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1 Introduction

Two pirates, Captain Flint and Long John Silver, want to row to an island
that lies across a strait in order to dig up a treasure chest. There are rival
pirates who are trying to get there first. Flint and Silver have a boat, but
it lacks oars. They must decide whether or not to make oars cooperatively,
each knowing that he cannot reach the island before the rivals if he rows
alone. Flint’s and Silver’s respective investments will impact the quality of
the oars they make and thereby the speed with which they cross the strait,
and whether they cross it at all.

If they decide to build the oars, each must subsequently also decide how
hard to row across the strait. Because they are pirates, they understand that
the other will have incentives to shirk when rowing. Each can pretend to
row hard, but the other cannot verify effort instantaneously. However, both
can observe that the other has deviated from a pattern of rowing and rest.

They must therefore solve two incentive problems. They may have the
incentive to underinvest in building the oars, and they may also have the
incentive to shirk as they row. These incentive problems seem unconnected,
but we will show that they are linked.

Flint’s and Silver’s problem is analogous to that of two firms consider-
ing whether to undertake investments in relationship-specific complementary
assets in a world of incomplete contracting. How firms solve such incentive

problems is central to the theory of the firm."

1Ultimately, the world’s first biotechnology drug, Humulin, was the outcome of this
alliance. Humulin is still a major drug with 2015 sales of over $1 billion—the treasure!.



1.1 Formation

To show how to solve the contracting problem we create an analytical frame-

work that incorporates the following elements:

e The incentive to invest and the cost of investing during the oar-construction

phase.
e The incentive to cooperate during the rowing stage.

Unlike previous formulations that focus on one or the other of these incentive
problems, our framework examines the link that arises because the pirates
anticipate how their investments will affect their incentives when they are
rowing. A “contract” is then the equilibrium of a non-cooperative game that
is understood by both parties (i.e., in the rational expectations sense).

We denote the successful resolution of the contracting problem as for-
mation. This resolution entails two stages: the stage in which the oars are
made, which we denote the investment stage, and the rowing stage, which we
denote the execution stage. In the investment stage the pirates decide not
only whether to make the oars but also how big to make them. These deci-
sions will be influenced both by the costs of making oars and by incentives in
the rowing stage. Unless the incentive problems at both stages are resolved,
there could be sub-optimal investment. In the extreme, formation might not
even occur: the oars are not made, leaving Flint and Silver stranded.

In our framework, the outcome—whether the pirates will cooperate, their
investments and their payoffs—will be influenced by Flint’s and Silver’s rel-
ative initial bargaining powers, their relative leverage over each other’s bar-
gaining power, their relative costs of investment and the technological un-
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certainty associated with their cooperation. Their profits are comprised of
the treasure itself, which they must decide how to split in advance, adjusted

by the effort each expends in getting to the island.

1.2 Reducing bargaining power to achieve alliance for-
mation

Suppose Silver is the stronger rower—or has the bigger and more effective
oar. If he rows diffidently—he shirks—while Flint rows hard, they might
never get to the island. Silver’s relative bargaining power is higher than
Flint’s, because he has a greater influence on their speed, and on whether
they get to the island at all. This will translate into his getting a greater
share of the payoffs.

In effect, each pirate’s bargaining power reflects his relative gain from
free riding in the rowing stage. Our framework allows us to quantify this
bargaining power and to show how it is influenced by investment. First, we
observe that if the combined bargaining power of the two pirates is initially
too high—in our model the relevant combined bargaining power is the prod-
uct of the individual bargaining powers—formation cannot occur without
investment. Specifically, we will show how investment by one pirate reduces
the relative bargaining power of the other. This in turn reduces the com-
bined bargaining power sufficiently to achieve formation. Precisely because
of its influence on the other’s bargaining power to enable formation, the
investment by the first pirate is strategic.

The magnitude of investment required to achieve formation is crucially

influenced by technological uncertainty (such as unobservable currents in the



strait that speed up or slow down the progress of the boat randomly). We
translate this technological uncertainty as impatience, and show that greater
impatience will create greater demands on the alliance, necessitating higher

investment for formation to occur.

1.3 Who invests, payoffs and profits: The influence of
leverage and costs

The weakening of one pirate’s bargaining power via the partner firm’s invest-
ment can enable formation to occur. But the exact combination of invest-
ments by the two pirates that yields formation also depends on the relative
impact of their investments on the gains to the other from cooperation in
the rowing stage, as well as their costs of investment. Our theory allows us
to quantify these investments in relation to initial bargaining power and the
other parameters of the model.

Suppose Flint’s investment in oar-building has a stronger impact on Sil-
ver’s gains in the rowing stage. We translate this as the higher leverage of
Flint’s investment on Silver’s bargaining power. Whether the investments in
oars occur in sufficient measure to achieve formation, and the relative sizes
of the oars, will be dictated by the pirates’ oar-making skills, and their skills
might be very different. We translate these differences in skills as differences
in their costs. If their leverage or costs are very different, the oars they make
will be different sizes, and consequently their bargaining power as they row
will be different, as will be their final payoffs and profits.

Viewing the pirates as representing firms contemplating alliances, our

theory thus not only rationalizes the formation of alliances, but also artic-



ulates the potential impediments to formation. It predicts the potentially
asymmetric investments that the participating firms undertake, and it also
specifies exactly how profits are split, which also can be highly asymmetric.
Moreover, the requirement that the contract induce cooperation causes in-
efficiency in general, and we quantify this inefficiency. We therefore have a

positive theory of alliance contracts.

1.4 An example

To demonstrate a business setting wherein strategic investments by alliance
partners may resolve the contracting problem, consider the Lilly-Genentech
R&D alliance formed in August 1978 to develop recombinant human insulin
at an industrial scale. This venture was initiated after Genentech scientists
had demonstrated their capability to create human insulin in the labora-
tory, so that technological uncertainty had been reduced to a level where
investments in an alliance could be contemplated. While Genentech was ex-
pected to pursue the science of producing economically viable human insulin,
Lilly would contribute its capabilities in process engineering for large-scale
manufacturing, quality control, and clearing regulatory hurdles.?

In the context of our framework, Genentech and Lilly would each need to
decide whether and how much to invest in the alliance, as well as the level of
effort they would devote to the collaboration. Both firms were aware that the
other could divert its efforts to other projects (“shirking”), signifying high
initial bargaining power that impeded alliance formation. Lilly had higher

potential gains from diverting effort to other projects and thereby higher

2See Hall (1987).



bargaining power, but also had higher leverage over Genentech’s bargaining
power, i.e., its potential investment in the alliance had a stronger effect
on Genentech’s gains from collaboration in the alliance. Our framework
suggests that because of its greater leverage, Lilly would make the bulk of the
investment in the alliance, thereby reducing Genentech’s bargaining power
sufficiently to achieve alliance formation. Genentech would commit itself
to reduced shirking to forestall Lilly’s temptation to defect. While Lilly’s
investment to achieve formation would increase its bargaining power and
payoffs relative to Genentech, its profits would be reduced by the amount
of its investment. Nonetheless, both parties would voluntarily hew to the

arrangement for its incentive properties.

2 Relationship to the literature

Since the seminal work of Ronald Coase (1937), the theory of the firm has
represented a central issue of interest for research in numerous fields including
economics, strategy, law, finance and accounting. In its essence, such a
theory must consider the question of how to create incentives for entities that
possess complementary assets, but can enjoy private gains at the expense of
the other, to cooperate in activities that yield joint benefits. Property rights
theory is the prevailing approach to analyzing this problem (Grossman and

Hart, 1986; Hart and Moore, 1988).

2.1 The Property Rights Theory approach

The Property Rights Theory (PRT) formulation of the oar-building problem

is as follows. Flint owns a boat but only one oar: he needs another oar. Will
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Silver contract with Flint to make it for him or will Flint make it himself?
Silver is concerned that even if he did enter into a contractual agreement
with Flint to make an oar, Flint might ex post find an alternative supplier
of oars and then try to renegotiate or walk away from this agreement: this
is the classic holdup problem.

