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1 Introduction

Iterated Admissibility (henceforth TA, the iterated deletion of weakly
dominated strategies) is an important and widely applied solution
concept for games in strategic form.! In dynamic games with generic
payoffs at terminal nodes, IA coincides with Pearce’s [40] extensive-
form rationalizability (Shimoji [43]), a prominent solution concept
whose foundations are well understood (Battigalli and Siniscalchi
[5]). Yet, while TA has an independent intuitive appeal, its theo-
retical foundations have proved to be elusive (see, e.g., Samuelson
[41]). Thus, the decision-theoretic principles and the hypotheses
about strategic reasoning that yield IA require careful scrutiny.

A recent literature—starting with the seminal contribution of
Brandenburger, Friedenberg and Keisler ([17], henceforth BFK)—
has tackled this issue building on two key ideas. The decision-
theoretic aspects of the problem have been represented and solved
through the Lexicographic Expected Utility theory of [9]. Lexico-
graphic Expected Utility preferences are represented by Lezicographic
Probability Systems (henceforth LPS’s), i.e., lists of probabilistic
conjectures in a priority order, each of which becomes relevant when
the previous ones fail to identify a unique best alternative. In games
with complete information, opponents’ strategies constitute the payoft-
relevant uncertainty. In order to come up with an educated conjec-
ture about opponents’ choices, a player naturally starts reasoning
about opponents’ beliefs and strategies. BFK modeled this aspect
with the tools of Epistemic Game Theory, the formal, mathematical
analysis of how players reason about each other in games.?

'For instance, IA has been applied in voting (Moulin [39]) and money-burning
games (Ben Porath and Dekel [8]).
?See Dekel and Siniscalchi [24] for a recent survey.



Inspired by BFK, we adopt Lexicographic Expected Utility and
Epistemic Game Theory for our epistemic foundation of IA in finite
games. However, we start from partially different basic principles.
Specifically, we provide notions of Rationality, Cautiousness and As-
sumption that, appropriately combined, justify the choice of itera-
tively admissible strategies in the following sense: IA characterizes
the behavioral implications of Cautious Rationality and Common
Assumption of Cautious Rationality. Before moving to a detailed
discussion of BFK and of the related literature, we briefly introduce
the main features of our approach.

1. We model players’ beliefs as LPS’s. In line with recent findings
and developments in the field, we do not require the LPS’s
to be mutually singular, i.e., we do not require the different
conjectures in the LPS to have (essentially) disjoint supports.

2. We define a simple notion of Cautiousness that, together with
Lexicographic Expected Utility maximization, justifies the choice
of admissible strategies.

3. We use a monotone notion of "infinitely more likely than" with
the following interpretation: A player deems an event infinitely
more likely than another if she prefers to bet on the first rather
than on the second regardless of the winning prizes for the two
bets.

4. We define a notion of Assumption of an event with the follow-
ing preference-based foundation: Every payoff-relevant impli-
cation of the event is deemed infinitely more likely than the
complement of the event. Under our notion of "infinitely more



likely than", this implies that the whole event is deemed infi-
nitely more likely than its complement too, despite the absence
of mutual singularity.

5. We show that in a canonical lexicographic type structure—
hence, absent extraneous restrictions on players’ hierarchies of
beliefs—there are states consistent with Cautious Rationality
and Common Assumption of Cautious Rationality (henceforth
R°CAR), and the behavioral implication of these epistemic
conditions is that players choose within the (nonempty) set of
iteratively admissible strategies.

The remainder of the Introduction is structured as follows. First,
we illustrate the issues pertaining to the justification of IA and how
Lexicographic Expected Utility helps to address them. Second, we
summarize the seminal contribution of BFK, which inspired our
work. Third, we highlight three issues of their construction that
we find problematic, and we discuss how they have been separately
addressed in the related literature. It turns out that our notions of
Cautiousness and Assumption are weaker than all their counterparts
in this literature. Thus, our hypotheses are the most general (so far)
among those that justify IA. However, as we will discuss in Section
6, our results are robust to the introduction of additional restrictions
to the notion of Assumption.



1.1 Iterated Admissibility and Lexicographic Ex-
pected Utility theory

Consider the iterated deletion of weakly dominated strategies in the
following game.?

Ann\Bob | L C R
T (4,1) | (4,1) | (0,1)
U (0,1) | (0,1) | (4,1)
M (3,1) | (2,1) | (2,1)
D (9,1) | (0,1) | (0,1)
B (0,0) | (4,1) | (0,1)
Figure 1

Strategy L is weakly dominated by C' and R, while B is weakly
dominated by 7. In the reduced game without L and B, D is
(strictly) dominated by M. All the remaining strategies are itera-
tively admissible, including M, although the latter is not the unique
best reply to any conjecture over C' and R. Note that, in the reduced
game, L is a (not unique) best reply to every conjecture over 7', U
and M. How can we justify the fact that M is iteratively admissible
and L is not?

Strategy L displays the "inclusion-exclusion" problem, first iden-
tified by Samuelson [41]. A strategy is weakly dominated if and only
if it is not a best reply to any fully mixed conjecture (see Section 3).
Thus, L is eliminated in the first round because it is never optimal
when Bob assigns positive probability to B (i.e., he "includes" B).
On the other hand, if Bob is certain that Ann uses the same crite-
rion, he must exclude the possibility that B is played. To justify the

3This is an elaboration of an example due to Pierpaolo Battigalli ([3]; see
also the Introduction Section of BFK).



fact that L is not iteratively admissible, just sticking to fully mixed
conjectures is not a viable solution: D would be erroneously rescued.
This tension can be solved as follows.

Bob has a primary hypothesis under which Ann avoids weakly
dominated strategies; thus, it assigns probability 0 to B. This con-
jecture leaves Bob indifferent between L, C' and R, so he considers
a secondary hypothesis. The secondary hypothesis does not exclude
that Ann may play a weakly dominated strategy; thus it assigns pos-
itive probability to B. Since L is not a best reply to this conjecture,
Bob does not choose L.

Strategy M can instead be justified under the same assumptions
about Ann’s strategic reasoning. Ann’s primary hypothesis, under
which Bob avoids weakly dominated strategies, assigns probability
% to C' and R. Strategy M is a best reply to this conjecture, but
not the only one. Therefore Ann considers a secondary hypothesis,
which assigns probability % to L and R. Strategy M is a best reply
to this conjecture and a rational Ann may choose it. Note that both
conjectures of Ann need to assign positive probability to R.

Blume et al. [9] introduce a model of choice under uncertainty,
known as Lexicographic Expected Utility theory, which allows to
formalize the beliefs and the choice criterion mentioned above. The
beliefs of the decision maker are represented by LPS’s, finite se-
quences of probability measures (ji;, ..., it,,) over the space of uncer-
tainty. The intended interpretation is the one above: p; represents
the decision maker’s primary theory about the state of the world; 1,
represents a secondary, alternative theory which the decision maker
entertains but regards as "infinitely less plausible" than p,; and so
on. In light of this interpretation, the decision maker first compares
her alternatives according to the expected utility they yield under
[y; in case a few alternatives yield the same expected utility, she
compares them (and only them) under p,, and so on.
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To identify which LPS’s over strategies justify the iteratively ad-
missible strategies and, more importantly, which hypotheses moti-
vate them, it is necessary to analyze players’ interactive beliefs. Next
we summarize the approach of BFK.

1.2 The epistemic framework of BFK

BFK use lexicographic type structures—i.e., type structures in which
beliefs are LPS’s—as the analogue of standard type structures, i.e.,
type structures in which beliefs are probability measures. Type
structures are a convenient modelling device, due to Harsanyi [30],
to describe players’ hierarchies of beliefs; that is, their beliefs about
the play of the game (first-order beliefs), their beliefs about players’
beliefs about play (second-order beliefs), and so on. Type structures
enrich the standard description of a game, by providing a language
that allows to express assumptions about players’ mutual beliefs in
rationality, and then derive implications about behavior.

Within the epistemic apparatus of lexicographic type structures,
BFK introduce a notion of Rationality which incorporates the admis-
sibility requirement, and they use a notion of Assumption in place
of Certainty to solve the inclusion-exclusion problem. To illustrate
these notions, we append to the game of Figure 1 a lexicographic
type structure 7 = (S;, T}, B;)icf1,2}, Where Ann is player 1 and Bob
is player 2. First, for each player ¢ € {1,2}, there is an underlying
space of primitive uncertainty S_;, i.e., the strategy set of the co-
player; so, for instance, So = {L,C, R} is the underlying space of
uncertainty for player 1. Second, for each player i € {1,2}, there
is a set T; of types. Here we describe an example with one possible
type for Ann, viz. T} = {t}}, and two possible types for Bob, viz.
Ty = {t},t5}. Third, for each player i € {1,2}, there is a belief map



B, which assigns to each type an LPS over the his/her underlying
space of uncertainty and the co-player’s types. In BFK, such LPS
is required to be a Lexicographic Conditional Probability System
(henceforth, LCPS), i.e., a mutually singular LPS. In this example,
we associate Ann’s type ¢} with a length-2 LCPS 3, (¢) = (vi,v3),
where v} and v? are probability measures over S, x Ty. Type t} is
associated with a full support measure over S; x T (i.e., a length-1
LPS). Type t} is associated with a measure over S; x T} without full
support. Figure 2 illustrates the probabilities assigned by the two
measures in 3, (t}) to the elements of the set Sy x T». For instance,
the strategy-type pair (L, t}) has probability 0 under v}, and ;11 under

2
I/l-

Prth) | T | B
T T
L Pl 0y
C %,0 0, i
R 2,01 0,%
Figure 2

Player 1’s first-order belief over {L,C, R} is given by a length-
2 LPS (margg, v}, margg,v3), where, the symbol margg, stands for
the marginalization operator. A standard procedure, which will be
discussed in Section 2, shows how it is possible to specify all higher-
order beliefs. Figure 3 describes player 1’s first-order belief induced

by 54 (tll)
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margg, U7
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T
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3

Within the framework of (lexicographic) type structures, a state

9



specifies a strategy-type pair for each player; e.g., in the type struc-
ture 7, a possible state is (U, L, t},t}), that is, an element of the set
S1 X Sy x Ty x Ts.

BFK’s notion of Rationality. In a type structure, Rationality
is a property of strategy-type pairs. BFK define a strategy-type pair
(s;,t;) to be rational if (1) s; is a lexicographic best reply to the first-
order belief induced by t;, and (2) the LCPS f, (¢;) associated with
t; is of full-support. The support of an LPS is defined as the union of
the supports of each component measure; so, for instance, the LCPS
By (t)) = (v},v?) is of full-support. Moreover, the reader can easily
verify that strategies T', U and M are best replies to margg, v, but M
does better than 7" and U against margyg, v2. To distinguish between
our notion of Cautious Rationality and BFK’s notion of Rationality,
we will refer to the latter as "Open-minded Rationality" (R°).*

So, the statement "Ann is open-minded rational" is represented
in structure 7 by event R} = {(M,t})}. For Bob, the open-minded
rational strategy-type pairs associate the full-support belief of type
t, with the weakly dominant strategies C' and R, but no pair (s, t})
can satisfy Open-minded Rationality because [(,(t5) is not of full-
support. Thus, R = {(C,t}), (R, t5)}.

BFK’s notion of Assumption. In BFK, Assumption of an
event F requires two things. First, it requires that £ be deemed infi-
nitely more likely than not-E, without necessarily ruling out the pos-
sibility that not- E occurs. In BFK, this means that the LCPS assigns
probability 1 to E under the first m > 1 measures and probability 0

4The motivation for this terminology is twofold. First, full-support aims to
capture the idea that a player takes all strategies and types of the co-players into
consideration. Second, full-support is equivalent to the requirement that every
open set in the space of strategy-type pairs be assigned positive probability by
at least one measure of the LPS.
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under the remaining measures. Under /3, (#}), RS is deemed infinitely
more likely than its complement, because v1 ({(C, 1), (R, ty)}) =1
and v? ({(C,t,),(R,t,)}) = 0. Second, Assumption requires that
all the parts of F, i.e., the non-empty, relatively open subsets of F,
be deemed infinitely more likely than not-E. This means that the
LCPS assigns positive probability to each part under one of the first
m measures. Under /3 (t]), both proper subsets of RS, viz. {(C,t})}
and {(R,t,)}, are deemed infinitely more likely than the complement
of R3 (finite sets are endowed with the discrete topology, in which
all subsets—including singletons—are open). Therefore, we say that
type t] assumes Rj.

BFK’s results. BFK provide an epistemic justification of each
iteration of the IA (maximal) elimination procedure within lexico-
graphic type structures with continuous and onto belief maps, hence-
forth, "belief-complete" structures. One of their main results states
that, within belief-complete type structures, the strategies which sur-
vive m+ 1 steps of iterated elimination of inadmissible strategies in a
finite game are those consistent with Open-minded Rationality and
mth-mutual Assumption of Open-minded Rationality (R°mAR®) for
every natural number m. They prove that belief-complete type
structures exist, but their proof is not constructive. This contrasts
with analogous work on other solution concepts, where a canonical,
belief-complete type structure is constructed and type sets consists
of all the collectively coherent hierarchies of beliefs (e.g., [4] and [5]).
Since they do not explicitly state their results in terms of belief hi-
erarchies, the meaning of key epistemic properties of beliefs, such
as the full-support property, or the property that some event is as-
sumed, is partially self-referential. These and other features of their
approach are somewhat problematic. In what follows we illustrate
them and also summarize how these issues have been addressed in
the literature.

11



1.3 Issues with BFK’s approach and related lit-
erature

Issue 1. BFK restrict attention to LCPS’s. There are reasons to
find this restriction uncompelling.

First, the finite-order beliefs implied by a type structure for LCPS’s
are LPS’s but not necessarily LCPS’s. As Figure 3 shows, player 1’s
first-order belief induced by 7 is not an LCPS. It is also possible
that none of the finite-order beliefs induced by the LCPS of a type
are LCPS’s (we show this in our companion paper [20]). On the
other hand, first-order beliefs with overlapping supports are actu-
ally needed to justify some iteratively admissible strategies, as can
be verified for M in the example above. Finally, as noted by Lee [34],
the difference between an LPS and LCPS may be merely cosmetic,
as they could represent the same lexicographic preference relation.

Dekel et al. [25] provide further interesting arguments for why
mutual singularity is not a compelling hypothesis (see, e.g., the "coin
example" in their introduction). Then, they provide a characteriza-
tion in terms of LPS’s (not just LCPS’s) of BFK’s preference-based
notion of Assumption. With this, they show that BFK’s results
about the epistemic characterization of TA hold through, including
the impossibility result discussed in Issue 3 below. The preference-
based notion of Assumption in BFK is based on the notion of "in-
finitely more likely than" of Blume et al. [9]. As we will discuss
(cf. Appendix A; see also [9, p. 70]), such notion of "infinitely more
likely than" has some unappealing properties, especially in absence
of mutual singularity.

Issue 2. As we mentioned, Open-minded Rationality includes a
full-support condition over strategies and types. Intuitively, this
condition aims to capture the idea that a player does not exclude

12



any belief hierarchy induced by the types of the opponent. Yet, the
full-support condition crucially depends on the topology of the type
space. Therefore, a strategy-type pair may be regarded as open-
minded rational or not depending on the topology, even if the type
induces the same hierarchy of beliefs (see Example 1 in Section 4.2).

