correspondences e =
(€i)ier with e;: h € H s el C St where, for alli € I, €0 := e?o £,
and for all h # h°,

e? #+ 0= Uh/_<h€?,(h) = + Uh’<h€?l<p(h))'

Starting from the root of the game, an agreement can assign
to a player a non-empty set of continuation plans only at histories
that immediately follow a deviation by the player from the plans

already assigned.!® However, (i) the agreement may be empty at all

18 However, differently than in a SPE, this trust will be challenged with strate-
gic reasoning.

19This is reminiscent of the notion of basis of a CPS by Siniscalchi [28]: new
theories are introduced only at histories that are not deemed as "plausible" as
the previous ones under the theories already introduced.

19



such histories. Moreover, (ii) it may de facto not restrict a player’s
behavior also at histories that follow a deviation by anyone else.
Agreements are particularly simple when (iii) players declare which
actions they may play at each history, independently of what they

plan to do at other histories.
Definition 2 An agreement e = (e;);es is:

i reduced if for everyi € I and h # h°, el

0;

ii a path agreement on z € Z if it is reduced and for every i € I,

6? = SZ,(Z);.QO

iii on actions if for alli € I, h € H, el = SI'\ U,cyn SH(2) for some
VhCZ.

A reduced agreement corresponds to a profile of strategy sets.?!
A path agreement corresponds to just agreeing on an outcome to
achieve. Within the formalism of agreements, agreements on actions
are expressed through vetos V' cast by players on outcomes. In
the examples of the paper, where most agreements are reduced and
on actions, agreements on actions are equivalently expressed declar-
ing actions instead of continuation plans at each individual history.

Non-reduced agreements can be found in Examples 4 and 5. An

20The term path agreement was first used by Greenberg et al. [17]: see also
footnote 34.
21Recall that all strategies are reduced.

20



agreement which is not on actions is discussed in Example 5. Path
agreements can be found in Examples 3 and 4.
For an agreement e = (¢e;);cr, I will refer to ((e%) as the outcome

set that the agreement prescribes.

3.3 Belief in the agreement

Players’ beliefs are modeled as Conditional Probability Systems (hence-
forth, CPS). Here I define CPS’s directly for the problem at hand.

Definition 3 Fizi € I. An array of probability measures (1;(-|h))nen
over co-players strategies S_; is a Conditional Probability System if
for all h € H, p;(S_i(h)|h) = 1, and for all ' = h and S_; C
S—i(h'),

pi(S=ilh) = i (S=i(h)[R) - s (Sl W)

The set of all CPS’s on S_; is denoted by A" (S_;).

A CPS of a player over co-players’ strategies is an array of beliefs,
one for each history, that satisfies the chain rule; that is, whenever
possible, the belief at a history is an update of the belief at the
previous history based on the observed co-players’ moves.

For any player i and any set of co-players J C I\ {i}, I say
that a CPS pu, strongly believes S; C S; if for every h € H(S)),

21



11;(S 7 x Sp o h) = 1.22 In formulae and proofs, I will write "that
s.b." for "that strongly believes".

Note that a player can have correlated beliefs about the strategies
of different co-players. This is not in contradiction with the absence
of joint randomization devices in the agreement: players can be-
lieve in spurious correlations among co-players’ strategies (see, for
instance, Aumann [1] and Brandenburger and Friedenberg [10]).%
However, strategic independence (Battigalli [3])** could be assumed

throughout the paper and the results would not change.

I say that a player believes in the agreement if, at each history
and for each co-player, she assigns probability 1 to strategies of the
co-player which comply with the agreement from her most recent

violation of the agreement onwards.

Definition 4 Fir an agreement e = (e;)ic; and p, € A(S_;). I
say that player i believes in the agreement when, for every h € H,
s_i = (87)j2 with ju;(s_;|h) >0, j #1i, and h < h,

e?(h) # 0 = s;lh € e?.

22In the original meaning of "strong belief", due to Battigalli and Siniscalchi
[8], Sy % Sp(sugy) and not Sy is "strongly believed". The slight difference in
the use of the term is only for notational convenience.

23For instance, a player can believe that a sunny day will induce more opti-
mistic beliefs in two co-players.

24Roughly speaking, the assumption that a player has a separate CPS about
the behavior of each co-player.
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Let A¢ be the set of all u; € A™(S_;) where player i believes in the

agreement.

Note that every p, € A strongly believes (€);; (and not just

X j£i€])-

3.4 Rationality and Rationalizability

I consider players who reply rationally to their beliefs. A rational
player, at every history, chooses an action that maximizes her ex-
pected payoff given her belief about how co-players will play and
the expectation to choose rationally again in the continuation of
the game. By standard arguments, this is equivalent to playing a

sequential best reply to the CPS.

Definition 5 Fir p; € AY(S_;). A strategy s; € S; is a sequential
best reply to p,; if for each h € H(s;), s; is a continuation best reply
to p;(-|h), i.e. for each s; € S;(h),

> wlClsns-)p(silh) = D> wilCEism)mls—ilh).

s_;€5_;(h) s_;€8_;(h)

The set of sequential best replies to u; (resp., to some u;, € Af)
is denoted by p(u;) (resp., by p(A¢)). The set of normal-form best
replies to a probability measure v; on S_; is denoted by r;(v;). 1

say that a strategy s; is rational if it is a sequential best reply to
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some p; € A”(S_;). An important remark: Even when no rational
strategy prescribes action a; at two unordered histories h and A/,
there might be other two rational strategies, both compatible with

h and h’, which prescribe a; only at, respectively, h and h'.

Here I take the view that players refine their first-order beliefs
through strategic reasoning based on beliefs in rationality and be-
liefs in the belief in the agreement. In particular, I assume that
every player, as long as not contradicted by observation, believes
that each co-player is rational and believes in the agreement; that
each co-player believes that each other player is rational and believes
in the agreement; and so on. At histories where common belief in,
jointly, rationality and belief in the agreement is contradicted by
observation,? I assume that players maintain all orders of belief in
rationality that are per se compatible with the observed behavior,
and drop the incompatible orders of belief in the agreement. I will
call independent rationalization the hypothesis that players maintain
a order of belief in rationality or in the agreement about a co-player
when her individual behavior allows, as opposed to the hypothesis
that players maintain such order of belief about all co-players only

until none of them contradicts it.2® The adoption of independent ra-

25In [11] I show how anticipating which beliefs are kept at these histories
refines also first-order beliefs at histories where all orders of belief in rationality
and agreement hold.

26 This is not in contradiction with the absence of strategic independence: play-
ers can believe in spurious correlations among co-players’ strategies, although
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tionalization shows better the robustness of the main insights. After
a deviation that displays the disbelief of the deviator in the agree-
ment, without independent rationalization co-players’ threats would
not be required any degree of coordination. In Example 5, indepen-
dent rationalization makes it much more challenging for players to
find an effective agreement.

As shown in [11], the behavioral consequences of this kind of
strategic reasoning are captured by Selective Rationalizability. Se-
lective Rationalizability refines the following version of Extensive

Form Rationalizability?” (henceforth just Rationalizability).

Definition 6 Let S° := S. Fiz n > 0 and suppose to have defined
((SN)jer)azy- For eachi € I and s; € S;, let s; € SI* if and only if

si € p(p;) for some p; € A (S_;) that strongly believes ((S7)4:)q= -

Finally, let S7° = N,>0S]". The profiles S* are called rationalizable.

Next, Selective Rationalizability. Fix an agreement e = (¢&;);¢;.

they are ready to believe that different co-players have different orders of belief
in rationality or in the agreement. For instance, the beliefs of a more and a less
sophisticated players can be affected by weather in the same way.

2TThis notion of Extensive-Form-Rationalizability is the adaptation of Strong
Rationalizability (Battigalli and Siniscalchi, [8]) to independent rationalization.
Independent rationalization is also a feature of Independent Rationality Or-
derings (Battigalli [3]), where strategic independence is adopted. The original
notion of Extensive-Form-Rationalizability, due to Pearce [26], adopts instead
structural consistency (Kreps and Wilson [21]).
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Definition 7 Let SY := S*. Fizn > 0 and suppose to have defined
((S%.)jer)i=y. For eachi € I and s; € S;, let s; € S7, if and only if
q n—1

si € p(p;) for some p; € A that strongly believes ((S].)jxi)q— such
that:

S3: p,; strongly believes «S;'I )#i);ozo'

Finally, let ST = Nn>0S7.. The profiles S¢° are called selectively-

rationalizable.

S3 guarantees that a player always believes in co-players’ strate-
gies which are compatible with the highest possible order of belief
in rationality. Among those, a player believes in co-players’ strate-
gies which are compatible with the agreement and with the highest
possible order of belief in the agreement. Note that first-order belief
in the agreement, as required by A¢{, is mandatory at all histories.
Then, the empty set is obtained when at some step some co-player
can reach a history only with strategies that do not comply with the
agreement from the history on. In this way, the compatibility of the
belief in the agreement with the strategic reasoning hypotheses is
tested.

Consider now the following class of rationalizable continuation
plans, which are "realization equivalent" under the assumption that
the opponents play rationalizable plans too. For any h € H(S*)
and s!' € S let [Eﬂoo be the set of all s € S|k such that

C(sh,s")) = ((3h,s",) for all s", € S¥|h. For any ?? C Sh (pos-
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sibly empty), let [?ﬁ"o = Ugpnegh [50]7. I say that e = (e;)er is
a rationalizable agreement if for all i € I, ef = [e!]™ for all
h € H(S%®) and e = () for all h ¢ H(S*). By Definition 12 and
Theorem 1, rationalizable agreements suffice to induce all the imple-
mentable outcome sets (and also the agreements that correspond to
a Self-Enforcing Set are rationalizable, see Definition 13). S3 can be
substituted by s; € S;° for all rationalizable agreements: see Lemma
3 in the Appendix. However, for any agreement, Rationalizability
and Selective Rationalizability can be merged into one elimination
procedure, where the belief in the agreement kicks in once the ra-
tionalizable profiles are obtained (see footnote 49). Finally, strong
belief in ((Sgﬁ)#i);‘;g can be replaced by s; € Si'; ! in 2-players

games or dropping independent rationalization: see [11] for details.

Only in the applied example in the Supplemental Appendix, the
game features non-rationalizable strategies. To see Selective Ratio-
nalizability at work, check the formalization of Example 3 in the
Supplemental Appendix.