More generally, as Hart and Moore (1988] show in their canonical study of
a buyer-seller relationship involving specific investments: if ex post renegoti-
ation cannot be prevented by the parties, the holdup problem characterized
by underinvestment results. PRT models predict that ex ante decisions about
asset ownership will focus on resolving this holdup problem. In the PRT for-
mulation, all possible contingencies cannot be perfectly anticipated, so that
all possible uses of an asset cannot be pre-specified in a manner that can be
contractually enforced. Under incomplete contracting, the residual control
rights conferred by asset ownership is of central importance to resolve the
holdup problem. This often implies ownership of all assets by one party—
the party whose marginal investment is more productive—even though this
is not the first-best solution. Allocation of control rights creates appropriate
incentives for investment, thus producing a theory of vertical integration.

PRT thus considers firms as defined by the group of assets they own.
Ownership over assets confers control rights, so that a firm can specify ex-
actly how the asset will be used. The value of these control rights is a function
of the outside opportunities of the assets, i.e., the value in alternative uses.
The strength of the outside opportunities determines the threat points—the
payoff they can guarantee themselves by not participating in the collabora-

tive effort (Noldeke and Schmidt, 1998) or prices at which the parties trade
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(Hart and Moore, 1988). So, the value of control rights over their respec-
tive assets creates bargaining levers for firms and hence influences how the
payoffs from investment in relationship-specific complementary assets will be
divided.

In effect, the bargaining power of the firms is associated only with their
ownership of assets. Any differences in bargaining power that are not related
to asset ownership are explicitly assumed away by utilizing a perfect Nash
bargaining solution as a way of dividing the surplus earned above the threat

points of the individual parties (Hart and Moore, 1988).

2.2 Some limitations of PRT

While PRT models have developed valuable insights on the resolution of
the holdup problem via the control rights associated with asset ownership,
various features limit their applicability. For example, in motivating their
model of firm scope, Hart and Holmstrom (2010) note that the assumption
that ex post conflicts are resolved through bargaining with unrestricted side
payments does not appear to correspond to correspond to casual empirical
observation. Perhaps their most serious limitation is an inability to take into
account the second kind of incentive problem described in our formulation
of the problem of cooperation: that of inducing appropriate effort, and the
bargaining power considerations that influence this problem. As Holmstrom
and Roberts (1998:92) note, “...power derives from other sources than asset
ownership and other incentive instruments than ownership are available to
deal with the joint problems of motivation and coordination.” They conclude

that the PRT literature is unable to explain a wide range of governance
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forms where aspects like principal-agent problems, reputation, monitoring
and measurement problems and knowledge transfer play a crucial role.
Gibbons (2005a, 2005b) recommends a system approach that involves
joint optimization over asset ownership and incentive contract parameters.
He suggests that asset ownership can be an instrument in a multi-task in-
centive problem that includes both the direct effects of incentives from asset
value, and indirect effects that arise from changes in the optimal incentive

contract under different ownership arrangements.

2.3 Our approach and recent extensions of PRT

In our approach, residual control rights associated with asset ownership are
the foundation of investments, similar to PRT. In contrast to PRT, however,
our model demonstrates how investments may overcome obstacles to alliance
formation, thus obviating the need for integration. Second, traditional PRT
models focus only on how cooperation may be achieved in the investment
stage of a project, but downplay the problem of cooperation in the execution
stage. In contrast, our analytical framework incorporates the incentive to
invest during the investment stage as well as the incentive to cooperate dur-
ing the execution stage. Thus, our framework lies within the class of models
described as “ex ante incentive alignment” by Gibbons (2005a) but also ad-
dresses considerations of both property rights and incentive systems. Third,
in contrast to PRT which assumes bargaining power is static and exogenous
(tied to the ownership of assets), in our model investments can impact and
modify bargaining power.

Our paper is similar in spirit to recent work that builds upon and extends
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the traditional PRT approach. In one such extension, Baker, Gibbons and
Murphy (2002) incorporate spillovers from relational contracts—informal
agreements and unwritten codes of conduct that influence behavior—in their
repeated game model of an ongoing supply relationship between an upstream
and downstream party. The downstream party desires the upstream party to
take actions to improve the value of the supplied good; similar to PRT, these
actions are either unobservable or non-contractible so that they cannot be
verified by a third party. However, as opposed to holdups motivated by spe-
cific investments, the focus is on incentive problems in relational contracts ex
post. To induce efficient actions, relational contracts must be self-enforcing:
the value of the future relationship must be sufficiently large that neither
party wishes to renege. The main proposition of the analysis is that the
temptation to renege on the contract (i.e., the extent to which the payoff
from defection exceeds the payoff from cooperation) depends who owns the
asset. So, integration versus non-integration, as well who owns the asset,
crucially depends on which arrangement facilitates the superior relational
contract.

We emphasize that our use of the term “bargaining power” is somewhat
removed from the notion of bargaining power in the axiomatic bargaining
literature. Our construction is of a noncooperative game, and our notion of
bargaining power is attached to this context. However we point out that the
model on which our model is founded, Taub and Kibris (2004) (henceforth
TK), establishes an equivalence between the noncooperative and axiomatic
bargaining solutions (Kalai-Smorodinsky, not Nash) approaches.

Thomas and Worrall (2011) set out a dynamic model of relational con-

12



tracts that is similar in spirit to ours: two agents invest, and share post-
investment output. Unlike our model, the investment is “physical” in the
sense that an agent can exit the contract with some investment. By contrast,
in our model, investment is one-shot, but the one-shot investment perma-
nently alters the payoffs. After that, payoffs depend only on actions. Also
the benefits of defection are short term, namely the one-shot payoff; that
payoff may, however, have been increased by prior investment. Thus, we

emphasize the two-stage nature of firm formation and operation.

3 The model

We use the prisoner’s dilemma to capture the complementarity between Flint
and Silver in the rowing stage (i.e., between firms in the execution stage).?
Our modeling approach contains two innovations to enable us to address
the question of alliance formation while incorporating issues of investment
and effort. First, in our approach to the prisoner’s dilemma, players can
move the game frontier. Second, the specialization of prisoner’s dilemma
to a parallelogram structure allows us to get closed form solutions and do
comparative statics

It is well known that in a static prisoner’s dilemma, cooperation cannot

be achieved. By playing the game repeatedly and over an infinite horizon,

3We emphasize that we assume no technological complementarity between the firms’
investments, nor do we assume any cost complementarity. That is to say, if firm 1 invests,
firm 2’s payoffs are unaffected by that investment. This is distinct from the technolog-
ical complementarities arising from their actions: if firm 1 acts cooperatively, firm 2’s
payoffs are enhanced, due to the prisoner’s dilemma structure of the game, so there is
endogenous complementarity driven by the incentives in the rowing stage. The PRT liter-
ature does assume technological complementarities. However, incorporating technological
complementarities here would obscure the complementarities arising from incentives.
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though, cooperation is possible. However, in the standard repeated pris-
oner’s dilemma game, a continuum of cooperative equilibria arise. By adding
a realistic modification of the repeated prisoner’s dilemma, we collapse this
continuum to a single point that represents a unique equilibrium. In the
rowboat setting, suppose the strait that Flint and Silver want to cross has
unpredictable currents that affect the progress of the boat; also recall that
the rival pirates are pressing to get to the treasure first, but their progress is
unknown. If either Flint or Silver deviates from the equilibrium pattern of
rowing-and-rest, then in response the other too ceases to cooperate as pun-
ishment. The boat is then swept off course and they fail to arrive before the
rival pirates. This is analogous to the situation wherein, if firms deviate from
the pattern of cooperation that they initially contracted to, they precipitate
the legal termination of the contract.

We capture this situation with the following device (detailed in TK):
deviations from a fixed mixed strategy that is chosen at the initiation of the
contract trigger termination of the game. This game maps directly into a
repeated prisoner’s dilemma game, and the admission of mixed strategies
means that the equilibria of the game comprise a continuum that can be
expressed geometrically as convex combinations of payoff pairs in the plane
(see Figure 1).

With sufficient patience, the folk theorem applies, and at the threshold
at which the folk theorem applies, the equilibrium of the game is a unique

Pareto-optimal equilibrium point.# This equilibrium point is determined by

40One must add the assumption that the Pareto optimal point is always chosen from
the set of equilibria. In the setting that we employ, if there is a single equilibrium on the

14



Payoff 2
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0.0 Payoff 1

A1(D,C), A2(C, D)

Figure 1: Parallelogram payoff structure. All payoff combinations are at-
tainable via mixed strategies.

the relative bargaining power of the two players, which is in turn determined
by the structure of the payoffs in the underlying game. It is also true,
and crucial to our argument here, that if there is insufficient patience (or
equivalently an excessively high probability of random termination) the only
equilibrium is the static non-cooperative outcome.

