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Abstract

Equilibria and optima generally differ in imperfectly competitive markets.

While this is well understood theoretically, it is unclear how large the wel-

fare distortions are in the aggregate economy. Do they matter quantitatively?

To answer this question, we develop a multi-sector monopolistic competition

model with endogenous firm entry and selection, productivity, and markups.

Using French and British data, we quantify the gap between the equilibrium

and optimal allocations. In our preferred specification, inefficiencies in the

labor allocation and entry between sectors, as well as inefficient selection and

output per firm within sectors, generate welfare losses of about 6–10% of gdp.
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1 Introduction

In imperfectly competitive markets, equilibria and optima generally differ in many respects

such as the number of firms and firm-level outputs. While this is well understood theoret-

ically, it is unclear how large the welfare losses from these distortions are in the aggregate

economy. Do they matter quantitatively? To answer this question, we develop a multi-sector

model of monopolistic competition with endogenous firm entry and selection, productivity,

and markups. Using data from France and the United Kingdom (UK), we quantify the gap

between the equilibrium and optimal allocations, and document patterns of inter- and intra-

sectoral distortions that translate into welfare losses of about 6–10% of gdp. The welfare

costs of monopolistic competition are hence sizable.

The theoretical literature on equilibrium versus optimum allocations under monopolistic

competition dates back at least to Dixit and Stiglitz (1977). They analyze the tradeoff between

product diversity and output per firm as a source of inefficiencies in general equilibrium

models with unspecified utility functions. More recently, Zhelobodko, Kokovin, Parenti, and

Thisse (2012) introduce heterogeneous firms into those models, and Dhingra and Morrow

(2017) show that markets generally deliver a socially inefficient selection of firms.

While these insights are valuable, they are derived from models with a single monopolis-

tically competitive sector. Extant studies thus abstract from a first-order feature of the data:

sectors are highly heterogeneous. In France in 2008, for example, there are 4,889 textile and

footwear producers, which compete for an expenditure share of 2% by French consumers.

Those firms operate, arguably, in a different market and face different demands than the

4,607 manufacturers of wood products or the 124,202 health and personal service providers,

on which French consumers spend less than 0.1% and almost 20% of aggregate income,

respectively.1

Therefore, to answer the basic ‘so-what’ question—how great the overall welfare losses

from imperfectly competitive markets are—we need to enrich existing general equilibrium

models to have both between-sector and within-sector heterogeneity. For instance, the textile

industry may have some firms that produce too little and others that produce too much, and

at the same time, it may also attract too many (or too few) firms and workers in equilibrium.

This, in turn, means that some other industries may have fewer (or more) firms and workers

than are socially optimal.

Quantifying the magnitude of the aggregate welfare distortion in such a general equilib-

1See Table 1 in Section 4 for more details about the data. The large number of firms in each sector suggests
that monopolistic competition is a reasonable approximation of the market structure.
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rium framework is important for at least two reasons. First, since the seminal contribution

by Dixit and Stiglitz (1977), the existence of a gap between the equilibrium and optimal

allocations has been one of the most influential theoretical results in various applied fields

of economics. Yet, despite its importance, we are not aware of any attempt to put numbers

on it while taking into account heterogeneity both between and within sectors. Second,

the rationale for government interventions in a particular sector typically relies on a partial

equilibrium analysis, thus ignoring the interdependencies between heterogeneous sectors.

For example, the question of excess or insufficient entry into industries should be viewed

from a general equilibrium perspective: limited resources imply that excessive entry in some

industries is likely to go hand-in-hand with insufficient entry in others.

Assessing the welfare costs of imperfect competition in a general equilibrium setting is

also difficult for at least for two reasons. First, to capture misallocations within and between

sectors, we need a model with heterogeneous firms and sectors. Developing such a model

is challenging, especially with general utility functions and productivity distributions that

can accommodate various specifications used in the literature. Second, we need to compare

the equilibrium and optimal allocations. While the former is observable from the data, the

latter is not. It is thus not obvious how we can measure the gap between the equilibrium

and the optimum—quantifying something unobservable is not an easy task.

We address the first problem by building on Zhelobodko et al. (2012) and Dhingra and

Morrow (2017), who study the positive and normative aspects of a single monopolistically

competitive industry. We extend their approach to incorporate multiple sectors and allow

the sectors to differ in many respects such as utility functions and productivity distributions.

Imposing standard assumptions on the upper-tier utility function, we establish existence

and uniqueness of the equilibrium and optimal allocations. Comparing those two alloca-

tions enables us to characterize various distortions, which include inefficiencies in the labor

allocation and the masses of entrants between sectors, as well as inefficient firm selection

and output per firm within sectors.

We cope with the second problem by using a novel way to quantify the gap between the

equilibrium and the optimum: the Allais surplus (Allais, 1943, 1977). Roughly speaking, we

consider a planner who minimizes the resource cost while achieving the equilibrium utility

level. Since by definition the planner can do better than the market economy, it requires

less resources, thus generating a surplus. The advantage of the Allais surplus is that it can

be used for comparing the equilibrium with the first-best allocation, i.e., even in contexts

where equivalent or compensating variations—or other related criteria to compare different

equilibria—cannot be readily applied due to a lack of prices.
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Previewing our theoretical findings, we show that the distortion in the labor allocation

depends on the interaction between two types of elasticities: the elasticities of the upper-tier

utility that govern the inter-sectoral allocation; and the elasticities of the subutilities that shape

the intra-sectoral allocation. These elasticities are related to the equilibrium and optimal

entry conditions. In equilibrium, entry in each sector occurs until the expected revenue

equals the expected cost of labor allocated to that sector. Since each firm takes consumers’

demands as given, its expected revenue depends on both types of elasticities that govern

consumers’ expenditure allocations between and within sectors. In contrast, the planner

equates the marginal social benefit of entry with the marginal social cost of labor required

for entry. Since the former equals the expected sectoral utility, it depends only on the upper-

tier elasticities and does not require information on the elasticities of the subutilities. In fact,

the planner does not face consumers’ demand functions when determining entry in each

sector, whereas firms do. This difference creates distortions in the sectoral labor allocation.

One key message of multi-sector general equilibrium models is that, contrary to the

conventional approach that has studied single industries in partial equilibrium, distortions

in one sector depend on the characteristics of all sectors in the economy. Indeed, sectors are

interdependent, so that an excessive labor allocation to some sectors, for example, implies

an insufficient labor allocation to others. The inefficient labor allocation across sectors, in

turn, causes distortions in entry patterns. In particular, sectors with an excessive labor share

tend to feature an excessive number of entrants. Thus, too many entrants in some sectors

are accompanied by too few entrants in others, though this inter-sectoral prediction on entry

needs to be adjusted by standard intra-sectoral business stealing and limited appropriability

effects as in Mankiw and Whinston (1986).

Our general framework nests many specifications—in terms of utility functions and pro-

ductivity distributions—that are used in the literature. We take two of those specifications to

data. The first one builds on Cobb-Douglas upper-tier utility functions and constant elastic-

ity of substitution (ces) subutility functions. Dhingra and Morrow (2017) show that selection

and firm-level outputs are efficient in a single-sector economy if and only if the subutility

function is of the ces form. This result is shown to hold in our multi-sector setting, thus

implying that there are no intra-sectoral distortions. However, with multiple sectors, distor-

tions in the labor allocation and firm entry still arise in general. Both disappear if and only if

the elasticities of the ces subutility functions are identical across all sectors. Otherwise, the

labor allocation and firm entry are efficient within but not between sectors. In particular, sec-

tors with a higher elasticity of the subutility attract too many workers and firms, regardless

of productivity distributions.
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Our second example is a tractable model with variable elasticity of substitution (ves),

where demands exhibit smaller price elasticities at higher consumption levels. Unlike the

ces model, this ves model can account for variable markups and incomplete pass-through

(e.g., Weyl and Fabinger, 2013; Mrázová and Neary, 2017). It features all the kinds of dis-

tortions that we highlight in the general framework. We show that high-productivity firms

always produce too little and low-productivity firms too much, and that the market de-

livers too little selection compared to the social optimum. Entry and the labor allocation

are also inefficient, and with Pareto distributions the market allocates too many firms and

workers to sectors where a larger mass of the productivity distribution is concentrated on

low-productivity firms.

Previewing our empirical findings, we establish four key results using data from France

and the UK. First, there are substantial aggregate welfare distortions. In the multi-sector ves

model, they equal 6–10% of the total labor input in either country. Second, inter-sectoral

misallocations are crucial for these aggregate distortions. When we constrain the economy

to consist of a single sector, thereby shutting down inefficiencies in entry and the labor

allocation, the aggregate distortion can be 30% lower than the one predicted in the multi-

sector case. Put differently, a single-sector model yields downward-biased predictions for

the total welfare loss. Third, the multi-sector ces model predicts an aggregate distortion of

0.3–2.5%, which is much smaller than the ves model. The intuition is that this model displays

by construction efficient selection and firm-level outputs, thereby missing distortions within

sectors. Last, we find similar patterns of inefficient entry and selection between France and

the UK. Insufficient entry arises almost exclusively for services, while manufacturing sectors

tend to exhibit excessive entry. Equilibrium firm selection is generally closer to optimal one

in manufacturing sectors. These results are robust to using different measures of firm size,

e.g., employment or revenue, and different strategies to deal with fixed costs.

Our paper is closely related to the recent literature on the equilibrium and optimal al-

locations in models with a single monopolistically competitive sector, most notably Zhelo-

bodko et al. (2012), Nocco, Ottaviano, and Salto (2014), Dhingra and Morrow (2017), and

Parenti, Ushchev, and Thisse (2017). Relative to this recent strand of literature, we make

two contributions. First, we characterize both the equilibrium and optimal allocations in a

multi-sector monopolistic competition model. Second, while those papers focus exclusively

on theory, we take our model with heterogeneous sectors and firms to data to assess the

quantitative importance of the distortions under monopolistic competition—a question that

remains unanswered since Spence (1976) and Dixit and Stiglitz (1977). Our work is further

related to the classic literature in industrial organization that studies welfare implications of
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market power and inefficient entry for single industries in partial equilibrium. Harberger

(1954) is a seminal reference for the former, and Mankiw and Whinston (1986) for the lat-

ter. Our monopolistic competition model is complementary to this line of research, and

recognizes general equilibrium interdependencies between sectors.

The rest of the paper is organized as follows. Section 2 presents our general model, while

Section 3 turns to the specific solvable examples. The quantification procedure and results

are discussed in Section 4. Section 5 concludes.

2 General model

Consider an economy with a mass L of agents. Each agent is both a consumer and a

worker, and supplies inelastically one unit of labor, which is the only factor of production.

There are j = 1, 2, . . . , J sectors producing final consumption goods. Each good is supplied

as a continuum of differentiated varieties, and each variety is produced by a single firm

under monopolistic competition. Firms can differ by productivity, both within and between

sectors. We denote by Gj the continuously differentiable cumulative distribution function,

from which firms draw their marginal labor requirement, m, after entering sector j. An

entrant need not operate and only firms with high productivity 1/m survive. Let NE
j and

md
j be the mass of entrants and the marginal labor requirement of the least productive firm

in sector j, respectively. Given NE
j , a mass NE

j Gj(md
j ) of varieties are then supplied by firms

with m ≤ md
j .

2.1 Equilibrium allocation

The utility maximization problem of a representative consumer is given by:

max
{qj(m), ∀j,m}

U ≡ U
(
U1,U2, . . . ,UJ

)

Uj ≡ NE
j

∫ md
j

0
uj
(
qj(m)

)
dGj(m)

s.t.
J

∑
j=1

NE
j

∫ md
j

0
pj(m)qj(m)dGj(m) = w, (1)

where U is a strictly increasing and strictly concave upper-tier utility function that is twice

continuously differentiable in all its arguments; uj is a strictly increasing, strictly concave,

and thrice continuously differentiable sector-specific subutility function satisfying uj(0) =
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0; pj(m) and qj(m) are the price and consumption of a sector-j variety produced with

marginal labor requirement m; and w denotes a consumer’s income. We assume that

limUj→0(∂U/∂Uj ) = ∞ for all sectors to be active in equilibrium.

Let λ denote the Lagrange multiplier associated with (1). The utility-maximizing con-

sumptions satisfy the following first-order conditions:

u′j
(
qj(m)

)
= λjpj(m), where λj ≡

λ

∂U/∂Uj
. (2)

To alleviate notation, let pdj ≡ pj(md
j ) and qdj ≡ qj(md

j ) denote the price set and quantity

sold by the least productive firm operating in sector j, respectively. From the first-order

conditions (2), which hold for any sector j and any firm with m ≤ md
j , we then have

u′j(q
d
j )

u′j
(
qj(m)

) =
pdj

pj(m)
and

u′j(q
d
j )

u′ℓ(q
d
ℓ )

=
λj

λℓ

pdj

pdℓ
, (3)

which determine the equilibrium intra- and intersectoral consumption patterns, respectively.