I will refer to ((S2°) as the set of outcomes induced by e, and to

histories in H(S*) as "rationalizable histories".

27



4 Self-enforceability and implementabil-
ity

In order to evaluate a given agreement, two features have to be inves-
tigated. First, whether the agreement is credible or not. Second, if
the agreement is credible, whether players will certainly comply with
it or not. An agreement is credible if believing in it is compatible

with strategic reasoning.
Definition 8 An agreement e = (e;);cs is credible if S # ().

Credibility does not imply that players will comply with the
agreement, but only that they may do so everywhere in the game.
Strategic reasoning on a credible agreement induces each player i to
strongly believe in a subset of co-players’ agreed-upon plans, namely
5% .Me’,. Isay that an agreement is self-enforcing if this belief will

not be contradicted by the actual play.

Definition 9 A credible agreement is self-enforcing if
C(S) = (S ne).

Self-enforceability implies that players will certainly comply with
the agreement on the induced paths, so that no violation of the agree-
ment will actually occur. That is, ((S5%°) C ((e%). This condition
is also sufficient for self-enforceability of a credible agreement on

actions.
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Proposition 1 An agreement on actions is self-enforcing if and
only if
0 #¢(S2) € ((e”).

In Examples 1 and 2, the reduced agreements with, respectively,
e = {N.U},e% = {W}, and € = {Int},e? = S;,i = A, B, D are
self-enforcing. All strategies are rationalizable. At the first step of
Selective Rationalizability, in Example 1 Ann eliminates S and Bob
selects W, while in Example 2 Dave selects O and the other players
do not eliminate any strategy. In both cases, Selective Rationaliz-
ability is over at the first step. Example 3 provides two non-credible

agreements, as formally shown in the Supplemental Appendix.

A merely credible agreement fails to secure outcomes that players
agreed upon and believed in. Moreover, only self-enforcing agree-

ments are able to secure a specific outcome.
Proposition 2 If ((S°) is a singleton, then e is self-enforcing.

For these reasons, in the remainder of the paper, the focus will
be on self-enforcing agreements. Which outcomes of the game can

be achieved through self-enforcing agreements?

Definition 10 A set of outcomes P C Z s implementable if there
exists a self-enforcing agreement such that ((S:°) = P (and I say

that the agreement implements P ).
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With "implementable outcomes" 1 will refer specifically to im-
plementable singletons. The set of outcomes prescribed by a self-
enforcing agreement may be larger than the outcome set it induces
(i.e. ¢(e%) D ¢(S%)). So, a natural question arises: for each im-
plementable outcome set, is there an implementing agreement that
prescribes precisely that set of outcomes? The answer is not obvious
because simply restricting the initial plans of some self-enforcing
agreement to those that allow the implemented outcome set may
not work: see Example 4. Therefore, consider the following classes

of agreements.

Definition 11 A self-enforcing agreement is truthful if

¢(Se%) = ¢(e”).

Definition 12 An agreement e = (e;);es is tight if for each i € I,

T1 For all h € H(S®), Upsuef(h) # 0 and e} = [e]]™; else,
el =0;

T2 For each h € H(p(A¢S) N SX)), el C (p(AS) N S®)|h;

T3 For each pu; that strongly believes €° ., C(p(;) x €2;) C ().

—17

T3 says that players who believe in the agreement have no in-

centive to leave the paths it prescribes. Hence, the following holds.
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Remark 1 An agreement e = (e;);e;r where ((€°) is a singleton sat-

isfies T3 if and only if €® is a set of r-strict Nash equilibria.

T1 says that a tight agreement reaches all the rationalizable his-
tories with rationalizable continuation plans of all players; more-
over, such plans allow any rationalizable behavior at the other his-
tories they reach, and no further plans are declared at the non-
rationalizable histories they do not reach. By T2, the prescribed
plans must also be rational for a player who believes in the agree-
ment and reaches the history. This guarantees that the agreed-upon
plans never fall below other plans in the "likelihood order" of co-
players who reason by forward induction about this player. Thus,
the following holds.

Proposition 3 A tight agreement is truthful.

On the other hand, for every implementable outcome set, there

is always a tight agreement that prescribes it.

Theorem 1 An outcome set is implementable if and only if there

exists a tight agreement that prescribes it.
Then, by Remark 1, the following holds.

Corollary 1 FEvery implementable outcome is induced by a r-strict

Nash equilibrium in rationalizable strategies.?®

28Tt is straightforward to prove this result directly by observing that if z is
implemented by e, then any s € S2° is a strict Nash equilibrium in rationalizable
strategies.
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Theorem 1 and Proposition 3 answer to the original question.

Corollary 2 Fvery implementable outcome set is implemented by a

truthful agreement.

Corollary 2 constitutes a revelation principle for agreements de-
sign: players need not be vague about the outcomes they want to
achieve.

Corollary 1 restricts the search for implementable outcomes to
the fixed points of the normal-form, best response correspondence,
in the reduced game of rationalizable strategies.

Theorem 1 provides a full characterization of implementable out-
come sets. Tight agreements simplify the search for implementable
outcome sets and implementing agreements. First, the game is re-
duced to the rationalizable strategy profiles. Once a candidate out-
come (set) is fixed, Corollary 2 allows to restrict the search to agree-
ments that prescribe it. Moreover, one can focus on initial plans that
are rational under strong belief in the ones of co-players (by T2), and
directly provide the incentive not to deviate from the desired paths
(by T3). Then, the behavior of deviators must be specified as to
satisfy T1 and T2 off-path. Note that T2 only requires to compute
the sequential best replies to the belief in the agreement itself, as op-
posed to the multiple steps required by Selective Rationalizability,

and without memory of the steps of Rationalizability.

Example 5 illustrates an interesting tight agreement, which pre-

scribes an outcome that cannot be implemented without restrictions
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to the behavior of a deviator, nor by an agreement on actions. But
usually, tight agreements are more complex than needed for the im-
plementation of an outcome set. For a single outcome, the simplest
and more natural agreement is the corresponding path agreement.
Yet, very few path agreements are self-enforcing. In Example 4,
not even the path agreement on the unique SPE outcome is self-
enforcing. Therefore, one may wonder which outcome sets can be

implemented with reduced agreements and agreements on actions.

First, let us consider reduced agreements. A reduced agreement
corresponds to a Cartesian set of strategy profiles. Recall that,
throughout the paper, only reduced strategies are considered. This
implies that, differently than a SPE or a tight agreement, a reduced
agreement remains silent about the behavior of deviators. However,
the behavior of deviators can be (partially) predicted by forward

induction. Thus, consider the following, set-valued solution concept.
Definition 13 Fiz S* = X1 Sf C S. I say that S* is a Self-
Enforcing Set if for each i € I:

& Rationalizability: S} = [SF]>;

& Self-Justifiability:

J

QO Forward Induction:

?i - {Si S Szoo : E|,u2 tSb(S;,gj,Soo)j;é“ S; € p(uz)},

J
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< Self-Enforceability: For each y; that s.b. S*

Clp(py) x S=;) € C(S7).

Rationalizability says that the SES prescribes rationalizable plans
without further restricting behavior at the non-rationalizable histo-
ries. Consider now players who strongly believe that each co-player
will play as the SES prescribes and, alternatively, as rationalizability
prescribes. Self-Justifiability says that they may play any strategy
in the SES. Forward Induction says that all the strategies such play-
ers may play, thus including the SES strategies, are compatible with
strong belief that co-players form beliefs in the same way. At each
history / that follows a deviation by player j from S7, the logics
of Forward Induction differ from the logics of subgame perfection
in the following way. Forward Induction determines the expected
continuation plans of j with forward induction reasoning, based on
her belief in the SES if possible (S;) or just the beliefs in rationality
otherwise (55°). Subgame perfection prescribes exogenously the con-
tinuation plans of deviators, and imposes that they always best reply
to the planned reactions of co-players. The best response condition
of Forward Induction, imposed after one step of reasoning instead
of just at the start, suffices to guarantee credibility after all steps of
reasoning, which players do not actually need to perform when they

agree on a SES.
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On top of this, Self-Enforceability?® guarantees that players will
not leave the paths induced by the SES if they strongly believe that
all co-players will play as the SES prescribes.?’ Self-Justifiability
further guarantees truthfulness of the agreement that corresponds
to the SES.

Theorem 2 Fiz a SES S*. The reduced agreement e with e® = S*
1s truthful.

Conversely, one could think that, for any self-enforcing agree-
ment, S®Ne’ is a SES. While S>°Ne® satisfies Self-Enforceability and
Self-Justifiability, and restrictions to behavior at non-rationalizable
histories can always be eliminated as to satisfy Rationalizability,
S N e® may not satisfy Forward Induction. The sequential best
replies of player i under strong belief in (552 N €);; may not be,
at some history, what co-players expect after all steps of reason-
ing under the agreement. Such refinement of beliefs may be crucial
to sustain the threats. For this reason, not every implementable
outcome set is induced by some SES, not even if implemented by a
truthful, reduced agreement: see Example 5. However, a SES always

exists.

21 will write Self-Enforceability with capital letters to distinguish it from the
self-enforceability of agreements.

30This is reminiscent of the notion of "strategy subsets closed under rational
behavior" by Basu and Weibull [2], but in the context of dynamic games and
with focus on the realized paths instead of the strategies.
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Remark 2 S is a SES.

The search for candidate SES’s conveniently coincides with the
search of the initial plans of a tight agreement. Then, Forward Induc-
tion must be checked. If no candidate SES for the implementation
of an outcome set satisfies Forward Induction, then one can try to
transform a candidate SES into a tight agreement, by declaring the
behavior of deviators as to satisfy T1 and T2 off-path. This whole
procedure is performed in Example 5. Also the reduced agreement
of Example 2 is an interesting SES where set-valuedness, i.e. agree-
ment incompleteness, plays a crucial role (while forward induction

is immaterial because each player moves only once.)

Can the SES be implemented by a reduced agreement on actions?
The answer is yes if the SES can be expressed through vetos cast by

each player on rationalizable outcomes.
Proposition 4 Fiz S* = X;c1S! that satisfies &, O, &, and, for
each i€ I:

& Rationalizable Vetos: Sf = S\ U,ew, Si(z) for some W; C
¢(5%).

Then, S* is SES and ((S*) is implemented by the reduced agreement
on actions with vetos V2 := Z\((SF x S_;) for alli € I.