In the literature on the repeated prisoner’s dilemma and the folk theorem,
it is standard to quantify patience via the discount factor, and to character-
ize the equilibria of the game as a function of the discount factor. In our

model, we depart from TK and from the standard approach, in which payoffs

Pareto frontier of the game, then that point is the unique Pareto dominant equilibrium.
As detailed in TK, this solution is identical to an axiomatic solution that is related to the
Kalai-Smorodinski bargaining solution. In more general settings, equilibria on the Pareto
frontier of the game might not Pareto dominate all equilibria. See Conley, Chakravarti
and Taub (1996) for details.
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are fixed. Instead we hold the discount factor fixed and vary the payoffs of
the game. We show how modifying those payoffs alters the bargaining pow-
ers of the players, making it possible to achieve the unique Pareto-optimal
equilibrium.

The changes in payoffs are achieved via investments, which in our model
are endogenous. In our model, contracting on investment has a specific
meaning. Such a contract has a legal implementation, but the legal imple-
mentation does not alone solve the incentive problem. The contracts are
actually self-enforcing, in the sense that in principle a firm could deviate
by deviating from a fixed mixed strategy but chooses not to, not because
of legal strictures per se, but out of the fear of the lost surplus this would
precipitate.

Each firm’s investments increases its own payoffs. The change in payoffs
stemming from investment alters bargaining power. Specifically, one firm’s
investment increases its payoffs, and at the same time reduces the bargain-
ing power of the partner firm. To forestall the investing firm’s temptation
to defect, the rival firm must compensate the investing firm with reduced
shirking, which is an expression of its reduced relative bargaining power.

The intuition is straightforward: if in the investment stage Silver builds a
large oar, he can go faster and his expected payoff increases. But in addition,
due to the parallelogram structure of the game, Silver’s investment causes
Flint’s marginal gain from free-riding in the rowing stage to be reduced.
To forestall Silver’s temptation to defect, Flint must compensate him with
reduced shirking. This is the expression of a reduction of Flint’s bargaining

power. If done in sufficient measure, this increases the propensity to act
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cooperatively, thereby effecting formation.®

3.1 Some technical details of the model

Our model allows us to quantify bargaining power. The formal definition of
bargaining power is as follows (see TK, p. 456): The bargaining power [;
of firm ¢ is 4’s marginal gain from switching from cooperation to defection,
relative to the loss this change induces in the rival firm’s payoff, holding the
action of 4’s rival fixed.

This in turn enables us to determine the ratio of payoffs between the two
firms. As demonstrated in TK, if £; is the bargaining power of Firm 1 and

B2 the bargaining power for Firm 2, the equilibrium ratio of their payoffs is

2 _ [P
xl@ )

The simplicity of this formula stems from our central assumption: that the
payoffs are structured so that the game frontier is a parallelogram (ibid);
see Figure 1. A parallelogram structure is equivalent to requiring that the
marginal gain from defection is independent of the actions of the other player.

As developed in TK, bargaining power is determined by the slopes of
the facets of the game frontier: the steeper the slope of a facet of the game
frontier, the less is the bargaining power for the player associated with that
facet. For example, in Figure 1, Player 1’s bargaining power is linked to the

slope of the right facet; his bargaining power is low relative to that of player

5The outside opportunities of each firm are incorporated into the payoff function at
the (0,0) point. So, the payoffs we consider are net of the outside opportunities and stem
only from the interactions of the firms.
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2. The reason is that his marginal gain from defection is low relative to that
of player 2.

If the pirates make their oars and they begin rowing to the island, at
each instant some outcome can occur. They can get to the island, which
happens at a random time because of random currents and winds, go to the
site of the treasure, and dig up the treasure. They can also get to the site of
the treasure only to find it gone, the other pirates having arrived there first.
Indeed, Flint and Silver might see the other pirates pull up to the shore of
the island before they even arrive. Finally, they might simply continue to
row, with none of these other outcomes.

In the game representation of these possibilities, we quantify the potential
for the game to end by ¢, the probability that the game will end in the current
round, and correspondingly the probability that it continues until the next
round with 1 — §. If the game does end, the actions chosen by the pirates
in the current round—cooperate or defect—will be implemented, and the
payoffs associated with those actions are realized. As is evident from the
pirate story, the outcome for Flint and Silver might be good (they get the
treasure) or bad (the other pirates get there first).

When the game is modeled with this structure, the probability that the
game will continue to the next round, 1 — 4§, corresponds to a standard
discount factor, which in intuitive terms is the patience of the players, and
0 can thus be viewed as their impatience.

As in the standard repeated prisoner’s dilemma, there is an upper bound
on the impatience firms can have in order for cooperation to occur in this

game. We denote this maximum impatience §*. Figure 3 includes the ray
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(dashed line) that constitutes the equilibrium set if the actual value of §

is equal to 6%, and the shaded area is a measure of the degree to which

impatience exceeds that needed to attain cooperation if the actual § exceeds

o*.

Payoff 2

10

- ’

<

Figure

- off 1
10Pay

6 8

2: The equilibrium set with §*

The initial parallelogram has an implicit §*, determined by the initial

bargaining powers as follows (ibid, p.456):

0" =1— /P15 (2)

However, the ¢ that determines the equilibrium of the game is given ex-

ogenously and might exceed §*. In a more standard approach to modeling

repeated games, we would then carry out thought experiments in which we
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altered 0. Instead, we interpret the actual value of § to be determined by
technological factors (such as unobservable currents in the strait that speed
up or slow down the progress of the boat randomly in our pirate example)
that cannot be changed. We assume that this exogenously given § (which
we will subsequently denote 67" to distinguish it from §*) exceeds the §* in
the pre-investment situation and therefore, without further modification, no
cooperation is possible.

Investment achieves this modification. In particular, investment by firm
1 reduces the bargaining power §, of firm 2, while leaving the bargaining
power of firm 1 unaffected. (This asymmetry in the impact of investment is
a direct consequence of the parallelogram structure of the game.) This in
turn increases the implied §*. Similarly, firm 2 can invest, lowering $; and
thereby increasing 0*.

With sufficient investment by one or both firms, it is possible that &*

attains the level of 67, then enabling cooperation. This is formation.
3.1.1 The link between investment and bargaining power

We equate investment by firm 1 to an outward movement of the right facet,
corresponding to an increase in firm 1’s payoffs when firm 2 is cooperating.
So, if firm 1 invests I7, then its payoffs increase by I; when firm 2 is cooper-
ating. We assume that payoffs when firm 2 is not cooperating are unaffected
by that investment, reflecting the necessity of the interaction of the firms to
obtain the payoffs.

This investment leaves the slope of the right facet of the game frontier

unaffected—it is a parallel shift, thereby leaving firm 1’s bargaining power
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unaffected. Moreover, the resulting game frontier is still a parallelogram.
However, the slope of the upper and lower facets of the game frontier is
reduced, so that firm 2’s bargaining power is reduced.

The influence of the incentives in the investment stage can result in asym-
metry: one firm will invest more than the other, and at higher cost, in order
to achieve formation. Also, this firm will achieve payoffs proportionally
greater than the payoffs of the other firm. Nevertheless, firms voluntarily
hew to this arrangement, because it enables them to cope with the incentive
problems and achieve cooperation.

Thus, we have a rudimentary model in which firms which initially might
not find it in their interests to cooperate end up achieving cooperation by
carrying out investment. Our subsequent development explores this in detail.
Investment is costly and the cost might be asymmetric across firms. When
added to the asymmetry in the payoffs for the firms we find a rich set of
predictions for cooperation, including the circumstances in which the cost

structure blocks formation.

3.2 Mechanics of the model

We next set out an example detailing how investment results in formation.
We begin with a set of payoffs such that the firms are too impatient, that is
6F > §* so that cooperation is initially impossible. We then construct the
equilibrium in two main steps. In the first step, firm 1 invests until formation
is achieved, that is, 8* increases to 7. This is not the final outcome however.
By investing, firm 1 has lowered firm 2’s bargaining power. Because the

relative payoffs of the firms is determined by the ratio of bargaining powers,
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firm 2’s relative payoff will shrink.® Firm 2 might also want to invest so as
to increase its relative payoff. In order to exactly maintain formation, that
is 6* = 6, firm 1 must partially disinvest. When neither firm’s marginal
gain exceeds its cost in lost marginal payoffs from marginal costs incurred,
equilibrium is attained.”