We assume that the labor market is competitive, and that workers are mobile across

sectors. All firms hence take the common wage w as given. Turning to technology, entry

into each sector j requires to hire a sunk amount Fj of labor paid at the market wage. After

paying the sunk cost, Fjw > 0, each firm draws its marginal labor requirement m from Gj ,

which is known to all firms. Conditional on survival, production takes place with constant

marginal cost, mw, and sector-specific fixed cost, fjw ≥ 0.

Let πj(m) denote the operating profit of a firm with productivity 1/m, divided by the

wage rate w. Making use of condition (2), and of the equivalence between price and quantity

as the firm’s choice variable under monopolistic competition with a continuum of firms

(Vives, 1999), the firm maximizes

πj(m) = L

[
u′j
(
qj(m)

)

λjw
−m

]
qj(m)− fj (4)

with respect to quantity qj(m). Although λjw contains the information of all the other

sectors by (2), each firm takes this market aggregate as given because there is a continuum

of firms. From (4), the profit-maximizing price satisfies

pj(m) =
mw

1 − ruj
(
qj(m)

) , (5)
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where ruj (x) ≡ −xu′′j (x)/u
′
j(x) denotes the ‘relative risk aversion’ or the ‘relative love for

variety’ (Behrens and Murata, 2007; Zhelobodko et al., 2012).2 In what follows, we refer to

1/[1 − ruj (qj(m))] as the private markup charged by a firm that produces output qj(m).

To establish the existence and uniqueness of an equilibrium cutoff, (md
j )

eqm, and equi-

librium quantities, q
eqm
j (m) for all m ∈ [0,md

j ], we consider the zero cutoff profit (zcp)

condition, given by πj(md
j ) = 0, and the zero expected profit (zep) condition, defined as

∫ md
j

0 πj(m)dGj(m) = Fj . Using (2), (4), and (5), the zcp and zep conditions can be expressed

respectively as follows:

[
1

1 − ruj
(
qdj
) − 1

]
md

j q
d
j =

fj

L
, (6)

L

∫ md
j

0

[
1

1 − ruj (qj(m))
− 1
]
mqj(m)dGj(m) = fjGj(m

d
j ) + Fj , (7)

which—even in our multi-sector economy—allow us to prove the existence and uniqueness

of the sectoral cutoff and quantities. Formally, we have the following result.

Proposition 1 (Equilibrium cutoff and quantities) Assume that the fixed costs, fj , and sunk

costs, Fj , are not too large. Then, the equilibrium cutoff and quantities {(md
j )

eqm, q
eqm
j (m), ∀m ∈

[0, (md
j )

eqm]} in each sector j are uniquely determined.

Proof See Appendix A.1. �

Turning to the labor allocation, Lj = NE
j [L

∫ md
j

0 mqj(m)dGj(m) + fjGj(md
j ) + Fj ], and

the mass of entrants, NE
j , in each sector j, we first provide two important expressions that

must hold in equilibrium.3 We then establish the existence and uniqueness of the equilib-

rium labor allocation and entry. To this end, we introduce the following notation. Let

EU ,Uj
≡

∂U

∂Uj

Uj

U
and Euj ,qj(m) ≡

u′j(qj(m))qj (m)

uj(qj(m))
(8)

denote the elasticities of the upper-tier utility and of the subutility, respectively. Let further

ζj(qj(m)) ≡
uj(qj(m))

∫ md
j

0 uj(qj(m))dGj(m)
and νj(qj(m)) ≡

u′j(qj(m))qj (m)
∫ md

j

0 u′j(qj(m))qj (m)dGj(m)

2We assume that the second-order conditions for profit maximization, ru′
j
(x) ≡ −xu′′′j (x)/u′′j (x) < 2 for all

j = 1, 2, . . . , J , hold (Zhelobodko et al., 2012, p.2771).
3To alleviate notation, we henceforth suppress the ‘eqm’ superscript when there is no possible confusion.
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denote the shares that a variety produced with marginal labor requirement m in sector j

contributes to the lower-tier utility Uj and to sectoral expenditure, respectively. Using these

expressions, we obtain the following result.

Lemma 1 (Labor allocation and firm entry) Any equilibrium labor allocation in sector j = 1, 2,

. . . , J satisfies

Lj =
EU ,Uj

Euj ,qj(m)

∑
J
ℓ=1 EU ,Uℓ

Euℓ,qℓ(m)

L, (9)

where Euj ,qj(m) ≡
∫ md

j

0 Euj ,qj(m)ζj(qj(m))dGj (m) is a weighted average of the elasticities of the

subutility functions, where the weights are given by the contribution of each variety to the sectoral

utility. Furthermore, any equilibrium mass of entrants satisfies

NE
j = Lj





1 −
∫ md

j

0 [1 − ruj (qj(m))]νj (qj(m))dGj (m)

fjGj(md
j ) + Fj



 . (10)

Proof See Appendix B.1. �

Lemma 1 shows that, in any equilibrium, the labor allocation Lj can be expressed by

the elasticities EU ,Uj
of the upper-tier utility function and the weighted average Euj ,qj(m) of

the elasticities of the subutility functions. We will discuss the intuition for those terms in

Section 2.3. The mass of entrants is affected not only by Lj , but also by effective entry cost

fjGj(md
j ) + Fj , the distribution of the markup terms 1 − ruj (qj(m)), and the expenditure

shares νj(qj(m)). It is worth emphasizing that we have not specified functional forms for

either utility or productivity distributions to derive those results.

Note that Lemma 1 does not yet imply existence and uniqueness of the equilibrium labor

allocation and the equilibrium mass of entrants. The reason is that, while the expression

in the braces in (10) is uniquely determined by Proposition 1, the labor allocation Lj can

depend on {NE
j }j=1,2,...,J via EU ,Uj

. Thus, to establish those properties, we impose some

separability on the upper-tier utility function. More specifically, assume that the derivative

of the upper-tier utility function with respect to the lower-tier utility in each sector can be

divided into an own-sector and an economy-wide component as follows:

∂U

∂Uj
= γjU

ξj
j Uξ, (11)

where γj > 0, ξj < 0, and ξ ≥ 0 are parameters.4 Specification (11) includes, for example, the
4The crucial points are that, under condition (11), the ratio of the derivatives in (2) with respect to j and ℓ
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cases where the upper-tier utility function is of the Cobb-Douglas or the ces form. When

condition (11) holds, we can prove the following result:

Proposition 2 (Equilibrium labor allocation and firm entry) Assume that (11) holds. Then,

the equilibrium labor allocation and masses of entrants {L
eqm
j , (NE

j )eqm}j=1,2,...,J are uniquely de-

termined by (9) and (10).

Proof See Appendix A.2. �

2.2 Optimal allocation

Having analyzed the equilibrium allocation, we now turn to the optimal allocation.5 Assume

that the planner chooses the quantities, cutoffs, and masses of entrants to maximize welfare

subject to the resource constraint of the economy as follows:

max
{qj(m),md

j ,NE
j ,∀j,m}

L · U
(
U1,U2, . . . ,UJ

)

Uj ≡ NE
j

∫ md
j

0
uj(qj(m))dGj(m)

s.t.
J

∑
j=1

NE
j

{∫ md
j

0
[Lmqj(m) + fj ]dGj(m) + Fj

}
= L. (12)

The planner has no control over the uncertainty of the draws of m, but knows the underlying

distributions Gj . Let δ denote the Lagrange multiplier associated with (12). The first-order

conditions with respect to quantities, cutoffs, and the masses of entrants are given by:

u′j(qj(m)) = δjm, δj ≡
δ

∂U/∂Uj
(13)

L
uj(qdj )

δj
= Lmd

jq
d
j + fj (14)

L

∫ md
j

0

uj(qj(m))

δj
dGj(m) =

∫ md
j

0
[Lmqj(m) + fj ]dGj(m) + Fj . (15)

is independent of NE
k

for k 6= j, ℓ, and that it satisfies some monotonicity properties. Otherwise, the resulting
system of equations becomes generally intractable.

5In the main text, we consider the ‘primal’ first-best problem where the planner maximizes utility subject
to the economy’s resource constraint. When quantifying the gap between the equilibrium and the optimum in
Section 4, we will analyze a ‘dual’ problem where the planner minimizes the resource cost subject to a utility
level. The latter allows us to derive the Allais surplus (Allais, 1943, 1977) that can be used for comparing the
equilibrium with the first-best allocation, i.e., even in contexts where equivalent or compensating variations—
or other related criteria to compare different equilibria—cannot be readily applied due to a lack of prices.
More details are relegated to Appendices D and F.
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From the first-order conditions (13), which hold for any sector j and any firm with m ≤ md
j ,

we then have
u′j(q

d
j )

u′j
(
qj(m)

) =
md

j

m
and

u′j(q
d
j )

u′ℓ(q
d
ℓ )

=
δj

δℓ

md
j

md
ℓ

, (16)

which determine the optimal intra- and intersectoral consumption patterns, respectively.

We start again with the cutoff and quantities. Noting that δj = u′j(qj(m))/m for any

value of m from (13), we can rewrite condition (15) as follows:

L

∫ md
j

0

[
1

Euj ,qj(m)
− 1

]
mqj(m)dGj(m) = fjGj(m

d
j ) + Fj , (17)

where Euj ,qj(m) is defined in (8). We refer to 1/Euj ,qj(m) as the social markup that a firm with

marginal labor requirement m should optimally charge, and to m/Euj ,qj(m) as the shadow

price of a variety produced by a firm with m in sector j.6 Condition (17)—which equates

the marginal social benefit of entry in sector j with its marginal social cost—may then be

understood as the zero expected social profit (zesp) condition, which is analogous to the zep

condition (7). Furthermore, evaluating (13) at md
j and plugging the resulting expression into

(14), we obtain an expression similar to the zcp condition (6) as follows:

(
1

Euj ,qdj

− 1

)
md

jq
d
j =

fj

L
, (18)

which we call the zero cutoff social profit (zcsp) condition. Using (17) and (18), we can establish

the existence and uniqueness of the sectoral cutoff and quantities.

Proposition 3 (Optimal cutoff and quantities) Assume that the fixed costs, fj , and the sunk

costs, Fj , are not too large. Then, the optimal cutoff and quantities {(md
j )

opt, qopt
j (m), ∀m ∈

[0, (md
j )

opt]} in each sector j are uniquely determined.

Proof See Appendix A.3. �

Turning next to the optimal labor allocation, Lj , and the optimal masses of entrants, NE
j ,

we proceed in the same way as for the equilibrium case, and provide the following two

expressions.

6Dhingra and Morrow (2017) refer to 1 − Euj ,qj(m) = [uj(qj(m))− δjmqj(m)]/uj(qj(m)) as the social
markup, which captures the utility from consumption of a variety net of its resource costs. Moreover, they
label [pj(m)−mw]/pj(m) = ruj

(qj(m)) as the private markup. We adopt their terminology but redefine the
two markups in a slightly different way.
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Lemma 2 (Labor allocation and firm entry) Any optimal labor allocation in sector j = 1, 2, . . . , J

satisfies

Lj =
EU ,Uj

∑
J
ℓ=1 EU ,Uℓ

L. (19)

Furthermore, any optimal mass of entrants satisfies

NE
j = Lj





1 −
∫ md

j

0 Euj ,qj(m)ζj(qj(m))dGj(m)

fjGj(md
j ) + Fj



 . (20)

Proof See Appendix B.2. �

Lemma 2 shows that, in any optimum, the labor allocation Lj can be expressed by the

elasticities EU ,Uj
of the upper-tier utility. The mass of entrants is affected not only by Lj ,

but also by effective entry costs fjGj(m
d
j ) + Fj , the distribution of the social markup terms

Euj ,qj(m), and the shares ζj(qj(m)) that capture the relative contribution of a variety pro-

duced with marginal labor requirement m to utility in sector j.

Finally, similarly to the equilibrium analysis, Lemma 2 does not yet imply the existence

and uniqueness of the optimal labor allocation and the optimal masses of entrants. We thus

impose again the separability condition (11) to establish those properties as follows:

Proposition 4 (Optimal labor allocation and firm entry) Assume that (11) holds. Then, the

optimal labor allocation and masses of entrants {Lopt
j , (NE

j )opt}j=1,2,...,J are uniquely determined by

(19) and (20).

Proof See Appendix A.4. �

2.3 Equilibrium versus optimum

Having established existence and uniqueness of the equilibrium and optimal allocations in

Propositions 1–4, we now investigate the difference between these two allocations.

The novel feature of our model lies in labor and entry distortions between sectors. It is

important to notice that characterizing labor and entry distortions for one sector requires

information on all sectors. Put differently, the labor allocation and, thus, entry are interde-

pendent when there are multiple sectors. Hence, entry distortions in our multi-sector model

generally differ from those in models with a single imperfectly competitive sector such as

Mankiw and Whinston (1986) and Dhingra and Morrow (2017).
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To characterize the labor distortions, we compare expressions (9) from Lemma 1 with

(19) from Lemma 2. We then obtain the following proposition.