Casting unilateral vetos on outcomes is equivalent to exclude

actions instead of strategies. The candidate SES is then the set of
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rationalizable strategies that do not prescribe the excluded actions.
The implementing reduced agreement on actions is the set of all
strategies that allow the SES outcomes.® Note that S always

satisfies Rationalizable Vetos.

Let us focus now on implementable outcomes. By Rationalizabil-
ity and Self-Enforceability, every SES that induces a unique outcome
is a set of r-strict Nash equilibria in rationalizable strategies. Does
the opposite hold? The answer is no: the threats of two different
players towards a potential deviator may be incompatible with each

other. But this cannot happen in a two-players game.

Proposition 5 Fix a two-players game and a r-strict Nash outcome
z € Z. The set S* of all r-strict Nash equilibria s € S®(z) is a SES
that satisfies Rationalizable Vetos.

Moreover, for each s € S*, the reduced agreement e with ¢ = {s}

implements z.%?

Together with Corollary 1, the following holds.

3'With V.2 = W, the agreement may be not credible: for some h € H(S) N
H(S;\ Uzew, Si(2)), it may hold S°(h)\ Usew, Si(z) = 0, so strong belief in
both S and S;\ U.ew, Si(2) is impossible.

32The agreement on a SES that induces the outcome instead of on a precise
Nash may be however more natural: see the applied example in the Online
Appendix.
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Theorem 3 In a two-players game, an outcome is implementable if

and only if there exists a r-strict Nash equilibrium in rationalizable

strategies that induces 1it.
Together with Proposition 5, the following holds.

Corollary 3 In a two-players game, every implementable outcome

s implemented by a truthful, reduced agreement on actions.

Hence, in two-players games, standard elimination procedure and
fixed point condition suffice to find all implementable outcomes and,
for each of them, a truthful, reduced agreement on actions that im-

plements it.
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5 Comparison with rationalizability lit-

erature

The literature on strategic reasoning with first-order belief restric-
tions is mostly based on the use of Strong-A-Rationalizability ([5],
[9]). The definition of Strong-A-Rationalizability with independent
rationalization coincides with Definition 7 without S3 and with S° =
S. The differences between the results of this paper and the results
in this literature are due to (i) the adoption of Selective Rational-
izability in place of Strong-A-Rationalizability, (ii) the structure on
the first-order belief restrictions imposed by the notion of agreement,

and (iii) the focus on self-enforceability rather than just credibility.

Differences and similarities between Selective Rationalizability
and Strong-A-Rationalizability are deeply analyzed in [11]. Here
I only recall the main conceptual difference behind the two solu-
tion concepts. Fix a move that a player would not rationally make
under belief in the agreement. Contrary to Selective Rationalizabil-
ity, Strong-A-Rationalizability captures the hypothesis that, upon
observing such move, co-players drop the belief that the player is ra-
tional. This hypothesis is called in [11] " (epistemic) priority to the
agreement" (as opposed to rationality). So, the question is: how
would the adoption of Strong-A-Rationalizability instead of Selec-
tive Rationalizability affect the results?

In every example except the applied example in the Supplemental
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Appendix, all strategies are rationalizable, thus Selective Rationaliz-
ability and Strong-A-Rationalizability coincide. Hence, the insights
from the examples are robust to a shift of epistemic priority from
rationality to the agreement.

What happens in games where not all strategies are rationaliz-
able? Let (SA.)s2, be Strong-A-Rationalizability with independent
rationalization.

Remark 3 All results of Section 4 hold through verbatim after sub-

stituting:

1. selectively-rationalizable strategies (S°) with strongly-A-rat.

strategies (SX.) everywhere;

2. rationalizable strategies (S ) with all strategies (S) in the de-
finitions of [-]™,*® tight agreement, and SES, and with rational
strategies (S*) in the statements of Corollary 1, Proposition 5,

and Theorem 5.

To verify Remark 3, the required modifications to the proofs of
the results are highlighted in the Appendix. A credible agreement
under priority to rationality needs not be credible under priority to
the agreement: as shown in [11], Selective Rationalizability is not

a refinement of Strong-A-Rationalizability for the same first-order

33This is just to adapt to the formalism of Section 4: the equivalence classes
become singletons (in the sense of one reduced strategy).
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belief restrictions. Across all agreements, instead, under priority to

the agreement more outcome sets can be implemented.

Proposition 6 If an outcome set is implementable under priority to

rationality, then it is implementable under priority to the agreement.

However, since agreements originate from mere pre-play cheap
talk, epistemic priority to rationality appears in my view as a more
considerate hypothesis. Else, for instance, any Nash equilibrium in
rational strategies of a two-players game would correspond to a self-
enforcing agreement, also when incompatible with just strong belief

in rationality.

Battigalli and Friedenberg [6] capture the implications of Strong-
A-Ratio- nalizability without independent rationalization across all
first-order belief restrictions with the notion of Extensive Form Best
Response Set. An EFBRS is a Cartesian set of strategy profiles
S = x,e1S; satisfying the following:

EFBRS: for every ¢ € [ and s; € S5}, s; € p(y,;) for some p; that
strongly believes S_; with p(u;) C S;.

The EFBRS Condition is the analogue of Self-Justifiability in ab-
sence of priority to rationality and independent rationalization, but
with an additional "maximality" requirement: all the sequential best

replies to some justifying beliefs must be in the EFBRS. These be-
liefs are not expressed by the EFBRS itself, whereas a SES directly
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provides the first-order belief restrictions that yield the SES out-
comes. The restrictions that yield the EFBRS may impose belief
in specific randomizations, or, more fundamentally, differ across two
players regarding the moves of a third player.>* An agreement, in-
stead, aligns any two player’s beliefs about a third player’s moves.
For this reason, even with randomizations in agreements and with-
out independent rationalization, EFBRS’s would still be insufficient
for implementability of the induced outcomes under priority to the

agreement, calling for Self-Enforceability in place of maximality.

Battigalli and Siniscalchi [9] find out that, for first-order belief
restrictions which correspond to the belief in an outcome, Strong-
A-Rationalizability yields a non-empty set only if there exists a self-
confirming equilibrium (Fudenberg and Levine [14]) inducing that
outcome. Regardless of the epistemic priority choice, implementable
outcomes are instead all Nash by Corollary 1 and Remark 3. Why is
it the case? The reason lies in the difference between credibility and

self-enforceability. Under a self-enforcing agreement, players have

34 Greenberg et al. [17] define a (non-forward induction) solution concept,
called "mutually acceptable courses of action". Their leading example focuses on
an EFBRS outcome z. Strong-A-Rationalizability yields z for first-order belief
restrictions that could be derived from an agreement for each player, but not
from the same agreement for all players. Indeed, z is not implementable under
priority to the agreement. Also allowing subsets of players to reach private
agreements, z would still not be implementable, because the first-order belief
restrictions of each player need instead to be transparent to all players (as they
are under Strong-A-Rationalizability).
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the incentive to stay on path for all their refined beliefs. This allows
to find strategies of co-players against which there is no incentive to
deviate. Credibility, instead, may be granted just by some particular
(correlated) belief about the reactions of co-players to the deviation.

Conversely, in signaling games, Battigalli and Siniscalchi [9] show
that when an equilibrium outcome satisfies the Iterated Intuitive
Criterion (Cho and Kreps [13]), Strong-A-Rationalizability yields
a non-empty set under belief in that outcome. Yet, even in the
simplest examples of this paper, off-the-path restrictions are usually
needed for self-enforceability. What does strategic reasoning under
path restrictions represent when the agreement is richer than the

path agreement? The next section sheds light on this point.

6 Comparison with equilibrium litera-

ture

Kohlberg and Mertens [20] motivate their analysis in a similar way
to this paper: "A noncooperative game is played without any possi-
bility of communication between the players. However, we may think
of the actual play as being preceded by a more or less explicit process
of preplay communication (the course of which has to be common
knowledge to all players), which gives rise to a particular choice of
strategies." ([20], page 1004) Then, they introduce forward induction

as implicit communication during the game, based on actual moves:
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" Essentially what is involved here is an argument of "forward induc-
tion": a subgame should not be treated as a separate game, because it
was preceded by a very specific form of preplay communication — the
play leading to the subgame.” ([20], page 1013) Finally, they claim
that the "forward induction" property of their notion of strategic sta-
bility, "captures the "forward-induction” logic of our basic example."
([20], page 1029) The two examples of forward induction in the paper
refer to a player who gives up an outside option. The consequent
reasoning is not based on pre-play communication: unconstrained
forward induction reasoning suffices for players to coordinate on the
strategically stable solutions of two examples.

Govindan and Wilson [15] use the Beer-Quiche game (Cho and
Kreps, [13]) to show a different kind of forward induction reasoning.
In Beer-Quiche, one of the two pure equilibria can be ruled out with
a story of interactive beliefs in its outcome distribution. That is,
constrained forward induction reasoning. However, both kinds of
reasoning are hard to detect in their formal definition of forward
induction, while depth of reasoning and scope of the analysis remain
limited. As acknowledged by the authors themselves, their notion
of forward induction only captures rationality and strong belief in

rationality in two-players games ([15], page 11),* and fails in games

351 suggest that the two steps limitation (rationality and strong belief in ratio-
nality) on uncontrained reasoning extends to the constrained reasoning captured
by forward induction. Moreover, I suggest that, once forward induction is im-
merged in sequential equilibrium, a further step of reasoning is captured at the
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with more than two players ([15], page 21). Moreover, it applies only
to sequential equilibrium.

Osborne [24] identifies a class of non strategically stable SPE in
two-players, finitely repeated, coordination games: those with an
equilibrium path that can be upset by a convincing deviation. Differ-
ently than for the general definition of strategic stability, it is easy
to identify a precise line of strategic reasoning that rules out these
equilibria: forward induction about the path agreement. Indeed,
equilibrium paths that can be upset by a convincing deviation can
be characterized as non-credible path agreements. This is proved in
the Supplemental Appendix. Thus, also strategic stability captures
(at least to some extent) constrained forward induction reasoning

about the beliefs in an outcome (distribution).*

However, very few path agreements implement the outcome they
prescribe. Off-path restrictions are usually needed for implemen-
tation. Analogously, also strategic stability entails restrictions on
off-path continuation strategies. So, what does strategic reasoning
under the path agreement represent when off-the-path threats are
actually in place? It represents a particular way to rationalize devia-

tions, transparent to players. This rationalization of deviations relies

beginning of the game. Indeed, the equilibrium selection in Beer-Quiche also
requires a further step of reasoning at the start.