We emphasize that these two stages—the initial formation stage and the
subsequent adjustment stage—are atemporal, with the equilibrium actually
being attained in one step.

In our initial experiment, we alter the initial state of the game. Specif-
ically, we move the right facet of the parallelogram in a particular way,
namely, rightward in a parallel way and we thus maintain the parallelogram
properties. This corresponds to investment by firm 1. We illustrate this in
Figure 3.

Figure 3 shows that because firm 2’s bargaining power has been diluted
by the movement of the frontier, the equilibrium ray that could be achieved
if 6 were small enough has tilted in firm 1’s favor.

A mathematical consequence of this structured movement is that the
possible payoff combinations that just achieve formation are restricted to
a rectangle, and this rectangle is not altered by the change in the initial

parallelogram brought on by firm 1’s investment. We denote this rectangle

SHowever, it should be noted that its absolute payoff might actually increase, because
the game frontier has been moved out by firm 1’s investment.

"The game payoffs can be considered as revenues accruing to the firms. Investment is
costly, so that each firm invests until its marginal cost of investment equals its marginal
increase in the payoff, maximizing profit. In our initial experiments we will consider the
marginal cost of investment to be unitary, so that the total cost of investment is equal to
the quantity of investment. In later experiments we explore the impact of higher marginal
costs.
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Figure 3: Parallelogram before and after investment by firm 1

the formation rectangle.

3.3 The formation rectangle

To establish the rectangle property we recall some algebraic relationships
from TK. Examining Figure 1 of TK, we see that the formation ray inter-
sects the payoff frontier at point 7w(0*). We want to characterize this point
algebraically

Consider the non-formation case. If firm 1 invests sufficiently, which
is represented as a parallel rightward shift of the right facet of the game
frontier, then for sufficient investment formation will be achieved and the

equilibrium set will be a ray. Further investment by firm 2 and concomitant
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disinvestment by firm 1 will maintain a balance of bargaining powers such
that alliance is just on the cusp of formation and the equilibrium set remains
a ray, but with a different slope.

The equation for the ray is given by equation (5) in T-K:

2y [ As(D,C)Ay(C, D)\
- (ZooieD) (D)
which we can rewrite as
(A1(D,C)A1(C, D)) ?zs = (As(D, C)As(C, D))y (3)

There is a second equation, equation (4), which relates the probability of

termination 1 — §* to the bargaining powers, resulting in

. A5(C,D)A;(C, D)\ '?
o =1- (AQ(D,C)Al(D,C)>

(TK-4)

where the asterisk denotes the § such that the equilibrium set is a ray rather
than a point at the origin (non-formation) or a cone.

Because ¢ is given in equation (TK 4), investment is needed to make the
equation hold with equality. This is achieved by solving for the investment

I; needed to make the equation hold:

A5(C,D)A,(C, D) 1/2
)) (TK-4)

=l <A2<D,O)<A1<D,C>+11
It is important to note from the parallelogram property that this investment
is in fact a parallel shift because A;(C, C) increases by the same amount due
to the parallelogram identity A;(C,C) = A;(C, D)+ A,(D,C).
If we then look at the intersection of the ray with the facet once sufficient
investment has taken place and then adjust I; and I to maintain formation,
the intersection moves either vertically or horizontally.
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Proposition 3.1 If A;(x,y) and 6* are such that formation exactly holds
and I and I are adjusted so that 0* is constant then (i) A parallel shift of
the payoff frontier causes w(0*) to shift either horizontally or vertically. (ii)
The apex of the horizontal and vertical movements of w(6*) is also the apex

of the appropriately shifted game frontier.

The proof is provided in the appendix. The rectangle appears in Figure 4

and subsequent figures.
Lemmas about the rectangle

With the main rectangle result in hand we can state the following corollary:

Corollary 3.2 Suppose (a) that there is a unitary marginal cost of invest-
ment® and (b) that the formation rectangle has been attained via investment.

Then

o There is a unique Pareto-optimal point on the rectangle and this point

coincides with the cusp of the corresponding game frontier;

o [f the unique Pareto-optimal point has not been attained then it is
Pareto improving for one firm to invest, and this moves the equilib-

rium point closer to the Pareto-optimal point.

The proof is in the appendix.

8That is, holding all else equal, an increase in investment yields a one-for-one increase
in payoffs, yielding a net increase in payoffs of zero. Of course the investment alters
bargaining power, and therefore all else is not held equal in general.
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Given that the derivative is zero in one direction, that is,

da:l 0
dl, o
__ (43(D,0))
A==z} oy dh
we can also immediately conclude that
d(EQ 0
dIl, o
__ (Ay(D,0))
db== x5 Doy dh
or equivalently
daig 0
dlz Al —— (A2(D.0) 4 ’
L=-Gmaoydh

characterizes the impact of investment on the payoff of investment by firm
2. Thus, when costs are added to the mix, the marginal tradeoff of the
marginal cost of investment versus the marginal improvement in the payoff
can be calculated (whilst keeping in mind that the rival firm’s gain from
reducing investment in this calculation is not included, that is, there is a
positive externality.)

It is possible to construct the formation rectangle directly from the infor-
mation available from the shape of the game frontier. In the absence of costs,
recall from Corollary 3.2 that the equilibrium will ultimately be located at
the apex of the formation rectangle. The locus of the apex is determined by

a simple formula:

Proposition 3.3 The locus of the formation rectangle apex is

{ﬁ ~1)(41(C, D), 45(C; D))

Proof: See the appendix. O
Thus, when the game frontier lacks symmetry in the dimensions we will
discuss below, it is still possible to identify the equilibrium point.
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The second stage

The second stage is deciding which point on the rectangle is chosen. If the
equilibrium payoff combination lies on the horizontal segment of the rectan-
gle, it indicates that the game payoff for firm 2 is fixed. Correspondingly, if
the equilibrium payoff combination lies on the vertical segment of the rect-
angle, it indicates that the game payoff for firm 1 is fixed.

Our example is constructed so that the initial formation ray intersects
the rectangle on its vertical segment. By firm 2 increasing its investment,
with firm 1 decreasing its investment so as to remain on the rectangle, then
firm 2’s own game payoff can be increased without affecting firm 1’s game
payoff.? However, firm 2 increases its costs by doing this.

Recall that formation is characterized by the equilibrium set being a
ray rather than a cone. The point where this ray intersects the formation
rectangle is the combination of equilibrium game payoffs. Investment by firm
2 increases the slope of this ray, and therefore increases its own payoff. If
firm 2 were acting selfishly, it would continue this process until the marginal
increase in its game payoff was just equal to the marginal increase in its

costs.

9There is a technical issue. If firm 1 continues its investment beyond the quantity
needed to achieve formation, then the equilibrium set will expand from a ray to a cone.
The §* ray associated with this payoff set will tilt even more to the right, so that the
minimum payoff for firm 2 falls below the payoff on the formation ray. Firm 2 will
therefore have an incentive to invest so that the formation rectangle is again achieved.

Additionally, it is fairly obvious that either firm would want to invest to achieve forma-
tion.
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4 The basic properties of the model

We next conduct a series of numerical experiments to demonstrate the impact
of various parameters of our model and to illustrate the effects of bargain-
ing power, leverage, and investment cost, each of which can potentially be

asymmetric across the firms.

4.1 The basic symmetric game and unitary investment
costs

In our initial and benchmark example we suppose that the firms are sym-

metric, that their bargaining powers are relatively high, and that the cost of

investment is unitary. This results in a game frontier that is diamond shaped

(see Figure 4). As a result of the high bargaining power the firms initially

do not achieve formation.

Figure 4 shows the final outcome of investment: the green game frontier
is bigger in size than the initial black game frontier, and its shape has moved
closer to a rectangular shape. The bargaining powers have decreased to the
point of allowing formation, and the equilibrium point is on the cusp of the
game frontier and is thus efficient. In addition the cusp coincides with the
cusp of the formation rectangle in accord with Corollary 3.2.

The result of the investment is that the apex of the game frontier is
attained: the marginal increase in the payoffs matches the investments made.
The key result of the investment is that the apex of the game frontier is
now attainable due to formation, which means that the net payoffs of the
original game can now be attained, whereas they were not attainable before.