Proposition 5 (Distortions in the labor allocation) The equilibrium and optimal labor alloca-

tions satisfy L
eqm
j T L

opt
j if and only if

Υj ≡
E

eqm
U ,Uj

E
eqm
uj ,qj(m)

E
opt
U ,Uj

T
∑

J
ℓ=1 E

eqm
U ,Uℓ

E
eqm
uℓ,qℓ(m)

∑
J
ℓ=1 E

opt
U ,Uℓ

. (21)

Assume, without loss of generality, that sectors are ordered such that Υj is non-decreasing in j. If

there are at least two different Υj ’s, then there exists a unique threshold j∗ ∈ {1, 2, . . . , J − 1} such

that the equilibrium labor allocation is not excessive for sectors j ≤ j∗, whereas it is excessive for

sectors j > j∗. The equilibrium labor allocation is optimal if and only if all Υj terms are the same.

Proof See Appendix A.5. �

As can be seen from (21), the interdependence of heterogeneous sectors is important for

distortions in the labor allocation. Which sectors have an excessive labor allocation depends

on two types of statistics: the elasticities EU ,Uj
of the upper-tier utility function, evaluated at

the equilibrium and the optimum; and the weighted averages Euj ,qj(m) of the elasticities of

the subutility functions, evaluated at the equilibrium.

To build intuition for these statistics we focus on expressions (9) and (19) from Lemmas 1

and 2. The former comes from the equilibrium free entry condition (7) and the latter from

the optimal entry condition (15). Multiplying (7) and (15) by NE
j and rearranging, we have

L
eqm
j =

L(NE
j )eqm

λjw

∫ md
j

0
u′j(qj(m))qj (m)dGj(m) (22)

L
opt
j =

L(NE
j )opt

δj

∫ md
j

0
uj(qj(m))dGj(m). (23)

The key difference is that the former reflects zero expected profit by each firm, whereas

the latter equates the marginal social benefit and the marginal social cost of entry for the

planner to maximize social welfare. Since firms and the planner have different objectives,

the two allocations differ in general. Using (22) and (23) we discuss them in terms of EU ,Uj

for equilibrium and optimum and of Euj ,qj(m) for equilibrium.

Elasticities of the upper-tier utility function. Expressions (22) and (23), together with the

definition of λj in (2) and the definition of δj in (13), reveal why L
eqm
j and L

opt
j involve the

13



elasticities of the upper-tier utility function, Eeqm
U ,Uj

and E
opt
U ,Uj

.

Intuitively, at the free entry equilibrium, the private cost wL
eqm
j /(NE

j )eqm of an en-

trant in equation (22) is just offset by the private benefit, i.e., firms’ expected revenue

(L/λj)
∫ md

j

0 u′j(qj(m))qj (m)dGj(m). Since the latter depends on the inverse demand func-

tions (2), the equilibrium labor allocation L
eqm
j is affected by the elasticities of the upper-tier

utility via λj .

By contrast, the social cost of an additional entrant is proportional to L
opt
j /(NE

j )opt,

which by equation (23) must be equal to (L/δj)
∫ md

j

0 uj(qj(m))dGj(m) at optimum. Note

that the latter reflects the (expected) marginal social benefit generated by the additional

entrant. Thus, the optimal labor allocation L
opt
j depends on the elasticities of the upper-tier

utility via δj .

It is worth emphasizing that even when the equilibrium and optimal elasticities of upper-

tier utility in each sector are the same, i.e., Eeqm
U ,Uj

= E
opt
U ,Uj

, their sectoral heterogeneity plays

a crucial role in the labor distortions as long as there is sectoral heterogeneity in E
eqm
uj ,qj(m).

Indeed, although E
eqm
U ,Uj

and E
opt
U ,Uj

in the left-hand side of (21) cancel out when they are

identical, the elasticities in the right-hand side remain. We will elaborate on this point in the

next section where we illustrate some examples.

Weighted average of the elasticities of the subutility functions. Expressions (22) and

(23) reveal why L
eqm
j depends on the weighted averages of the elasticities of the subutility

functions, E
eqm
uj ,qj(m), whereas L

opt
j does not.

To understand this difference, recall that the private benefit of an entrant is given by

(L/λj)
∫ md

j

0 u′j(qj(m))qj (m)dGj(m). Since this expected revenue for the entrant involves the

consumers’ inverse demand functions, the equilibrium labor allocation L
eqm
j depends not

only on E
eqm
U ,Uj

via λj but also on E
eqm
uj ,qj(m) via u′j(qj(m)).7

While the equilibrium labor allocation is determined by the firms that care about zero

expected profit conditional on the consumers’ demand, the optimal labor allocation is de-

termined by the planner who maximizes social welfare with respect to the mass of entrants.

Since the latter does not involve the inverse demand functions, it is independent of E
eqm
uj ,qj(m).

Other things equal, the higher E
eqm
uj ,qj(m) the more labor is allocated to sector j by (9)

because consumers allocate a large share of their budget to that sector by (22). Furthermore,

a sector with higher E
eqm
uj ,qj(m) relative to the other sectors tends to display an excessive labor

7The weighted average satisfies E
eqm
uj ,qj(m) < 1 because Euj ,qj(m) < 1 for all m ∈ [0,md

j ] by concavity of uj ,

and because
∫md

j

0 Euj ,qj(m)ζj(qj(m))dGj(m) <
∫md

j

0 ζj(qj(m))dGj(m) = 1 by the definition of ζj(qj(m)).
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allocation by (21).

To see why a sector with higher E
eqm
uj ,qj(m) tends to display an excessive labor allocation,

assume that E
eqm
U ,Uj

= E
opt
U ,Uj

for all j, which is the case with the Cobb-Douglas upper-tier

utility. If E
eqm
uj ,qj(m) = E

eqm
u1,q1(m) holds for all j 6= 1, then the equilibrium labor allocation is

optimal by (9) and (19). However, if E
eqm
uJ ,qJ (m) > E

eqm
uj ,qj(m) = E

eqm
u1,q1(m) for j = 2, 3, ..., J − 1,

then expenditure on—and thus the labor allocation to—sector J gets larger at the expense

of the other sectors, whereas the optimal labor allocation does not change. Thus, sector J

displays an excessive labor allocation, whereas the other sectors j = 1, 2, ..., J − 1 exhibit an

insufficient labor allocation. The latter is a general equilibrium effect: an excessive allocation

to one sector must go hand in hand with an insufficient allocation to the other sectors.

Note that what matters is the relative magnitude of E
eqm
uj ,qj(m). Indeed, it is easy to see

that a proportionate increase in E
eqm
uj ,qj(m) for all j does not affect the equilibrium allocation

by (9) and, hence, excess or insufficient labor allocation by (21).

Turning to entry distortions, we compare expression (10) from Lemma 1 with (20) from

Lemma 2 to obtain the following proposition.

Proposition 6 (Distortions in firm entry) The equilibrium and optimum masses of entrants sat-

isfy (NE
j )eqm/(NE

j )opt T 1, if and only if

L
eqm
j

L
opt
j

·
fjGj((md

j )
opt) + Fj

fjGj((md
j )

eqm) + Fj

·
1 −

∫ (md
j )

eqm

0 [1 − ruj (q
eqm
j (m))]νj(q

eqm
j (m))dGj(m)

1 −
∫ (md

j )
opt

0 E
uj ,qopt

j (m)
ζ

opt
j (qj(m))dGj(m)

T 1. (24)

Proof Expression (24) directly follows from (10) and (20). �

Expression (24) shows that (NE
j )eqm/(NE

j )opt depends on three terms. The first term

L
eqm
j /Lopt

j vanishes in a single-sector model, because L
eqm
j = L

opt
j = L. In a multi-sector

model, however, the gap between L
eqm
j and L

opt
j plays a crucial role, as mentioned above.

The second and third terms in (24) capture two additional margins, namely ‘effective

fixed costs’ and ‘private and social markups’, which depend on the cutoffs and quantities

both at equilibrium and optimum. Recall that by the proofs of Propositions 1 and 3, λjw and

δj are uniquely determined without any information on the other sectors. Hence, even in

our multi-sector framework, the analysis of cutoff and quantity distortions in each sector j

turns out to work as in the single-sector model by Dhingra and Morrow (2017). We shall

not repeat their theoretical analysis here, but we first briefly discuss them, and then provide

specific examples in the next section. Those examples will be taken to the data in Section 4.
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Effective fixed costs. The second term in (24) shows that if the market delivers too little

selection, (md
j )

eqm > (md
j )

opt, entry tends to be insufficient. The reason is that the higher

survival probability in equilibrium, as compared to the optimum, increases the expected

fixed costs that entrants have to pay. This reduces expected profitability and discourages

entry more in equilibrium than in optimum. In contrast, other things equal, too much

equilibrium selection, (md
j )

eqm < (md
j )

opt, leads to excessive entry.

Private and social markups. The last term in (24) shows that the gap between equilibrium

and optimal entry depends on the private and social markup terms, which may exacerbate

or attenuate excess entry (Mankiw and Whinston, 1986; Dhingra and Morrow, 2017). The

numerator can be related to the business stealing effect: the higher the private markups 1/[1−

ruj (qj(m))], the more excessive the entry. The denominator, in turn, captures the limited

appropriability effect: the greater the social markups 1/Euj ,qj(m), the more insufficient the

entry. Thus, the last term in (24) depends on the relative strength of these two effects,

as well as on the weighting schemes νj(qj(m)) and ζj(qj(m)) that are determined by the

properties the subutility function uj and the productivity distribution function Gj .

To sum up, the difference between market equilibrium and social optimum in terms of

the labor allocation and firm entry across heterogeneous sectors depends, in general, on four

key ingredients: the elasticities of the upper-tier utility; the weighted averages of the elastic-

ities of the subutilities; effective fixed costs; and private and social markups. While distor-

tions in a single-sector model are characterized solely by uj and Gj for that sector (Dhingra

and Morrow, 2017), in a multi-sector setting characterizing distortions for one sector requires

additional information on the elasticities of the upper-tier utility, EU ,Uj
, and the weighted

averages of the elasticities of the subutilities, Euj ,qj(m), for all sectors. Hence, when assess-

ing distortions we need to take into account the interdependence between heterogeneous

sectors.

3 Examples

Our results in the Propositions and Lemmas presented so far are general enough to encom-

pass various specifications of utility functions and productivity distributions used in the

literature. We now consider specific upper-tier utility and subutility functions that enable

us to express the two types of elasticities, EU ,Uj
and Euj ,qj(m), in simple parametric forms.

We then take the parametric models to data in Section 4.
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Concerning the subutility function uj , we first analyze in Section 3.1 the ubiquitous ces

case that has dominated much of the literature on monopolistic competition. We then turn

to a tractable ‘variable elasticity of substitution’ (ves) model in Section 3.2

In doing so, notice that the lower-tier utility Uj in specification (1) does not nest the stan-

dard homothetic ces aggregator. To nest it, we consider a simple monotonic transformation

of the lower-tier utility in (1) as Ũj(Uj). In Section 3.1 we assume that Ũj(Uj) = U
1/ρj
j =

[NE
j

∫ md
j

0 qj(m)ρj dGj(m)]1/ρj , whereas we retain Ũj(Uj) = Uj in Section 3.2.

Even with the transformation Ũj of the lower-tier utility, we can re-establish the general

results shown in Section 2, as long as we let Ũj(0) = 0, Ũ ′
j > 0, and limUj→∞ Ũj(Uj) = ∞,

while replacing the condition in (11) with

∂U

∂Ũj

∂Ũj

∂Uj
= γjŨ

ξj
j Uξ , (25)

where γj > 0, ξj < 0, and ξ ≥ 0 are parameters.8

Turning to the upper-tier utility function, we consider in the remainder of this paper

the standard ces form: U = {∑
J
j=1 βj [Ũj(Uj)](σ−1)/σ}σ/(σ−1), where σ ≥ 1, βj > 0 for

all j, and ∑
J
j=1 βj = 1. Thus, the elasticity of the upper-tier utility function is given by

EU ,Uj
≡ (∂U/∂Ũj )(∂Ũj/∂Uj)(Uj/U) = βj(∂Ũj/∂Uj)(Uj/Ũj)(Ũj/U)(σ−1)/σ . When σ → 1,

the upper-tier utility reduces to the Cobb-Douglas form, U = ∏
J
j=1[Ũj(Uj)]βj , so that

EU ,Uj
= βj

(
∂Ũj

∂Uj

Uj

Ũj

)
. (26)

The Cobb-Douglas upper-tier utility function always satisfies condition (25) that guarantees

the existence and uniqueness of the equilibrium and optimal allocations. When the upper-

tier utility function is of the ces form, whereas the lower-tier utility is of the homothetic ces

form with Ũj(Uj) = U
1/ρj
j , we have (∂U/∂Ũj )(∂Ũj/∂Uj) = (βj/ρj)Ũ

σ−1
σ −ρj

j U1/σ . Hence, in

that case, it is required that (σ − 1)/σ < ρj for condition (25) to hold with ξj < 0.9

Retaining σ → 1 for now, we consider two specific forms for the subutility functions for

which the weighted averages of the elasticities of the subutility functions display a simple

8The proofs are virtually identical to the ones in Appendices A and B, except that ∂U/∂Uj needs to be
replaced with (∂U/∂Ũj)(∂Ũj/∂Uj). Observe that in a single-sector model, the choice of Ũj does not affect
distortions because it is a monotonic transformation of the overall utility in that case. In a multi-sector model,
however, sectoral allocations and thus aggregate distortions are affected by Ũj .