In a related vein, BFK’s notion of Assumption also depends on
the topology on types, as observed by Dekel and Siniscalchi ([24, p.
691, footnote 99]). The recent work of Keisler and Lee [33] high-
lights the fact that two belief-complete type structures can induce
the same hierarchies of beliefs, yet the topology on the type sets can
be changed in an appropriate way so that the types may not assume
the same set of events.

Issue 3. BFK considered the natural conjecture that, in all belief-
complete type structures, the strategies that survive all rounds of TA
are exactly the strategies that are played in states at which there is
Open-minded Rationality and Common Assumption of Open-minded
Rationality (R°CAR°)—i.e., states at which there is R°mAR® for
every natural number m. However, they obtain a negative result: In
every belief-complete continuous type structure (i.e., with continu-
ous belief maps) R°CAR® is not possible at any state.

Keisler and Lee [33] show that the impossibility ceases to hold
when continuity is dropped. This result is difficult to interpret and
makes the original impossibility even more puzzling: What does a
topological condition like continuity of the belief maps represent in
terms of players’ belief hierarchies? This question is closely related
to the topological dependencies outlined in Issue 2.

Yang [44] and Catonini [18] propose a modification of BFK’s no-
tion of Assumption which yields a non-empty "common assumption
of rationality" event under some conditions. In [18], the result is
obtained in a canonical type structure for LCPS’s (see [20] for its

13



construction and properties). In [44], the result is obtained in the
larger canonical type structure for LPS’s, but the definition and the
preference-based foundation of Assumption still crucially require the
LPS to be a (full-support) LCPS. Therefore, it is impossible to as-
sess whether the types associated with non-mutually singular LPS’s
assume a given event or not.

In our view, our notions of Cautiousness, "infinitely more likely
than" and Assumption satisfactorily address these issues. Players
are cautious whenever their first-order beliefs have full-support, and
this is a condition that can be expressed in terms of belief hiearchies
and primitives of the model.

The main departures of our preference-based notion of Assump-
tion from BFK are two. (a) As a building-block, we use an "infinitely
more likely than" relation between events—due to Lo [37]—which is
weaker than the one in [9]. This allows to obtain a simple char-
acterization of Assumption for all LPS’s (as in [25]) and, at the
same time, to provide a transparent comparison between Assump-
tion and a weaker notion, namely "Weak Belief"—a notion which is
well suited for the epistemic analysis of Permissibility (cf. Discussion
Section).

(b) In our version of Assumption, players have a "cautious atti-
tude" towards an assumed event F, i.e., they consider each payoff-
relevant implication of £ "infinitely more likely than" not-E. This
is in line with the notion of Cautiousness, which coincides with As-
sumption if £ is the whole space of uncertainty (e.g., £ = Sy x T3 for
player 1 in the example above). The choice of payoff-relevant subsets
of E can be expressed in terms of players’ preferences over the prim-
itive space of uncertainty. This makes the whole analysis invariant
to the topology on types and allows to obtain a non-empty R°CAR®
event in sufficiently rich (in terms of hierarchies) type structures. In-
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terestingly, the same holds through in the canonical type structure
for LCPS’s constructed in [20], which constitutes a common ground
for the comparison with BFK (see Section 6.4).

Therefore, we provide a characterization of IA using expressible
epistemic assumptions about rationality and beliefs, that is, assump-
tions which are expressible in a language describing primitive terms
(strategies) and terms derived from the primitives (beliefs about
strategies, beliefs about strategies and beliefs of others, etc.)—cf.
Battigalli et al. ([6]).

It should be mentioned that Dekel et al. [25] put forward two
variants of BFK’s preference-based notion of Assumption which ad-
mit a simpler characterization in terms of LPS’s. Both variants are
based on two extensions of the notion of "weak dominance" to in-
finite state spaces. Their approach is therefore different form ours,
despite the fact that one of their variants of Assumption admits an
LPS-based characterization which is similar to our version.” How-
ever, those alternative notions of Assumption in [25] also depend on
the topology on types, so the aforementioned drawbacks (cf. Issues
2-3) still apply. Further comments on this issue and on the related
literature are deferred to the Discussion Section.

1.4 Structure of the paper

The remainder of this paper is structured as follows. Section 2 gives
some preliminary technical concepts and notations that will be used

5Specifically, this is the case for the notion of TWD-Assumption ([25, Defini-
tion 4.4])—see the Discussion Section. In the Supplemental Appendix, we show
that TWD-Assumption can be given an alternative preference-based foundation
in terms of the notion of "infinitely more likely than" we use in this paper.
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throughout. Section 3 provides formal definitions of LPS’s, type
structures and hierarchies of lexicographic beliefs. Most of the re-
sults in this section are proved in our companion paper ([20]). We
record only the properties that will be important for the statement
of our results. Section 4 introduces the underlying game-theoretic
framework, and the notions of Cautious Rationality and Assump-
tion. In Section 5, we state and prove the main result. Section 6
concludes with a discussion and further comments on the related lit-
erature. Appendix A illustrates the notion of "infinitely more likely
than" and the preference-based foundation of Assumption and Cau-
tiousness. Appendix B collects all the proofs omitted from the main
text.

2 Preliminaries

We begin with some definitions and the basic notation that will be
used throughout the paper.® A measurable space is a pair (X, Xx),
where X is a set and X x is a o-field, the elements of which are called
events. When it is clear from the context which o-field on X we are
considering, we suppress reference to Yy and simply write X to
denote a measurable space. All the sets considered in this paper are
assumed to be metrizable topological spaces, and they are endowed
with the Borel o-field. A Polish space is a topological space which is
homeomorphic to a complete, separable metrizable space. A Lusin
space is a topological space which is the continuous, injective image

6A more detailed presentation of the following concepts, as well as related
mathematical results, can be found in [11], [22], [26]. In the remainder of the
paper, we shall make use of the results mentioned in this section, sometimes
without referring to them explicitly.
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of a complete, separable metrizable space. Clearly, a Polish space is
also Lusin. 7

If (X5),cn is a countable collection of pairwise disjoint topologi-
cal spaces, then the set X = U,cnX,, is endowed with the direct sum
topology.® The set X is Lusin (resp. Polish) provided each X, is
Lusin (resp. Polish). Fix a countable collection of pairwise disjoint
topological spaces (Y},),,cy» and let Y = U,enY;,. For a given indexed
family of mappings (f,) where f, : X,, = Y, let f: X - Y be
the function defined as

f(x)=fu(x), z € X,.

Following the terminology in [26], the map f : X — Y is called
the combination of the functions (f,), .y, and is often denoted by
UnEan-

We consider any product, finite or countable, of topological spaces
as a topological space with the product topology. As such, a count-
able product of Lusin (resp. Polish) spaces is also Lusin (resp. Pol-
ish). Furthermore, given topological spaces X and Y, we denote
by Projy the canonical projection from X x Y onto X; in view of
our assumption, the map Projy is continuous. Finally, for a mea-
surable space X, we denote by Idx the identity map on X, that is,
Idy (x) =z for all z € X.

neN?

If X is a Lusin topological space, and X x is the corresponding Borel o-field,
then the measurable space (X, Xx) is Standard Borel ([22, Proposition 8.6.13]).

8In this topology, a set O C X is open if and only if ON X, is open in X,, for
all n € N. The assumption that the spaces X,, are pairwise disjoint is without
any loss of generality, since they can be replaced by a homeomorphic copy, if
needed (see [26, p. 75]).

17



3 Hierarchies of lexicographic beliefs and
lexicographic type structures

3.1 Lexicographic probability systems

Given a topological space X, we denote by M (X) the set of Borel
probability measures on X. The set M (X) is endowed with the
weak*-topology. Thus, if X is Lusin (resp. Polish), then M (X)
is also Lusin (resp. Polish). We denote by N (X) (resp. N, (X))
the set of all finite (resp. length-n) sequences of Borel probability
measures on X, that is,

N(X) = Unen, (X)
= Upen (M (X)".

Each 71 = (4, .o, f1,,) € N (X) is called lexicographic proba-
bility system (LPS). We say that 7 is a mutually singular LPS,
or a lexicographic conditional probability system (LCPS), if
there are Borel sets Fjy,..., E, in X such that, for every [ < n,
w, (Ep) =1 and p; (E,,) =0 for m # 1. Write £ (X) (resp. £, (X))
for the set of LCPS’s (resp. length-n LCPS’s). Both topological
spaces N (X) and £ (X) are Lusin provided X is Lusin. In particu-
lar, if X is Polish, so are A/ (X) and £ (X).?

For every Borel probability measure p on a topological space
X, the support of i, denoted by Suppp, is the smallest closed sub-
set C' C X such that u(C) = 1. The support of an LPS 71 =
(fgy ooy fb) € N (X)) is thus defined as Suppii = Uj<,Suppy,. So, an
LPSTi = (fy, .y pty) € N (X) is of full-support if U,<,,Suppy, = X.
We write N,/ (X) for the set of all full-support, length-n LPS’s and

9We refer the reader to our companion paper [20] for a proof of those results.
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NT(X) (resp. LT (X)) for the set of full-support LPS’s (resp. full-
support LCPS’s).

Suppose we are given topological spaces X and Y, and a Borel
map f: X — Y. The map f: M (X) — M(Y), defined by

F)(B)=u(f(B), ne M(X), E €Sy,

is called the image (or pushforward) measure map of f. For each
n € N, the map f,) : Ny, (X) — N, (Y) is defined by

o~

(K oes ) > fmy (g s 1)) = (f(ﬂk))kgn'

Thus the map f : N (X) — N (Y) defined by

-~

F@) = foy (@), B EN, (X),

is called the image LPS map of f. In other words, the map fis the

combination of the functions ( f(n)> , and it is Borel measurable.
neN
In particular, if X and Y are Lusin spaces, then the marginal

measure of u € M (X x Y') on X is defined by marg v = Projy (u).
Consequently, the marginal of 7 € N (X x Y) on X is defined by
Marg y I = Projy (1), and the function Projy : N (X x V) — N (X)
is continuous and surjective.

3.2 Hierarchies of lexicographic beliefs

In this section, we review the formal construction of the canonical
hierarchic space, that is, the space of all hierarchies of lexicographic
beliefs displaying Coherence and common Full Belief of Coherence.
(Precise definitions will be given below.) For an in-depth, formal
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analysis and details of the construction, which parallels the archi-
tecture originally developed by Brandeburger and Dekel [15], the
reader can consult [20]. Here, we emphasize only the properties
which will be important for our results.

Fix a two-player set I;'” given a player i € I, we denote by
—i the other player in I. For each i € I, let S_; be a non-empty
space—called space of primitive uncertainty—describing aspects of
the strategic interaction that player ¢ is uncertain about. Through-
out this paper, S_; will represent player —i’s strategy set: Player
1 does not know which strategy player —: is going to choose. Yet,
other interpretations are also possible; for instance, S_; may include
player —i’s set of payoff functions, among which the true one is not
known to player ¢. We assume that for each ¢ € I, S; is a Lusin
space with cardinality |S;] > 2.1

Each player ¢ € I is endowed with a lexicographic belief on S_;;
such belief is called first-order (lexicographic) belief. However, first-
order beliefs do not exhaust all the uncertainty faced by each player:
Player i realizes that player —i has a first-order belief on 5; as well,
and this belief is unknown to him. Thus, player i’s second-order
beliefs are represented by an LPS over S_; and the space of —i’s
first-order beliefs. Continuing in this fashion, one is naturally led to
consider infinite hierarchies of lexicographic beliefs.

Formally, for each ¢ € I define inductively the collection of spaces
(08) 1

XZO = S—i7
X = XFx N (XF) 5 k>0,

10The analysis can be trivially extended to more than two players.

'This assumption is made mainly to avoid trivial cases and streamline the
exposition. All the results in this paper remain true under the weaker assumption
that |S;| > 2 for at least one player i € I.
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An element B = (@l 72, .., i) € TIL N (X)) is a (k+ 1)-
order belief hierarchy, and ¥ = <#f+1’1,...,,uf+1’”> e N (XF)

denotes i’s (k + 1)-order LPS, with ;™ ¢ M (X?) being the m-
level of the (k + 1)-order LPS. It is easily seen that, according to our
notation,

k
X = XxP < IV (X))
=0

The set of all possible, infinite hierarchies of LPS’s for player ¢ is
H? = [[;2oN (XF). The space H? is endowed with the product
topology, so that H? is a Lusin space.

The notion of coherence for hierarchies of beliefs (defined below)
says that beliefs at different orders cannot contradict each other. To
state this formally, let Proj 1 : Xf — XF~! denote the coordinate
projection, for all k > 1. Recall that the marginal of iy ' € N (XF)
over X1 viz. marng_lﬁfH, is defined as the image LPS of 7™

under Proj -1, namely P)/I'EjX_k—l ().

Definition 1 A hierarchy of beliefs h; = (ji}, 112, ...) € H? is coher-
ent if
margxgc_llﬂi?“+1 =7y, Vk > 1.

This definition of coherence is a simple generalization of the no-
tion of coherence as in [38] or [15]; the two notions coincide if each fif
is a standard probability measure (i.e., a length-1 LPS). Note that
a hierarchy of beliefs satisfying this coherence requirement consists

21



of an infinite sequence of LPS’s of the same length.!?

For each player i € I, the space of all coherent hierarchies of
beliefs is denoted by H}. Standard arguments (cf. [20]) show that
each H}! is a closed subset of H?, hence Lusin. By a version of the
Kolmogorov Extension Theorem for LPS’s (cf. [15, Lemma 1]), it
can be shown that a coherent hierarchy for a player can be summa-
rized by a single LPS over the cartesian product of his own space of
primitive uncertainty and opponents’ hierarchies. So we record the
following result (cf. [15, Proposition 1]).

Proposition 1 For each i € I, there exists a homeomorphism f; :

H} — N (S_; x H,) such that

marg xx-1 f; (7 77 ) = A, Vh 2 1

The homeomorphism just described implies that a player i’s co-
herent hierarchy of LPS’s determines his LPS over player —i’s hi-
erarchies of beliefs. However, even if player i’s hierarchy h; € H}
is coherent, f;(h;) could deem possible an incoherent hierarchy of
the other player, that is, player i may believe (in an appropriate
sense defined below) that player —i’s hierarchy is not coherent. We
consider the case in which there is common Full Belief of Coherence.

Formally, we say that player ¢, endowed with a coherent hierarchy
h;, fully believes an event £ C S_; x H?, if f; (h;) (F) = 1, where
1 denotes a finite sequences of 1s; that is to say, every probability

12 As we shall see below, from any type in a lexicographic type structure we
can derive a corresponding coherent hierarchy with the property of all orders of
beliefs being of the same length. In Section 6.5, we will compare the notion of
coherence in Definition 1 with the alternative notion due to Lee ([35]).
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measure of the LPS f; (h;) € N (S_; x H®,) assigns probability 1
to E.'* Common Full Belief of coherence is imposed by defining
inductively, for each ¢ € I, the following sets:

H* = {hie H'|fi(h) (S x HY) =1}, 1>1,
H’i - OZZ]_Hil.