36Indeed, also Kohlberg and Mertens [20], in the applications section, refine
equilibria in Beer-Quiche with strategic stability, without discussing the connec-
tion with forward induction.
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on the belief that the deviator believes that no deviation by a co-
player would have occured had she stayed on path. If the deviation
does not contradict this belief, the co-players, instead of dropping
the belief that the deviator believes in the whole agreement, drop the
belief that the deviator believes in the post-deviation threats, and
save the belief that the deviator believed in the agreement on-path.
(So, they believe that the deviator will try to achieve a higher payoff
than under the agreed-upon path.) In other words, the beliefs in the
compliance with the agreement on-path have higher epistemic prior-
ity than the beliefs in the compliance with the agreement off-path.
Assigning the highest epistemic priority to the beliefs in rationality,
I call this finer epistemic priority order "(epistemic) priority to the
path". Its behavioral consequences are captured by an extension of
Selective Rationalizability, epistemically characterized in [11]. With
this, I will show the robustness of the insights of the paper to this
kind of strategic reasoning, and provide a general and transparent
approach to the forward induction stories in the background of the

equilibrium literature.

For simplicity, I restrict the analysis to agreements which pre-
scribe a unique outcome 2. Let ((S],)jer)j2, denote Selective Ra-
tionalizability under the path agreement on z, and call (S53)jer 2-
rationalizable. Fix an agreement e = (e;);c; with ((e°) = {z}.

Definition 14 Let S%. = S®. Fizn > 0 and suppose to have de-
fined ((S2,.)jer)azg- For eachi €I and s; € S;, let s; € SI'.. if and

B ,e
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only s; € p(p;) for some p; € A that strongly believes ((S7,-)j#i)y—o

such that>7
E3: p; strongly believes ((S5.)ji)0%0 and ((S})j2i)e20-

Finally, let S°

1,e% T

MNu>09i=- The profiles S2 are called z-selectively-

rationalizable.

E3 captures the interpretation of deviations depicted above. On
top of this, players refine their beliefs according to the whole agree-
ment. Then, for the agreement to be credible, the off-the-path threats
have to be compatible with the rationalization of deviations based
on the beliefs in the path.

So, the credibility of the path agreement only constitutes a pre-
liminary test for the implementability of z under the hypotheses of
this section. If the outcome passes the test, there exist off-the-path
beliefs, compatible with the rationalization of deviations depicted
above, which induce players to stay on path. However, no agree-
ment may be able to restrict players’ beliefs to those, like for the
beliefs that sustain an EFBRS. An example of this is provided in
[11], and it motivates the consideration of different belief restric-
tions in an epistemic priority order, instead of just turning to path

restrictions and using credibility in place of self-enforceability.

37 Although typically A¢ ¢ A%, requiring pu; € A¢ is equivalent to requiring
w; € A¢ N A%, thus SL C S2°; see the manuscript "On non-monotonic strategic

reasoning" (Catonini, 2017).
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Analogously to Selective Rationalizability, E3 can be substituted
by s; € S22 for all the agreements e = (e;)ie; such that, redefining
[]°° with S2° in place of 5, el = [e!]™ foralli € I and h € H(S5%),
and el = () otherwise.®® And again, this class of agreements suffices
to induce all the implementable outcome sets under priority to the
path. Indeed, the analysis of Section 4 can be replicated under this

finer epistemic priority order.

Remark 4 All the results of Section 4 hold through verbatim after

substituting everywhere:

1. selectively-rationalizable strategies (S.) with z-selectively-rat.

strategies (Se:);

2. rationalizable strategies (S°°) with z-rationalizable strategies

(52).

To verify Remark 4, the required modifications to the proofs
of the results are highlighted in the Appendix. Although z-Selective
Rationalizability does not refine Selective Rationalizability for a fixed

agreement, the following holds.

Proposition 7 If an outcome is implementable under priority to

the path, then it is implementable under priority to rationality.

381 do not provide formal proof of this fact. However, E3 is maintained in the
proofs.
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In all the examples, the self-enforcing agreements remain self-
enforcing under priority to the path. Hence, the insights are robust
to the finer epistemic priority order adopted in this section. Strategic
stability does not eliminate every non subgame perfect equilibrium
either;® yet, in the attempt to do so, equilibria that are compatible
with forward induction are disregarded.*’

The final question is: does subgame perfection perform a mean-
ingful further refinement under these strategic reasoning hypotheses?
My answer is no. Subgame perfection is at deep contradiction with
the interpretation of deviations behind this kind of forward induc-
tion reasoning. Fix a r-strict SPE. After any deviation from the SPE
path, co-players will believe that the deviator believed in the path
but does not believe in the threat. Then, they will not expect the
deviator to best reply to the threat. But then, that the threat is
a best reply to a plan of the deviator which is a best reply to the

threat itself is of no additional value. This breaks down the logics of

39Kohlberg and Mertens [20] regard the inability to imply subgame perfection
as a weakness of stability, and "hope that in the future some appropriately mod-
ified definition of stability will, in addition, imply connectedness and backwards
induction." This paper suggests the opposite direction.

40Consider the (non-SPE) outcome 7T in Figure 6 in [20]. Its instability is
claimed at page 1030, based on the substitutability of the zero-sum subgame
with its equilibrium payoffs. But this amounts to assume that player 1 has the
most pessimistic expectation for that subgame. Allowing for more optimistic
beliefs, player 2 can believe that player 1 will try to reach the subgame. Thus,
player 2 can react with R, a threat which implements 7" under all epistemic
priority hypotheses.
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subgame perfection. Example 4 illustrates this intuition. Thus, the
insistence on subgame perfection in the forward induction literature

is, in my view, particularly misplaced.*!

7 Appendix - Proofs

The results of Section 4 are proved explicitly. To prove the same

results under priority to the agreement (Remark 3), substitute

(57 )enzo with (8] ac)jer)io,
((S])jen)iZo with (S))jer,

and see the footnotes; under priority to the path (Remark 4), sub-

stitute

((S%,)jer)gzo With ((S].:)jer)qzo;
((S)jer)e2o with (((S9)jer)o, ((SL.)jer)e0),

where (@ is the smallest ¢ such that S¢ = S+,
Throughout, let H* := H(S*°) and

Ho:={h & H* :p(h) € H*}.

“Interestingly, Man [23] finds out that also the "invariance" argument, used
to motivate the notions of forward induction of Kohlberg and Mertens [20] and
Govindan and Wilson [15], does not imply sequential equilibrium.
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For any u; € AH(S_,), let

H = {10} U {h € B : u(S_()]p(h)) = 0}

Proof of Proposition 1. "Only if": trivial. "If": e is cred-
ible by ¢(S>) # 0, and ((S) 2 ¢(S5> N €°) is obvious; for the
opposite inclusion I show that for every s = (s;)ier € S°, there
is s* € S* N e’ such that ((s*) = ((s). Fixi € I and pu; €
A§ that s.b. ((9].)jxi)e20 and ((S]);4)520 with s; € p(y;). By
C(S8%) C ((e%), for each h € H(s;) N H(S>), s;(h) = 5;(h) for
some 5; € €2(h). Since the agreement is on actions, there is 5; € ¢!
such that 5;(h) = s;(h) for all h € H(s;) N H(S>). Fix h € H' :=
[ € H(s)\H(S) : p(') € H(S)}. Since p(h) € H(s)NH(S),
h € H(5;) € H(e). Thus, since h € H(s;) C H(S;%2) and e is cred-
ible, e N S2(h) # 0. Fix 55, € €) N S72(h) and p,;, € Af that s.b.
((SFe)jzi)ezo and ((57);2i)e20 With sin € p(p, ). Since p; strongly
believes S%; _, 1;(S—i(h)|p(h)) = 0. Thus, there exists uf € A7 that
b ((92,),0)%0 and ((S9)4)z20 such that i (7) = p,([R) for
all h € H(S), and pi(-|h) = p,;,(-|h) for all h € H" and h = h.
So, there is s7 € p(u;) € S;% such that st(h) = s;(h) = 5;(h) for all
he H(s))NH(5%), and st|h = sin|h for all h € H'. Since the agree-
ment is on actions, sf € €Y, and by H(s*) C H(S>), ((s*) = ((s).
|

Proof of Proposition 2. Since e is credible, S®°Ne® # (. Since
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¢(5%) is a singleton and ¢(5>°) 2 ¢(S*NeY), ((S2) = (5S> NeY).
[

Lemma 1 Fiz an agreement e. If e satisfies TS and e C S, e is
truthful.

Proof. First, I show that ((S°) C ((€°). Fix s = (s;)ier € S
and h € H(s) N H(e%). Since €® = x;c€? is Cartesian, so is A" :=
{a€ A:(h,a) € H(®)U((e)}. For each i € I, since s; € p(A%) N
Si(h) and €°;(h) # 0, by T3 s;(h) € Al',. Thus (h,s(h)) € H(e’) U
¢(e%). By induction, ¢(s) € ((e?).

So, by €0 € 5%, (5 %) = (") = (). W

Lemma 2 Fizi € I, h € H®, s} € S®|h, and h € H(s!) N Hy.
Then, [sP]®|h = S2°|h.12

Proof. Fix s;, s, € S®(h) with s;|h = sP. Fix pu;, s, that s.b.
((8])ji)e%0 With s; € p(u,) and s; € p(u;). Since p; strongly believes
5%, 1;(S=i(h)|p(h)) = 0. Then, there is i that s.b. ((S7);i)eg
such that pf(-|h) = p;(-|h) for all b # h, and ul(-|h) = pi(-|h) for
all b = h. Thus, there is 57 € p(u;) C S such that stk = s}|h and
st(h) = s;(h) for all b  h with h € H(s;). So, st|h € [s"]°. Hence,

si|h € [s"]®|h. B

42This lemma and the next are not needed under priority to the agreement.
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Lemma 3 Fiz a rationalizable agreement e = (e;);er. For eachi € 1
and p; € AY that s.b. (S5°)j2i, [p(p;)]™ € S}o.*

Proof. Fix s; € [p(,;)]*° C S and 5, € p(p,;) with 5;(h) = s;(h)
for all h € H*® N H(s;). For each h € H* N H(3;) = H* N H(s;),
by 1;(S%|h) =1, s; € 5¢°, and s;(h) = 5;(h) for all h € H*®, also s;
is a continuation best reply to j;(-|h). Fix p; that s.b. ((S]);2i)e20
with s; € p(p). Fix h € H(s;) N Hyx and s_; = (s5)j2 € S_;(h).
Fix j # 4. If 55 & S5° or Uﬁ%e?(h) = 0, let s = s;. Else, fix

h < h with ejﬁ(h) # (. Since e is rationalizable, e? = [el]>, and
by Lemma 2, [e]E-]OO]h = S%°lh. Thus, there is s} € S° such that
s;|ﬁ € ejﬁ- and s/|h = s;|h. Let 1"(s_;) := (s}) . Since ; strongly
believes S, 1,(S_i(h)|p(h)) = 0. Then, there exists uf € AS that
s.b. ((é’?)#i)g’;o such thatN,LLf(~]71) = p;(-|R) for all h € H®>, and
wi(s_ilh) = pb((n™)~1(s_;)|h) for all h € H(s;) N Hy, h = h, and

S_; € S_Z(h) Thus, s; € p(,uf[) - Sil,e' [ |

Proof of Proposition 3. For each i € I, let S; := p(A¢) N SX.
I show that € C S°; then, by T3, the result follows from Lemma 1.
By T2, ¢ C S; foralli € I. Now I show that S; C S},.** Fixs; €
Si, p; € AY, and pif that s.b. ((S7);:):2, such that s; € p(u;)Np(1f).