9Should (σ − 1)/σ > ρj hold, goods are Hicks-Allen complements (see, e.g., Matsuyama, 1995) so that
multiple equilibria with some inactive sectors may arise. Since ξj < 0 is not satisfied in that case, we exclude
it from our analysis.
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behavior. We will return to the case with σ > 1 in Section 4 where we quantify the model.

3.1 ces subutility

We first discuss the case of the ces subutility that has been widely used in the literature.

Assume that uj(qj(m)) = qj(m)ρj and Ũj(Uj) = U
1/ρj
j , where ρj ∈ (0, 1) for all sectors j.

The labor distortion in Proposition 5, and thus the first term of (24) that characterizes

entry distortion in Proposition 6, depend on E
eqm
U ,Uj

, E
opt
U ,Uj

, and E
eqm
uj ,qj(m). Using (26), the

elasticity of the upper-tier utility function can be rewritten as E
eqm
U ,Uj

= E
opt
U ,Uj

= βj/ρj . Fur-

thermore, when the subutility function is of the ces form, we know that Euj ,qj(m) = ρj for

all m, so that E
eqm
U ,Uj

= ρj by the definition in Lemma 1.

The entry distortion in Proposition 6 depends also on the cutoffs and quantities. Since

we have shown that the cutoff and quantity distortions can be studied on a sector-by-sector

basis even in our multi-sector model, we can apply the single-sector result by Dhingra and

Morrow (2017), i.e., in the ces case (md
j )

eqm = (md
j )

opt and q
eqm
j (m) = q

opt
j (m) for all m

irrespective of the underlying productivity distribution Gj . Furthermore, since Euj ,qj(m) =

1 − rj(qj(m)) and νj(qj(m)) = ζj(qj(m)) hold for all m, the second and the third terms in

(24) vanish, so that (NE
j )eqm/(NE

j )opt = L
eqm
j /Lopt

j . Hence, we can restate Propositions 5

and 6 for this specific example as follows:

Corollary 1 (Distortions in the labor allocation and firm entry with ces subutility) Assume

that the subutility function in each sector is of the ces form, uj(qj(m)) = qj(m)ρj . Then, the labor

allocation and the masses of entrants satisfy L
eqm
j T L

opt
j and (NE

j )eqm T (NE
j )opt, respectively, if

and only if

ρj T
1

∑
J
ℓ=1 βℓ/ρℓ

. (27)

Assume, without loss of generality, that sectors are ordered such that ρj is non-decreasing in j. If

there are at least two different ρj ’s, there exists a unique threshold j∗ ∈ {1, 2, . . . , J − 1} such that

the equilibrium labor allocation and firm entry are not excessive for sectors j ≤ j∗, whereas they

are excessive for sectors j > j∗. The equilibrium labor allocation and firm entry in the ces case are

optimal if and only if all ρj ’s are the same.

Proof See above. �

Several comments are in order. First, since there are no cutoff and quantity distortions

in the case of ces subutility functions, the market equilibrium is fully efficient if and only if
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the ρj ’s are the same across all sectors. However, there are distortions in the labor allocation

and in the masses of entrants when the ρj ’s vary across sectors.10

Second, ρj in the ces model can be related not only to the inverse of the markup, but

also to EU ,Uj
and to Euj ,qj(m). It is the latter two elasticities that matter for the labor and

entry distortions. The reason is that the difference between the equilibrium and optimal

labor allocations comes from EU ,Uj
= βj/ρj and Euj ,qj(m) = ρj , which are determined by the

first derivatives of Ũj and uj as seen from (26) and the definition of Euj ,qj(m). In contrast, the

markup depends on ruj , which involves the second derivative of uj . Thus, in the case of the

Cobb-Douglas upper-tier utility and ces subutility functions, markup heterogeneity is not a

determinant of labor and entry distortions.

Third, Corollary 1 holds irrespective of the functional form for Gj . Hence, productivity

distributions play no role in the optimality of the market outcome for the standard case with

the Cobb-Douglas upper-tier utility and ces subutility functions.

Last, since Corollary 1 only pertains to the class of ces subutility functions, it must not

be read as a general ‘if and only if’ result for any subutility function. Indeed, as we show in

the next subsection, the labor allocation and entry can be efficient even when the subutility

function is not of the ces form.

3.2 ves subutility

We have so far examined the case of ces subutility functions without cutoff and quantity

distortions. We now turn to our ves example where all types of distortions—cutoff, quantity,

labor, and entry distortions—can operate. Specifically, we consider the ‘constant absolute

risk aversion’ (cara) subutility as in Behrens and Murata (2007), uj(qj(m)) = 1 − e−αjqj(m),

where αj is a strictly positive parameter.

This specification can be viewed as an example of the ves subutility analyzed in the sem-

inal paper by Krugman (1979). It is analytically tractable, and generates demand functions

exhibiting smaller price elasticities at higher consumption levels. Unlike the ces model,

this ves case can therefore account for the empirically well-documented facts of incomplete

pass-through and higher markups charged by more productive firms within each sector.

In what follows, we assume that Ũj(Uj) = Uj , so that Eeqm
U ,Uj

= E
opt
U ,Uj

= βj by (26). To

express E
eqm
uj ,qj(m) in a parametric form, we also assume that Gj follows a Pareto distribution

Gj(m) =
(
m/mmax

j

)kj , where both the upper bounds mmax
j > 0 and the shape parameters

10Hsieh and Klenow (2009) consider a heterogeneous firms model where the mass of firms is either fixed or
invariant, and where the ρj ’s are the same across all sectors. In contrast, Epifani and Gancia (2011) allow for
heterogeneity in the ρj ’s across sectors, yet consider homogeneous firms within sectors.
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kj ≥ 1 may differ across sectors. We relegate most analytical details for the case with cara

subutilities and Pareto productivity distributions to Appendix E. We show there that the

equilibrium and optimal cutoffs are given as follows:

(md
j )

eqm =

[
αjFj(mmax

j )kj

κjL

] 1
kj+1

and (md
j )

opt =

[
αjFj(mmax

j )kj (kj + 1)2

L

] 1
kj+1

, (28)

where κj ≡ kje−(kj+1)
∫ 1

0 (1 + z)
(
z−1 + z − 2

)
(zez)kj ezdz > 0 is a function of the shape

parameter kj only. Using expressions (28), we can establish the following result:

Proposition 7 (Distortions in the cutoff and quantities with cara subutility) Assume that

the subutility function in each sector is of the cara form uj
(
qj(m)

)
= 1 − e−αjqj(m), and that the

productivity distribution follows a Pareto distribution, Gj(m) = (m/mmax
j )kj . Then, the equilib-

rium cutoff exceeds the optimal cutoff in each sector, i.e., (md
j )

eqm > (md
j )

opt. Furthermore, there

exists a unique threshold m∗
j ∈ (0, (md

j )
opt) such that qeqm

j (m) < q
opt
j (m) for all m ∈ [0,m∗

j ) and

q
eqm
j (m) > q

opt
j (m) for all m ∈ (m∗

j , (md
j )

eqm).

Proof See Appendix A.6. �

Three comments are in order. First, in this model, more productive firms with m < m∗
j

underproduce, whereas less productive firms with m > m∗
j overproduce in equilibrium

as compared to the optimum in each sector j. Notice that both types of firms coexist in

equilibrium since the threshold m∗
j satisfies the inequalities 0 < m∗

j < (md
j )

opt < (md
j )

eqm.11

Second, using (28), the gap between the equilibrium and optimal selection can be ex-

pressed as a simple function of the sectoral shape parameter only: (md
j )

opt/(md
j )

eqm =

[κj(kj + 1)2]1/(kj+1) < 1. Since this expression increases with kj , the larger the value of

kj (i.e., a larger mass of the productivity distribution is concentrated on low-productivity

firms) the smaller is the magnitude of insufficient selection in sector j.

Finally, Proposition 7 holds on a sector-by-sector basis, regardless of the labor allocation

and the masses of entrants. Thus, our results on cutoff and quantity distortions would also

apply to a single-sector version of the cara model.

Turning to the labor and entry distortions, the combination of cara subutility functions

and Pareto productivity distributions yields the equilibrium and optimal masses of entrants

11This need not always be the case, however. For example, Dhingra and Morrow (2017) derive general
conditions for cutoff and quantity distortions in a single-sector framework. In their model with an arbitrary
subutility function and an arbitrary productivity distribution, it is possible that m∗

j exceeds (md
j )

eqm. In that
case, all firms (even the least productive ones) would underproduce, whereas in our model some firms (the
least productive ones) always overproduce from a social welfare point of view.
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as follows (see expressions (E-15)–(E-16) and (E-30)–(E-31) in Appendix E):

(NE
j )eqm =

L
eqm
j

(kj + 1)Fj
and (NE

j )opt =
L

opt
j

(kj + 1)Fj
. (29)

Thus, as in the ces case, we have (NE
j )eqm/(NE

j )opt = L
eqm
j /Lopt

j . From Proposition 5

we know that distortions in the labor allocation are determined by E
eqm
uj ,qj(m), together with

E
eqm
U ,Uj

= E
opt
U ,Uj

= βj . When the subutility function is of the cara form and the productivity

distribution follows a Pareto distribution, we can show that Euj ,qj(m) depends solely on the

sectoral shape parameter kj as follows:

Lemma 3 (Weighted average of the elasticities of the cara subutility functions) Assume that

the subutility function in each sector is of the cara form, uj
(
qj(m)

)
= 1 − e−αjqj (m), and that the

productivity distribution follows a Pareto distribution, Gj(m) = (m/mmax
j )kj . Then, the weighted

average Euj ,qj(m) of the elasticities of the subutility functions in each sector can be rewritten as

θj ≡

∫ 1
0 (1 − z)ez−1(1 + z)ez−1 (zez−1)kj−1

dz
∫ 1

0 (1 − ez−1)(1 + z)ez−1 (zez−1)
kj−1 dz

. (30)

Proof See Appendix B.3. �

To characterize the labor and entry distortions, we rank sectors such that θ1 ≤ θ2 ≤ . . . ≤

θJ . Since θj is increasing in kj , ranking sectors by θj is equivalent to ranking them by kj .

Plugging (30) into (21), using EU ,Uj
= βj from the upper-tier Cobb-Douglas specification,

and noting that (NE
j )eqm/(NE

j )opt = L
eqm
j /Lopt

j by (29), we can restate Propositions 5 and 6

for this example as follows:

Corollary 2 (Distortions in the labor allocation and firm entry with cara subutility) Assume

that the subutility function in each sector is of the cara form, uj
(
qj(m)

)
= 1− e−αjqj(m), and that

the productivity distribution follows a Pareto distribution, Gj(m) = (m/mmax
j )kj . Then, the labor

allocation and the masses of entrants satisfy L
eqm
j T L

opt
j and (NE

j )eqm T (NE
j )opt, respectively, if

and only if

θj T
J

∑
ℓ=1

βℓθℓ. (31)

Assume, without loss of generality, that sectors are ordered such that θj is non-decreasing in j. If

there are at least two different θj ’s, there exists a unique threshold j∗ ∈ {1, 2, . . . , J − 1} such that

the equilibrium labor allocation and firm entry are not excessive for sectors j ≤ j∗, whereas they are

21



excessive for sectors j > j∗. The equilibrium labor allocation and firm entry in the cara case are

optimal if and only if all θj ’s, and thus all kj’s, are the same.

Proof See above. �

Corollary 2 states that sectors with larger values of kj (i.e., sectors where a larger mass of

the productivity distribution is concentrated on low-productivity firms) are more likely to

display excess entry and excess labor allocation in equilibrium. As mentioned after Propo-

sition 7, sectors with larger values of kj also display smaller cutoff distortions. Thus, more

excessive entry comes with more efficient selection. Furthermore, Corollary 2 shows that

all sectors with θj above the weighted average ∑
J
ℓ=1 βℓθℓ display excess entry and labor al-

location, whereas the opposite is true for all sectors with θj below that threshold. Hence,

interdependence of heterogeneous sectors matters for those distortions. If there is no het-

erogeneity in kj , then the labor allocation and entry are efficient although the cutoffs and

quantities are inefficient in all sectors.

4 Quantification

In this section, we take our model to the data in order to quantify the gap between the

equilibrium and optimal allocations.12 Our approach only requires data that is accessible

for many countries. In particular, we need the expenditure shares across sectors, and some

aggregate statistics of the firm-size distribution within sectors. We make use of firm-level

data from France in 2008 and from the UK in 2005. Using two different countries enables us

to assess the robustness of our quantification approach, and to compare the distortions in

those two different cases. We show that our results are robust to the use of two alternative

measures of firm size (employment and revenue). In the employment case, we further

consider two alternative measures of fixed costs (R&D expenditure and aggregate profits).

As explained below, the revenue case does not require information on fixed costs.

We first focus on the ves model from Section 3.2 that captures all types of distortions.

We then quantify the ces model from Section 3.1, where cutoff and output distortions are

absent. Finally, we put the quantitative predictions of the two models into perspective.