Subtracting those investments from the total payoffs yields the firms’ net

28



Payoff 2
10

Figure 4: High bargaining power and low 4.

— Payoff 1
10

) aq a9
.71 .001 | .001
Initial BP | Final BP | Investment | Final payoff | Net profit
Firm 1 484 3 1.9 3.5 1.6
Firm 2 484 .3 1.9 3.5 1.6

profits, relative to their initial payoffs of zero in the non-formation initial

state.

4.2 Low bargaining power

We next analyze a second example in which the game frontier is symmetric,

the value of § is unchanged, but in which the initial bargaining power of the
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firms is reduced. The initial game frontier is now closer to a square (see

Figure 5).
Payoff 2
10 -
L — Payoff 1
-4 10
4l
Figure 5: Low bargaining power and low §.
) a1 as
.7 | .001 | .001
Initial BP | Final BP | Investment | Final payoff | Net profit
Firm 1 .366 3 9 3.5 2.6
Firm 2 .366 3 9 3.5 2.6

The result is that the firms again invest, expanding the game frontier in

the process, and attain the green game frontier. However, because initial

bargaining power is low, less investment is needed to attain the formation
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apex (.9 by each firm as opposed to 1.9 in the initial example).

Notice that the final game frontiers (the green game frontiers) in both
Figure 4 and Figure 5 are identical: they have identical bargaining powers.
This is because ¢ is identical in the two situations, so to exactly achieve
formation the bargaining powers must attain the same levels.

As in the previous example, net profit is simply the initial payoffs: in-
vestment by each firm is rewarded one-for-one by increased payoffs, but the
investment enables formation to take place so that the payoffs are attainable
in equilibrium.

Thus, our initial examples establish that investment can overcome the
resistance to formation, and high initial bargaining power requires more in-

vestment.

4.3 The effect of impatience

In our next examples we analyze the impact of patience, via variation in
0. Increasing 6 and thus decreasing patience puts greater demands on the
firms: they are initially less willing to cooperate, and their bargaining power
must concomitantly be reduced more than in the initial examples in order to
achieve formation. Replicating the setting of Figure 4 except for the higher
0 yields Figure 6.

This example highlights that in the presence of greater impatience, higher
investment is needed to achieve formation—4.4 instead of .9. The result is
that the final (green) game frontier is enlarged and much closer to a square
shape than the final game frontier in the initial example, that is, bargaining

power has been weakened to a much greater degree: final bargaining power
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Payoff 2
10

— Payoff 1
10

Figure 6: High symmetric bargaining power and high .

) aq a9
.8 | .001 | .001

Initial BP | Final BP | Investment | Final payoff | Net profit
Firm 1 484 2 4.4 6.00 1.6
Firm 2 484 2 4.4 6.00 1.6

is .2 in contrast to its value of .3 in the initial example.

This example also highlights the influence of technological uncertainty
on the timing of alliance formation. In our framework, higher technological
uncertainty implies high impatience as captured by J, necessitating greater

strategic investment for alliance formation. In the face of very high techno-

32



logical uncertainty, firms will desist from making these investments, but may
do so when technological uncertainty declines. Recall that the Lilly Genen-
tech R&D alliance was only formed after Genentech demonstrated that it

could create human insulin in the laboratory.

4.4 The effect of leverage

Our next experiment introduces asymmetry in the “aspect” of the game
frontier. We can stretch the game to the right and shrink it downward, so
that it approaches a line with negative 45 degree slope, all without changing
the slopes of the game faces, and so also not changing bargaining power.
This asymmetry differentially affects the incentives of the firms to invest.

Recall that when firm 1 invests, the right facet of the game frontier moves
to the right. This reduces firm 2’s bargaining power by reducing the slope of
the upper facet of the game frontier. However, unlike the symmetric exam-
ples, the foreshortening of the upper facet makes its slope more sensitive to
firm 1’s investment: firm 1’s investment now has a strong effect on the slopes
of the upper and lower facets, thus strongly affecting bargaining power with a
small investment. Conversely, firm 2’s investment will have a lower marginal
impact on the right and left slopes. Thus, firm 1 has more “leverage” on
firm 2’s bargaining power than it did in the symmetric examples, and firm
2’s leverage is lower.

The consequence of this asymmetric leverage is that firm 1 ends up invest-
ing more than firm 2. Recalling from equation (2) that 6*, the endogenous
value of § needed for formation, is a function of the product of the bar-

gaining powers, asymmetric investments by the two firms can still result in
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formation.

Figure 7 presents an example, which has approximately the same initial

bargaining powers as in Figure 4. Firm 2’s payoffs are bigger to start with.

Payoff 2
10

Figure 7: High bargaining power and low §: asymmetric firm payoffs.

—1 Payoff 1
10

(5 a1 a9
.7 | .001 | .001
Initial Initial Final | Investment | Final Net
BP leverage BP payoff | profit
Firm 1 .486 .194 427 3.4 4.20 .8
Firm 2 .486 .139 211 517 2.95 2.435

We see from this figure that firm 1 does most of the investing, because it

has more “leverage:’

)
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so that the upper facet becomes flatter, thus reducing firm 2’s bargaining
power, but because the upper facet is shorter than the right facet, the impact
of a unit of investment on the slope is bigger. The end of the investment
process also yields much-reduced bargaining power for firm 2 relative to firm
1. Thus, the firm with the greater leverage, firm 1, carries the main burden
of investment to achieve formation.*°

We can quantify leverage, that is, the sensitivity of a rival firm’s bargain-

ing power, 6_;, to a firm’s investment, I;. Denoting firm i’s leverage by \;,

we show in Appendix B that leverage is

B
A= 3D, 0) @

that is, the rival firm’s bargaining power is moderated by a firm’s defection
value.

The impact of leverage on outcomes can be seen by looking at the ratio

of the firms’ leverages, )\/\% Using the formula for §;, it is straightforward

to establish that the ratio is
i A_;(C,D)

A A(C,D)

which is identical to the slope of the apex of the formation rectangle. Lever-
age determines the ultimate outcome of the alliance in this sense.

It is evident that the asymmetry in leverage induces asymmetry in in-
vestment and in net profit as well. Despite the fact that firm 1 carries the

greater burden of investment, and also ends with greater relative bargaining

10We can also interpret the example in light of Proposition 3.3. The asymmetry in
leverage is equivalent to reducing the absolute value of A2(C, D), which by Proposition
3.3 shifts the apex of the formation rectangle downward.
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power as a result, and with gross payoffs that are tilted in its direction, its
ultimate net profit is lower than firm 2’s profit; this is because firm 2 has

not incurred the cost of investment.

4.5 The impact of costs

So far, our experiments have assumed unitary investment costs for both
firms, that is, an investment by firm 1 increases its payoff by exactly its
investment, holding other things equal. Our next experiment introduces
asymmetry in costs, so that firm 2 has a positive cost of investment, that is,
an additional per-unit cost of investment is subtracted from its payoff. This
will impede its investment.

Our notion of cost is analogous to the cost of an input into a produc-
tion function. The expenditure on a unit of capital in a standard model
would then translate into a marginal change in output; due to diminishing
returns, the marginal change in output is dependent on the quantity of cap-
ital already present. Similarly here, the marginal impact of an investment
is not necessarily one-for-one with the investment: investment shifts a facet
of the game frontier, but the change in the payoff for the firm making the
investment is then affected by the response of the other firm.

Figure 8 illustrates cost asymmetry. The initial game frontier is sym-
metric, with equal bargaining powers and leverage. Any asymmetry in the
investment and payoffs that ensue is therefore driven entirely by the asym-
metry in costs.

Firm 1 has the main burden of investment, because its marginal cost of

investment is lower than firm 2’s cost. Because it invests more, it reduces
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firm 2’s relative bargaining power. Firm 2, on the other hand, invests up
until its marginal increase in the payoff is equal to the marginal cost of
investing. The final ray no longer passes through the apex of the modified
game or the apex of the formation rectangle. Rather, the payoffs are now
tilted toward firm 1. (Notice that ¢ has been increased to .75 in order to
make the effect visible.)

The example illustrates that the efficient outcome, the apex of the for-
mation rectangle, might not be attained. Indeed, if costs are high enough,

formation will not occur as it entails negative profit for the investing firm.