The set Il;c; H; is naturally interpreted as the set of players’ hierar-
chies such that each player fully believes that the other player’s hi-
erarchy is coherent, fully believes that the other player fully believes
that his hierarchy is coherent, and so on. The following Proposition
shows that a homeomorphism result, analogous to the one provided
by Proposition 1, also holds for each space of hierarchies H;.

Proposition 2 The restriction of f; to H; induces a homeomor-
phism f, from H; onto N (S_; x H_;).

Hereafter, we shall refer to the set H = IlI;c;H; as the canonical
hierarchic space.

We conclude this section with a few remarks concerning the topo-
logical structure of the canonical hierarchic spaces H. First note that
H is a Lusin space; in particular, H is Polish provided each space .S;
is Polish. Note however that H is not compact, even if the underlying
spaces of primitive uncertainty are compact (e.g., finite, as we shall

BFor a preference-based characterization of the notion of Full Belief, see Ap-
pendix A. Full Belief coincides with what Asheim and Sgvik [2] call "certain
belief". BFK put forward a notion of "belief" which coincides with Full Be-
lief under the additional assumption that the LPS (actually, an LCPS) is of
full-support ([17, Proposition A.1]).
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assume in Section 5). To see this, observe that M (X)) is compact if
X is compact, and this in turn implies that the space N, (X) is also
compact for some finite n € N. But the same conclusion does not
hold for the space N (X)."* By contrast, the canonical hierarchic
spaces of both standard beliefs and conditional beliefs turn out the
be compact metrizable if each space S; is compact metrizable.

3.3 Lexicographic type structures

The following definition is a natural generalization of the standard
definition of epistemic type structures with beliefs represented by
probability measures, i.e., length-1 LPS (cf. [31]).

Definition 2 An (S;),.,-based lexicographic type structure is a
structure T = (S;, T;, B;)ic1, where

1. for each i € I, T} is a Lusin space;

2. for each i € I, the function B; : T; — N (S_; x T_;) is mea-
surable.

We call each space T; type space and we call each 3; belief
map.'> Members of type spaces, viz. t; € T;, are called types. Say
t; € T; is a mutually singular type if 5, (t;) € L(S_; x T_;). Say

!This is an instance of a well-known mathematical fact (see [26, Theorem
2.2.3]): If (Xp)yeg is an indexed family of non-empty compact spaces |Xg| > 1
for all 8 € O, then the direct sum Ugecg Xy is compact if and only if the right-
directed set © is finite.

15Observe that some authors ([4], [31]) use the terminology "type space" for
what is called "type structure" here.
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t; € T; is a full-support type if 5,(t;) € N*(S_; x T_;). FEach
element (s;,t;),c; € S X T is called state (of the world).

A lexicographic type structure—or type structure, for short—
formalizes Harsanyi’s implicit approach to model hierarchies of be-
liefs. But clearly the canonical hierarchic space H = Il;c;H; gives
rise to an (.5;),.,~based type structure 7,, = (S;, T3, 3;)ie1, by setting
T; = H; and 8; = f, for each i € I. Hereafter, we shall refer to
T. = (Si, H;, f,)icr as the canonical (lexicographic) type struc-
ture.

The formalism of lexicographic type strucures was first intro-
duced by BFK ([17, Section 7]) under the additional requirement
that each belief is represented by an LCPS. In what follows, we will
say that a type structure 7 = (S;, T}, 5,)ies is an LCPS type struc-
ture if the range of each belief map 5, is contained in £ (S_; x T_;).

Definition 3 An (S5;),.,-based lexicographic type structure T = (S;, T;, B;)icr
18

finate if the cardinality of each type space T; is finite;

compact if each type space T; is compact;

belief-complete if each belief map [, is onto;

continuous if each belief map [, is continuous.

Analogous definitions hold if T = (S;,T;, 3,)icr s an LCPS type
structure.
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The idea of belief-completeness was introduced by Brandenburger
[14] and adapted to the present context. Note that each type space
in a belief-complete type structure has the cardinality of the contin-
uum. The structure 7, is a particular instance of a belief-complete
and continuous type structure. But there exist also belief-complete
and continuous type structures which are different from 7,,.' While
finite type structures are trivially compact and continuous (but not
belief-complete), the argument given at the end of the previous sec-
tion shows that a belief-complete, compact and continuous lexico-
graphic type structure cannot exist in the current framework.

3.4 From types to belief hierarchies

A type structure provides an implicit representation about players’
uncertainty, in the sense that it does not describe hierarchies of be-
liefs directly. In this Section we show that it is possible to associate
with the subjective belief of each type an explicit hierarchy of beliefs.
To accomplish this task, we fix a given (S;),.,-based type structure
T = (S;, T}, B,)icr, and we define, for each player i € I, a hierarchy
description map d; : T; — H? associating with each ¢; € T; a cor-
responding hierarchy of LPS’s. Each hierarchy description map is
defined inductively (cf. [4]):

16 A simple but elegant argument was first used by BFK ([17, Proposition

7.2]) to state the existence of a belief-complete type structure 7 = (S;, T}, 8, )icr
where each type space is Polish and each S; is a finite, discrete space. Such an
argument can be easily adapted to our framework as follows. Every Lusin space
is analytic, so it is the image of the Baire space N under a continuous map ([22,
Corollary 8.2.8]; see also [32, p. 85])). For given spaces of primitive uncertainty
(Si)iel’ let T; = NN, for each ¢ € I. The above result implies the existence of
continuous belief maps j3; from 7; onto N (S_; x T_;). These maps give us a
belief-complete lexicographic type structure.
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e (base step: k = 1) For each i € I and t; € T;, define the
first-order hierarchy description map d} : T; — N (S_;) by

d; (t;) = matgs_, (B; (ti)) -
For each i € I, define ¢*; : S_; x T_; — X} = S_; x N (S;) by

z/flfz = (IdSﬂ'a dlfz) :

e (inductive step: k+1, k > 1) Suppose we have already defined,
for each i € I, the functions df : T; — N (Xik’l) and ¥*;
S xT; — XF = X' x N(X5). For each i € I and
t; € T;, define df“ Ty — N (sz) by

k

Ay () = 7, (B; (1) 5
the map ¢* . S_; x T_; — X! is defined by
wk—&'-l — (¢k dk—&'-l)

so that Y"1! = (Idg_,,d, ..., d*,, d"1").

For each i € I, the hierarchy description map d; : T; — H) is
defined as d; (t;) = (d} (¢;),d? (t;),...), t; € Ty; the map ©_; : S_; X
T,—S_;x HEZ. is defined in a natural way as ¢_, = (Idgﬂ., d,i).

In [20], it is shown that each d; is a measurable function, and it
is continuous if each belief map is continuous. An analogous con-

—

clusion holds for the map @/ZLZ- = (Idg_i,d_,-) N (S xT) —
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3.5 Type morphisms and universality

In what follows, given a type structure 7 = (S;, T}, 3,)icr, we denote
by T the Cartesian product of type spaces, that is, T = Il;c;T;.

Definition 4 Let T = (S;,T;, B,)ic;r and T' = (S;, T}, B.)ic1 be two
(Si);c;-based lexicographic type structures. For each i € I, let ; :
T; — T! be a measurable map such that

—

B; oY = (Ids—iJ 90—7,) © 61

Then the function (p;);c; : T — T" is called type morphism (from
7T toT').

The morphism is called type isomorphism if the map (¢;);c;
is a Borel isomorphism. Say T and T’ are isomorphic if there is
a type isomorphism between them.

The notion of type morphism captures the idea that a type struc-
ture 7 is "contained in" another type structure 7’ if 7 can be
mapped into 7’ in a way that preserves the beliefs associated with
types. Condition (2) in the definition of type morphism expresses
consistency between the function ¢, : T; — T and the induced func-

tion (Idg/ﬂ;,i) N (S xT,) — /\/’(S_i X TLZ-). That is, the

following diagram commutes:
T; LN N(S_i x T-)
l% l (1ds o) (3.3)

Bi

T —— N(S,Z X TLZ)

(2
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The notion of type morphism does not make any reference to hier-
archies of LPS’s. But, as one should expect, the important property
of type morphisms is that they preserve the explicit description of
lexicographic belief hierarchies.

Proposition 3 Let T = (S;,T;, 8,)icr and T' = (S;, T}, 3)icr be
two (S;);c;-based lexicographic type structures. If (p;),c; : T — T"
is a type morphism from T to T', then d; (t;) = d; (¢, (t;)) for each
teT,icl.

Proposition 3 clarifies the sense in which a type structure 7 can
be regarded as "substructure" of 7’. In words, Proposition 3 states
that if 7 can be mapped into 7’ via type morphism, then every
(Si);c;-based belief hierarchy that is generated by some type in 7 is
also generated by its image in 7”. Heifetz and Samet [31, Proposition
5.1] provide the above result for the case of standard type structures.
Proposition 3 is indeed a straightforward generalization of Heifetz
and Samet’s result, and its proof relies on standard arguments.'”

We now ask: Is there a type structure into which any other type
structure can be mapped? Alternatively put, since a type structure
generates hierarchies of LPS’s, does there exist a type structure that
generates all hierarchies of beliefs? A type structure satisfying this
requirement is called universal.

17The statement of Proposition 3 can be rephrased by saying that every type
morphism is also a hierarchy morphism, i.e., a map between type structures
which preserves the hierarchies of beliefs associated with types. See [29] for a
general analysis on the relationship between hirerarchy and type morphisms.
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Definition 5 An (S;),.;-based type structure T' = (S;,T!, B})icr is
universal if for every other (S;),c;-based type structure T = (S;, T;, B;)ic1
there is a unique type morphism from T' to T .'8

Not surprisingly (and in line with standard results on hierarchies
of beliefs—cf. [38],[4]), the canonical type structure 7, turns out to
be universal, as stated in the following

Theorem 1 Let T = (S;,T;, 3;)icr be an arbitrary (S;),.,-based lex-
icographic type structure, and, for eachi € I, let d; : T; — HY be the
hierarchy description map. Then, for each i € I,

2. (d;);c; 1s the unique type morphism from T to T, = (S;, H;, fier

Thus 7, is a universal lexicographic type structure, and it is
unique up to type isomorphism.

Note that, since any two universal type structures are isomorphic,
and 7, is belief-complete, as immediate consequence of Theorem 1
we get:

Corollary 1 FEvery universal type structure is belief-complete.

The reverse implication of Corollary 1 does not hold, i.e., a belief-
complete type structure is not necessarily universal. We will see

(Section 6.3) that this has an implication for the epistemic analysis
of IA.

18Within the framework of category theory, (Si);e-based type structures for
player set I, as objects, and type morphisms, as morphisms, form a category. The
"universal type structure" is a terminal object in the category of type structures.
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4 Cautiousness, Assumption and Iter-
ated Admissibility

4.1 Iterated Admissibility

Consider a finite game G = (I, (S;, u;)ic1), where I is a two-player
set and, for every ¢ € I, S; is the set of strategies with |S;| > 2
and u; : S — R is the payoff function. Each strategy set .5; is given
the obvious topology, i.e., the discrete topology. Define the expected
payoff function 7; by extending u; on M(S;) x M(S_;) in the usual
way:

mi(onos) = Y oils)oi(s_i)uilsi, ;).

(si,s_i)GSi XS_;

The notion of admissible strategy is standard.

Definition 6 Fix a set X; x X_; C S; x S_;. A strategy s; € 5;
1s admassible with respect to X; x X_; if and only if there exists
o_; € M(S_;) such that Suppo_; = X _; and w;(s;,0_;) > mi(s), 0_;)
for every s € X;. If strategy s; € S; is admissible with respect to
S; x S_;, we simply say that s; is admissible.

Remark 1 Fix a set X; x X_; C S; x S_;. A strateqy s; € S;
is weakly dominated with respect to X; x X_; if there exists
o; € M(S;) with 0; (X;) = 1 such that w;(0;,5_;) > mi(8i,5-4) for
every s_; € X_; and m;(0;,8" ;) > mi(si,s,;) for some s, € X_;.
A standard result ([40, Lemma 4]) states that a strategy s; € S; is
not weakly dominated with respect to X; x X_; if and only if it is
admissible with respect to X; X X_;.
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The set of iteratively admissible strategies (henceforth IA set) is
defined inductively.

Definition 7 For each i € I, set S? = S; and for every m € N, let
S be the set of all s; € S"~' which are admissible w.r.to S"~' x
S™=1 A strategy s; € S™ is called m-admissible. A strategy s; €

S0 =N00_ S 1s called iteratively admissible.

Note that S/ O S"*! #£ ) for all m € N. Moreover, since each
strategy set S; is finite, there exists M € N such that [],., S =
[T.c; SM. Consequently, the IA set [],.; S5 is non-empty.

4.2 Rationality and Cautiousness

For any two vectors z = (), ,y = (y1)~, € R", we write z >, y
if either (1) z; = y; for every | < n, or (2) there exists m < n such
that z,, > v, and x; = y; for every | < m. Append to the game G
a type structure 7 = (S;, T}, B, )icr-

Definition 8 . A strategy s; € S; is optimal under (,(t;) =
(ks oo 1) € N(S—i x Ty) if

(mi(si, margg_ ), >p (milsi, margs_ 1)), , Vs; € Si.

We say that s; is a lexicographic best reply to margg [3;(t;) on
S_; if it is optimal under B,(t;).
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Definition 9 A type t; € T; is cautious (in T ) if margg (,(t;) €
NT(5-).

Thus, for strategy-type pairs we define the following notions.

Definition 10 Fiz a strategy-type pair (s;,t;) € S; x T;.
1. Say (s;,t;) is rational (in T ) if s; is optimal under f3; (t;).

2. Say (s;,t;) is cautiously rational (in T ) if it is rational
and t; is cautious. Let R{ be the set of all cautiously ratio-
nal (s;,t;) € S; x T;.

3. Say (s;,t;) is open-minded rational (in T ) if it is rational
and 52 (tz) e Nt (S,l X T,l)

Open-minded Rationality is the notion of rationality employed
by BFK, Dekel et al. [25], and Yang [44], and it includes a full-
support requirement on types. BFK show ([17, Lemma 7.2]) that
if a strategy-type pair (s;,t;) is open-minded rational, then s; is
admissibile. The following result states that an analogous conclusion
holds for the weaker notion of Cautious Rationality.

Proposition 4 If strategy-type pair (s;,t;) € S; x T; is cautiously
rational, then s; 1s admissible.

Proof: By definition, if (s;,t;) € R¢, then s; is a lexicographic
best reply to TATE,_f,(ts) € A (S_:), where f,(t) = (... i) €
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N(S_; x T_;). By [10, Proposition 1], to every margg (1, ..., pk) e
N7 (S5_;) there corresponds a probability measure v; € M (S_;),
with Suppr; = S_;, such that m;(s;,v;) > m;(s, v;) for every s, € S;.
[ |

Furthermore, Cautious Rationality has a convenient invariance
property under type morphisms between type structures. The fol-
lowing results state this formally.

Lemma 1 Let T = (S;,T;,B,;)icr and T* = (S;, T, 57 )icr be lex-

1cographic type structures, such that there exists a type morphism
(©i)ier 2 T — T from T to T*. Fizx a type t; € T;. Thus

(i) margs B (t) € N (S-,) if and only if TaTEs B (¢, (1)) €
NT (5.

(ii) A strategy-type pair (s;,t;) is rational in T if and only if (s;, p; (t;))
is rational in T*.