43This also implies that for rationalizable agreements, S3 can be substituted
by s; € 57° at the first step. An easy induction argument extends this fact to
all steps.

#4Under priority to the agreement, S; = S}, by definition, but the construc-
tion is still needed for the second step.
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Fix h € H" and s_; = (s;);2 with p;(s_;|h) > 0. Fix j #i. By T1,
there is A < h such that () # E( ) € S°[h. By p; € AL, sj|h € eﬁ
If h € H(S;), by T2, e C S,|h. Thus, there is si € S7° such that
silh = s;lh € el and, if h € H(S;), s € S;. Let n"(s_;) == (s}) -
Fix h € H(s;) N Hoo® and s_; = (s;);2 € S_;(h). Fix j #i. If (1)
s; € S and Uy_,e"(h) # 0, fix h < h such that e”(h) # 0. By T1,
el = ">, and by Lemma 2, [¢}]®|h = S°|h. If h € H(S;), by T2,
E C S,|h. Thus, there is s € S5° such that s’|h € e], si|h = s;lh,
and, if h € H(S;), sj € S;. If (2) 5; € 5, Up_,ei(h) = 0, and
sjlh € Sjlh, pick sj € S; such that s'|h = s;|h. Else (3), let
s = 5. Let "(s_;) := (s});. Since h € H(S°°)\H°°, p(h) € H*®,
and, by p; € A¢ and T1, p;({s_; : s_i|p(h) € S%|p(h)} |p(h)

then p,;(S—i(h)|p(h)) = 0. Thus, there exists pf € A¢ that s.b.
((S)j0) 20 such that () i (s_ih) = p,((n") " (s_5)|R) for all b €
H* and s_; with j5;((n") " (s_;)[k) > 0, and (ii)

Q

5 (s—il ) = (")~ (s=)|R)

for all h € H(s;) N Heo, h o= h, and s_; € S_i(%). Clearly, s; €
p(p;) C St,.. Obviously, S; 2 S},. So, S = SL.

Fix j # i. For each s; € S}, s; € p(y;) for some ji; € AS that
s.b. (Sp°)k;- By T1, e is rationalizable. So, by Lemma 3, [S] ]* C

1 1 [e’e) 1 1 Joo 1 1 Joo
Sie. Moreover, by S;, C S5°, Sj. C [Sjﬂ] . So, S, = [Sj’e] )

45 H_ is empty under priority to the agreement.
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Thus, by S = S, S; = [S;]*. For each h € H,, N H(S,), since
S; C 8%, by Lemma 2 [S,]|h = S*|h. So, S;|h = S|h. Then,
for each s; € S3° 2 S;, s;|h € Sj|h; so, if (1) is not verified, (2)
is. Then, 1 strongly believes also (S;);4 = (S}.)j- So, s; € SZ,.
Thus, * C S=5!=52=5°. N

Proof of Theorem 2. Define S like in Definition 13. I show
that e = S* C §%°;%0 then, since Self-Enforceability implies T3, the
result follows from Lemma 1. By Self-Justifiability, S* C S. By S C
S S C [S]®. Since e is rationalizable (by Rationalizability), by
Lemma 3, [S]> C S!. Obviously, S D S!. So, S* C S = [S]* = SL.
It remains to show that S! = S%.

Fix i € [ and 5; € S; C S°. Fix pf that s.b. ((S7);2)02 and
j1; that s.b. (S7,5;,592°),. such that s; € p(uf) N p(p;) (p; exists
by Forward Induction). Fix h € H(s;) N Ho and s_; = (s;)2 €
S_i(h). Fix j #i. If s; & S or h ¢ H(S;), let s := s;. Else,
sjlh € S3°|h = S;|h (by S = [S]*® and Lemma 2), and if h € H(S}),
sjlh € S°|h = Si|h (by Rationalizability and Lemma 2). Then,
there is s € S such that sj|h = s;|h and, if h € H(S}), by S* C S,
s € Si. Let n"(s_;) := (s});%. Since p; strongly believes S,
,uz( i(h)|p(h)) = 0. Thus, there exists yj that s.b. (57,5;);2 =
(55,5} )iz and ((S7);i)o2, such that 113 (|h) = p;(-|R) for all h €

H*, and p(s_i|h) = (") (s_;)|h) for all h € H(s;)NHoo, h = h,

46Under priority to the agreement, S* C S by Self-Justifiability, S = SX. by
definition, and then SX. = Si. = SX% by Forward Induction.
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and s_; € S_;(h). Clearly, s; € p(u;) € S7,. Thus, S} = S2 = 5.
[
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Proof of Proposition 4.'" First, I show that S* is a SES,
i.e. that Rationalizable Vetos implies Rationalizability. Fix ¢ € I,
s; € S, and s} € [s;]°. Foreach z € W;, by z € ((S*), si(h) = si(h)
for all h < z. Thus s; € S;(z) implies s, € S;(z). So, s, € S}.

Consider now the reduced agreements e, € with, for all 7 € I, €) =
S\ Usew, Si(2) and €? = S;\ U,ey; Si(2) with V; := Z\((€? x S_;).
Fix s; € ). Then, (({s;} xS_;)NV; = 0. Thus, s; € €Y. So, &) C €.
Fix z € ((eY x S_;). Then, z ¢ V;. Thus, z € {(e) x S_;). So,
C(e? x S_;) C¢(e?x S_;). Then, by € C €2, H(e?) = H(€?), and so
AS C ASforall j € I. Fix s; € €] NS, For every z € (({s;} x S_;),
z & V; O W, Thus, by s; € S, s; € €. So, by H(el) = H(e}) C

[

H(S7°), for each p; € A§ that s.b. (S7°)ixj, u; € Af. Then: € and
e are equivalent under S3; € implements ((S*) by Theorem 2; e too.

Proof of Proposition 5. Fix i € I. For each s; € S and
s_; €1_i(si), C(84,5-:) € C(S°). Then, S} is the set of all s; € S°(z)
such that s; ¢ S;(2) for all Z € ((S*)\ {2z} with u_;(2) > u_;(2).
So, Rationalizable Vetos holds. Define S like in Definition 13. Fix
st € SfUS; and y; that s.b. S with s¥ € p(u,). By r-strict Nash,
S C S(z). Thus, there exists u} that s.b. S*; and S such that (i)

4TUnder priority the agreement, just observe that (i) Rationalizability has no
bite, so S* is a SES, and (ii) the candidate implementing agreement on actions
corresponds to the SES itself, so by Theorem 2 it does implement {(S5*).

48 Under priority to the agreement, substitute (S2°(z))ier with (S}(2))icr
(while still substituting (S£°);cr with (S;)icr)-
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4GB = () for all b ¢ H(S_i(2)), and (i) uf(S_ilh) = 1 for
all h € H(S_;)\H(S*,). By r-strict Nash and (i), s} € p(u}) C S;.
So, S* C S, i.e. Self-Justifiability holds. Thus, p! strongly believes
also S_;. So, Forward Induction holds. R-strict Nash implies Self-
Enforceability.

Fix s € S*. Let e be the reduced agreement with ¢® = {s}.
Fix i € I, sj € S°(z), and p; that s.b. (5%;)%, with sj € p(pu;).
Fix any g, that s.b. S(2) and (S?;)72, such that y,;(s_;|h°) =1
and p,;(-|h) = pi(-|h) for all h & H(S_;(z)). By r-strict Nash, s} €
p(p;) € St,. Fixany pff with pf (s_s|h°) = 1 that s.b. (5,)22,. By 1-
strict Nash, p(u/) C 52°(2). So, S} = S*°(z) 3 s. Then, pu, strongly
believes S1, .. Thus, S*(z) = S! = S? = S°. By Proposition 2, e

—i,e’
is self-enforcing. Thus, e implements 2. B

Lemma 4 Fix an agreement e, a finite chain of Cartesian sets of
strateqy profiles S = 5. o5" # 0 and L < M such that for
all1 € I and s; € S;,

1. s; € giw if and only if s; € p(p,;) for some p, € AS that s.b.
((gj)j#i)é\iof

2.if L #0, s; € gzL if and only if s; € p(p;) for some p; t.s.b.
((gj)j#i)qu-

Define [)F, T1*, T2, and TS" as [[|*, T1, T2, and T3 with
5" in place of S*°. Suppose that C(?M) = C(gM Ne®). Then, there
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exists an agreement € with ((e°) = ¢ (§M) which satisfies T1¥, T2,
and TS".

Proof. Let H: := H(EL) and Hy, == {h & H" : p(h) € H"}. Con-
struct an agreement with the following inductive procedure. Let e!
be the reduced agreement with ;" := 5Nl £ 0 for all i € I. Fix
n > 1 and suppose to have defined an agreement e”~!. Fix i € I
and let

H o = {he " Up el () £ 0 = Upel (D)}
m(h) : =max{¢>L:he H(S;)}, VheH.

For each h & H', let /" := eI ", Now fix h € H'. If there is h < h
with e?(h) # 0, let " := ((g?(h)m) N el)|h, which is non-empty
because S # () and 1. imply the existence of j # i and p; € A
that s.b. ?Zn(h). Else, let /" = gzn(h
unordered, e” is an agreement. By finiteness, e
K € N. Define e as, for eachi € T and h € H, el = [e/"]" if h € H"
and € = () else. By construction, € satisfies T1~.