4.6 Asymmetric initial bargaining power

Finally, we consider the more general case when initial bargaining power is
asymmetric across the two firms. Figure 8, viewing the final game frontier as
the initial game frontier rather than the end of the formation process, would
be an example of this.

We begin by noting that if the costs are unitary, then the equilibrium
of the game ends at the cusp of the formation rectangle, but the locus of
the cusp as stated in Proposition 3.3 does not depend directly on bargaining
power. The formation rectangle itself is driven by the investments of the
firms. Therefore we would like to characterize how that investment is driven
by bargaining power.

Harking back to Figure 7, we see that the initial payoff structure of
that game had symmetric bargaining power but asymmetric leverage; we
then saw that the higher-leverage firm undertook the greater investment.

By manipulating initial investment in a game that initially has asymmetric
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Payoff 2
10

— Payoff 1
10

Figure 8: High bargaining power asymmetric cost.

) ail a9
.75 1 .001 | .197
Initial | Final | Investment | Final Net
BP BP payoff profit
Firm 1 484 .3 4.088 4.500 412
Firm 2 | .484 .209 1.908 3.756 | 1.848 —.197 % 1.908
Firm 2 | .484 .209 1.908 3.756 =1.472

bargaining power such as the larger parallelogram of Figure 8, we can recreate
this initial state by translating the initial payoff structure of the model into an
equivalent one in which the asymmetry in bargaining power is removed. All

of the effect of bargaining power is translated into leverage, which is explicitly
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a function of bargaining power in formula (4). Once that is done, we can
predict that the high-leverage firm will undertake the higher investment, as
we saw in Figure 7.

To see how this works, consider the larger game frontier as the initial
game frontier in Figure 8. For the given value of §, the initial game frontier
has an equilibrium ray penetrating one facet of the frontier; formation has
already been achieved for that value of §. By running investment backwards,
that is, with negative investment, we arrive at a game frontier in which
bargaining power is symmetric. That game frontier might, however, have
asymmetric leverage. Therefore the high-leverage firm will invest more.

Once the game frontier has been run backwards to attain an asymmetric
leverage game frontier, it can again be run forward, but potentially with a
different value of 6. In particular, the initial asymmetric-bargaining-power
game frontier might not already be at formation. In that case, the backwards
run can be carried out for a value of § that is low enough so that formation is
just attained initially. Then, after running the game backwards to the sym-
metric bargaining power, asymmetric leverage state, the game can then be
run forward with positive investment at the higher value of ¢ until formation
and the equilibrium on the formation rectangle is attained. Recall that the

formation rectangle can be established directly using Proposition 3.3.

5 Conclusions

We have a theory of why firms sometimes cooperate with each other, an
explanation for why they might fail to agree to cooperate at all, and the
inefficiency that can accompany cooperation when it does occur. The theory
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rests on incentives, and resides fully in a dynamic framework that is necessary
to account for those incentives.

In our theory firm cooperation is delineated by parameters of bargaining
power, leverage, cost, technological uncertainty, and payoff structure. When
costs are low enough, firms will undertake strategic investments that dampen
the other’s incentives to shirk. These strategic investments then enable them
to form alliances in which they each act selfishly to maximize their own
profits. Our evidence is that if it is costly for firms to invest, the alliances
will in general be inefficient in the sense that they do not maximize joint
output, even though there is no physical impediment to this maximization.
For costs that are high enough firms will fail to form alliances. This is
exacerbated in the presence of high technological uncertainty, with requires
higher investment to achieve formation.

In the real world firm alliance contracts have significant asymmetries
in investment and in the division of profits. Our theory rationalizes these
asymmetries and the diversity of contract structure. It has tight predictions
about contract structure: it prescribes the investments required of each firm
to achieve formation, and dictates a clear—and not necessarily symmetric—
division of payoffs. . A counter-intuitive implication of our theory is that
the firm with the greater leverage, while it can receive the greater payoff,
also can receive a lower profit from the alliance (because it undertakes the
strategic investment that enables formation). Nonetheless, it does so since
in the absence of investment, it would receive no profits at all.

It seems obvious that our idea of formation can be greatly generalized.

Firms in general can be viewed as ongoing alliances that stem from some
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sort of initial investment that is surrounded by the efforts of firm partici-
pants in production. Our theory not only rationalizes such arrangements, it
also explains why there is not one grand firm for the entire economy, and
at the other extreme, why the economy does not just consist of individual
proprietorships.

The empirical correlates of our model can in principle be measured. It is
straightforward to measure costs, profits and investment. Any empirical test
must also have measures of bargaining power, which is at the heart of the
model. Bargaining power is determined by the structure of the parallelogram,
which in turn reflects the payoffs stemming from the actions of the firms.
These payoffs can also be measured: they are the gains and losses from
cooperative and noncooperative actions. We are therefore confident that our

theory can be put to the test.
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A Proofs of formation rectangle propositions

Proof:  (of Proposition 3.1) We can begin by algebraically characterizing
the movements of I; and I such that §* does not change:
(A2(C, D)A,(C, D))'/?

1
2 (A3(D,C) + I,)(A1(D,C) + I;)3/2
X ((A2(Da0)+12)dll+(A1(D,C)+Il)d]2) (5)

dé* =0=

which easily translates to

dl, (AZ(DaC)+IQ)

ah " RD.O ) )
If we start from formation, then this simplifies to
dl, __ (Ay(D,C) -
dl (A1(D, 0))
or in differential terms,
dly = —méﬂ 1 (8)

Thus, all we need to demonstrate is that the intersection point with the game
facet moves either horizontally or vertically as we change I; and I> with this
constraint.

The proof of part (i) consists of taking the derivative of w(6*) with respect
to a parametric parallel shift of the facet, but subject to the constraint (6),
and demonstrating that that derivative is either zero or infinite.

There are two equations needed to characterize 7(d*): the first is the
equation for the ray, equation (5) of TK. Recalling that x; is the expected
payoff of player i:

- (TK-5)

2y <A2(D,C)A2(C,D))1/2
A,(D,C)A{(C, D)
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which we can rewrite as!?

(41(D, C)AL(C, D)) ?ay = (A2(D, C)A2(C, D)) ?a (9)

The second equation needed is the equation for the facet of the payoff frontier.

There are two facets. We begin with the upper facet:

A2(D,C) — Ay (C,C)

2= A0 0+ D T A (C.0)

(r1 — A1(C, C)) (10)

(Notice that the slope is negative.) The next step is to use the parallelogram
property. From equation (1) in TK,

AI(C7D) —Al(C,C) :Al(DaD) _Al(Dvc) = _Al(Dvc)

(11)
As(D,C) — Ay(C,C) = As(D, D) — A5(C,D) = —A5(C, D)
or
A1(C,C) = A4(D,C) + A(C, D)
(12)
AZ(Oa O) = A2(Da O) + A2(07 D)
The facet equation, equation (10) then becomes
B —A5(C, D) B
To = AQ(C, C) =+ m(xl Al(c, C)) (13)

These two equations can be solved for 7(§*) = (x1, x2).

We can write the equations in matrix form:

(FOD- OO DN (D OAC D) ()
—A2(C, D) A(D,C) Lo

0
= (Al(D,C)Ag(C, C) — As(C, D) A4 (C, C)> (14)

M Because A1(C, D) and A2(C, D) are negative, it is technically more proper to write
(=A1(D,C)A1(C, D)) /225 = (—A2(D, C)A2(C, D))/ ?ay

We will suppress the altered signs in the subsequent derivations.
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and using the parallelogram property in (12) we can write

<_(A2(D’C)A2(C’D)>”2 (A1(D,C)A1(C, D))V 2) <$>
—A2(C, D) Ay(D,C) Lo

- (Al(D, C)(A2(D,C) + Ay(C, D)) 2 A2(C, D)(A1(D,C) + A1 (C, D)))
(15)
A rightward parallel shift that preserves formation can then be represented
by taking the derivative with respect to A;(D, C) which implicitly captures
the equal shift of A;(C,C) via the parallelogram property we already used,
along with subtracting a corresponding constant from As(D, C) as expressed

in the differential constraint (8):