Proof: Part (i): Let O be a non-empty, open subset of S_;. Fix a
type t; € T;, and let 3, (t;) = (51 (i), .y B (tz)) be the associated

)

LPS. If margg_ 3, (t;) € Nt (S_;), then there is I < n such that

BL(t;) (O x T_;) > 0. It follows from the definition of type morphism
that margg 3 (¢; (t:) € N (S-;), since

(B (1)) (0 x T2) = BL(t) (s 0-) " (0% T2))
= Bi(t:)(0OxT) >0

An analogous argument shows that the reverse implication is also
true.
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Part (ii): Pick an arbitrary ¢; € T;. It is enough to show that

margg . 3; (t;) = margg .37 (¢; (ti)) -

But this follows from the fact that a type morphism preserves first-
order beliefs (Proposition 3). Hence (s;,t;) is rational in 7 if and
only (s;,p; (t;)) is rational in 7%, as required. W

Corollary 2 A strategy-type pair (s;,t;) is cautiously rational in T
if and only (s;,¢; (t;)) is cautiously rational in T*.

Note that an analogous invariance property does mot hold for
Open-minded Rationality. Consider for instance a finite type struc-
ture 7 and the canonical type structure 7,,.'* For any full-support
type t; in 7, the corresponding type d; (¢;) has finite support too, so
it cannot be a full support type in 7,,. Thus, open-mindedness does
not represent a condition on the hierarchy of beliefs, whereas cau-
tiousness captures full-support of first-order beliefs. Moreover, open-
mindedness depends crucially on the topology of the type spaces. As
a consequence, the invariance does not hold even when the two type
structures are isomorphic (but not homeomorphic). The following
example elaborates on this point further.

Example 1 Let T = (S;,T;,8,)ic1 be a symmetric type structure
in which T; = QN [0,1]. The set QN [0,1] is endowed with the
relative topology inherited from the Fuclidean topology on [0, 1], and

19 As is shown in [20], a full-support type in 7, corresponds to a full-support
hierarchy, i.e., a hierarchy with the property of all orders of beliefs being of
full-support.
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this makes each T; a Lusin space, but not Polish. We can construct
an isomorphic type structure T* = (S;, T, 57 )ier as follows. Let
Tr = QnN0,1] be given the discrete topology, so that T} becomes a
Polish space. So, T; and T} are Borel isomorphic (they originate the
same Borel o-field, namely the power set), but not homeomorphic.
For eachi €I, let v, :T; — Tlibithe identity map. Moreover, each
belief map 37 satisfies 57 = (Ids,, ¢;) 0 B;0 (p;)~". It is easy to check
that (@;),e; 5 a type isomorphism. Fiz t; € T; such that 8, (t;) €
NI (52 x T;) and B; (t;) ({(s2;,0) }) = 0 for some s"; € S_;. The
set {(s";,0)} is closed in T;, but (cl)open in Tj. It turns out that
Bi (p; (1) ({(s;,0)}) = 0, hence ¢, (t;) € T is not a full-support
type.

4.3 Assumption

In this Section, we introduce our notion of Assumption, which is
given a preference-based treatment in Appendix A. Here, for its op-
erational convenience, we state the definition of Assumption in terms
of LPS’s.

Definition 11 Fiz a type structure T = (S;,T;, B;)icr and a non-
empty event E C S_;xT_;. Fizalsot; € T; with 3, (t;) = (u*, ..., u").
We say that E is assumed under (,(t;) at level m < n if the
following conditions hold:

(i) pH(E)=1 foralll <m;

(ii) for every elementary cylinder C = {s_;} x T_;, if ENC # ()
then pk (ENC) >0 for some k < m.
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We say that E is assumed under 3, (t;) if it is assumed under
B, (t;) at some level m < n.
We say that t; € T; assumes E if E is assumed under 3, (t;).

The notion of Assumption captures the idea that event E and
its payoff-relevant components, viz. E N C # (), are infinitely more
likely than not-£. Condition (i) in Definition 11 simply states that
the player is (almost fully) confident in £. That is, the player thinks
that E is infinitely more likely to occur than not-E. Condition (ii)
adds a cautious attitude towards the event. That is, the player
entertains the hypothesis that every payoff-relevant implication of
FE' is infinitely more likely to occur than not-E. This is the same
attitude that cautiousness reflects towards the whole space S_; xT"_;;
note, indeed, that a type t; € T; is cautious if and only if #; assumes
S_; x T_; (cf. Remark A.1 in Appendix A).

Both attitudes can be properly formalized with the same preference-
based notion of "infinitely more likely than". The notion of "infi-
nitely more likely than" we adopt in this paper is (strictly) weaker
than the one in Blume et al. [9], and it allows to keep the two
different attitudes separated. Moreover, it is monotone and can be
intuitively interpreted in terms of bets. Finally, it features other
desirable properties, also in absence of mutual singularity and in
presence of significant Savage-null events. We compare our approach
with the one based on [9] in Appendix A.

We now discuss some important properties of Assumption.

Lemma 2 Fiz a type structure T = (S;,T;, 5,)icr. For type t; € T;,
let 8; (i) = H;-
1. If E and F are non-empty events in S_; x T_; which are as-

sumed under [i; at level m, then Projg  (E) = Projg  (F).
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If E and F are assumed under [i;, then either Projg (E) C
Projg . (F) or Projg . (F) C Projg . (E).

2. Fix non-empty events E1, F,... in S_; x T_;. Suppose that,
for each k, Ej is assumed under ;. Thus NiEy and UpEy are
assumed under ;.

Assumption satisfies one direction of conjunction as well as one
direction of disjunction (Lemma 2.2). The failure of the other di-
rection of conjunction reveals that, although the "infinitely more
likely than" relation is monotone (cf. Property P2 in Appendix A),
Assumption fails to satisfy monotonicity. That is, if E is assumed
under 71;, the same conclusion need not follow for an event F' satis-
fying £ C F'. The reason why this can occur is that, if £ C F, there
may be some payoff-relevant components of F'\ F which are not
deemed infinitely more likely than not-£.2° This can be illustrated
by the following simple example.

Example 2 Let S_; = {s! } and T_;

_Z,S_Z, >, t*}. Consider
S_
(s

—1

Cx 1) with i (L) }) — 1
?L *, = % Consider the events

the LPS T, = (ui, 1) € N

(
and p? ({(s%;,t7;)}) = 12 ({

20

So, in our version of Assumption, non-monotonicity hinges only on the "cau-
tious attitude" towards the event (namely, Condition (ii) of Definition 11). In
a related vein, the notion of Strong Belief ([5]) shares with Assumption a sim-
ilar feature. Indeed, Strong Belief is based on a monotone likelihood relation
between uncertain events (conditional probability-one belief), but it does not
satisfy monotonicity (cf. [5, Section 3.2]; we thank Pierpaolo Battigalli for this
observation). By contrast, in BFK’s version of Assumption, non-monotonicity is
also a consequence of a non-monotonicity property of the "infinitely more likely
than" relation of Blume et al. [9] (see Appendix A, Proposition A.3).
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E={s',}xT_; and F = {s*,,s*,} xT_;. Clearly, E C F; however,

E is assumed under 1, at le_vel 1, while F' is not assumed (indeed,
pi(F) = 1 and p2 (F) = L, and, with m = 1, Condition (ii) of

27

Definition 11 is not satisfied for C = {32_1} xT_;).

For each player i € I, let A; : Xg_.x7 , — YXg,«x1, be the operator
defined by

A, (E_;) ={(si,t;) € S; x T} |t; assumes F_; }, E_; € ¥g_.x1_,.

Corollary D.1 in the Supplemental Appendix shows that the set
A; (E_;) is Borel in S; x T; for every event £_; C S_; x T_;; so
the operator A; : ¥g_.x1 , — Xg,x1, is well-defined.

The Assumption operator A; has invariance properties under
type morphisms between type structures which are analogous to the
ones of (Cautious) Rationality (cf. Lemma 1 and Corollary 2).2!

Lemma 3 Let T = (S;,T;,53;)icr and T* = (S;, T, 57 )ics be lex-
1cographic type structures such that there exists a type morphism
(0i)ier T — T* from T toT*. Let E_; € S_; x T_; and E*; C
S_; x T*, be non-empty events satisfying the following conditions:

1) (ds_,, ;) (B) C E;
2) PrOjg_i (E,Z) = PI‘OjS_i (Eiz) .

Then (Ids,, ;) (A; (E_;)) C A; (E*,).

2 We thank an anonymous referee for suggesting to us the result stated in
Lemma 3.
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Corollary 3 Let T = (S;,T;, B,)icr and T* = (S;, T, 57 )icr be iso-
morphic type structures, and let (p;),c; : T — T* be the corre-
sponding type isomorphism. Fix t; € T;. Thus t; assumes an event
E_; CS_; x T_; if and only if ¢; (t;) assumes (Ids_,,¢_;) (E_;).

Lemma 3 will play an instrumental role in the proof of our main
results (Theorem 2 and Lemma 5). The implications of Corollary 3
will be discussed extensively in Section 6.

Our notion of Assumption is weaker than, and is implied by, the
corresponding notions due to Dekel et al. [25] and, as for LCPS’s,
BFK and Yang [44]. A comparison between the notions of Assump-
tion is deferred to the Discussion Section (Section 6.2). Here, we
just stress that our version of Assumption is, in a precise sense,
"topology-free": First, differently than in BFK and [44], it does
not impose any full-support restriction on the LPS under which the
event is assumed; second, Condition (ii) in Definition 11, differently
from Condition (iii) in BFK and Dekel et al. [25] (cf. Section 6.2),
does not depend on the topology of the type spaces. As mentioned
earlier, also Cautiousness is topology-free. Therefore, all the results
in the following sections do not depend on the topology of the type
spaces.

5 Common Assumption of Cautious Ra-
tionality and the main result

We now provide an epistemic foundation of TA in "sufficiently rich"
(i.e., belief-complete) type structures. In what follows, fix a type
structure 7 = (S;, T}, 3;)ier and, for each player i € I, let R} = R¢.
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For each m > 1, define R inductively by

We write RY = S; x T; and R® = NenR™ for each ¢ € I. If
(Sisti);es € [Lies R, we say that there is Cautious Rationality
and mth-order Assumption of Cautious Rationality (R°mAR®)
at this state. If (s;,1;),c; € [[,c; RS°, we say that there is Cautious
Rationality and Common Assumption of Cautious Ratio-
nality (R°CARY) at this state.

Note that, for each m > 1,

Ry = R; N (Mi<mAi (RL)))

and each R!" is Borel in S; X T; (see Lemma D.5 in the Supplemental
Appendix).

By an easy induction argument, using Corollary 2 and Corollary
3, we can claim:

Remark 2 L@t T = <SZ7 ﬂ, 6i>i6] (md TI = <Sz7 71-/, 6;>i6] be (Si)iel_
based type structures such that there exists a type isomorphism (¢;),c; :
T — T from T toT'. Thus there is R°mAR* (resp. R°CAR‘) at
state (8;,t;);c; if and only if there is R°mAR® (resp. R°CAR‘) at
state (s;,0; (ti));es-

We now state the main result of this paper.

Theorem 2 Fiz a belief-complete type structure T = (S;, Ty, B;)icr-
The following statements hold:

41



(i) for each m >0, [[,c; Projs, (R{") = [L;c; SIs

(ii) of T is universal, then [],c; R # 0 and [],c, Projgs, (R°) =
[Lic, 57

The proof of Theorem 2 will make use of the following results.

Lemma 4 Fiz a playeri € 1. If s; € S;", then there exists p,, €
M(S_;) such that Suppu,, = S™ " and

ﬂ-i(si’lusi) 2 TH(S;,ILLSZ,), vs’ll € SZ

Lemma 5 Fiz the canonical type structure T, = (S;, H;, 7z>ze 1. There
exists a finite type structure T* = (S;, T}, B7),c; such that, for each
1 € I and each m > 1,

(i) Projg, (R;™) = S*,

(i) (Ids;, d;) (R;"™) € R}

For a proof of Lemma 4, see [17, Lemma E.1]. The proof of
Lemma 5 is delegated to the next section.

Proof of Theorem 2: Part (i): For m = 0 the statement is
immediate. We show by induction that the statement holds for m >
1. One direction of the proof makes use of a selection argument;
that is, for each 7 € I and each m > 0, there are maps p}" : S; — T;
such that the maps (Idg,, pi") : S; — S; x T; satisfy (Idg,, pi"*) (s;) =
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(55, 7" (55)) € R\ R™™ provided s; € S!.22 (Of course, each map
pi* is continuous, since strategy sets are endowed with the discrete
topology.) To this end, we first define, for each i € I, the map
pY : S; — T; as follows: fix some t) € T; such that margg 3, () ¢
NT(S_;) (such #? exists by belief-completeness), and let p{ (s;) = t?
for all s; € S;. It follows that (s;, 0} (s;)) € RY \ R} # ( for all
s; € S;, because p? (s;) € T; is not cautious.

(m =1) Fix i € I. Let s; € Projg, (R}), so that (s;,¢;) € R} for
some t; € T;. By Proposition 4, s; is admissible, i.e., s; € S}. This
shows that Projg, (R;) C ;.

Conversely, let s; € S}. So there is a probability measure p; €
M (S_;), with Suppu; = S_;, such that s; is a (lexicographic) best
reply to ul. Let ¢+ : S_; — S_; x T_; be the function defined by
v(s—i) = (s—i % (523)), s—i € S_;, where p°; : S_; — T_; is the
(constant) function we previously defined. The map ¢ is continuous
and is such that ¢(s_;) € R°,\ R, for all s_; € S_;. Hence the
pushforward measure 7 (y}) E M (S, x T_;) is well-defined, and
satisfies 7 (p}) (RL;) = 0; moreover margg 7 (ui) = pui € N7 (5-;).
By behef—completeness there is 1 € T; such that 3; (¢! ) =7 (1)
Clearly, (s;,t.) € R}'\R?, and this shows that S C Projg (R} \ R?),
and so S} C Projsi (R}).

By arbitrariness of ¢ € I, it follows that [, ; Projg, (R}) =
[Lc Si 1. We can conclude the proof of the basis step by defining
a profile of continuous maps (p; : S; — T;),.; as follows: for each
iel,

1 B th if s; € S},
pi(s:) = { P2 (s;), if s; € S;\ Sk

*2This implies that each map (Idg,, pJ") satisfies Projg o(Idg,, p*) = Idg,. Put
differently, (Idg,, pf*) is a continuous selection of the correspondence Projg,1 :
Si N ZR;VL\R;71+1. *
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It turns out that (s;, p} (s;)) € R} \ R? whenever s; € S}, as required.

(m > 2) Suppose that the statement has been shown to hold for
all [ = 1,...,m — 1, and that, for each i € I and | < m — 1, we
have shown the existence of continuous maps pl : S; — T; satisfying
(si, P4 (s;)) € RL\ RI*! for all s; € S!. We show that the statement
is true for [ = m.