12Our paper differs from the literature that uses various equilibria to quantify the impact of resource misal-
location on aggregate TFP. Hsieh and Klenow (2009), for example, compare observed equilibria in China and
India with counterfactual equilibria in which those countries would attain the “U.S. efficiency” level. Unlike
this literature, we compare the observed market equilibrium and the optimal allocation that the social planner
would choose.

22



4.1 Data

Our quantification procedure requires expenditure shares at the sectoral level and a firm-

level measure of size (employment or revenue). The employment case further requires R&D

outlays or aggregate profits at the sectoral level.13 Data on sectoral expenditure shares and

R&D outlays are rather standard and available for many countries, while at the same time

information on firm-level revenue and/or employment is becoming increasingly accessible.

In this respect, France and the UK are two ideal countries for our study because in both

instances data on firm-level employment and revenue are available for virtually the whole

firm population.

For France, the firm-level data come from the ‘Élaboration des Statistiques Annuelles

d’Entreprises’ (esane) database, which combines administrative and survey data to produce

structural business statistics. We use the administrative part of the dataset that contains rev-

enue and employment figures for almost all business organizations in France. It is compiled

from annual tax returns that companies file to the tax authorities and from annual social se-

curity data that supply additional information on the employees. We focus on the year 2008,

for which there are 1,100,220 firms with positive employment records.14 For each firm, we

also have information about its sectoral affiliation. The French input-output tables contain

information on 35 sectors, the public sector plus 34 private sectors, roughly corresponding

to 2-digit nace (revision 1.1) codes. This dictates the level of aggregation in our analysis.

We discard the public sector (12.12% of expenditure) and focus on the remaining 34 private

sectors. For those sectors, we obtain expenditure shares êj by re-scaling total expenditure

such that the shares sum up to one. These observed expenditure shares are reported in

Table 1.

The data for the UK have the same structure. We use the ‘Business Structure Database’

(bsd), which contains a small number of variables, including employment, revenue, and sec-

toral affiliation for almost all business organizations in the UK. The bsd is derived primarily

from the ‘Inter-Departmental Business Register’ (idbr), which is a live register of data col-

lected by ‘Her Majesty’s Revenue and Customs’ (hmrc) via VAT and ‘Pay As You Earn’

(paye) records. We focus on the year 2005 for which there are 1,704,543 firms with positive

employment records.15 We can distinguish the exact same 34 sectors as for France for the

sectoral affiliation of those firms, for which we obtain expenditure shares from the British

13Further details concerning the datasets can be found in Appendix C.1.
14The dataset contains 3 employment variables. We use employment on December 31st from the French

Business Register (ocsane) source.
15The dataset contains 2 employment variables. We use employment count excluding the firm owners.
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input-output tables. These observed expenditure shares, êj , re-scaled again to sum to one,

are reported in Table 2.

In order to assess the robustness of our quantification exercise we consider several vari-

ants of our procedure. In the baseline quantification procedure we use firm employment

in order to back out heterogeneity in productivity across firms and employ a measure of

industry-level fixed costs based on R&D outlays. More specifically, we measure fixed costs

as the industry-level ratio of R&D expenditure to gross output (see below for more details).

As a first robustness check, we use firm revenue in order to back out heterogeneity in

productivity across firms. In this case, we do not need a measure of fixed costs to quantify

the gap between the equilibrium and optimal allocations. Despite being less demanding

in terms of assumptions on the measurement of fixed costs, the analysis based on firm-

level revenue is more vulnerable than the analysis based on firm-level employment to the

presence of measurement error. This is why we see them as complementary.16 Revenue

data are in fact more likely to be measured with error than employment because the latter

are cross-validated, for both France and the UK, from information coming from different

sources (social security, tax returns, balance sheets, etc.), while the former is sometimes

estimated/imputed for small firms.

As a second robustness check, we use firm employment as in the baseline case to back out

heterogeneity in productivity across firms but employ a different measure of industry-level

fixed costs. More specifically, we use the profits-to-revenue ratio, where data on industry-

wide profits and revenue are obtained via aggregation of firm-level profits and revenue.

Firm-level profits for the whole firm population are available only for France from the esane

database. Thus, this procedure is not readily applicable to the UK.17

4.2 Quantifying distortions: the cara subutility case

To quantify the ves model, we first match a theory-based moment of the sector-specific

firm-size distribution to its empirical counterpart.

In our baseline case we derive an analytical expression for the standard deviation of (log)

firm-level employment in sector j, excluding the labor input Fj that all firms have to bear as

a sunk entry cost. The resulting expression depends only on the shape parameter kj of the

16Part of the variation in revenue data is thus attributable to measurement error rather than to differences in
underlying productivity across firms. This is less of a problem in the case of employment data.

17The bsd dataset for the UK contains information on firm revenue but not profits. Some UK datasets, like
the Annual Respondents Database, do contain information on both variables but cover only a small portion
(roughly 70,000 firms) of the UK firm population.
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sector-specific Pareto productivity distribution (see equation (C-1) in Appendix C.2).

To construct its empirical counterpart, we compute for each sector j the ratio of R&D

expenditure (our proxy for sectoral sunk entry costs) to gross output and then multiply

the ratio by total employment in that sector. Dividing this by the number of firms yields a

measure for Fj , which we then subtract from the employment of each firm in the respec-

tive sector (see Appendix C.1 for more details). Finally, we calculate for each sector j the

standard deviation of the resulting (log) number of employees. This data moment and the

number of firms in each sector are reported in Table 1 for France, and in Table 2 for the UK.

With the standard deviation of the (log) number of employees at hand, we can then

uniquely back out k̂j for each sector and compute θ̂j and κ̂j , which depend solely on k̂j .

Using θ̂j and the observed expenditure shares êj , we obtain β̂j by solving ∑
J
ℓ=1 β̂ℓ = 1 and

êj = β̂j θ̂j/∑
J
ℓ=1 β̂ℓθ̂ℓ.

18 We can proceed in a similar way in the case of ces upper-tier utility,

and the details are provided in Appendix F.

We summarize the structural parameters that we obtain for the two countries in Tables 1

and 2. Observe the substantial heterogeneity across French sectors: the shape parameters

k̂j of the sectoral Pareto distributions range from 2.0 to 24.3, with an (unweighted) average

of 5.7. In the UK, the differences are even larger, as the values of k̂j range from 1.5 to 41.3,

with an (unweighted) average of 7.4.

Cutoff distortions. Given the values of k̂j , θ̂j , κ̂j , and β̂j , we can now quantify the distor-

tions in France and in the UK. We first compare the equilibrium and optimal cutoffs in each

sector. Using the expressions in (28), we compute for each sector j the following measure of

cutoff distortions:

(md
j )

eqm − (md
j )

opt

(md
j )

opt × 100 =

{[
κj(kj + 1)2

]− 1
kj+1

− 1
}
× 100, (32)

which depends only on kj as κj is a function of kj only. Since there is too little selection

by Proposition 7, (md
j )

eqm > (md
j )

opt holds, so that expression (32) is always positive. The

gap between the equilibrium and optimal cutoffs is smaller the larger is the sectoral shape

parameter kj , i.e., a larger mass of the productivity distribution is concentrated on low-

productivity firms.

Tables 1 and 2 report the magnitudes of cutoff distortions for all sectors in France and

the UK, which we illustrate in Figures 1 and 2 for those two countries. We find substantial

18The latter equality can be obtained by noting that the total revenue equals the total wage in each sector,
i.e., Lejw = wLj , which implies ej = Lj/L. We then evaluate (9) for the case of Cobb-Douglas upper-tier
utility and cara subutility functions, where EU ,Uj

= βj and Euj ,qj(m) = θj .
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Table 1: Sectoral data, parameter values, and distortions for France in 2008.

Cobb-Douglas - CARA & Pareto Cobb-Douglas - CES & Pareto
Std. dev. Cutoff Entry Cutoff Entry

Sector Description Firms êj log emp k̂j θ̂j κ̂j β̂j distortions ρ̂j β̂j distortions
1 Agriculture 5551 0.0188 1.0038 2.8670 0.8721 0.0312 0.0188 21.8406 -0.1886 0.7421 0.0188 0 0.3470

2 Mining and quarrying 1132 0.0002 1.0523 3.5570 0.8911 0.0227 0.0002 17.9533 1.9848 0.7892 0.0002 0 6.7070
3 Food products, beverages, tobacco 38582 0.0697 0.9858 2.6642 0.8653 0.0346 0.0704 23.3225 -0.9765 0.7242 0.0697 0 -2.0711
4 Textiles, leather and footwear 4889 0.0205 1.0354 3.2891 0.8845 0.0255 0.0203 19.2867 1.2213 0.7730 0.0205 0 4.5251

5 Wood products 4607 0.0008 1.1811 8.4447 0.9471 0.0055 0.0007 7.9290 8.3958 0.9089 0.0008 0 22.8950
6 Pulp, paper, printing and publishing 12136 0.0086 1.1805 8.3928 0.9469 0.0055 0.0079 7.9764 8.3625 0.9083 0.0086 0 22.8198
7 Coke, refined petroleum, nuclear fuel 27 0.0168 1.1447 6.1501 0.9303 0.0094 0.0158 10.7480 6.4650 0.8756 0.0168 0 18.3985

8 Chemicals and chemical products 1194 0.0285 1.1688 7.5071 0.9413 0.0067 0.0264 8.8810 7.7318 0.8977 0.0285 0 21.3827
9 Rubber and plastics products 2760 0.0037 1.0332 3.2565 0.8836 0.0259 0.0037 19.4626 1.1220 0.7709 0.0037 0 4.2374

10 Other non-metallic mineral products 3426 0.0020 1.0428 3.4013 0.8873 0.0243 0.0019 18.7050 1.5521 0.7801 0.0020 0 5.4774
11 Basic metals 602 0.0001 1.2166 13.1203 0.9646 0.0025 0.0001 5.1666 10.3951 0.9410 0.0001 0 27.2453
12 Fabricated metal products 17249 0.0021 1.1442 6.1290 0.9301 0.0095 0.0020 10.7833 6.4415 0.8752 0.0021 0 18.3419

13 Machinery and equipment 8227 0.0053 1.1003 4.5835 0.9109 0.0153 0.0050 14.1902 4.2470 0.8345 0.0053 0 12.8416
14 Office, accounting, computing mach. 160 0.0033 1.0684 3.8519 0.8976 0.0201 0.0032 16.6828 2.7305 0.8045 0.0033 0 8.7831

15 Electrical machinery and apparatus 1656 0.0034 1.2466 24.2501 0.9802 0.0008 0.0030 2.8241 12.1791 0.9680 0.0034 0 30.8871
16 Radio, TV, communication equip. 786 0.0042 1.1439 6.1119 0.9299 0.0095 0.0040 10.8121 6.4223 0.8749 0.0042 0 18.2957
17 Medical, precision, optical instr. 3753 0.0050 1.0383 3.3327 0.8856 0.0250 0.0049 19.0565 1.3517 0.7758 0.0050 0 4.9020

18 Motor vehicles and (semi-)trailers 835 0.0326 1.1046 4.7020 0.9127 0.0147 0.0312 13.8546 4.4568 0.8386 0.0326 0 13.3862
19 Other transport equipment 452 0.0028 1.1128 4.9432 0.9162 0.0135 0.0026 13.2186 4.8581 0.8462 0.0028 0 14.4165
20 Manufacturing n.e.c; recycling 9802 0.0130 1.1760 8.0324 0.9447 0.0060 0.0120 8.3212 8.1207 0.9043 0.0130 0 22.2727

21 Electricity, gas and water supply 1279 0.0225 0.9745 2.5480 0.8610 0.0368 0.0228 24.2650 -1.4664 0.7129 0.0225 0 -3.6039
22 Construction 188513 0.0082 0.9992 2.8127 0.8704 0.0320 0.0083 22.2182 -0.3915 0.7376 0.0082 0 -0.2700

23 Wholesale and retail trade; repairs 274437 0.1377 1.0151 3.0067 0.8765 0.0291 0.1373 20.9236 0.3099 0.7532 0.1377 0 1.8463
24 Hotels and restaurants 113317 0.0489 0.9489 2.3083 0.8512 0.0420 0.0502 26.4702 -2.5803 0.6866 0.0489 0 -7.1669
25 Transport and storage 26847 0.0291 0.9962 2.7783 0.8692 0.0326 0.0292 22.4649 -0.5232 0.7346 0.0291 0 -0.6727

26 Post and telecommunications 1144 0.0191 1.0374 3.3186 0.8852 0.0252 0.0188 19.1303 1.3099 0.7749 0.0191 0 4.7813
27 Finance and insurance 12383 0.0376 0.9141 2.0264 0.8379 0.0498 0.0393 29.6331 -4.1024 0.6494 0.0376 0 -12.1881
28 Real estate activities 36902 0.1649 0.9517 2.3334 0.8523 0.0414 0.1691 26.2215 -2.4570 0.6895 0.1649 0 -6.7672

29 Renting of machinery and equipment 4815 0.0022 1.1101 4.8613 0.9151 0.0139 0.0021 13.4279 4.7255 0.8437 0.0022 0 14.0777
30 Computer and related activities 16355 0.0010 1.1944 9.7504 0.9535 0.0042 0.0010 6.8991 9.1285 0.9209 0.0010 0 24.5238

31 Research and development 1562 0.0074 1.2375 19.2934 0.9754 0.0012 0.0067 3.5386 11.6260 0.9598 0.0074 0 29.7810
32 Other Business Activities 132159 0.0073 1.0964 4.4803 0.9092 0.0159 0.0070 14.4958 4.0571 0.8309 0.0073 0 12.3453
33 Education 11401 0.0799 1.0726 3.9371 0.8994 0.0194 0.0776 16.3484 2.9297 0.8085 0.0799 0 9.3287

34 Health, social work, personal services 124202 0.1930 0.9659 2.4642 0.8577 0.0385 0.1966 24.9935 -1.8394 0.7042 0.1930 0 -4.7851

Notes: Column 1 reports the number of firms in each sector in the esane database for France in 2008 after trimming, column 2 the observed (re-scaled) expenditure
shares from the French input-output table, and column 3 the observed standard deviation of the log number of employees across firms, where data are constructed
as described in Appendix C.1. Column 4 reports the values of k̂j that we obtain by matching the numbers from column 3 to expression (C-1) in Appendix C.2.
Columns 5 and 6 report the values of θ̂j and κ̂j which are transformations of k̂j . Column 7 reports the value β̂j obtained as described in Section 4.1. In columns 8 and
9 we report the magnitudes of cutoff and entry distortions at the sectoral level obtained from (32) and (33), respectively. Column 10 reports the value of ρ̂j obtained
by matching the numbers from column 3 to expression (C-3) in Appendix C.2 while using k̂j from column 4. Column 11 reports the values β̂j which correspond
to the expenditure shares from column 2. Finally, column 12 reports only zeroes as the ces model does not exhibit cutoff distortions, and column 13 reports the
magnitudes of entry distortions as computed in (36).
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Table 2: Sectoral data, parameter values, and distortions for the United Kingdom in 2005.