(; (4208 45(D,C) /2 A5(C, D)/2dh - $AL(D, C)*l/;Al(a D)1/2d11> (m)
0 I T2

0
= ((AQ(D, C) + A2(C, D))dly — Ay(D,C) 42BNy, — ay(c, D)dh> (16)
Now take the total differential of the system in equation (15):
—(A2(D,C)A2(C, D)2 (A1(D,C)A1(C, D))/?\ (dxz1
—AQ(C7 D) Al(D, C) d.TQ
n 1S A2(D, )12 45(C, D)V2dL L AU(D,C)~Y2A((C, D)Y2dl (m)
0 dl 2
0
= <(A (D,C) + As(C, D))l — Ay(D,C) AP0 qp _ A, (C, D)dr ) (17)
2 5 2 5 1 1 ) (A1(D,C)) 1 2 ; 1
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Now substitute the solution of (il) from (15):
2

(—(AQ(D,C)AQ(C,D))VQ (Al(D,C)Al(C,D))l/Q) (dm)
—A3(C, D) A1(D,0) dxo

+<égﬁf§g:g;;A2(D,C)1/2A2(C,D)1/2d11 ;Al(D,C)1/2A1(C,D)1/2d11>
0 dh

x (—(Aa(Dﬁ)Az(aD))l/? <A1<D,0)A1<C7D>>1/2)‘1
—As2(C, D) A1(D,C)

0
x ((Alw, 0))(A2(D,C) + A2(C, D)) — A2(C, D)(A1(D, C) + Ay (C, D)))

= <(A2(D, C) + A2(C, D))dI; — Al(%, O) 2B eHdl — A9(C, D)dh)
or
(—(AQ(D,C)AQ(C,D))V? (Al(D,C)Al(C,D))1/2) (dml)
~A2(C, D) A1(D,C) dxo
_(§§ﬁfgg:g§;A2(D,C)1/2A2(C,D)1/2 ;Al(D,C)1/2A1(C,D)1/2>
0 1

x (—(AQ(Dv C)A2(C,D))Y/?  (A1(D,C)A:1(C, D))1/2) =
—A2(C, D) A1(D,C)

0
x ((Al(D7 C))(A2(D,C) + A2(C, D)) — A2(C,D)(A1(D, C) + A1 (C, D))) i
0

+ drl
<<A2<D, C) + 43(C, D)) = AL(D, C) GHBER — A5(C, D>> '
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and finally, the solution for <dx1> is
d.’EQ

dxy
dxo

_(—<A2<D,C>A2<O,D)>1/Q (AI(D70>A1<O,D>>1/2)‘1

7142 (C7 D) Al (D7 C)
. (i&‘fﬁglgiiA2<D7c>l/2Az<c,D)1/2 ;A1<D,c>1/2A1(O,D>1/2>
0 1

™ (*(Az(D,C)AQ(C, D))1/2 (A1(D,C)A1(C, D))1/2)71
—A2(C, D) A1(D,C)

0
X ((Al(D, C))(A2(D, C) + A2(C, D)) — A(C, D)(A1(D,C) + A3 (C, D))) dh
+(—<A2<D,C>Az<c,D>>1/2 (A1<D,C>A1<C,D>>1/2)*1
~45(C, D) A1(D,C)

0
X dl
<<A2(D, C) + A2(C, D)) — Ay (D, C) G2ZEH — 43(C, D)) '

or more compactly, defining

M= (*(A2(D70)A2(C’ D)2 (A1(D,C)A(C, D))l/Q)
= —A5(C, D) A1(D,C) ’

dz1
dxo
A — —
Ry (éwg:g;;Ag(D,c) 2450, D)2 L1Ay(D,C) 1/2A1(C,D)1/2) .
0 1

0
x ((Al(D, O))(A2(D, C) + As(C, D)) — As(C, D)(A1(D, C) + A1 (C, D))) dh
_ 0
e <<A2(D, C) + 42(C, D)) — A1(D,C)42BON _ 4, (c, D)) h

The agenda now is simply to show that either dz; or dzs is zero. First of
all notice that the final term does simplify to zero, so we have

dxy
dxo
Y (;mg;gg;A2<D,C>l/2A2<o, D)2 1 A1(D,C)"1/24,(C, D)”?) =
0 1

0
8 ((Al(D’ O))(A2(D, C) 4 A2(C, D)) — A2(C, D)(A1(D, C) + A1 (C, D))) ah
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Now the rightmost matrix also simplifies a bit:

dxq
dxo
oyt (;WAQ(D,C)WAQ(C, D)2 ;Al(D,0)1/2A1(C,D)1/2> Y-t
0 1

0
(10,000,092 ta(, Dy, 2y) 4D
Now use the inverse of M explicitly:

1 (Al(D,C) —(Al(D,C)A1<c,D))1/2)

Mt=—
A \+A42(C,D) —(A2(D,C)As(C, D))}/?

with
A = —A1(D, 0)(A2(D, C)A2(C, D))"/? + A2(C, D)(A1(D, C)A1(C, D)) /?
We can do a bit of manipulation with the middle matrix:

(ir2)
d:l?g
Ve (%mAﬂDb@”“‘z(C’ DI by AP, OE (C, DW?) M

o dr
*\41(D,C)A2(D,C) — A2(C, D)AL(C, D) ) 41
Now multiply the first two matrices (ignoring the determinant):

A1(D,C)  —(A1(D,C)A1(C, D))}/?
—A5(C,D) —(Aq(D,C)Ay(C, D))L/2
« (%7(141(})‘0))A2(D,C>1/2A2(C, DyL/2 %(Al(lp,c)>Al(Dvc)lﬂAl(C’D)l/g)
0 1
Lay(p, o)t/2ay(c, D)1/?

1 1/2 1/2
242(D, O A2(E, D) —(A1(D,C)A(C, D)I/2

= _ 1 A9(C,D) 1/2 1/2
228D o, g o TARHER M 0 2ol
e —(A3(D, C)Ax(C, D)1/2
LAy(D. )t /2450, D)1/? A—%Cfxg)D,ml/?Al(c, D)y1/2
-3 225323 Ao (D, 0)1/244(cC, D)1/2 -3 Af(D:C) AP, V24 (0, D)1/2
e —(A3(D, C)Az(C, D)1/2

Now multiply this times M ~! on the right, yielding

145(D, C)'/245(C, D)2 S3AD. 0 A (C, D)1
Ao (C,D
3 22CD) 4 oy R ay(c, pyE R AR A1 (D €)Y RAN(C, D)
2 AP0 ~(A2(D, C)Az(C, D))/
o« (A1(D.C)  —(Ai(D,C)AL(C,D))'/?
A2(C, D) —(As(D,C)A(C, D))'/?

_ (W1 W
- Zh Za
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with
W= %AQ(D, V2 45(C, D)2 A1 (D, C) + %Al(D,C)lﬂAl(a D)2 45(C, D)
W = %AQ(D,C)I/ZAQ(C, D)2(A\(D, C)A1(C, D))/
+ %Al(D, C)1/2 41 (C, D)V/2(A5(D, C) As(C, D))'/?

The upper right hand corner term is
~ 542(D,0)'/245(C, D) /(A1(D,0) A1 (C, D))/

+ S A1D,0) 2 41(C, D) /3(Ax (D, C) Az (C, D)) /* = 0

and when multiplied times the final matrix we obtain dz; = 0, thus com-

pleting the proof. O

Proof: (of Corollary 3.2) Point (ii) follows by the rectangle property: one
firm moves along the rectangle and has zero change in its payoffs whilst the

other has improved payoffs. O

A.1 Characterizing the formation rectangle

We have seen that the formation rectangle is invariant with respect to invest-
ment that preserves the parallelogram structure. We have also seen that once
formation has occurred, then if there are no costs of investment, the equilib-
rium is at the apex of the formation rectangle. Thus, if we can characterize
the formation rectangle, we can immediately characterize the equilibrium.
This is useful if the initial game frontier has a mixture of properties: asym-
metric bargaining power and asymmetric leverage.

Proof:  (of Proposition 3.3) Examining formula (15), and noting that
in the subsequent development the construction is such that dz; = 0, the

formula then determines x;. By reversing the roles of firm 1 and firm 2, we
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can then determine x5 as well. Combining this with the formula for x; then
determines the locus of the apex.