Fix a player ¢ € I, and let s; € Projg, (R}"), so that (s;,t;) € R}"
for some t; € T;. Tt follows from the definition of R!" that (s;,t;) €
R™ ! so, by the induction hypothesis, s; € S™. Also, R™ ' is
assumed under 3; (t;) = (u}, ..., u?*) at some level k < n, hence

UlSkSuppmargsii,ué = Projg_. (RTZ-_l) = STi_l,

where the first equality follows from Lemma B.2 and the second
equality follows from the induction hypothesis. So we can form
a nested convex combination of the measures margg pui, for | =
1,...,k, to get a probability measure v; € M (S_;), with Suppr; =
S™=1 such that s; is a best reply to v; (see [10, Proposition 1]).
Thus, s; is admissible w.r.to S; x ™!, and a fortiori w.r.to S/ * x
S™~'. Hence Projg, (R") C S

Conversely, let s; € S/". By Lemma 4, it follows that, for all
I =1,..,m, there is v} € M(S_;), with Suppr} = S"*, for which s;
is a best reply among all strategies in .S;. We now show the existence
of an LPS 1, = (uf, ..., u") € N'(S_; x T_;) such that

(a) margg p! = v for each | = 1,...,m; and

(b) R™" is assumed under 7; at level [ for each I = 1,...,m — 1,
while R, is not assumed.

To this end, we use the fact that we have already shown the ex-
istence of functions pY (-),...,0{" ' (+) (induction hypothesis) for each

i € I. We construct probability measures ul € M(S_; x T_;) as
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follows:

ph = (Ids_,, p™ ") (v, Ve {1, ...,m}.

(2

Let @, € N (S_; xT_;) be the concatenation of those measures,
ie., 1, = (ui,...,u). Tt readily follows that 7z; satisfies property
(a), since Projg o (Ids ,,p™ ") = Ids , for all [ € {1,...,m}. We
now show that also property (b) holds. Using the properties of the
functions p™; ' (-) specified above, we get that, for all € {1,...,m},

pb (R Rty = i <(Ids_i,p7f[l)_1 (R™\ RT;—I—Z)) =yl (gmel) =,
(5.1)
Specifically, for [ = 1 this yields

Mz‘l (RTi_l\RTi) = 1,
Wl (Rm) = o,

hence condition (i) of Assumption is satisfied for R™ ', while R™
cannot be assumed under 7z;. Moreover, note that

Suppmargsii,uil = Suppr]* = 5™ L.

By the induction hypothesis, S™* = Proj SﬂR;”_l, hence Condition
(ii)” of Lemma B.2 holds. Analogous arguments show that all the
conditions of Assumption are satisfied for R™" at level [ for each
[ =2,...,m— 1. This shows that property (b) is satisfied.?*

l—i)le{l ..... m}

ing, then Eq. (5.1) yields p! (R™;') = 0 for all | € {2,...,m}, and this shows
that condition (iii) of BFK-Assumption (see Definition 12 below) is satisfied for
R™7L.

23Moreover, since the sets (R are monotonically (weakly) decreas-
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It now follows from belief-completeness that there is 7" € T; such
that S, (t;”) = (pf, ..., u™); this implies (si,tgj) € R™\ R, hence
s; € Projg (R™\ R"™"), and a fortiori s; € Projg (R").

By arbitrariness of ¢ € I, it follows that [, , Projs (Rj") =
[L;c; S To conclude the proof of the inductive step, it remains to
define a profile of continuous maps (pI" : S; — 1) This is done
by letting, for each ¢ € I,

1€l

m (S) . tg?, if s; € Szm,
Pi Yo p?(sz), lfSZESZ\SZﬂ

Clearly, each map p"* : S; — T; satisfies (s;, p7* (s;)) € R™\ Rt
whenever s; € SI™.

Part (ii): We can assume, without loss of generality, that 7°
is the canonical type structure (Corollary 1). Then, by Lemma 5,
there exists a finite type structure 7* = (S;, T}, ;),; such that, for
each ¢ € [ and each m > 1,

(a) Projg, (R™) = S

(b) (Ids,, di) (R;"™) € R

Since (R;™)men is a weakly decreasing sequence of finite sets,

there exists N € N such that R = R"®. So, it follows from
(a) that Projg (R;™) = S°. Then, for every s; € S{°, there ex-
ists t; € T; such that (s;,t;) € R for all m € N. It thus fol-
lows from (b) that (Idg,,d;) ((s;,t;)) € R™ for all m € N. Hence
(Idg,,d;) ((sit:)) € R;°. Consequently S7° C Projg (R®) # 0. By
Part (i) of the theorem, Projg. (R°) C S7°. The conclusion follows.
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5.1 Construction of the finite type structure 7*
and the proof of Lemma 5

Let M be the smallest natural number such that [ [, ; 52 = [[,c; S¥.
By Lemma 4, it follows that, for every n € {1,.... M + 1} and s; €

S, there exists . € M(S_;) such that Suppy?” = S";' and

We use this result to construct a finite type structure 7* = (S;, T, 57
as follows.

For eachi € [ and k € {0,1,..., M + 1}, define sets T as follows:
TF = S x {k};

in other words, each T is a homeomorphic copy of S¥, but all the

TFs are pairwise disjoint sets. In particular, note that, since SM =

SM+1 then both TM and T ** are homeomorphic copies of S}.
For each ¢ € I, type spaces T} are defined by

= U T

3 7
ke{0,1,...,M+1}

In what follows, we will denote a type t; € T by (s;, k).

Next, for each i € I, belief maps 3; : T; — N(S_; x T*))
are defined by an inductive procedure which specifies, for all k €
{0,1,..., M + 1}, the properties of the LPS’s associated with each

(SZ', ]f) € T'Zk

(k=0) Foreachi e I and s; € S, let 37((s;,0)) be any probability
measure on S_; x 1™, such that

Suppmargg_ 3 ((s:,0)) # S_i.
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(k=1) Foreachi € I and s; € S}, let 37 ((s;,1)) be any probability
measure v, on S_; x T*; such that

vy, ({(s-i, (525, 00)}) = ps, ({5-3}) , Vi € S,
which implies v/} (S, x TY. ) 1.

(1 <k < M) Suppose we have already defined, for each i € I and

si € SF7! the LPS B ((si, k — 1)) € Ny_1(S_i x T*;). Thus,
for each i E I and s; € SF, deﬁne Bi((si k) € Np(S—i x T*,)
by

6:((82" k)) = (V];_, 6?((3l’ k — 1))) ’
where 1% € M(S_; x T*,) satisfies

vi ({(s2i, (s k= 1))}) = ps, ({s—}), Vs € S5,
sotha,tu (S, ><Tk 1) =1.

(k=M +1) Foreachi € [ ands; € SM = SM*! define 87 ((s;, M + 1)) €
N (S—i x T%;) by

B;‘k((siv M + 1)) = (VQ,{—Ha ﬁ:((sw M))) )
where v € M(S_; x T*,) satisfies
v P ({(smi (s M+ 1))}) = g ({s4}) , Vs € ST

Si

so that v/ (S_; x TM*) = 1.

Observe that for all k € {1,..., M + 1}:
o B((si, k) = (vF, Vi1 L vl);
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[
e margg V. = [ig;

° Suppylgi CS;x T’I_“i_1 for k < M 4+ 1 and Suppué\f_“rl C S, X
TM+1.

e for every t; € TF, 3i(t;) is a length-k LPS, and for every t; €

(2

TP, B:(t;) is a length-1 LPS.

)

For each ¢ € I, define the following sets:

Agigrr = {(si,ti) € S x T} |t; = (si, k)}, Yk € {0, ..., M},
AS.MXT,M'*‘1 = {(Siati) € 5; X Tﬂtz = (SZ',M + 1)}

That is, each set Agk,px is homeomorphic to the diagonal of S¥ x
Sk;24 thus, each measure of an LPS 5} ((s;, k)) = (v, v5=1 L vl)
is concentrated on those "diagonal" sets, namely

Suppufi = Age1, o1, Ve € {1, ..., M},

Suppyé\frl = Agu gyt
The remainder of this Section is devoted to show that 7* satisfies
the requirements of Lemma 5. To this end, we first record, for future

reference, two properties of the type structure 7*.

?4The diagonal of S¥ x S¥ is the set
{(si,s;) € SFx SFs; =5 },

which is homeomorphic to Agr,+ under the coordinate projection Projgr, g :
Agr i — SF x SE. Furthermore, the diagonal of S¥ x S¥ is homeomorphic to
Sk,
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Claim 1 For all k € {1,..., M + 1}, each type (s;, k) € TF is cau-
tious.

Proof: For all k € {1,..., M + 1}, each type (s;, k) € TF is associ-
ated with the LPS 5} ((s;, k)) = (/% , 571, ., vl), with v}, satisfying

S;7 7 84

Suppmargg v, = Suppy, = S_i.

The following property of 7* is not crucial for the proof of the
main result; however, it shows that such finite type structure can
be used to characterize IA under stronger notions of Assumption.
Specifically, Assumption could be strenghtened with Condition (iii)
in the definition of "BFK-Assumption" for LCPS—see Section 6.2,
Definition 12.

Claim 2 The type structure T* is an LCPS type structure. Further-
more, for eacht; € TF, the induced hierarchy d; (t;) = (d} (t;),d? (t;) , ...
15 such that

d¥ (t;) € L(XFY), Vk > 2.

Proof: For k = 0,1, every type (s;,k) € TF is associated with a
probability measure, hence the result is trivially true. So, pick any
(si, k) € TF with k > 2. Then 3} ((s;, k)) = (v*, 571, ...,v) has the
property that Suppyii CS;x TSI for all [ < k, while Suppl/’;i C
S_; x Tk, if k = M +1, and Supprk C S_; x T*;* otherwise. Since
all the sets TF’s are pairwise disjoint, then 537 ((s;, k)) is mutually
singular.
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To prove the second statement, it is enough to show that d? (¢;) €
L(S_; x N'(S;)). This will imply d¥ (t;) € £(X}™") for all k£ > 3
(see [20]). As above, pick any (s;, k) € TF for which k > 2, and
recall that 3} ((s;, k)) = (v*, 57, .. vl). Thus

&2 (s k) = Doy (87 (50, K)))
- <1/sz (Vlsi) 71/J7i( Vg, )7 7¢ ( ))

where ¢!, = (Ids_,,d";). Let (E))F_, be Borel sets in S_; x NV (S;)
such that F; = S_; x N;*(S;) for all [ = 1,...,k. Clearly, the sets
(El) _, are pairwise disjoint. By Claim 1 and by construction, it
turns out that, for all [ =2,....k — 1,

1

DL (B = o ((m L) T (8L N (51)
_— (S % Ti- 1)
= 17
where the last equality follows from the fact that Suppyi,i CS;x
T"'. An analogous argument for | = k shows that zZl (VE) (Bp) =
1if k < M, while Z&l_l (vM+1) (Ears1) = 1. To complete the proof,

observe that Zbl_l (VL) (S=ix (N (S;) \WT (S5;))) = 1 because v} (S—; x T?;) =
1 and types in T are not cautious. This shows that d2( i) €
L(S_i x N (S;)), as required. [

The following result establishes the main properties of the sets
of states (i.e., strategy-type profiles) (s;,t;);,c; € S x T* consistent
with R°mAR°.

Claim 3 Fix the type structure T7*. For each player i € I, the
following properties hold:
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1. for allk € {1,..., M},
Fil(se k) (RF) =0, s Sk

2. forallk € {0,1,..., M},

*,k *,k+1 |
AS}fo C RyN\R; ’

* M+1 |
3. ASZMXT.M“ - Rl s

4. forall1 > 1, RPMT = RPMH

The proof of Claim 3, although simple, is provided in Appendix
B because some of the details are rather tedious. Here, we just re-

mark that, in parts 2-3 of Claim 3, the sets (AskxTﬁ) and
10 ) k=0,..,M

Agu  pv+1 are included in, but not necessarily equal to, (Rf ’k\Rf’kH)
and R MH respectively. The following is an example in which strict
inclusion occurs. Suppose there are distinct s;, s; € S} such that the
measures ) and pl,—which exist by Lemma 4—satisfy p) = pul.
Then, clearly (s;, (s},1)) € RN R, but (s;, (s,1)) & Agiypr.

We now show that R°CARS holds in 7%, and epistemically justi-
fies the TA set.

Claim 4 Fix the type structure T*. Thus, for each player i € I, the
following statements hold true:

(1) for each k > 0, Projg, (R;‘k> = Sk;

52

k=0,...



(2) Projg, (RP™) = S

1 7

(3) foreachk € {0,1,..., M}, Projg, (R;k) = Projg, (R:k \ R:’Hl).

03 =

Proof: Part (1): The inclusion Projg, (Rik’k> C S¥ follows from the
same arguments as those in the proof of part (i) of Theorem 2. On
the other hand, it follows from Claim 3 that Agi .+ C R for all
k > 0. Hence SF C Projg, <Rfk) for all £ > 0.

Part (2): Claim 3.4 entails R"™ = Moy R = RPMT £ 0
for each i € I. So, it readily follows from part (1) that Projg, (R;™) =
SM.

Part (3): Claim 3.2 yields

Projs, (RZ”“) — S* C Projg, (R;’"k \ Rf’k“) Wk e {0,1,..., M}.
The opposite inclusion trivially holds. [J

Note that Claim 4.(3) shows that the sets (Rfk> stop shrink-
k>0

ing at step k = M + 1 (indeed, BRI = ROMH for all 1 > 1, by
Claim 3.4). By way of constrast, in a belief-complete type structure,
these sets keep shrinking forever. This can be easily seen in one
direction of the proof of part (i) of Theorem 2, in which it is shown
that R\ R"*! = () for all m > 0.2

Finally, we show that

**Moreover, it can be deduced from Theorem 2.(i) that Projg (RI") =
Projg, (R \ R™*") for all m > 0 (cf. [17, Lemma E.3]).
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Claim 5 Fiz type structure T* and the canonical type structure 7,,.
Thus, for each playeri € I,

(s, di) (Ri*) € RE, Wk > 1,

Proof: By induction on k.

(k=1) If (s;,t;) € R, then (s;,d; (t;)) € R! by Lemma 1.

(k > 2) Suppose that the statement is true for £ — 1. Let
(si,t;) € R™. So (s;,t;) € RP*™" and, by the induction hypothesis,
(si,d; (t;)) € Ri™'. So we need to show that (s;,d; (t;)) € A; (R";");
this will imply (s;,d; (t;)) € RF, as required.

Now note that

(a‘) (Idsfmd*i) <R**7k_l> - R’izla

(2

(b) Projs._. (R*,’]-e_1> = Projg , (R’Zl)-

2

Part (a) is the induction hypothesis, while part (b) follows from
Claim 4.(1) and part (i) of Theorem 2. Since (s;,t;) € A; (Rff_1>,
then Lemma 3 yields (s;, d; (;)) € A; (R¥;'). O

We can conclude this Section by providing the proof of Lemma
5.

Proof of Lemma 5: Immediate from Claim 4.(1) and Claim 5. W

6 Discussion

6.1 Weak Belief and Permissibility

A weaker concept than Assumption (and Full Belief) of an event is
that of Weak Belief. Formally, an event E is weakly believed if FE
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is "infinitely more likely than" not-E£. As shown in Appendix A,
this requires that pu!(E) = 1 for a given LPS (p',...,u"). Using
this condition on LPS’s, Brandenburger [13] introduced the solution
concept of Permissibility, and showed its equivalence to the Dekel-
Fudenberg procedure where one round of elimination of inadmissible
strategies is followed by iterated elimination of strictly dominated
strategies ([23]; see also [12], [7]).