Cobb-Douglas - CARA & Pareto Cobb-Douglas - CES & Pareto
Std. dev. Cutoff Entry Cutoff Entry

Sector Description Firms êj log emp k̂j θ̂j κ̂j β̂j distortions ρ̂j β̂j distortions
1 Agriculture 57969 0.0127 0.8424 1.5152 0.8069 0.0706 0.0138 37.7850 -8.1349 0.5607 0.0127 0 -24.3233
2 Mining and quarrying 1124 0.0008 1.2580 35.5036 0.9863 0.0004 0.0007 1.9363 12.2922 0.9781 0.0008 0 32.0111

3 Food products, beverages. tobacco 4606 0.0442 1.1260 5.3830 0.9220 0.0118 0.0421 12.1970 4.9662 0.8584 0.0442 0 15.8529
4 Textiles, leather and footwear 9041 0.0213 1.1829 8.6063 0.9480 0.0053 0.0198 7.7852 7.9348 0.9106 0.0213 0 22.8954
5 Wood products 7301 0.0014 1.1079 4.7949 0.9141 0.0142 0.0013 13.6024 4.0730 0.8416 0.0014 0 13.5846

6 Pulp, paper, printing and publishing 24882 0.0112 1.1142 4.9862 0.9168 0.0133 0.0108 13.1112 4.3825 0.8475 0.0112 0 14.3787
7 Coke, refined petroleum, nuclear fuel 122 0.0104 1.1442 6.1295 0.9301 0.0095 0.0098 10.7826 5.8902 0.8752 0.0104 0 18.1245

8 Chemicals and chemical products 1989 0.0088 1.2614 41.2898 0.9882 0.0003 0.0079 1.6669 12.5055 0.9812 0.0088 0 32.4242
9 Rubber and plastics products 5152 0.0035 1.1077 4.7899 0.9140 0.0142 0.0034 13.6159 4.0646 0.8414 0.0035 0 13.5630

10 Other non-metallic mineral products 3412 0.0017 1.0171 3.0332 0.8773 0.0287 0.0017 20.7588 -0.1201 0.7552 0.0017 0 1.9273

11 Basic metals 1203 0.0003 1.1800 8.3555 0.9466 0.0056 0.0002 8.0108 7.7767 0.9079 0.0003 0 22.5386
12 Fabricated metal products 24116 0.0019 1.2025 10.7654 0.9575 0.0035 0.0017 6.2663 9.0180 0.9283 0.0019 0 25.2887
13 Machinery and equipment 8719 0.0064 1.1206 5.1953 0.9196 0.0125 0.0061 12.6131 4.6993 0.8534 0.0064 0 15.1825

14 Office, accounting, computing mach. 898 0.0006 1.0715 3.9145 0.8989 0.0196 0.0006 16.4360 2.3441 0.8075 0.0006 0 8.9841
15 Electrical machinery and apparatus 2694 0.0015 1.0675 3.8347 0.8973 0.0202 0.0014 16.7521 2.1569 0.8037 0.0015 0 8.4690

16 Radio, TV, communication equip. 1004 0.0057 1.2070 11.4206 0.9598 0.0032 0.0052 5.9160 9.2724 0.9324 0.0057 0 25.8380
17 Medical, precision, optical instr. 2443 0.0016 1.0956 4.4595 0.9089 0.0160 0.0016 14.5590 3.4788 0.8301 0.0016 0 12.0353
18 Motor vehicles and (semi-)trailers 2059 0.0272 1.1459 6.2088 0.9308 0.0093 0.0256 10.6513 5.9773 0.8768 0.0272 0 18.3347

19 Other transport equipment 1012 0.0036 1.2551 31.7979 0.9848 0.0005 0.0032 2.1599 12.1161 0.9756 0.0036 0 31.6677
20 Manufacturing n.e.c; recycling 16028 0.0109 1.0735 3.9535 0.8997 0.0193 0.0107 16.2857 2.4335 0.8093 0.0109 0 9.2289
21 Electricity, gas and water supply 428 0.0261 1.1854 8.8336 0.9492 0.0050 0.0241 7.5915 8.0711 0.9128 0.0261 0 23.2015

22 Construction 156266 0.0085 0.9638 2.4443 0.8569 0.0389 0.0087 25.1733 -2.4391 0.7020 0.0085 0 -5.2515
23 Wholesale and retail trade; repairs 306437 0.1850 0.9788 2.5911 0.8626 0.0359 0.1884 23.9071 -1.7932 0.7172 0.1850 0 -3.2016

24 Hotels and restaurants 130213 0.0781 0.9975 2.7940 0.8697 0.0323 0.0789 22.3519 -0.9789 0.7359 0.0781 0 -0.6720
25 Transport and storage 31912 0.0392 0.9289 2.1417 0.8436 0.0464 0.0408 28.2533 -3.9495 0.6655 0.0392 0 -10.1799
26 Post and telecommunications 4654 0.0181 0.9526 2.3417 0.8527 0.0412 0.0186 26.1401 -2.9224 0.6905 0.0181 0 -6.8087

27 Finance and insurance 15890 0.0807 0.9190 2.0638 0.8398 0.0486 0.0844 29.1713 -4.3838 0.6548 0.0807 0 -11.6270
28 Real estate activities 80146 0.1104 0.8570 1.6199 0.8141 0.0654 0.1192 35.7739 -7.3083 0.5813 0.1104 0 -21.5440

29 Renting of machinery and equipment 13615 0.0061 1.0636 3.7599 0.8957 0.0209 0.0059 17.0596 1.9760 0.8000 0.0061 0 7.9678
30 Computer and related activities 102580 0.0010 0.8645 1.6720 0.8176 0.0630 0.0010 34.8511 -6.9194 0.5911 0.0010 0 -20.2240
31 Research and development 1603 0.0001 1.0575 3.6486 0.8932 0.0218 0.0001 17.5386 1.6963 0.7942 0.0001 0 7.1867

32 Other Business Activities 371014 0.0041 0.9100 1.9952 0.8363 0.0508 0.0043 30.0287 -4.7829 0.6448 0.0041 0 -12.9669
34 Education 23494 0.0625 1.1440 6.1179 0.9300 0.0095 0.0591 10.8019 5.8774 0.8750 0.0625 0 18.0934
35 Health, social work, personal services 215336 0.2044 1.0816 4.1275 0.9031 0.0180 0.1988 15.6477 2.8157 0.8170 0.2044 0 10.2671

Notes: Column 1 reports the number of firms in each sector in the bsd database for the UK in 2005 after trimming, column 2 the observed (re-scaled) expenditure
shares from the UK input-output table, and column 3 the observed standard deviation of the log number of employees across firms, where data are constructed
as described in Appendix C.1. Column 4 reports the values of k̂j that we obtain by matching the numbers from column 3 to expression (C-1) in Appendix C.2.
Columns 5 and 6 report the values of θ̂j and κ̂j which are transformations of k̂j . Column 7 reports the value β̂j obtained as described in Section 4.1. In columns
8 and 9 we report the magnitudes of cutoff and entry distortions at the sectoral level obtained from (32) and (33), respectively. Column 10 reports the value of
ρ̂j obtained by matching the numbers from column 3 to expression (C-3) in Appendix C.2 while using k̂j from column 4. Column 11 reports the values β̂j which
correspond to the expenditure shares from column 2. Finally, column 12 reports only zeroes as the ces model does not exhibit cutoff distortions, and column 13
reports the magnitudes of entry distortions as computed in (36).
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distortions due to insufficient selection. For France, the simple average across sectors is

15.9%, but with huge sectoral variation from only 2.8% to almost 30%. In the UK, the

average is 16.7% and the range goes from 1.7% to 37.8%. The correlation of those distortions

between the two countries is 0.356, while the Spearman rank correlation is 0.328. Thus, the

model makes roughly similar predictions on which sectors in France and the UK exhibit

greater cutoff distortions. We discuss this point in more detail below.

Entry distortions. Turning to the gap between the equilibrium and optimal entry, or equiv-

alently the gap between the equilibrium and optimal labor allocations in our examples, we

use expressions (29) and Proposition 5, together with (30), to compute the following measure

of intersectoral distortions for each sector j:

(NE
j )eqm − (NE

j )opt

(NE
j )opt × 100 =

(Lj)eqm − (Lj)opt

(Lj)opt × 100 =

(
θj

∑
J
ℓ=1 βℓθℓ

− 1

)
× 100. (33)

Based on (33), our model predicts that 25 sectors in the French economy exhibit excess entry

by up to 12.2%. The remaining 9 sectors display insufficient entry by up to -4.1%. In the

UK, excess entry arises in 23 sectors, whereas insufficient entry occurs in 11 sectors, with a

range of entry distortions from -8.1% to 12.5%. See Tables 1 and 2 for the detailed numbers,

and Figures 1 and 2 for a graphical illustration of those distortions.

Digging deeper into these patterns, we find some similarities between France and the

UK. In both countries, excess entry typically occurs in manufacturing. See, for example,

[11] ‘Basic metals’ and [15] ‘Electrical machinery and apparatus’ in France, or [8] ‘Chemical

products’ and [19] ‘Transport equipment’ in the UK, where it is particularly strong. By

contrast, insufficient entry is almost exclusively a phenomenon of service sectors.19 See, for

example, [24] ‘Hotels and restaurants’ and [27] ‘Finance and insurance’ in France, or [28]

‘Real estate’ and [32] ‘Other business services’ in the UK, where we find strongly negative

values. Overall, the correlation of entry distortions across sectors in the two countries is

0.330 and the Spearman rank correlation is 0.328. Furthermore, the direction or ‘sign’ of

inefficient entry is the same in 26 out of 34 sectors, i.e., in more than three-quarter of the

sectors. Put differently, the model makes similar predictions as to which sectors in the two

countries tend to display excessive or insufficient entry.

19The sector [1] ‘Agriculture’ also exhibits insufficient entry in both countries, and particularly so in the UK,
but hardly any manufacturing sector in either country has too few entrants. Notice that these findings do,
of course, not imply that the mass of entrants in manufacturing is larger than that in services in equilibrium,
since they refer to a sector-by-sector comparison of the equilibrium and the optimal entry.
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Figure 1: Cutoff and entry distortions, Cobb-Douglas - CARA model for France in 2008.
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Figure 2: Cutoff and entry distortions, Cobb-Douglas - CARA model for the United Kingdom in 2005.
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Recall that in the cara model the larger the value of kj , the more excessive are the firm

entry and the labor allocation, but the smaller is the magnitude of insufficient selection.

In other words, manufacturing sectors in both countries not only tend to attract an exces-

sive number of firms and workers, but also display relatively smaller cutoff distortions, i.e.,

equilibrium firm selection relatively closer to the optimum. By contrast, there are too few

entrants in many service sectors, and firm selection is far less severe than it should be from

a social point of view. It is worth emphasizing that those predictions are based on a gen-

eral equilibrium model that recognizes all interdependencies across sectors in the economy.

Thus, our analysis differs from the conventional approach in industrial organization that

has typically studied entry and selection for a single industry in partial equilibrium.