Fixi € T andlet S_; C ?fi andk = L,orS_; C ?%ﬂegi and k =
M. Tshow that (A) for each p; that s.b. S_;, ((p(p;) x S_;) C C(gk).
Suppose not. Fix yu} that s.b. ((gj)j¢i)§:0, with p(-|h) = p;(-|h) for
all h € H(S_;). Then, ((p(u) x S_;) & C(?k) too. But by 2. for
k = L and by 1. for k = M, p(u) C gf, a contradiction.

Fix fi; that s.b. €, C Efi. By construction of €, there exists

)]h. Since histories in H' are

K — K+l for some
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that s.b. e = M .Ne’, C SLZ» with u,(S_i(2)|h) = 1,;(S—:(2)|h)

forallhEHLandZEC( )Wl’ﬁhz%h By (4), ((p(m;) x
2.), Clp(p) x e1%) € C(57). Thus, C(p(fi) <) = Clplyn) x ).
By (a), C(p(;) x ¢*°) € ¢(8"). Since ((S") = ¢(S" ne’) =
C(ef0) = ((&°%), e satisfies T3".

Finally, I will show that p(A%) NS, = [S; ]E. Then, for each
he H(p(AD) N'S)) with e #£ 0, since by T1* h € HY, h e H(S)).
By construction of g, e C [S. [A]F =[S} ¥k So T2 holds.

Fix s, € [S0)L € §/. If L # 0, by 2. there is 1 that s.b.
(51 ;) g with s, € p(s1}). Fix s; € )" with s;(h) = (h) for
all h € HX N H(s;). By 1., there is u; € A¢ that s.b. ((gj)jyéi)é\io
with s; € p(,uz) Fix h € H, s_; = (s;)j2 with p;(s_;|h) > 0, and
Jj # i T1L, there is A" with _h”( ) # (. If there is ' < h
with el ( ) # 0, by p; € Af, s;|h/ € €, and by construction of
e, h" = K. Since p; strongly believes ((S-)]#)fyo, s; € gm for all
mw1th ()#@ So, sj|h”€e.F1Xh€H()ﬂHLand
S_i = (SJ)HgZ € S_i(h). Fix j #4. If s; ¢ Sj or Up e (h) = 0, let
s :=s;. Else, fix b’ < h with €/’ (h) # 0. By T1-, " = [e"]%, and
by Lemma 2 with L in place of oo, [_h/]L|h = ngh Thus, there is
S} ng such that s;|h’€€ ands L|h = s;lh. Let n*(s_;) := (5}) 4
Since pu,; strongly believes 5" Zis i(S—i(h)|p(h)) = 0. Then, there
exists uf € AY that s.b. ((S )j#i)e—o such that s (- ) = (- \h) for
all b€ HE and 3 (s_s|h) = (") (s_:)|h) for all h € H', h = h,
and s_; € S_;(h). Thus, s, € p(u;) C p(A?).
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Fix s; € p(AS) N giL and p; € A% with s; € p(u;). Let

Hbt= {0} U {h € H" - p(S_i(h)Ip(h)) = 0} .

For each h € H" and s_; = (s;)jz with p,(s_;|h) > 0, by con-
struction of €, there is n"(s_;) = (s});4 such that, for all j # i:
(i) si(W) = s;(0') for all B € H" N H(s;) with h' = h; (i) s} €
g?b for all m > L with g;n(h) # 0; (iii) if there is h < h with
eh(h) # 0, si|h € el Fix any pf € AS that s.b. ((57);4)M, such
that uf(s_s|h) = p;((n")"Y(s_s)|h) for all h € H"* and s_; with
pa((n") 7 (s=i)lh) > 0. By (i), w(S=i(2)[h) = pi(S- ( )|h) for all
he HE and z € ¢(S7) with z = h. By (&), (({s;} x §°,) C ¢(S").
Thus, there is s7 € p(ul) C EM (by 1.) such that sf(h) = s;(h) for
all h € HE' N H(s;). So, with s; € gf, s; € [EM]L. |

(2

Proof of Theorem 1. "If": it coincides with Proposition 3.
"Only if": fix an implementable outcome set P C Z and an agree-
ment e with ((S°) = ((S® Ne’) = P. Apply Lemma 4 with*
(gq)q o = (SN, (SHE,), where L and K are the smallest [ and
k such that S' = S'*! and S* = Skl W

Proof of Proposition 6 [7]. Fix an implementable outcome set
P C Z under priority to rationality [to the path], and an implement-

ing agreement e. Since e is self-enforcing under priority to rationality

49Here Selective Rationalizability is merged with Rationalizability into a
unique elimination procedure.
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[to the path], I can apply Lemma 4 with (?q)éwzo = (S, (SHE,)
and L = 0 [with (gq)é\io = ((S1)f_o, (SHI, (SE)E)], where D and
K are the smallest d and k such that S? = Sl and Sk = Sk+1
[where L, D and K are the smallest [/, d, and k such that S' = S'+1,
S4 = 541 and S¥. = SEF!]. The obtained agreement € is tight un-
der priority to the agreement [to rationality]. Thus, by Proposition
3 and Remark 3 [by Proposition 3], € implements P under priority

to the agreement [to rationality]. H
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8 Supplemental Appendix

8.1 An applied example

Consider a linear city model of monopolistic competition between
two firms, ¢ = 1,2.°° Each firm i sets price p; and, up to some

prices, faces demand function

Di(pi,p—i) = 28 —pi+p_i ifp; € [p_i —28,p_; + 28]

There are two production technologies: £ = 1,2. Technology k =1
entails no fixed cost and a constant marginal cost ¢! = 56. Technol-
ogy k = 2 entails a fixed cost F' = 2128 and no marginal cost: ¢* = 0.
Conditional on employing k = 1, 2, the best response function of firm
1 reads:

1 1
k k
(p ) =14+ =+ Zp_..

Conditional on employing & = 1, the unique rationalizable (hence,
equilibrium) price vector is (84,84). Yet, if firm i can freely choose
the technology, it is indifferent between the two technologies for
p_; = 76,1 and the best reply to p_; = 84 is p; = 56 with the

50The microfoundation of the demand functions in this model is presented in
Green, et. al. [22], pages 396-397.

1 Because (p} (76) —ct)- (28 — p}(76) + 76) = 242 = 522 — 2128 = p?(76) - (28 —
p2(76) + 76) — F.
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use of k = 2. No pure equilibrium with free choice of technology
exists.

Suppose now that firms play for two periods. Suppose that firms
cannot upgrade from k£ = 1 to &k = 2 between the two periods, while
they can costlessly revert from k& = 2 to k = 1.2 Can firms agree on
(84,84) in both periods?

Suppose that in the first period firm ¢ employs £ = 1 and firm
—1 deviates to k = 2. Then, the best response correspondences in

the second period read:

1
pilp—i) = 42+ -p_;

2
42 4 3p; if p; < 76
poilp) = § {144 3p;,42+ ip;} if p; =76
1 .
14 + 5p; if p; > 76

In the subgame, the set of rationalizable price vectors is [68, 82] x
([52,55] U [76,80]). Each p; € [68,82] is a best reply to a conjecture
over 52 and 80. Each p_; € [52,55] is a best reply to some p; €

2This can represent asymmetric switching time or cost (e.g., installation time,
firing costs, if kK = 1,2 are interpreted as labor and capital intensive technologies,
or domestic production vs FDI).

However, this assumption is merely needed for firms to be able to agree on
an equilibrium price vector in the second period on path; it would be unneeded
if firms were allowed to agree on mixed actions, or the game was infinitely re-
peated. Such extensions would be rather straightforward, but would complicate
the analysis without providing any different insight.
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[76,82] and each p_; € [76,80] is a best reply to some p; € [68,76].
Each p; > 82 can be best reply only to p_; > 80, which can be best
reply only to p; > 132, until the highest price at which consumers
buy is hit. Analogous arguments prove that all other p;, ps are not
rationalizable. There is a unique equilibrium where firm 7 sets p; =
76 and firm 2 sets p, = 52 with probability 3/7 and p, = 80 with
probability 4/7.
Note preliminarly that the path

2= (((1,84), (1,84)), ((1,84), (1,84)))

is not induced by any SPE of the game. The unilateral deviation in
the first period to k = 2 and p_; = 56 followed by the equilibrium of
the subgame is profitable for firm —i:>® the same applies to deviations
to p_; =52,...,60

Suppose instead that firm ¢ reacts to these deviations with price
p; = 68. Then, the deviations are not profitable. Can firm ¢ credibly
threaten to fix p; = 68 after these deviation? The answer is yes. To
be rigorous, assume from now on that firms can pick only integer
prices. The price vectors that are prescribed by the rationalizable
strategy profiles of the whole game at a pre-terminal history com-
patible with them must constitute a best response set. Then, after

a rationalizable deviation of firm —i to k = 2, some p_; € [52,55]

"3 Because 2 - (84 — cl) - 28 < p?,(84) - (28 — p?(84) + 84) + p?,(76) - (28 —
p2(76) + 76) — 2F.
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and some p_; € [76,80] must both be possible. But then, firm i
can react with p; = 76. So, whenever expecting p; = 76 makes the
deviation profitable, firm —i can fix p_; = 52, and the best reply of
firm 7 to p_; = 52 is precisely p; = 68. After the other rationalizable
deviations, firm ¢ can fix p; = 76.

The set of rationalizable strategy profiles that induce z and where
players react to rationalizable deviations with 68 if the deviation is
profitable against 76 and with 76 otherwise is indeed a SES. This is
straightforward to see once the existence of rationalizable strategies
with these characteristics is established. Rationalizability is a sim-
ple algorithm that can be performed by a computer; nonetheless, a
formal construction of the SES through the steps of Rationalizabil-
ity is provided below. By Theorem 2, the agreement on the SES
implements z.