Permissibility in finite games can be given an epistemic foun-
dation in our framework. To see this, fix a type structure 7 =
(S;, T, B;)icr- For each player i € I, one can define an operator
WB, : ¥g_,«1, — Xg,x1, as follows:

WB, (E_;) = {(si,t;) € S; x T} |t; weakly believes E_; }, E_; € ¥g_.x1_,-

Note that, differently from the Assumption operator A;, WB; is
monotone. This is so because Weak Belief in E_; does not impose
any cautious attitude toward E_;, i.e., payoff-relevant components
of E_; are not required to be "infinitely more likely than" not-E_;.
In [21], we show that the notions of Cautious Rationality and Weak
Belief can be appropriately combined to justify the choice of permis-
sible strategies in the following sense: Permissibility characterizes
the behavioral implications of Cautious Rationality and Common
Weak Belief of Cautious Rationality in a universal type structure.
This gives an analogue of Theorem 2, thus providing an affirmative
answer to a question raised by BFK ([17, p. 333]).

It should be noted that we cannot replace the notion of "infinitely
more likely than" with the one of Blume et al. [9] in the definition of
Weak Belief. As we discuss in Appendix A, the latter notion is not
monotone. As such, if the operator WB; were based on a notion of
Weak Belief in terms of the "infinitely more likely than" relation of
[9], then WB,; would not be monotone as well, hence not well suited
for an epistemic analysis of Permissibility.
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6.2 Alternative notions of Assumption: Com-
parison with Dekel et al. [25]

As mentioned earlier, the concept of Assumption was first introduced
by BFK ([17, Section 5]) for the case in which beliefs are represented
by full-support LCPS’s. The recent contribution of Dekel et al. [25]
covers the general case with unrestricted LPS’s. To facilitate the
comparison with our notion of Assumption, we record the LPS-based
definition of "BFK-Assumption" (25, Definition 3.2]).

Definition 12 Fiz a type structure T = (S;,T;, B;)icr and a non-
empty event E C S_;xT_;. Fixalsot; € T; with 3, (t;) = (u*, ..., u").
Say that E is BFK-assumed under (3, (t;) at level m < n if the
following conditions hold:

(i) pH(E)=1 foralll <m;
(ii) E C Ui Suppp!; and

(iii) for each | > m, there exists (o/l,...,aﬁn) € R™ such that, for
each Borel F' C F,

i (F) =Y ol (F).

Condition (i) and Condition (iii) of Definition 12 say that E is
"infinitely more likely than" (in the sense of [9]) not-E (see Defini-
tion A.6 and Proposition A.4 in Appendix A). If the LPS 3, (¢;) in
Definition 12 is, in fact, an LCPS (as in BFK, [18] and [44]), then
Condition (iii) is equivalent to the following condition:
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(iii)’ @' (E) =0 for all I > m.

Dekel et al. [25] also provide two weaker notions of BFK-Assumption.
The first one, called "PWD-Assumption", turns out to be equivalent
to BFK-Assumption for LCPS’s.

The second one, called "TWD-Assumption", requires that only
Conditions (i)-(ii) of Definition 12 hold. Note that, if Condition (i)
holds, then Condition (ii) is equivalent to the following condition:

(ii)’ for every openset O C S_;xT_;, if ENO # 0 then p! (ENO) >
0 for some [ < m.

Condition (ii) of our notion of Assumption (Definition 11) is
weaker than Condition (ii)’. This is so because, technically, every
elementary cylinder, viz. C' = {s_;} x T, is a (cl)open set. The
weakening of Condition (ii)’ is crucial for our main result, in partic-
ular for Theorem 2.(ii).2® Therefore, it is straightforward to show
that our notion of Assumption is weaker than all their counterparts
mentioned above.

The difference between our notion of Assumption and the other
ones is sharper in terms of preference-based foundations. We thor-
oughly discuss these aspects in Appendix A and Supplemental Ap-
pendix C. Here, we point out that we can include Condition (iii)
of Definition 12 in our definition of Assumption and obtain a new
notion with a similar preference-based foundation as in [25]. The
main result of the paper (Theorem 2) would continue to hold un-
der this stronger notion of Assumption. Sections C and E of the
Supplemental Appendix discuss the required modifications.

26 As shown by Dekel et al. [25], the negative result in BFK is retained if the
notion of BFK-Assumption is replaced by TWD-Assumption.
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6.3 Belief-completeness vs terminality

Part (i) of Theorem 2 is an analogue of Theorem 6.2 in Dekel et al.
[25]. In the Supplemental Appendix, it is shown that, for any finite
non-degenerate game, there exists an associated belief-complete type
structure 7 = (S;, T}, B;)ics in which the set of states [],.; R is
empty. The reason why this can occur is simple: While a belief-
complete type structure induces all beliefs about types, it need not
induce all possible hierarchies of beliefs.

To elaborate, fix a type structure 7 = (S;,T;, 3;)ics- Follow-
ing the terminology in [27], we say that 7 is finitely terminal
if, for each hierarchy h; = (u},u?,...) € H; there is t; € T; such
that (d} (t;),....d¥ (t;)) = (@i, ..nF) for all k € N. We say that
7T is terminal if, for each hierachy h; € H; there is t; € T; such
that d; (t;) = h;. In words, a type structure is finitely-terminal if
it induces all finite-order beliefs. When a type structure induces all
possible hierarchies of beliefs (e.g., the canonical one), the TA strate-
gies are consistent with R®°CAR® and so there is some state at which
there is R°CAR® (Theorem 2.(ii)). But, for a given belief-complete
type structure that does not induce all hierarchies of beliefs, the
same conclusion need not follow.

How do terminal type structures relate to belief-complete type
structures? In the context of ordinary probabilities (i.e., Subjective
Expected Utility preferences) Friedenberg ([27, Theorem 3.1]) shows
that a belief-complete type structure is terminal provided each type
space is compact and each belief map is continuous.?” In the lexico-

2"The reverse implication is not true: A terminal type structure need not be
belief-complete, unless the type structure is belief-non-redundant ([27, Proposi-
tion 4.1]), i.e., if distinct types induce distinct hierarchies of beliefs. This defini-
tion of belief-non-redundancy naturally extends to the case of lexicographic type
structures. Note, however, that this notion pertains to hierarchies of LPS’s, not
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graphic case, however, there is no analogue of the aforementioned
result. It is shown in [20] that a belief-complete type structure
is finitely terminal. Such result is, in some sense, tight: Belief-
completeness is insufficient to establish terminality, even though the
continuity requirement on the belief maps is met. As already re-
marked (see Section 3.3), a belief-complete, lexicographic type struc-
ture cannot be compact and continuous; as such, Friedenberg’s re-
sult (cf. [27, Theorem 3.1]) cannot be extended to the lexicographic
framework.

That said, it should be emphasized that the so-called "BFK’s im-
possibility result" ([17, Theorem 10.1] and [25, Theorem 6.3]) does
not hinge on the terminality property: As shown by Keisler and
Lee [33], BFK’s analysis of TA depends on topological features of
belief-complete type structures which are unrelated to belief hier-
archies. By contrast, our message is in line with analogous works
on other solution concepts, such as Iterated (Strict) Dominance:
Friedenberg and Keisler [28] show that, for any non-degenerate fi-
nite game, there exists an associated belief-complete, standard type
structure in which no strategy is consistent with Rationality and
Common Belief of Rationality. They also show that this arises due
to the lack of terminality of belief-complete type structures. There-
fore, our negative result is an analogue of Friedenberg and Keisler’s
result in the lexicographic framework.

necessarily to hierarchies of lexicographic preferences. Multiple LPS’s may rep-
resent the same lexicographic preference relation. See [36] for a detailed analysis
of this issue.
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6.4 Mutual singularity and comparison with BFK

The proof of part (ii) of Theorem 2 relies on showing the existence
of a finite type structure 7* = (S;, T}, 37),c; with some desirable
properties for the application of Lemma 5. The properties of 7*
stated in Claim 2 are of particular interest. In [20], we identify
a class T of lexicographic type structures, the so-called "strongly
LCPS type structures", and we show the existence of a canonical,
belief-complete and continuous LCPS type structure, viz. 7.M5 =
(Si, Ai, gi)ier, which is universal within this class. That is, every
type structure in T can be mapped into Z*° by the unique type
morphism (d;),.;, as in Theorem 1. Claim 2 establishes that 7* € T.

The following is a version of Theorem 2 for the case in which
beliefs are represented by LCPS.

Theorem 3 Fiz a finite game (I, (S;, u;)icr) and an associated belief-
complete type structure T = (S;,T;, B,)icr- The following statements
hold true:

(i) if T is an LCPS type structure, then, for eachm > 0, [[,.; Projg. (R}") =
[Lier ST

(i) zfl;[]' is isomorphic to TM®, then [[,c; R?® # 0 and [ ], Projg, (R°) =
9%,
i€l M1

Part (i) of Theorem 3 is an analogue of Theorem 9.1 in BFK,
and its proof follows from arguments similar to those in the proof
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of Theorem 2.(i).?® This result, if compared to Theorem 2.(i), may
be surprising at first glance, since it only allows the players to hold
a restricted set of LPS’s representing their beliefs. However, as it is
shown in [20], every belief-complete LCPS type structure is finitely
terminal. In other words, the type structure 7 in the statement of
Theorem 3.(i) has the same descriptive power as that of any other
belief-complete (but possibly not LCPS) type structure, as long as
finite-order epistemic conditions—such as Theorem 3.(i)—are con-
cerned.

Part (i) of Theorem 3 follows from the same proof as the one
we provided for Theorem 2.(ii), but with 7,, replaced by 7M. This
last result is our key point of difference with BFK’s negative result
([17, Theorem 10.1]).

6.5 Hierarchies of lexicographic minimal beliefs
and coherence

In this paper, we have adopted a notion of coherence for hierarchies
of LPS’s (see Definition 1) which is weaker than the one in the recent
work by Lee [35]. The starting point in Lee’s analysis is that mul-
tiple LPS’s may represent the same Lexicographic Expected Utility
preference relation (cf. [9, p. 66]). Specifically, Lee restricts atten-
tion to minimal beliefs, that is, minimal-length representations of
lexicographic preferences—for instance, (i, ) € N (X) represents

?8One direction of the proof, namely Projg (R[) C S/ for all m > 1, is the
same as that in the proof of Theorem 2.(i). For the other direction, we cannot
rely on the selection argument used in the proof of Theorem 2.(i), since this does
not yield mutually singular LPS’s. The proof requires some minor modifications
to the proof of Theorem 9.1 in [17]. Details are available on request.
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the same preference relation on X as the minimal LPS (x). His no-
tion of coherence allows a (k -+ 1)-order belief 777 to be a longer
LPS than k-order belief zz¥. Using such notion of coherence, Lee pro-
vides a "bottom-up" construction (a la Mertens and Zamir [38]) of
the space of hierarchies of minimal beliefs in which some hierarchies
cannot be generated by any type structure. The reason why this
occurs is that, while the length of all k-order beliefs 7z¥ is finite for
all k£ € N, this may not be the case for £k — oco. Consequently, there
are hierarchies that cannot be summarized by a single LPS, which
must necessarily have a finite length (cf. Proposition 1). Lee uses
this fact to provide an epistemic justification of IA under the notion
of Assumption as in Dekel et al. [25] (Definition 12), so to overturn
"BFK’s impossibility result".

In a companion paper [19], we provide an in-depth analysis on
the relationship between Lee’s approach and ours. Here, we just
summarize the main findings and results, by referring the reader to
[19] for details. First, by selecting only the hierarchies with an upper
bound on the length of all finite-order beliefs, we show that a con-
struction of a "canonical" type structure for hierarchies of minimal
beliefs is possible, along the lines outlined in this paper (cf. Section
3). The canonical space of hierarchies constructed in this way turns
out to be behaviorally equivalent to the canonical hierarchic space
H = 1I,c;H;. This is so because Lee’s notion of coherence preserves
coherence of preferences exactly in the same way as the notion of
coherence in Definition 1 does. This version of the canonical type
structure satisfies a terminality property analogous to that in The-
orem 1, although it is not belief-complete in the sense of Definition
3.2% Indeed, under an appropriate notion of hierarchy morphism,

29For instance, the LPS f; (h;) = (v,v) € N (S_; x H_;) is not minimal, so
it is not represented in the canonical type structure with minimal beliefs.
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every type structure can be mapped into it in a way that preserves
the hierarchies of minimal beliefs. We show that a property analo-
gous to Lemma 3 holds, and, with some minor necessary changes,
all the main results stated here hold through.

We finally remark an important conceptual point: Our results
are insensitive to the presence of redundancies in the representa-
tion of Lexicographic Expected Utility preferences. As shown in
[36, Section 2.4], there are many minimal-length LPS’s which are
preference-equivalent, so the canonical type structure with minimal
beliefs is not the most parsimonious representation of hierarchies
of Lexicographic Expected Utility preferences. A costruction of a
non-redundant, canonical space of hierarchies of Lexicographic Fx-
pected Utility preferences is still possible (see [34]), and an analogue
of Theorem 2 holds for this version of the canonical type structure.

6.6 RC°CARS in arbitrary type structures

BFK introduce the concept of self-admissible set (SAS) as a suit-
able, weak-dominance analogue of best-reply set—a concept, due to
Pearce [40], based on strict dominance.

To formally define the SAS concept, we need an additional defi-
nition. Fix a finite game (I, (S;,u;)icr). Say that a strategy s, € S;
of player i supports s; € S;, if there exists a mixed strategy o; with
si € Suppo; and m;(0y, ;) = m;i(si,5-) forall s_; € S_;.

Definition 13 Fix a finite game (I, (S;,w;)icr). A set Q = [[,c; Qi €
S is an SAS if, for every player i,

(a) each s; € Q; is admissible,

(b) each s; € Q; is admissible with respect to S; X Q_;,

(c) for every s; € Q;, if s; supports s; then s, € Q.
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Every finite game admits an SAS—in particular, the IA set is
an SAS. But, as shown by BFK, many games possess other SAS’s,
which are even disjoint from the TA set. A comprehensive analysis
of the properties of SAS’s in a wide class of games is given in [16].

The notion of R°CARS in arbitrary type structures can be char-
acterized in terms of SAS’s as follows.

Theorem 4 Fiz a finite game (I, (S;, u;)ier)-

(1) For each type structure T = (S;, T, B;)ier, [ Lic; Projs, (R5°)
is an SAS.

(2) For each SAS Q = [[,c; Qi € S, there exists a finite type
structure T = (S;, Ty, B,)icr such that

[ Projs, (B) =[] @:-

el el

Note that, for the specific case in which @) is the TA set, the finite
type structure 7* in Section 5.1 satisfies part (2) of Theorem 4.

Theorem 4 can be proven using arguments which are similar to
those in BFK or Dekel et al. [25]. We discuss the required modifi-
cations in the Supplemental Appendix.