Aggregate welfare distortion. Having analyzed cutoff and entry distortions in each sector,

we now consider the aggregate welfare distortion in the economy. To this end, we use the

concept of the Allais surplus (Allais, 1943, 1977) since compensating and equivalent varia-

tions, which are used to analyze the welfare change between two equilibria, are not readily

applicable to measuring the welfare gap between the equilibrium and optimum. Intuitively, we

measure the amount of labor—which is taken as the numeraire—that can be saved when the

planner minimizes the resource cost of attaining the equilibrium utility level.

Let LA(Ueqm) denote the minimum amount of labor that the social planner requires to

attain the equilibrium utility level. By construction, LA(Ueqm) is not greater than the amount

of labor L that the market economy requires to reach the equilibrium utility level because

the labor market clears in equilibrium and because their may be distortions. As shown in

Appendix D, we can define a measure of the aggregate welfare distortion based on the Allais

surplus as follows:

−
LA(Ueqm)− L

L
× 100 =





1 −
∏

J
j=1
[
(kj + 1)2κj

] βj
kj+1

∑
J
ℓ=1 βℓθℓ





× 100. (34)

Plugging the values of k̂j , θ̂j , κ̂j , and β̂j from Tables 1 and 2 into (34), we can compute the

magnitude of the aggregate welfare distortion in France and in the UK, respectively.

Table 3 summarizes our results. For France, the aggregate welfare distortion is 5.93%,

and for the UK it is 5.85%. In words, to achieve the equilibrium utility level in each of

the two countries, the social planner requires almost 6% less aggregate labor input when

compared to the case with utility maximizing consumers and profit maximizing firms.

Disentangling the relative contribution of the cutoff and entry distortions is difficult,
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Table 3: Aggregate welfare distortions as measured by the Allais surplus.

France UK
CARA CES CARA CES

Aggregate distortion 5.93 0.34 5.85 0.99

(% of aggregate labor input saved)

Cutoff and quantity distortion 81.81 0 95.11 0

Entry and labor distortion 18.19 100 4.89 100

(as % of aggregate distortion)

since it is generally not possible to shut down one without affecting the other.20 To gauge

the potential importance of within and between sector distortions, we hence proceed as

follows. We pool our data across all sectors and proceed as if there were only a single sector.

Distortions in the labor allocation cannot arise in this single-sector case—since by definition

L
eqm
j = L

opt
j = L—and entry is efficient by (29). Therefore, the welfare gap between the

equilibrium and optimum depends only on cutoff and output distortions. We then estimate

the value of k for that single sector in the same way as before, by matching the standard

deviation of the (log) employment distribution across all firms. This yields k̂ = 3.5687 for

France and k̂ = 3.0598 for the UK. Plugging that common value into (34), we compute

the associated Allais surplus for the single-sector economy and compare it with the Allais

surplus in the multi-sector case. The results are summarized in the bottom part of Table 3.

As can be seen, the distortions in the single-sector case are 18.19% smaller for France, and

4.89% smaller for the UK. Put differently, disregarding entry and labor distortions would

lead to an underestimation of the aggregate welfare distortion by 5%–18% in our cara

example with a Cobb-Douglas upper-tier utility function.

CES upper-tier utility. We have also considered the case of an alternative upper-tier utility

function. In particular, we have replaced the Cobb-Douglas upper-tier function with the

ces function U = {∑
J
j=1 βj [Ũj(Uj)]

(σ−1)/σ}σ/(σ−1). The Allais surplus for that case with ces

upper-tier utility and cara subutility is given by (see Appendix F for details):

−
LA(Ueqm)− L

L
× 100 =


1 −

1

∑
J
ℓ=1 βℓθℓ

·

{
J

∑
j=1

βj

[
(kj + 1)2κj

] 1−σ
kj+1

} 1
1−σ


× 100. (35)

20We know from the results in Corollary 2 that entry in the cara case is efficient if and only if all kj ’s are
the same. Hence, one could think of setting all kj ’s to same common value to shut down entry distortions.
However, the common value of k that is chosen has an effect on the magnitude of cutoff distortions.
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Notice that, once we choose a value of σ, this expression for the aggregate welfare distortion

can be computed using k̂j , θ̂j , κ̂j , and β̂j from Tables 1 and 2, respectively.

Figure 3: Aggregate welfare distortions in the CES - CARA model as a function of σ.

(a) France. (b) UK.
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Figure 3 illustrates the magnitude of the aggregate welfare distortion given by (35) as a

function of σ for France (panel (a)) and the UK (panel (b)). We find that the higher is the

elasticity of substitution between sectors, the stronger is the aggregate welfare distortion in

both countries. It ranges between 6% and 7% in France, and between 6% and 8% in the UK.

Treating the economy as if it consisted of a single sector, as before, we re-quantify the entry

and labor distortions as a percentage of the aggregate welfare distortion. For σ ∈ (1, 10),

it ranges between 18% and 27% in France, and between 5% and 29% in the UK. Thus,

the higher the elasticity of substitution for the upper-tier utility function, the stronger the

underestimation of the aggregate welfare distortion from disregarding inefficient entry and

labor allocation. It can reach almost 30% for reasonable parameter values.

4.3 Quantifying distortions: the ces subutility case

Finally, we quantify the workhorse model with Cobb-Douglas upper-tier and ces subutility

functions. Recall that there are no cutoff distortions with ces subutility functions. However,

by Corollary 1, there are still labor and entry distortions due to heterogeneity in the elasticity

EU ,Uj
of the upper-tier utility function and in the weighted average Euj ,qj(m) of the elasticities

of the subutility functions when the ρj terms differ across sectors. How large are the welfare

distortions for France and the UK predicted by the ces model?

To quantify this model, we use the same sector-specific statistics as before: the standard

deviation of (log) firm-level employment, not including the labor input for R&D which we

use as a proxy for sunk entry and fixed costs. To match this observed data moment, we
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also assume sector-specific Pareto distributions for productivity draws, and then derive the

corresponding theoretical expression for the ces case. As can be seen from equation (C-3)

in Appendix C.2, this expression now depends on two parameters: ρj and kj . Since the kj ’s

are technology parameters that do not depend on consumer preferences, we keep the same

values of k̂j from the ves model above. We can then uniquely back out the corresponding

values for ρ̂j . Since the equilibrium expenditure share is βj for this case, the value of β̂j for

each sector can be obtained by setting β̂j = êj , where ∑
J
j=1 β̂j = ∑

J
j=1 êj = 1 by definition of

the observed expenditure share.

The parameter values thus obtained for France and the UK are reported in Tables 1 and 2.

Equipped with those numbers, we can quantify the magnitude of entry distortions for each

sector j as follows:

(NE
j )eqm − (NE

j )opt

(NE
j )opt × 100 =

L
eqm
j − L

opt
j

L
opt
j

× 100 =

(
ρj

J

∑
ℓ=1

βℓ

ρℓ
− 1

)
× 100. (36)

As can be seen from Tables 1 and 2, in both countries the ces and ves models make very

similar predictions as to which sectors display excess or insufficient entry. Yet, the ces model

implies larger magnitudes than the ves model. In France, the range of inefficient entry and

labor allocation goes from -12.2% to 30.9%, and in the UK from -24.3% to 32.4%.

To quantify the aggregate welfare distortion, we again rely on the Allais surplus and

compute the following expression (see Appendix D for details):

−
LA(Ueqm)− L

L
× 100 =


1 −

J

∏
j=1

(
ρj

J

∑
ℓ=1

βℓ

ρℓ

) βj/ρj
∑J
ℓ=1(βℓ/ρℓ)


× 100. (37)

The results are 0.34% for France, and 0.99% for the UK, as summarized in Table 3. In

other words, less than 1% of the aggregate labor input could be saved if the social planner

minimized the resource cost to attain the equilibrium utility level. Compared to the ves

model, where the corresponding number is roughly 6%, it appears that the aggregate welfare

distortion in the ces model is much smaller than that in the ves model. However, correcting

the inefficiencies between sectors would still lead to substantial changes in entry patterns

and sectoral employment shares.
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4.4 Quantifying distortions: robustness checks

Tables G-1 to G-3 in Appendix G provide a set of results for two additional robustness

checks. Details on the data we use and the various expressions required to compute the

numbers are contained in Appendix C.

In the first robustness check, we back out heterogeneity in productivity across firms

from revenue data as compared to the employment data used in the baseline quantification.

Tables G-1 and G-2 in Appendix G provide detailed results. In this instance we do not need

a measure of fixed costs but, as explained above, revenue data are more likely to contain

measurement error. The correlation between the standard deviation of log employment and

log revenue is 0.67 for the UK and 0.39 for France. Patterns of excess/insufficient entry

are broadly in line with the baseline cases, with manufacturing (service) industries being

characterized by excess (insufficient) entry. In terms of aggregate welfare distortions, we

get 10.29% with cara subutilites and 2.48% with ces subutilities for France; and 9.85% for

cara subutilities and 1.06% for ces subutilities for the UK. These numbers are again similar

between the UK and France and close to those obtained in the baseline specification.

In the second robustness check, we employ an alternative measure of fixed costs based

on industry-level profits rather than R&D outlays. Such an exercise can be performed for

France only and results are reported in Table G-3. In terms of the correlation between the

standard deviation of log employment from Tables 1 and G-3 the value stands at 0.56. Pat-

terns of excess/insufficient entry are similar in those tables. More specifically, excess entry

is a manufacturing-industry phenomenon (the only common exception being the “Food

products, beverages and tobacco” industry) while service industries are often characterized

by insufficient entry. Crucially, as far as aggregate welfare distortions are concerned, we get

6.62% for the cara case and 0.95% for the ces case, which are again in line with our baseline

quantification results (5.93% and 0.34%, respectively).

To summarize, throughout our quantification analyses we find consistent patterns and

numbers using different data to back out productivity differences across firms (and different

proxies for fixed costs). These findings suggest that our key results are robust and we may

conclude that the aggregate welfare distortions for France in 2008 and the UK in 2005 are in

the 6-10% range.
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5 Conclusions

We have developed a general equilibrium model of monopolistic competition with multiple

sectors and heterogeneous firms. Comparing the equilibrium and optimal allocations in

our general framework with unspecified utility functions and productivity distributions, we

have characterized the various distortions that operate in our economy. We have considered

two examples that can be readily taken to the data. Using French data for 2008 and UK data

for 2005, we have quantified the aggregate welfare distortions while uncovering substantial

sectoral heterogeneity and assessing the contribution of each type of distortions to the overall

welfare losses.

Our preferred specification implies substantial aggregate welfare distortions for France

and for the UK, each of which amounts to almost 6% of the respective economy’s aggregate

labor input. Our results suggest that inefficiencies within and between sectors both matter

in practice. Removing those distortions would presumably require rather different interven-

tions: industry policies to address the latter problem, combined with policies targeted at

specific firms to address the former. A general lesson that one can deduce from our analysis

is that interdependencies are important for the design of such programs: the optimal policy

for one sector is not only influenced by conditions of that particular sector, but it depends

on the characteristics of all sectors in the economy. We leave it to future work to explore the

details of feasible policy schemes that alleviate misallocations.
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Appendix

A. Proofs of the propositions

This appendix provides all the proofs of the propositions. To alleviate notation, we suppress

indices for sectors and arguments wherever possible.

A.1. Proof of Proposition 1. This result can be established using a similar method as in

Zhelobodko et al. (2012). However, we provide an alternative proof that can be readily ap-

plied to the optimal cutoff and quantities (see Appendix A.3). Using the profit-maximizing

price (5) for the marginal variety, we can rewrite the zcp condition (6) as

ruj (q
d
j )

1 − ruj (q
d
j )

md
jq

d
j = ruj (q

d
j )

pdj

w
qdj =

fj

L
,

which, together with the first-order condition (2) for the marginal variety, u′j(q
d
j ) = λjp

d
j ,

yields

ruj (q
d
j )u

′
j(q

d
j )q

d
j = −(qdj )

2u′′j (q
d
j ) =

fj

L
λjw.

The left-hand side is increasing in qdj since

∂

∂qdj

(
−(qdj )

2u′′j (q
d
j )
)
= −qdju

′′
j (q

d
j )

[
2 −

(
−
qdju

′′′
j (qdj )

u′′j (q
d
j )

)]
= −qdju

′′
j (q

d
j )
[
2 − ru′j

(qdj )
]
> 0,

where we use the second-order condition ru′j
(qj(m)) < 2. Thus, we know that qdj is increas-

ing in the market aggregate λjw.

Furthermore, using the first-order condition (2) and the profit-maximizing price (5) for

the marginal variety, we have

[
1 − ruj (q

d
j )
]
u′j(q

d
j ) = (λjw)m

d
j . (A-1)

The left-hand side is decreasing in qdj since

∂

∂qdj

{[
1 − ruj (q

d
j )
]
u′j(q

d
j )
}
= u′′j (q

d
j )
[
2 − ru′j

(qdj )
]
< 0.

Hence, since we have shown above that ∂qdj /∂(λjw) > 0, the left-hand side in (A-1) decreases

as λjw on the right-hand side of (A-1) increases. It then follows that md
j is decreasing in λjw.
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Similarly, using the first-order conditions (2) and the profit-maximizing prices (5) for other

varieties, we have
[
1 − ruj (qj(m))

]
u′j(qj(m)) = (λjw)m.