Is z implementable also under priority to the path? Yes: by
displaying the intention to gain a higher profit than under the path,
firm —i is not able to re-coordinate on a more profitable subpath
with firm ¢, who may always react with a lower price than firm —:
hoped for. In particular, if the least optimistic belief of —i that
justifies the deviation is p; > 76, the best reply to the best reply to
p; is smaller than p; itself (p}(p?,;(p})) < p;); if 68 < p; < 76, —i may
fix p_; = 52, and i can react with p; = 68. The construction below
of the SES is valid also under priority to the path. By Remark 4, the

corresponding agreement implements z under priority to the path.
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Now I construct formally the SES. For brevity, I will omit the

technology choice in the description of strategies. For each i = 1,2,

,,,,,

S ={s; € SM(z): Yh € H},s;(h) = 68};
St o ={si € SP(h) :si(h) =z}, h € H', v = 52,80;
St = {si € S1(2) si(h) = T6 AW € H\{h}, s:(') = 68},

for all h € H}. Fix n > 0 and suppose that all these sets are non-
empty and that for each i = 1,2 and h € H}, there are s € S;"
and 5,; € S5 such that s7(h) = p}(min,_ csn y s—i(h)) = 5,5(h)
for all h € H(S;(z) x S™;,)\H} with h £ z. For each h € H} and
5 = 8,55 fix p_; that s.b. (S))r_, with p_;(5|h°) = 1. For
cach h = ((1,84), (k,p—i)) € H(Si(2) x S")\H], p(p_;) N S-i(h) =
(0, otherwise s;(h) > 84 if k = 1 and 5;(h) > 76 if k = 2, but
then 5;(h) > p}(p*,(5;(h))) and p*,(5;(h)) = s_;(h) for some s_; €
p(p_;) € S”;, contradicting s;(h) = pi(min,_,esn (ny s—s(h)). Thus,
if i = 5,5 p(p_;) N §"w # () for x = 52,80. If 5, = s, p(u_;) C
S_i(z). Since sf € S;(z ) for each h € H*, there is p_; that s.b.
(S{)i_o with p_;(s;|h°) = 1 such that pu_;(arg mingesnn) si(h)|h) =

1 for all h € H(S! x S_;i(2)\H*, with h £ z, ju_ (Sf,f?\h) — 1 for
all h € H* )\ {h}, and either y1_ (th52|h) =1,0r u_ (th52|h) =3/7
and p_ (S"h80|h) = 4/7. In the first case, p(p_;) N S™" # 0, in the
second case p(p_;) NS Ln 70

70



Then, by the observation above about pre-terminal histories,
Xiz12{8i € S :Vh € H(S(2) x S¥\S_;(2))\H;, s:(h) = 76}

is non-empty too, and it is clearly a SES.%
All the employed p,; strongly believe S_;(z). Thus, the procedure
can be prolonged to obtain a SES S* C S2°.

8.2 Games

Formalization of Example 3.

AB| W | F
2x| W |2,2]1,3
F [3,1]00

For i = A, B, I will write a strategy s; as z.y.w, where x = s;(h°),
y = s;((si(h°),W)), and w = s;((s;(h°), F)). Fix z € Z and con-
sider the path agreement €® = S4(2) x Sg(z) = S(z); then A¢ =
{p; € AT(S_) : p;(S—i(2)|h°) = 1}, for i = A, B. All strategies are

rational, hence rationalizable.

54 A formal proof would follow the line of the proof of Proposition 5.
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Let z = (W, F), (F,W)). Selective Rationalizability goes as follows.

SL. = Sa(2); Sh. = Sp(z) U{W.EW,W.F.F};
Sie = {WW.F}; S5, =S

S3, = S%. S%.={W.EW,W.F.F};

Sie = 0.

Let z := ((F,W),(F,W)). Selective Rationalizability goes as fol-

lows.

She = Sa(z), Sh.=Sp(z) U{F.F.F,FW.F};
Sie = {F.FW}, St = Spe

She = Sie Sp.={F.FF FWF};

She = 0.

Example 4. Consider the following game.

AB|W | E AB|L|C]|R
N |66 —|—] U |90]05]03
S |o,0]22 M |0,5]/90]03

D |o7]0,7]1,8

All strategies are rational, hence rationalizable. The subgame
has one pure equilibrium, (D, R), and no mixed equilibrium: for

Ann to be indifferent between U and M, Bob must randomize over
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L, C, but when he is indifferent between them, he prefers R; for Ann
to be indifferent between U and D or M and D, Bob must randomize
over, respectively, L, R and C, R, but R dominates L against U, D
and C against M, D. So, the game has only one SPE, inducing path
(S, E).

Players want instead to implement (N, W). Hence they reach
the reduced agreement with ¢4 = {N.U,N.M} and €% = {W}.
The agreement is self-enforcing: S! = {N.U, N.M,N.D} x {W},
thus S° = S! = S((N,W)). Also, the agreement is self-enforcing
under priority to the path: all actions of Bob in the subgame are
best replies to some belief over the actions of Ann which justifies
the deviation. Formally, S = S! = {N.U,N.M, N.D} x Sg, and
(532)211 = (52)2‘;1-

Note two things about the SPE. First, despite being unique, it
requires off-the-path restrictions for its implementation. Under the
path agreement on (S, E'), Ann may deviate to N.U or N.M, hoping
that Bob will reply with L or C, which are best replies against M
and U. Second, the SPE action D is not a potentially profitable
deviation for Ann with respect to the path. Thus, if the deviation is
interpreted as an attempt to improve the payoff with respect to the
agreed-upon path, Bob cannot expect Ann to play D. Hence, the
fact that R is best reply to D which is best reply to R itself is of no
value.

Finally, consider the following, non-reduced, agreement: ¢% =
{S},efLXN’E) = {D},e% = Sp. It implements (S, FE): S! = S4 x
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{E.R}; S? = {S} x {E.R}; so S = 5% C S((S,E)). Restrict
now the initial plans of Bob to those compatible with (S, E), i.e.
¢} = {E.L,E.C,E.R}. Then, S}, = {S,N.U N.M}. But then,
S]%’e = (). Thus, a self-enforcing agreement cannot always be made
truthful by excluding the initial plans that are not compatible with
the path it implements.

Example 5. Consider the following game.

4, A\B w e
To n |3,90]089

Ann 5,0,1 s 0,3,0|1,5,9
L ul T

Bob — (Cleo —a — Bob

ld !

C\B l c T A\B | w e
t 5,4,115,6,0| 5,0,0 n |3,90]089
b 54,0 5,0,1|5,10,1 s 0,3,0|1,5,9

All strategies are rationalizable.

Let us search for the SES’s of the game. Beside SES’s where

Bob may play d or not, which induce all possible payoff vectors,®

°If Bob may play d or not, then (i) Ann’s Self-Enforceability requires her
to play ¢ and Bob’s Self-Justifiability requires Cleo to play t.a, (ii) Cleo’s Self-
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Self-Enforceability and Self-Justifiability identify as candidate SES’s

all sets S% x SE x S where:

L ={dr}, SiC{bu,ba}, o¢&Sy;

ba¢ S¢ 2 {ta,bu}, S)={iss}
t.a & St D {b.a,tu}, og&Sh ’

Syni{dldedr} =0 S&={ta}, Si=/{o}.

Sy ={d.l d.cdr},

Let us verify Forward Induction. All candidate SES’s in the first and
in the second group satisfy Forward Induction: there is no history
where a player is active which is rationally reached by the player
under strong belief in the SES but not under the SES itself. Let us
consider now the third group. Under strong belief in the SES, Bob
may play d.c but not d.[. Then, Forward Induction requires t.a to
be rational against the belief that Bob at (i.d) will play ¢, but this

is not the case.

Therefore, outcome (o) is not induced by any SES. Are there

restrictions to Ann’s behavior after her deviation to 7 that transform

Justifiability requires Bob to play d.l, (iii) Bob’s Self-Justifiability requires Cleo
to play b and u, (iv) Bob’s Self-Enforceability requires him to play d.r, Ann’s
Self-Enforceability requires her to play o, and Cleo’s Self-Justifiability requires
Bob to play w and e in one of the two subgames, (v) Ann’s Self-Enforceability
requires her to play n and s in that subgame and Bob’s Self-Enforceability
requires him to play d.c (and e in the other subgame).

56 And Cleo’s Self-Justifiability further requires Bob to possibly play e in a
subgame he reaches; however, this is immaterial for the discussion.
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some candidate SES in the third group into a tight agreement? The

answer is yes:

e = {o}, &% =Sp\{dl,dc,dr}, e = {t.a};

e%) = {n.n,n.s,sn}, eg’d) =A{l,c,r}.
T3 holds, as p(A4) = ¢ = {o}. Since S* = S, for T1 to hold all
histories must reached by some (continuation) plan of all players:
H(Y) = {h°} and H(cY) = H\{h'}; H(e}) = H\{(i,d)} and
eg’d) # (; H(e%) = H. Finally, T2 holds. For Ann, p(A%) = {0}, so
% C p(AY) and (i) € H(p(AY)). Bob expects Ann to play n with
probability of at least 1/2 in one of the two subgames, where his
expected payoff is then at least 6.5. Moreover, he believes that Cleo
will give him the opportunity to pick that subgame. After d, instead,
he expects Cleo to play ¢, with a payoff of 6. Thus, €% = p(A%),
and (i.d) € H(p(A%)). For Cleo, e C p(AL) = Sc. Since the

agreement is tight, by Proposition 3 it implements (o).

Note that the agreement is not on actions: Ann promises to play
n in one of the two subgames, but she does not say in which one. Is
there an agreement on actions that implements 0? No. For Ann to
select 0, Bob and Cleo must exclude from the agreement, or eliminate
through strategic reasoning, d and u. If u is excluded or eliminated,
Bob expects a payoff of at least 5 by not playing d. Thus, Bob will

eliminate d.l. If Bob still considers d.c or d.r when d.[ is eliminated,
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Cleo will best reply with b. But then Bob will select d.r, and o
is not implemented. So, the agreement must make sure that Bob
eliminates d.c and d.r no later than d.l.5" For the elimination of
d.r, it is necessary that Cleo excludes b from the agreement. Then
Bob is confident that by playing d.c he can get 6. So, for Bob to
eliminate d.c, he must be confident of getting a higher payoff without
playing d. So, he must be confident that in at least one of the two
subgames, Ann will not play s. If this subgame was pinned down by
the agreement or strategic reasoning, then Bob would play w in the
subgame he moves to. Then, Cleo would select u, and o would not
be implemented. Hence, Ann, through the agreement or strategic
reasoning, does have to exclude planning s in both subgames, but
at the same time she must not reveal in which subgame she is not
planning s. In this game, she can do this only through the agreement:
if she rationally plays ¢, she hopes for d or u, and if d and u are not
played, she could plan s in both subgames. Thus, agreements that

are not on actions can be needed to implement an outcome.