Appendix A: Preference-based represen-
tation of Assumption
Fix a lexicographic type structure 7 = (S;,T;, 5,)icr, where each

strategy set S; is finite. To ease notation, it will be convenient to
set 2 =S_; x T_; and to drop 4’s subscript from LPS’s 7z, on €.
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An act on € is a Borel measurable function f : Q — [0,1]. We
denote by ACT(Q2) the set of all acts on 2. A Decision Maker has
preferences over elements of ACT(Q2). For z € [0,1], write 7" for
the constant act associated with z, i.e., 7' (w) = x for all w € Q.
Each constant act is identified with the associated outcome in a
natural way. In what follows, we assume that the outcome space
[0, 1] is in utils, i.e., material consequences are replaced by their von
Neumann-Morgenstern utility. Given a Borel set £ C ) and acts
f,9 €ACT(2), define (fg, go\r) €EACT(Q) as follows:

£, w e E,
(fE, gor)(w) = { g(w), we ON\E.

Let - be a preference relation on ACT(2) and write > (resp. ~)
for strict preference (resp. indifference). The preference relation -
satisfies the following axioms:

Axiom 1 Order: = is a complete, transitive, reflexive binary rela-
tion on ACT(Q).

Axiom 2 Independence: For all f,g,h € ACT(Q2) and « € (0, 1],

f > gimplies af + (1 —a)h = ag+ (1 — a) h, and
f ~ gimpliesaf +(1—a)h~ag+ (1 —a)h.

Moreover, let 2~ denote the conditional preference given F, that
is, f g gifand only if (fg, ho\r) 7 (98, hao\g) for some h € ACT().
Standard results (see [9, p. 64] for a proof) show that, under Axioms
1 and 2, (fg, ho\e) Z (9E, ha\r) holds for all h € ACT((2) if it holds
for some h.
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Throughout, we maintain the assumption that i is a Lexico-
graphic Expected Utility representation of =, i.e., ZZ=~#. (This
makes sense, since each Lexicographic Expected Utility representa-
tion satisfies Axioms 1 and 2.) In what follows, we call C' C Q an
elementary cylinder if C = {s_;} xT_;, for some s_; € S_;. Given
s_; and event E, we say that £ _, is a relevant part of the event
Eif B, , = CNE #{ for the elementary cylinder C' = {s_;} x T_,.
Clearly, every non-empty event F can be written as a finite, disjoint
union of all its relevant parts.

Definition A.1 Say that =" exhibits cautiousness if, for every
elementary cylinder C = {s_;} x T_;, there are f,g €ACT(Q) such
that f =4 g.

Recall that an event E C () is Savage-null under - if f ~p ¢
for all f,g € ACT(2). Say that F is non-null under 7 if it is not
Savage-null under 7Z. Say that event E C () is fully believed under
Zif f ~o\p g for all f,g €cACT(€2). We thus have:

Proposition A.1 Fiz i = (u',...,pu") € N(Q). An event E C Q is
Savage-null under =F if and only if u! (E) =0 for all | < n.

Proof: If y' (E) = 0 for all [ < n, then obviously f ~% ¢ for all

f,9 €ACT(Q2). On the other hand, if £ C  is Savage-null under
i - - =

ZF then 1 ~% 0. That is,

(/ d,ﬁ+/ fd/ﬁ)n :(o+/ fdM)n ,Vf e ACT (),
E O\E =1 MNE =1

which implies p! (E) =0 for all < n. B

Corollary A.1 Fiz 1 = (p',...,u") € N(Q). A non-empty event
E C Q is fully believed under =F if and only if u'(E) = 1 for all
[ <n.
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The set of binary acts (bets) on € is the set of all acts of the
form (7' g, ¥ a\r), for z,y € [0,1] and event £ C Q. As the rank-
ings of binary acts reveal the Decision Maker’s underlying beliefs
or likelihoods, we introduce an "infinitely more likely than" relation
between events which is based on bets.

Definition A.2 Fiz events E, F C Q. Say that E is more likely
than F if for all xz,y € [0,1] with >y,

(?Ea 79\5)) iﬁ (E)Fa 79\}7’)

Say that E is deemed infinitely more likely than F', and write
E >F F | if for all x,y,z € [0,1] with x >y,

(?E, 79\]3) - (7F, WQ\F)

In words, E is more likely than F' if the Decision Maker prefers
to bet on E rather than on F' given the same prizes for the two
bets; this choice-theoretic notion is due to Savage ([42, p. 31]). On
the other hand, F is infinitely more likely than F' if betting on E is
strictly preferable to betting on F', and strict preference persists no
matter how bigger the prize z for winning the F' bet is. This notion
of "infinitely more likely than" is due to Lo ([37, Definition 1]).3

Note that, according to Definition A.2, if E > F, then E is non-
null under =*, while F' may, but need not, be Savage-null under =—*.
When ~# has a Subjective Expected Utility representation, E > F
implies that F'is Savage-null.

The likelihood relation > possesses some natural properties.
First, it is irreflexive, asymmetric and transitive. Moreover, if E >
F', then

300 introduces such definition for a wide class of preferences, including the
Lexicographic Expected Utility model.
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(P1) FE is infinitely more likely than any Borel subset of F'; and
(P2) any Borel superset of E is infinitely more likely than F'.

We will refer to (P2) as the monotonicity property of >>#.

The next step is to characterize the likelihood order > between
pairwise disjoint events in terms of LPS’s representing —#. To this
end, we need additional notation. Given an LPS 1 = (ut, ..., u") €
N (2) and non-empty event E C Q, let

Ip=inf{le{1,..,n} |4 (E)>0}.
Proposition A.2 Fiz 1 = (u*,...,u") € N(Q) and disjoint events
E,F CQ with E # 0.
1. E is more likely than F if and only if
(W By =z (W (D)L,
2. E>F F if and only if Ip < Ip.

Proof: Part 1: Let z,y € [0,1] with 2 > y. The statement follows
from the following chain of logically equivalent relations.

(?Ea WQ\E) r>\: ﬁ(?Fa WQ\F)

"(B)
"(B)
(@ =y (B)_, =1 ((z—y)p' (F))
i (B) g >o (0 (F), -
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Part 2: The statement is clearly true if F' is Savage-null under ¥
so that, by Proposition A.1, Zr = inf ) = +00. So, in what follows,
let F' be non-null under .

(Necessity) Arguing contrapositively, suppose that Zp > Zrp. We
consider two cases:

(a) Zgp > Ip. Let © = z = 1 and y = 0. We clearly have
— = = = —
( 1g, 0 Q\F) —H ( 1g, OQ\E), so B >F F fails.

(b) Zp = Zp. In this case, observe that y*r (E) , u*r (F) € (0,1).
Let x = ¥ (F), 2 =1 and y = 0. For all | < Z, it holds that

— - =
/(?E, 0 q\p)du' = /( g, 0g\r)dy' =0,
while
- = —
[T Tarmaus = () > 1 (P (B) = [ (7, Ton)i™.

where the strict inequality follows from the observation above. Again,
this shows that E >F F fails.

(Sufficiency) Let Zp < Zp, and pick any z,y, z € [0, 1] with z > y.
For all [ < Zg, it holds that

/(?& 79\E)dﬂl = /(7F,7Q\F)d,ul =Y.
Next note that, since (z — y) u?# (E) > 0, then

opt® () +yp'® (Q\E) > yp™ (A\F) =y,
that is,

/(?ang\E)d,uIE > /(71?,79\1:’)65#2]5-

This shows that (7 g, ¥ o r) = (Zr, ¥ aor), as required. B
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We now introduce a new notion of belief, which we call Weak
Belief, and we state and prove a characterization result in terms of
LPS’s for such notion.

Definition A.3 Fiz a non-empty event E C ). Say that E is
weakly believed under =V if £ > O\ E.

Theorem A.1 Fiz i = (p*,...,u") € N(Q) and a non-empty event
E C Q. Thus E is weakly believed under =F if and only if p' (E) =
1.

Proof: We have p!' (F) = 1 if and only if Zp = 1 and Zo\ g > 1.
Thus the result follows immediately from Proposition A.2. B

Next the notion of Assumption in terms of the likelihood order
>H

Definition A.4 Fiz 1 = (p',...,u") € N(Q). A non-empty event
E C Q is assumed under =" if it satisfies the following condition:
(*) for every relevant part Es_, of E, Es_, > Q\ E.

That is, the event F is assumed under ~# if every relevant part of
E is deemed infinitely more likely than Q\ E. Since F can be written
as a finite, disjoint union of all its relevant parts, it follows from the
the monotonicity of ># (Property P2) that E is weakly believed,
ie., E >" Q\ E. However, the opposite is not true. Indeed, the
notion of Assumption is stronger that the notion of Weak Belief, as
it captures cautious behavior. Note indeed the following

Remark A.1 Fiz 1= (p',...,u") € N(Q). The preference relation
= exhibits cautiousness if and only if € is assumed under 7" .
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We now state and prove a characterization result for the notion
of Assumption. For the reader’s convenience, we restate the LPS-
based definition of Assumption given in the main text, but in terms
of relevant parts.

Definition A.5 Fiz = (u!,...,u") € N(Q). A non-empty event
E C Q) is assumed under 1z at level m < n if satisfies the following
conditions:

(i) p'(E)=1 forall Il <m;

(ii) for every relevant part E,_, of E, p* (E,_,) > 0 for some k <
m.

We say that E C () is assumed under 71 if it is assumed under
I at some level m < n.

Theorem A.2 Fiz 1= (u',...,u") € N(Q) and a non-empty event
E C Q. Thus E is assumed under =V if and only if E is assumed
under [i.

Proof: The proof is immediate if Q\ F is Savage-null under Z¥, so,
in what follows, let '\ E be non-null under Z*.

(Necessity) Let m = Zog\ p—1. Then, for every k < m, u*(Q\E) =
0, hence p*(E) = 1. Thus, m satisfies condition (i) of Definition
A.5. Since every relevant part E, , of E satisfies F, . >F Q\ E,
then Proposition A.2 yields Zp, = < Zg\g. Thus, condition (ii) of
Definition A.5 is satisfied.

(Sufficiency) If E is assumed under  at level m, then condition
(i) of Definition A.5 implies m + 1 = Zg\g. By this, condition (ii)
yields that each F_, satisfies IEs_i < Za\E, hence, by Proposition
A2 E, ,>Q\E 1
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We conclude this section with a brief comparison between the
notion of "infinitely more likely than" in Definition A.2 and the one
of Blume et al. [9]. (A more detailed analysis is provided in the
Supplemental Appendix C.) Specifically, Blume et al. [9] examine a
partial order >>g on events of Q) which is stronger than >>#.

Definition A.6 Fiz disjoint events E,F C Q with E # 0. Thus
E > F if

1 E is non-null under =*, and

2 for all f,g € ACT(Q), f =% g implies f =% . g.

Condition 2 in Definition A.6 states that, when comparing any
two acts f and ¢ that give the same consequences in states not
belonging to £ U F, if f =% g, then the consequences in F "do
not matter" for the strict preference f =# ¢.3! In particular, if
F = Q\ E, then Condition 2 corresponds to "Strict Determination",
which is stated as axiom in BFK.

It is easy to check that if £ >>§ F then E ># F. The reverse
implication is true provided both E and F' are singleton sets—cf.
Lemma C.3 in the Supplemental Appendix. The key difference is

31The definition of the partial order % is taken from [2, p. 65]. Definition

5.1 in Blume et al. [9, pp. 70-71] states that E >>g F if condition 2 in Definition
A.6 is replaced by the following condition:

f =g g implies (fo\r,hr) =pur (90\F hF)

for all h,h' € ACT (2). (Condition 1 is automatically satisfied in [9, Definition
5.1], since the Authors consider a finite state space without Savave-null events.)
It is easy to check the equivalence between the two definitions.
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represented by the following property (for a proof, see Proposition
C.1.(ii) in the Supplemental Appendix):

Proposition A.3 Fiz 1 = (p!,...,u") € N(Q) and non-empty,
pairwise disjoint events E, F C Q, zth E non-null under =". The
following property holds:

(**) Let Ey C Q be a non-empty event such that E1 C E and E;
is non-null under =F. Thus, if E >>§ F, then F; >>§ F.

In words, Proposition A.3 states that >>§ requires that each non-
null Borel subset F; C FE be infinitely more likely than F. The
cost is a non-monotonicity property of the order >>g. That is, if
E, F, G C 2 are non-empty, pairwise disjoint events with F >>Z F,
it may not be the case that £ U G >>§ F. Yet, it can be easily
shown that F UG >% F provided G is Savage-null under >". In
other words, the union of £ with a non-null event can reduce the
likelihood ranking of an event, while the union with a Savage-null
event, paradoxically, cannot.

Moreover, consider the following example, which is a variant of
an example in [9, p. 70].

Example A.1 Let Q= S5_; x T_; be such that S_; = {s" s2:}

—%) —’l’ -1

and T_; = {t*;}. Consider the LPS i = (p*,p*) € N(Q) with

p (L) 1) = g (L2 ) = 4 and g (L, 12,)}) =
1? ({(s%;,t7,)}) = 5. Consider the event E = {s';,s*,} x T_; and
take binary acts

;o= (T{(Sl—wtii)}’



Note that E >>Z ONE fails, because f >% g while g =" f. How-
ever, E=Eg UEg , with Eq > ON\E and Ep > QO\E.

Example A.1 shows that even if all the (relevant) parts of an event
E are infinitely more likely than not-E (in the sense of Blume et al.
[9]), then E need not be infinitely more likely than its complement.
This problem was one of the motivations for the introduction of
LCPS’s (see Blume et al. [9, pp. 70-71]).

The likelihood order >>g between disjoint events can be given the
following LPS-based characterization (for a proof, see Proposition
C.2 in the Supplemental Appendix):

Proposition A.4 Fiz i = (u', ..., p") € N(Q) and disjoint events
E.F CQ with E # 0. Thus E > F if and only if the following
conditions hold:

(11) Tg <IF;

(1.2) for all | > I, there exists (o, ..., a4, ;) € RTF~! such that,
for each Borel G C F,

Ir—1

HH(G) = D ol (G).

Note: for the specific case in which F' = O\ F and is non-null
under 7, Conditions (1.1) and (1.2) are equivalent to Conditions
(i) and (iii) of BFK-Assumption (Definition 12) with m = Zg\ g — 1.

Proposition A.4 clarifies the sense in which F >>§ ONF is not
sufficient to characterize the notion of BFK-Assumption. As shown
by Proposition A.3, E >>g O\ F implies that only the non-null Borel
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subsets of E are "infinitely more likely than" O\ E.2? In case of a
full-support LPS 7z on a finite space €2, an event F is BFK-assumed
under =7 if and only if £ % O\ E.* However, as far as an infinite
space {2 is concerned, it is important to specify a class of Borel sub-
sets of F which must be non-null in order to capture IA (cf. BFK’s
Supplemental Appendix). BFK impose the requirement that every
relatively open subset of £ be non-null. (See their "Nontriviality"
axiom.) In Section C of the Supplemental Appendix, we show that
the requirement of the relevant parts as non-null Borel subsets gives
an LPS-based version of BFK-Assumption which satisfies Condition
(ii) of our notion of Assumption (Definition 11) in place of Condition
(ii) of Definition 12.

Appendix B: Omitted proofs

It will be useful to single out an alternative characterization of As-
sumption:

Lemma B.1 Fiz an LPS 11 = (p*, ..., ™) € N(Q) and a non-empty
event B2 C ). Thus E is assumed under [ if and only if there exists
m < n such that Ti satisfies Condition (i) of Definition 11 plus the
following condition:

(i)’ E C (U<, Suppmargg u') x T_;.