Let us examine the formula for 7 in a little more detail, and in particular
express the formula for 1 more explicitly in terms of bargaining power and
leverage. Starting with formula (15), we can first decompose the left hand

matrix as follows:

(—Al(D,C)l/Q(Al(C,D))l/Q o>

0 1
A3(D.C)'/2A5(C.D)? 1 x
< | A4 (D.0)7% (4, (C.0))7 - < 1)
—A45(C, D) A1(D,C)) \z2

0
B <(A1(D’ 0))(A2(D,C) + A3(C, D)) — A2(C, D)(A1(D, C) + Ay (C, D))>
We can then drop the leading matrix without effect:

A3(D,C)'/2 A5(C,D)*/? 1 T
T AL (D,C)'/2(AL(C,D))1/? - < 1)
—A45(C, D) A((D,C)) \%2

0
B <(A1(D’ C))(A2(D,C) + A3(C, D)) — A2(C, D)(A1(D,C) + A1 (C, D)))

We can also cancel a couple of terms on the right hand side:

Ax(D,CY'/2 Ay (C,DY/?
<_A?(D70)1/2AT(C7D)1/2 -1 ) (xl)

_AQ(CvD) Al(DaC) L2

0
- <A1(D, C)Ay(D,C) — Ay (C, D) A, (C, D))

Now recall formulas (5) and (8) from TK,
1/2
X1 /81 Al(D, C)Al(C,D)
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We can express the formula for 1 in terms of these ratios. In particular, we

can write (15) as

1/2
_B§/2 -1 ($1>
_A2(Cu D) Al(Du C) T2

0
- (Al(DaC)Az(D»C) — A2(C, D) A (C, D))

with solution

(.131) B 1 (Al(Dvc) 11/2>
2)  _A(D,0) % — Ay(c,p) \A2(E D) —Fim

611/2 1

0
~ (Al(D, C)A5(D, C) — As(C, D) A, (C, D))
The solution for z; is then
1

1/2

—A1(D,C) %7 — 4(C, D)

(Al(D, C)As(D, C) — As(C, D) A, (C, D))

Expressing this formula in terms of ratios yields

A1(D,C)
As(C, D)

-1

1/2
4a(C.D) (485 % +1)

As(C, D)( Ao(D,C) — A (C, D))

with the cancellation yielding

-1 A(D,C)

MDY B (A2(C7D)
A, (C.D) 177 T

42(D,C) — A41(C, D))

Now focus on the denominator term. Multiplying out, we have

&@ﬁ)y_AﬂMDCMQ®®@ﬂUW

A2(CaD) /6}/2 B A2(C3D) Al(DaC)Al(CvD)
_AD,C)V2 (Ay(D, O\
~ Ay(C,D)1/2 (Al(C,D)) T 1-4
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(See TK p. 454 formula (4).) Substituting into the formula for z;

-1 (Al(D,C')
(ﬁ—&-l) As(C, D)

As(D,C) — Al(C,D))

Again grouping terms yields

-1

(&

Al(D7 C)AQ(D, C) . 1)

A1(C D)<A2(O, D)A(C, D)

_ 1 ( 1 _1
a (ﬁjtl) (1-9)2

)Al(C, D)

We can write this as
(g () (g e (- aey

We know from our examples and from fundamental reasoning that this quan-

tity should be positive and increasing in J under symmetry. The leading
coefficient, %_5, is in fact increasing in 0, and —A;(C, D) is positive. We can
view A;(C, D) as a scaling factor.

Repeating the exercise for zo yields

*<1%5 - 1)A1(0, D)

Notice that this would be invariant with respect to investment by firm 1. The
economics does make sense: a relatively large value of A;(C, D) in absolute
value means greater bargaining power.

Thus, we can locate the apex of the formation rectangle easily:

(1; _ 1) (- 4:(C. D). ~Ay(C. D) (18)

thus completing the derivation. O
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B Leverage

We can develop a formula for leverage. We define leverage as the sensitivity
of the rival firm’s bargaining power to a firm’s investment. Denoting a firm’s

leverage by \;, firm 1’s leverage is

A= L A (C.0) + (A (O DY) |~ | dAr(C.C) A (T, C) = Av(C, D)
A3(D, C) — Ay(C, C)

(A1(C,C) — A4(C, D))’
1

_52A1(c, 0) — Al(C’,D)‘

1
=| A1<D,O>‘
1

- BzAl(D,C)

d  Ay(D,C) — Ay(C,0) d AQ(D,C)AQ(C,C)‘

The first equality follows because firm 1’s investment is equivalent to shifting
out the cooperation value A;(C,C). Thus, the higher firm 1’s defection
value, holding firm 2’s bargaining power fixed, the lower is firm 1’s leverage

in absolute value.
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Cer, A., Tay0, b.

Crparernyeckoe HHBeCTHpOBaHHE [ DIEeKTpOHHBIH pecype] : npenpunt WP9/2016/01 / A. Cer,
b. Tay0 ; Hau. uccnen. yH-T «BbIcIas mkona 3KOHOMUKHY». — DJIEKTPOH. TeKCT. AaH. (500 K6). — M. :
W3n. mom Beicmeit mxonst sxoHomukH, 2016. — (Cepust WP9 «VccnenoBanus 1o 3KOHOMHKE H
¢uHaHCaM»). — 56 c.

M5l paccMaTpiBaeM KOHTPAKTHBIC aIbSHCBI MEXK/Ty KOMIIAHHAMH, XKEJIAIOIHMHU OTy4UTh IPCH-
MYIIECTBO 3a CYET B3aHMOJONOIHEHNUS CTOPOH B PaMKaX KOHKPETHBIX IPpoekToB. [Ipumepamu Takux
CHUTYAlLUil SIBISIOTCS JIBSIHCHI MEXKIY OMOTEXHOJOIMYECKUMH M (papMareBTHYECKUMI KOMIIAHUSIMH
JUISL CO3IaHMS MEPCIICKTHUBHBIX MOJICKY/L. MBI paszieisieM paboTy TaKHX absSHCOB Ha ABE CTAIUM: Ha
MepBOi cTaauu Kakaas (pupMa MHBECTHDYET B IIPOEKT, Ha BTOPOI MPOHCXONAT ACHCTBHS, HEOOXO-
JIMBIE JUTS pealn3aliy MpoeKkTa. Mbl Ha3bIBaeM 3TH CTaJJUU «CTAIWsl HHBECTHPOBAHHS» U «CTAIUS
UCIIOIHEHHSD» COOTBETCTBEHHO.

DupMBl, BCTYNAIOMKUe B TaKUE albSHCHI, HMEIOT PacXOIAIINEcs HHTEPECH H albTepHATHBHEIC
MPOEKTBI, YTO MOXKET IIPUBECTH K HEAOMHBECTUPOBAHMIO HA NIEPBOI CTaIMH U YKJIOHSHHIO OT 00s13aH-
HOCTE#i 110 IPOEKTY Ha CTaJNU HCIIOMHEHHS. MBI [IOKa3bIBACM, KaK B3aMMOJICHCTBHE STUX CHJI BIUSCT
Ha BO3HHUKHOBEHHE PABHOBECHOTO KOHTPAKTa.

Harua Teopust 1aeT KONMMYECTBEHHOE BOILIOLICHHE CIIOCOOHOCTH KaXKI0i (pUPMBI N3BJIEKATh PEH-
Ty U3 KOHTPAaKTa Ha CTAJNN UCIIONHCHHS; Mbl Ha3bIBAGM 3TO IIEPETOBOPHON CHIIOH. MBI OKa3bIBacM,
YTO M30BITOYHAS IEPETOBOPHAs CHJIA MOYKET IIOMEIIaTh BOSHUKHOBEHHIO aJIbsSHCA U3-3a IOIOIHHTEb-
HOI1 CKIIOHHOCTH K (pHpaiinepcty. Ho HHBECTHIIMI KOMITAHHUI MOT'YT OCJIAa0HUTh EPETOBOPHYIO CHITY
B JJOCTAaTOYHOM JUIS MPEOAOJICHUS JaHHOW MHHIMATUBBI MEPE, YTO MO3BOJSCT 3aK/II0YaTh ANIbSHCHL.
MEI KONMMYECTBEHHO OIEHUBAEM TaKUe KOHTPAKTHI B TEPMHHAX WHBECTHIIHII, THBECTHIIMOHHBIX U3-
JIepiKeK, IUIaTexel 1 YucTol npubsuti. Bee 9Tn mokaszarenu MoryT ObITh aCHMMETPHUYHO pacipese-
JICHBI ME&XIY (UpMaMu.
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