The tight agreement above is clearly equivalent to the following
reduced agreement: € = {0,i.n.n,i.n.s i.s.n}, €y = %, €2 = 2.
Thus, € is self-enforcing (but not truthful) and it implements (o). So,
one may wonder whether reduced agreements suffice to implement

all implementable outcomes. The answer is no. Imagine that at the

57 And excluding d.c or d.r from the agreement is not viable if it survives longer
than d.l, because it would bring to the empty set.

77



initial history, Ann plays simultaneously with Bob in the following
58

way:
A\B | o i
o |44.|T
i r |33,

where I" is the game above and I" is the game above with roles
and payoffs of Ann and Bob inverted. Then, for Ann and Bob to
coordinate on (0, 0), at least one of the two has to declare o (and then
exclude s.s after a deviation to i as above). Thus, non-reduced

agreements can be needed to implement an outcome.

Back to the original game, add now the following component:

0,0,0,—1 2,7,0,0 5,0,1,—2
Li Tg 1 T
Bob — Dave — Ann — Cleo —_—
ld a

Let Dave get payoff 0 elsewhere. All strategies are still rationalizable.

Consider the following reduced agreement on actions.

¢ = {0}, ¢% = Sp\{d.c.dr}, el = {t.a,b.a}, e = Sp.

58This also makes it plausible that Ann wants to contribute to the credibility
of not playing i: in the example above, she just destroys any hope to get a higher
payoff than her outside option.
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The agreement is truthful. At the first step, Ann eliminates the
strategy that prescribes s in both subgames, Cleo eliminates b.u and
b.a, and Dave eliminates ¢q. At the second step, Bob eliminates all

strategies that prescribe d. At the third step, Ann selects o.

Despite the existence of a truthful reduced agreement on actions
that implements (0), (o) is not induced by any SES. Ann’s Self-
Enforceability requires Bob not to play d and Cleo not to play u;
thus, Bob’s Self-Justifiability requires Cleo to play ¢t and Dave’s Self-
Justifiability requires him not to play ¢; but then, believing all this,
Bob can rationally play d.c but not d.l, thus Cleo’s Forward Induc-
tion is violated. This shows that the reverse of Theorem 2 does
not hold.

Also, (0) is not induced by any tight agreement on actions. Ann’s
T3 requires Bob not to play d and Cleo not to play u; thus, Dave’s
T2 requires him not to play g; then, Bob’s T2 requires Cleo to play
t; thus, Cleo’s T2 requires Bob to play [ at (i.d), which, since Bob
expect at least 5 by not playing d, is compatible with Bob’s T2 only
if Bob does not rationally play d when he believes in the agreement.
This can be accomplished in tight agreement only if Ann excludes
playing s.s, for the same argument as in the previous game. There-
fore, if one restricts the analysis to agreements on actions, a full
characterization of implementable outcomes in the fashion of The-
orem 1 cannot be made; i.e., not all outcomes that are imple-

mented by an agreement on actions are prescribed by a
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tight agreement on actions.

8.3 Equilibrium paths that can be upset by a

convincing deviation

Fix a two-players (i and j) static game G with action sets A; and A;
and payoff function vy : A; x A; — R, k =1, j. Let b¥ and c¢* be the
first- and second-ranked stage-outcomes of G for player k =i,j. A
path (@',..,a’) of Nash equilibria of the T-fold repetition of G' can
be upset by a convincing deviation if there exist 7 € {1,...,T — 1}
and @; # a7 such that, letting T := T — 7,

t=1

Toj(b") > max (b}, a;) + (T — 1)v;(¥). (J)
a;eA;\{b3}

Condition I says that player ¢ benefits from a unilateral deviation
at 7 only if followed by her preferred subpath. Condition J says
that player j cannot benefit from a unilateral deviation from that
subpath even if followed by her preferred subpath (which also shows
that i’s preferred stage-outcome is Nash, hence the restriction to
coordination games).

Example 3 provides two paths that can be upset by a convincing
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deviation,” although the agreements on the SPE that induce them

are self-enforcing.

Proposition 8 Let z = (a',...,a’) be a path that can be upset by a
convincing deviation. The path agreement on Z is not credible.
Proof. Let h := (a@',..,(@,a})) and z :== (@', .., (@, aj), b, ..., 0").
Suppose that S!(z) # 0, otherwise S? = (). Then, for each k = 1, j,
there exists 7z, that s.b. (9%,)%, and S_;(%) such that p(fi;) N
Sk(z) # 0.

Fix n € N and suppose that S '(2) # 0. Fix s; € S; with
;(s;1h%) # 0 and g that sb. (S7)e2, with s; € p(u}). Since
f; strongly believes S;(%), for each h ¢ H(S;(z)) with p(h) < Z,
71;(Si(h)|p(h)) = 0. Thus, there exists p; t.s.b (Sf)7—; such that (i)
ui(Si(2)R) = 1, (i) u;(1h) = p(|h) for all h ¢ H(S,(2)) with
p(h) =z and h # h, and (iii) p;(-|h) = @;(-|h) for all h € H(S;(%)).
Then, there exists 7(s;) € p(u;) € S} such that by (iii) s; € 9;(Z) C
Sj(h), by (i) and (J) n(s;) € Sj(2), and by (ii) n(s;)|h = s;|h for
all h ¢ H(S;(%)) with p(h) < Z and h # h. Since s; € 5;(%),
n(sj)(h) = (s;)(h) for all h € H(s;) with h % h. Construct 1
that s.b. (S})r_, and S;(Z) such that s,;(s;|h°) = f,(n"(s;)|h°)
for all s; with 77,(n*(s;)|h%) # 0. For each Z # h, u;(S;(2)|h%) =

»Formally, the paths do not satisfy the first strict inequality in (I), but this
is immaterial because ¢! ((W,W)) and b* ((W, FR)) entail the same action for
player i (Bob). This would not happen in pure coordination games that are in
the focus of [24].
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7;(S;(2)|h°), while 1,(S;(2)|h%) = 1. Thus, by p(j;) N S;(z) # 0 and
M), O # p(p;) N Si(z) € SP1(2). So, by induction, there exists p;
that s.b. (57)22, and S;(%) such that @ # p(y;) N Si(z) € Si.(2).

For each p; € A¢, 11,(S;(z)|hY) = 1. So, for each s; € S;(h)\Si(2),
by (I) s; ¢ S}.. Thus, for every pu; € A§ that s.b. S}, p](Sz(z)m) =
1. So, by (J), S2.(h) = S2.(2). Since S;(z) C S;(h), for every
e € A7 that sb. S, (S0 = 1, s0 by (1) p()(3) = 0.
Hence SP5.(Z) = 0. So, Sjpc =0. W
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CaMonoIep>KUBAIOIHECs COMIAILEHHS W NPUHLUIT MPIMOH HHIYKIMH [DNEeKTPOHHBIN pecypc] :
npenpuat WP9/2018/01 / O. Karonunu ; Hair. uccnen. yH-T «BbICIas mikoa S5KOHOMHKH». — DJIeK-
TpoH. TekcT. AaH. (500 K6). — M. : Uzn. nom Beoicieii mxons! sxoHomuku, 2018. — (Cepuss WP9
«HccnenoBanust o 5KOHOMUKE U (puHaHCaM»). — 84 c.

B 1uHaMHUYECKHX Urpax UTPOKH MOTYT CTAIKUBATHCS C OTKIOHCHHSIMH OT 3apPaHEe 3aKITIOYCHHBIX,
MHOTJIA HETOJIHBIX, HO B JIFOOOM Cllyyae He CBS3bIBAIOIIMX cortanienuit. [TombITkn oObsACHUTB 1107100-
HbIE OTKJIOHEHHUS MOTYT NPUBECTH K TOMY, YTO UTPOKU MEHSIIOT CBOU YOCK/ICHHSI O [IOBEACHHUH [TapTHE-
Pa, OTKJIOHMBIIETOCS OT CONIalIeHus. Takue MpUMEHEHHUs NPAMOI HHIYKIIUN OCHOBaHbI HE TOJIBKO Ha
MIPE/ITOIOKCHISIX O PALMOHATIBHOCTH, HO M Ha MPEIOIOKCHUSX O COOTBETCTBHY COIIAILICHHIO KaK
TakoBoMy. B cBoeii pabote st M3y4aro BIMSHUE NOJOOHOTO POJia PALlOHAIN3ALNN Ha CAMOTIOIEPIKH-
BAIOIINECS CONIALICHHS, IPU KOTOPBIX HEKOTOPBIE HCXOBI HIPBI MOTYT OBITh OCYIIECTBHMBI, @ HEKOTO-
pbie — HeT. Pe3ynbraThl MOEro HCCIIeIOBaHHS CYIIIECTBEHHO OTIHYAIOTCS OT PE3YJIBTATOB, TOIYYEHHBIX
JUIS TPAIMLMOHHBIX ycWieHHH paBHoBecuil (equilibrium refinements). B wactHocTH, camonomuep-
XKUBAIOIINECS CONIALICHHs] MOTYT MPHBECTH K UCXO/IaM, HE COOTBETCTBYIOIIMM PAaBHOBECHSM, COBEP-
IICHHBIM [0 MOABIrPaM, @ PABHOBECHSI, COBEPIIICHHBIE 10 OABITPaM, MOTYT HE OBITh CAMOIOICPKHU-
Baromumucs. [1o700Has HEMOIHOTa COMIANICHHH MOXKET MIPaTh PEIIAIOILYIO POJIb MPH JOCTHXCHUN
KOHKPETHBIX HCXO[0B. KOHKpETHBII croco6 palfoHaIn3alyuy HapyIeHHH COMIAICHUS O3BOJISCT
TaK)Ke yCTAHOBHTB HX CBSI3b C IIOHATHEM CTpaTerndeckoit cradmbHocTn (Konmsbepr n Meprenc, 1986).

KirodeBsie cioBa: cornameHuns, CaMoTIofiepKUBAHNE, TIPAMAasi HHAYKIMS, PAITHOHATH3AIHSL
UTPhI B Pa3BEPHYTOH (opMe, CTpaTernyeckas CrabHiIbHOCTh

MpenpunThl HanmoHaLHOTo UCC/I€10BATEIbCKOI0 YHHBEPCUTETA
«BpIcIas K012 IKOHOMUKH» pa3MemiaoTcs mo agpecy: http://www.hse.ru/org/hse/wp
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