Proof: Suppose E' is assumed under 1z at level m. We show that 1

32Tt noteworthy that this result is insensitive to the cardinality of the space
of uncertainty €2, as it is stated only in purely decision-theoretic terms.

33This is so because the full-support condition on i guarantees that all non-
empty subsets of Q (a finite, discrete space) are non-null.
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satisfies Condition (ii)’. Consider the clopen cylinder

0= (S_i\ (UZSmSuppmargsii,ul)) xT_;.

We claim that O N E = (), so that condition (ii)’ holds. To see this,
suppose instead that O N E # (). Thus, by Condition (ii) of Defini-
tion 11, there exists U = {s_;} x T_; C O such that U N E # () and
p*(UNE) > 0 for some k < m. As such, u* (ONE) > 0 for some
k < m. This implies that margg_ u" (S_i\ (UlSmSuppmargsfi,ul)) =
pk (O) > 0 for some k < m, and so

on ((UlnguppmargSﬁul) X T—i) # 0,

a contradiction.

Conversely, suppose that Conditions (i) and (ii)” hold. It is imme-
diate to show that Condition (ii) of Definition 11 holds. Indeed, by
Condition (ii)’, for each s_; € Uj<,,Suppmargg .u' the correspond-
ing cylinder set U = {s_;} x T_; satisfies the required properties.
|

For later use, we also find it convenient to state the following

Lemma B.2 Let t; € T, assume the event E C S_; x T, at level
m, where B3, (t;) = (3, ..., ). Thus

UlnguppmargS_i,ué = Projs_l, (E) .

Proof: The set containment "D" follows from condition (ii)’ of
Lemma B.1. Indeed

Projs . (E) C Projs . ((Ulnguppmargsiiué) X T_i)
= U<mSuppmargg k.
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Conversely, fix s_; ¢Projs_, (E). Thus ({s_;} xT_;) N E = (. By
Condition (i) of Definition 11, ! (E) = 1 for each I < m, so ul ({s_;} x T_;) =margs_,ut ({s_;})
0. This implies s_; ¢ Suppmargs_,u!. B

Remark B.1 The result in Lemma B.2 can be equivalently stated
as

Projg . (Ui<mSupppt) = Projg  (E).

Proof of Lemma 2: (Part 1) Let i; = (i}, ..., u?) and suppose
that £/ and F' are assumed under fi; at level m. Using Lemma
B.2, we get that Projs_, (E) =Projs_, (F'). If instead F' is assumed
or under 7i; at level p > m, then Projs , (E) CProjs_, (F) since
Ui<mSuppmargs_,pk C Uj<,Suppmargs_, ji}.

(Part 2) Let 1z, = (u}, ..., u?*) and suppose that, for each k, Ej, is
assumed under fi; at some level my. Let myg = min{my |k =1,2,... }.
Also, let Ex be the set which is assumed under 7i; at level mg. We
show that Ny Fj is assumed under 1, at level my. First note that,
for each k, ul (Ey) =1 for all | < mg. By the o-additivity property
of probability measures, it follows that u! (N Ey) = 1 for all | < my.
Finally, it follows from Lemma B.1 that

Nl C B C (UlSmKSuppmargS%pé) x T_;.

Using again Lemma B.1, condition (ii) of Definition 11 is established.
The proof for U, E}, is similar. W

Proof of Lemma 3: Let (s;,t;) € A;(E_;), and set @, (t;) = t}.
We show that event E*; is assumed under 7 (¢7), that is, conditions
(i) and (ii) of Definition 11 are satisfied.

Since event E_; is assumed under 3; (t;) = (B8] (&), ..., B (),
then there exists m < n such that 8! (t;) (E_;) = 1 for all [ < m.
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Next note that

E_; C (Idsﬂ'a 9072')71 ((Idsﬂ" (p—i) (E—l)) < (Idsﬂ., SO*i)il (Ei%) )

where the first set containment is obvious, while the second one
follows from condition 1). Hence, by definition of type morphism, it
follows that, for all [ < n,

1 X

Bt (BL) < Bt (s e0-) " (B2))
= B7'(p: (1)) (EZ)

6 l(t;'k) (Eiz) )
which implies 57 () (E*;) =1 for all I < m, so that condition (i)
of Definition 11 is satisfied.

To show that Condition (ii) of Definition 11 is also satisfied, we
proceed as follows. Consider an elementary cylinder C' = {s_;} x T*,

satisfying E*, N C # (. It turns out that

)
)

*
7
*
7

(s o) (€N ) = ((4s,0.) (@) (s, 0) " (B2))
(et () 0 (s e 7 (57)
{smif xT)N ((Id&w %O—i)_l (Ei2)>

(b x T 0 (195 02) ™ (s o) (B0))

D { —i} X T—z) N E_z‘,

(
= (
(
(

where the fourth line follows from condition 1) of the Lemma. Since
({s_i} x T_;) N E_; # 0 (by condition 2) of the Lemma) and E_; is
assumed under 5, (¢;) at level m < n, then there exists [ < m such
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that 8L (t;) ({s_i} x T_;) N E_;) > 0. But

BL) (s} x TN E) < AL ((spn) " (CNE))
g (B,

and since C' is an arbitrary elementary cilynder, this shows that
Condition (ii) of Definition 11 is satisfied, thus concluding the proof.
|

Proof of Claim3: (Part 1) By induction on k € {1, ..., M}.
(k =1) Pick any s; € S}. Thus

B ((si.1)) (RZ}) = vy, (RZ}) =0,

because (i) Supprl C (S_; x T%) by definition, and (i) R™; N
(S_; x T°) = 0, since each type in T, is not cautious.

(k + 1) Suppose that the statements has been shown to hold for
k<M —1,i.e., for each i € [ and s; € SF,

Bi((si k) (RF) = 0.
This implies that, for each ¢ € I,

R (S x TF,) = 0. (6.1)

—1

Pick arbitrary i € I and s; € SF™. We need to show that every
measure in the LPS 87 ((s;, k + 1)) = (v5*, 87 ((si, k))) assigns prob-
ability 0 to the event R®¥™. To this end, first note that s; €
Sk and since R™F™ C R™* then, by the induction hypothesis,

—1 2

Bi((si, k)) (Ri’f“) = 0. Furthermore, since Suppr*™ C (S_; x T*,),
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then (6.1) yields v <Ri’f+l) = 0. This shows that 37 ((s;, k + 1)) (R*_’f“) =

0, as required.
(Part 2) We prove by induction on k € {0,1,..., M} that

si € SF = (si, (s, k) € RPNRF

This will imply the thesis.

(k=0) Let s; € S;, ¢ € I. It follows from the construction of 7*
that type (s;,0) is not cautious, so (s;, (s;,0)) & R

(k 4+ 1) Suppose that the statement has been shown to hold for
k< M,i.e., for each 7 € I,

i €SP = (si, (s1,k)) € RN R

Fix player i and s; € S¥™. Note that type (s;, k + 1) is cautious
(Claim 1), and recall that

margg 3;((s;,k+1) = margg . ((l/ffl,yfi, ,y;))

= (pipk ).

So, for each s; € S; it holds that

(Wi(siaﬂgj_l)77ri(siaﬂl;i)7"'77Ti(si7,u;-)) ZL (Wi(SgaMEjl);Wi(SgaMEi)a ...,7TZ‘<S;,IM;1_)),

where the (lexicographic) inequality follows from the fact that s;
is a best reply to ulSi for all I = 1,....,k + 1. This shows that
(si, (si,k+1)) € R, We now show that (s;, (s;, k + 1)) satisfies
two additional requirements, namely

(a) (8, (si, kK +1)) € Ni<i A, (Ri’ﬁ), and
(b) (51, (si,k + 1)) ¢ A, (Rifﬂ).
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By property (a), we will conclude that (s;, (s;, k+ 1)) € Rf’kﬂ =
RN (ﬂKkA- (R”)) by property (b), we will conclude that (s;, (s;, k + 1)) ¢

RF2 — R A, (R* k“). This will show (s;, (si, k + 1)) €

RIFFIN R 2| as desired.

For property (a): Recall that 5} ((s;,k+ 1) = (V¥ 87 ((s:, k).
Hence, using the same argument as in the proof of part (i) of The-
orem 2, we get that Projg (R"jl») C S, foreach [ = 1,....,k. By

7

the induction hypothesis and v¥™(Agr .z ) = 1, it follows that
VL (R*F) = 1 and Suppmarg Vit = Sk So (s;, k+1) assumes

SL

R**. Since VYR H =1 for ea,ch [l =1,...k — 1, then, by the

induction hypothesis, (s;, k) assumes R_Z- at some level m’. Thus,
with m = m’ + 1, Condition (i) of Assumption (Definition 11) and
Condition (ii)’ of Lemma B.1 are satisfied. Therefore (s;, k + 1) also
*,1
assumes R, (I < k).
For property (b): By the induction hypothesis, it follows that
Agk e, N R 1 = (. Since v Ak k) = 1, then (s;, k +1)

et
does not assume R

(Part 3) We show by induction on k € {0,1,...,M + 1} that
Agu gy C RY* for each i € I. For k = 0 the statement is
immediate. We use a separate argument for £ > 1. The same
argument as in the proof of Part 2 can be applied for £ = 1. For
k€ {2,...,M + 1}, suppose that Agmyqrr+r S R holds true for
each 1 € ] We need to show that, for each i € I, ASJVIXTM+1 C

R*. Since R¥" = R n A, <R*k 1) then by the induction

(2

hypothesis it is enough to prove that ASM M C A, (R*k !

To do this, fix i € [ and s; € SM. Recall that 37 ((s;, M + 1)) =
(V3 57 ((s5, M)). Since v}/ ! (Asﬁ{.xﬂvﬁl) = 1, by the induction
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hypothesis it follows that v *+1(R*¥) = 1. The conclusion follows

from arguments analogous to those in the proof of Part 2.
(Part 4) Let (s/,t;) € RM*'. First note that t; € TM*!, be-

cause (S; x TF) N A; (R*_’ZM ) = () (this follows from Part 1, accord-
ing to which S ((s;, k)) (Ri’k) =0 for all k € {1,..., M} and all

1

s; € S¥). So, by construction of the belief maps in 7*, 3} (t;) =

(2
(VM+L M vl ) for some s; € SMTL. We now claim that R©!
is assumed under f} (¢;). To this end, recall that Suppr)*! =
Agurpare, 50, by Part 3, it follows that yé‘f“(R*_’fw“) = 1. Since
M+1 — gM+L this in turn implies the claim. Therefore

Si
(si i) € A (R*_’ZMH>, and so (s),t;) € RPM2. Certainly R C

M+1, : M+2 M+1
RM™ with this, we can conclude that Ry ™ = R ™. We can

apply the same reasoning for every [ > 1 and (s}, t;) € R; M 46 con-
clude that (s},t;) € A; (R*’MH); this yields RPMHH — RrMH —

—1 i
* M+1
Ri

Suppmargg v

, as required. W
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Karouunu, 3., Ie Buro, H.

O01He npernochUIKN 00 0CTOPOXKHON PALOHATIBEHOCTH ¥ TOBTOPHASI IOMYCTUMOCTD [ DIIEKTPOH-
HBII pecypc] : npenpuat WP9/2018/02 / O. Karonunu, H. le Buto ; Hau. uccnen. yH-t «Bsiciias
LIKOJIa SKOHOMHKI». — DNEKTpoH. TekcT. AaH. (500 K6). — M. : U3xa. nom Belciueit MIKoIbl 9KOHOMHKH,
2018. — (Cepust WP9 «HccnenoBanus Mo SKOHOMUKE U HHAHCaM»). — 89 c.

Iosropras nomyctumocts (I1]]) — MOIIHAS, HO KOHIENTYaIbHO HETPHUBHAIbHAS KOHIICMIHS pe-
LIEHUs UTP B cTpaterudeckoit popme. bpannendyprep, Ppeiinendepr u Keitcnep npeacrapumm snm-
cTeMH4YecKre OCHOBBI I1]] 1 KOHEUHBIX HTP C HEIPEPHIBHBIMHU THIIAMHU H C HOIHBIMH Bepamu. B ux
TEOPHH MHTEPaKTUBHBIC BEPBI UTPOKOB IIpe/CTaBlIeHb! JISKCHKOTpahuuecKUMH YCIIOBHBIMU CHCTEMAa-
MH BEpOSATHOCTEH, HOHITHE YBEPEHHOCTH 3aMEHEHO COOTBETCTBYIOMICH IPEIIOCBHUIKOM, a MOHATHE
PaLOHAIEHOCTH, IIOMUMO MaKCHMHM3ALNH JIEKCHKOTpa(UIecKoil 03KUIAEMOi TTOJIE3HOCTH, TIPEeIoa-
TaeT, YTO KKI0€ OTKPBITOE COOBITHE SBISIETCSI BOSMOXKHBIM, 1aXKe €CIIU €T0 BEPOSITHOCTh OECKOHEYHO
Mana. IlIpu 3TUX JOMyIIeHHsIX OHM TOKa3allk, YTo Kakaas uTepaius n npouenypsl I1J[ xapakrepu-
3yeT IOBEJCHYECKHE CIICACTBHS U3 TPeOOBaHHUI PAllHOHAIBHOCTH U (1 — 1)-B3aMMHON IPEIIIOCHUIKH
PALOHAJIBHOCTH, OJHAKO PAllOHAIBHOCTh M O0IIask MPEINOChLIKA PAMOHAIBHOCTH HEBO3MOXKHBI.
JHexenb, Opeiinendepr 1 CHHUCKAIBYM 000OLIMIN ATOT PE3YJIbTAT VIS BCEX JISKCHKOTPahUIECKHX Be-
positHOCTHBIX cucteM (JIBC). B nanHO# paboTe MbI BBOJMM HOBOE IOHATHE OCTOPOKHOCTU U HOBYIO
npenrnocsuIKy ast JIBC, ocHoBaHHBIE Ha c1a00M IPEIIIOYTEHUH B OTHOLIEHUH «OSCKOHETHO Ooree Be-
POSITHBIX» HEOIIPEIEIEHHBIX COOBITHIL. MBI 0CTa0JIsieM MOHATHE PAIMOHATIBHOCTU 3THX PaboT JI0 Mo-
HATHA OCTOPO’KHOU PpAIlMOHAIBHOCTH, TPEOys, UYTOOBI TONBKO DENCBAHTHBIE C TOUKH 3pEHUs
IUIaTeXKeH COOBITUS ~CUMTAIMCh BO3SMOXHBIMH, WU JoKasbiBaeM, uto IIJ[ xapakrepusyer
MOBEACHYECKHE CIIEJICTBUSI U3 OCTOPOJKHOI PAIMOHANBHOCTH M OOLIMX MPEIIIOCHUIOK OCTOPOXKHOH
PALMOHAIEHOCTH B KAHOHMYECKOH CTPYKTYPE THIIOB C IIOJHBIMHI BEPAMH.

KiroueBrie croBa: TIOBTOpHAA JOITyCTUMOCTD, ciaboe JIOMUHHAPOBAHUE, OeckoHEeYHO Ooee BEPO-
SATHO, J'ICKCI/IKOT‘pa(I)I/IquKHe CHUCTCMBbI BepOﬂTHOCTeﬁ, PallMOHAJIBHOCTD, IPEAIIOCHUIKHA
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