Since the left-hand side is decreasing in qj(m), we know that qj(m) is decreasing in λjw.

Next, we rewrite the zep condition (7) as

L

∫ md
j

0

{[
1

1 − ruj (qj(m))
− 1
]
mqj(m)−

fj

L

}
dGj(m) = Fj . (A-2)

Given that md
j and qj(m) are decreasing in λjw, we differentiate the left-hand side of this

expression with respect to λjw as follows:

L

{[
1

1 − ruj (q
d
j )

− 1

]
md

j qj(m
d
j )−

fj

L

}
gj(m

d
j )

∂md
j

∂(λjw)

+L

∫ md
j

0

{
r′uj (qj(m))

[1 − ruj (qj(m))]2
qj(m) +

ruj (qj(m))

1 − ruj (qj(m))

}
m
∂qj(m)

∂(λjw)
dGj(m).

The first-term is zero by the zcp condition (6). Noting that

ruj (qj(m)) = −
qj(m)u′′j (qj(m))

u′j(qj(m))

r′uj (qj(m)) = −
[u′′j (qj(m)) + u′′′j (qj(m))qj(m)]u′j(qj(m))− qj(m)[u′′j (qj(m))]2

[u′j(qj(m))]2
,

the second term can be expressed as:

L

∫ md
j

0

{
[2 − ru′j

(qj(m))]ruj (qj(m))

[1 − ruj (qj(m))]2

}
m
∂qj(m)

∂(λjw)
dGj(m) < 0,

where we use the second-order condition ru′j
(qj(m)) < 2. Hence, the left-hand side of the

zep condition (A-2) is decreasing in λjw.

Assume that fixed costs, fj , and sunk costs, Fj , are not too large. The former ensures

that profits are non-negative (see the zcp condition in (6)). The latter ensures existence. The

left-hand side of the zep condition is strictly decreasing in λjw, whereas the right-hand side

is constant. Hence, if fixed costs, fj , and sunk costs, Fj , are not too large, then there exists a

unique solution for λjw. Using the unique λjw thus obtained, we can establish the existence

and uniqueness of md
j and qj(m) since both are decreasing in λjw. �
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A.2. Proof of Proposition 2. The first-order conditions (2) and (3), when combined with

equation (11), imply that

[
NE

j

∫ md
j

0 uj(qj(m))dGj(m)

]ξj

[
NE

ℓ

∫ md
ℓ

0 uℓ(qℓ(m))dGℓ(m)

]ξℓ =
pdj

pdℓ

γℓ

γj

u′ℓ(q
d
ℓ )

u′j(q
d
j )

. (A-3)

When fj and Fj are not too large, the market aggregate λjw is uniquely determined by the

zep condition and so are sector-specific cutoffs md
j and the associated prices pdj and quantities

qdj and qj(m) (see Appendix A.1). Since the zep condition does not include NE
j , those

variables are independent of NE
j . Thus, the integrals in (A-3) are independent of NE

j and

NE
ℓ . The right-hand side of equation (A-3) is strictly positive and finite. By monotonicity,

there clearly exists a unique NE
j (NE

ℓ ). This relationship satisfies (NE
j )′ > 0, NE

j (0) = 0 and

limNE
ℓ →∞ NE

j (NE
ℓ ) = ∞.

In each sector j, labor supply Lj equals labor demand NE
j

{∫ md
j

0 [Lmqj(m) + fj]dGj(m)+

Fj

}
, so that

Lj

NE
j

− L

∫ md
j

0
mqj(m)dGj(m) = fjGj(m

d
j ) + Fj . (A-4)

Plugging expression (A-4) into (7) yields

NE
j

∫ md
j

0

mqj(m)

1 − ruj
(
qj(m)

)dGj(m) =
Lj

L
. (A-5)

Substituting NE
j (NE

ℓ ) obtained from (A-3) into (A-5), summing over j, and using the over-

all labor market clearing condition L = ∑
J
j=1 Lj , we then have the following equilibrium

condition:
J

∑
j=1

NE
j (NE

ℓ )
∫ md

j

0

mqj(m)

1 − ruj (qj(m))
dGj(m) = 1. (A-6)

Observe that all integral terms on the left-hand side of (A-6) are positive and independent

of the masses of entrants, whereas the right-hand side equals one. Since the limit of the left-

hand side is zero when NE
ℓ goes to zero, and infinity when NE

ℓ goes to infinity, the existence

and uniqueness of a solution for NE
ℓ follows directly by the properties of NE

j (·). Since the

terms in braces of the right-hand side of (10) are uniquely determined by Proposition 1, the

existence and uniqueness of NE
j implies those of Lj , which proves Proposition 2. �
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A.3. Proof of Proposition 3. Plugging the first-order condition for the marginal variety

md
j = u′j(q

d
j )/δj into (18), we have

uj(q
d
j )− u′j(q

d
j )q

d
j =

fj

L
δj . (A-7)

The left-hand side is increasing in qdj (since u′′j < 0), which establishes that qdj is increasing

in δj . Thus, u′(qdj ) is decreasing in δj . Then, from the first-order condition for the marginal

variety, we see that when δj increases, md
j must decrease because u′j(q

d
j )/δj decreases. Hence,

md
j is a decreasing function of δj . From the first-order conditions for the other varieties,

u′(qj(m)) = δjm, we know that qj(m) is decreasing in δj .

Next, we rewrite the zesp condition (17) as

L

∫ md
j

0

[(
1

Euj ,qj(m)
− 1

)
mqj(m)−

fj

L

]
gj(m)dm = Fj .

Given that md
j and qj(m) are decreasing in δj , we differentiate the left-hand side of this

expression with respect to δj as follows:

L

[(
1

Euj ,qdj

− 1

)
md

j q
d
j −

fj

L

]
gj(m

d
j )
∂md

j

∂δj

+L

∫ md
j

0

[
−

1
Euj ,qj(m)

∂Euj ,qj(m)

∂qj(m)

qj(m)

Euj ,qj(m)
+

1 − Euj ,qj(m)

Euj ,qj(m)

]
m
∂qj(m)

∂δj
gj(m)dm,

where the first term is zero by (18). Using

∂Euj ,qj(m)

∂qj(m)

qj(m)

Euj ,qj(m)
= 1 − ruj (qj(m))− Euj ,qj(m),

we finally have

L

∫ md
j

0

ruj (qj(m))

Euj ,qj(m)
m
∂qj(m)

∂δj
gj(m)dm < 0,

where the inequality comes from ∂qj(m)/∂δj < 0.

Assume that fixed costs, fj , and sunk costs, Fj , are not too large. The former ensures that

social profits are non-negative (see the zcsp condition (18)), and the latter ensures existence.

The left-hand side of the zesp condition is strictly decreasing in δj , whereas the right-hand

side is constant. Hence, if fixed costs, fj , and sunk costs, Fj , are not too large, then there

exists a unique solution for δj . Using the unique δj thus obtained, we can establish the
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existence and uniqueness of md
j and qj(m) since both are decreasing in δj . �

A.4. Proof of Proposition 4. The first-order conditions (13) and (16), when combined with

equation (11), imply that

[
NE

j

∫ md
j

0 uj(qj(m))dGj(m)

]ξj

[
NE

ℓ

∫ md
ℓ

0 uℓ(qℓ(m))dGℓ(m)

]ξℓ =
md

j

md
ℓ

γℓ

γj

u′ℓ(q
d
ℓ )

u′j(q
d
j )

. (A-8)

When fj and Fj are not too large, δj is uniquely determined by the zesp condition, and so

are the sector-specific cutoffs md
j and the associated quantities qdj and qj(m). Since the zesp

condition does not include NE
j , those variables are independent of NE

j . Thus, the integrals

in (A-8) are independent of NE
j and NE

ℓ . The right-hand side of equation (A-8) is strictly

positive and finite. By monotonicity, there clearly exists a unique NE
j (NE

ℓ ). This relationship

satisfies (NE
j )′ > 0, NE

j (0) = 0 and limNE
ℓ →∞ NE

j (NE
ℓ ) = ∞.

Plugging expression (A-4) for the optimal allocation into (17) yields

NE
j

∫ md
j

0

mqj(m)

Euj ,qj(m)
dGj(m) =

Lj

L
. (A-9)

Substituting NE
j (NE

ℓ ) obtained from (A-8) into (A-9), summing over j, and using the over-

all labor market clearing condition L = ∑
J
j=1 Lj , we then have the following equilibrium

condition:
J

∑
j=1

NE
j (NE

ℓ )
∫ md

j

0

mqj(m)

Euj ,qj(m)
dGj(m) = 1. (A-10)

Observe that all integral terms on the left-hand side of (A-10) are positive and independent

of the masses of entrants, whereas the right-hand side equals one. Since the limit of the left-

hand side is zero when NE
ℓ goes to zero, and infinity when NE

ℓ goes to infinity, the existence

and uniqueness of a solution for NE
ℓ follows directly by the properties of NE

j (·). Since the

terms in braces of the right-hand side of (20) are uniquely determined by Proposition 3, the

existence and uniqueness of NE
j implies those of Lj , which proves Proposition 4. �

A.5. Proof of Proposition 5. The former claim—substantiated by equation (21)—can read-

ily be obtained from (9) and (19). The latter claim can be shown as follows. Without loss of

generality, we order sectors by non-decreasing values of Υj such that Υ1 ≤ Υ2 ≤ . . . ≤ ΥJ .
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Then, by that ranking, we must have

Υ1 ≤ Υj , ∀j ⇒ E
eqm
U ,U1

E
eqm
u1,q1(m)E

opt
U ,Uj

≤ E
opt
U ,U1

E
eqm
U ,Uj

E
eqm
uj ,qj(m), ∀j.

Taking the sum of each side with respect to j and rearranging yield

Υ1 ≡
E

eqm
U ,U1

E
eqm
u1,q1(m)

E
opt
U ,U1

≤
∑

J
j=1 E

eqm
U ,Uj

E
eqm
uj ,qj(m)

∑
J
j=1 E

opt
U ,Uj

.

Conversely, we must have

ΥJ ≥ Υj , ∀j ⇒ E
eqm
U ,UJ

E
eqm
uJ ,qJ (m)E

opt
U ,Uj

≥ E
opt
U ,UJ

E
eqm
U ,Uj

E
eqm
uj ,qj(m), ∀j.

Taking the sum of each side with respect to j and rearranging yield

ΥJ ≡
E

eqm
U ,UJ

E
eqm
uJ ,qJ (m)

E
opt
U ,UJ

≥
∑

J
j=1 E

eqm
U ,Uj

E
eqm
uj ,qj(m)

∑
J
j=1 E

opt
U ,Uj

.

Since the Υj are non-decreasing in j, we have Υ1 < ΥJ if there are at least two different Υj ’s.

In that case, there exists a unique threshold j∗ ∈ {1, 2, . . . , J − 1} such that no sector with

j ≤ j∗ attracts too much labor in equilibrium, whereas all sectors with j > j∗ attract too

much labor in equilibrium.

To see that the intersectoral allocation is optimal if and only if all Υj ’s are the same, we

proceed as follows. First, assume that Υj = c for all j, where c is independent of j. Then,

E
eqm
U ,Uj

E
eqm
uj ,qj(m) = c× E

opt
U ,Uj

for all j, so that summing over j we have ∑
J
j=1 E

eqm
U ,Uj

E
eqm
uj ,qj(m) =

c× ∑
J
j=1 E

opt
U ,Uj

, which implies that the right-hand side of (21) equals c. Since all Υj ’s equal

c by assumption and are equal to the right-hand side, this proves the if part. To see the

only if part, assume that L
eqm
j = L

opt
j for all j. Equating (9) and (19) for all j, it can be

readily verified that this is only possible if Υj = ∑
J
ℓ=1 E

eqm
U ,Uℓ

E
eqm
uℓ,qℓ(m)/ ∑

J
ℓ=1 E

opt
U ,Uℓ

for all j.

This completes the proof of Proposition 5. �

A.6. Proof of Proposition 7. Taking the ratio of (md
j )

opt and (md
j )

eqm from (28) yields

[
(md

j )
opt

(md
j )

eqm

]kj+1

= κj(kj + 1)2. (A-11)
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Since κj(kj + 1)2 < 1 (see the discussion below (E-22) in Appendix E.1), this immediately

implies that (md
j )

opt/(md
j )

eqm < 1.

Next, taking the difference between the optimal quantity (E-23) and the equilibrium

quantity (E-2), evaluated at the equilibrium price (E-3), we have the following two cases.

First, when 0 ≤ m ≤ (md
j )

opt, we obtain

q
opt
j (m)− q

eqm
j (m) =

1
αj

ln

[
(md

j )
opt

(md
j )

eqm

]
−

1
αj

lnW

(
e

m

(md
j )

eqm

)
. (A-12)

Recalling that W (0) = 0 by the property of the Lambert W function, we know that

limm→+0[q
opt
j (m) − q

eqm
j (m)] > 0. Second, when (md

j )
opt < m < (md

j )
eqm, we know that

q
opt
j (m) = 0, and that qeqm

j (m) > 0, so that

q
opt
j (m)− q

eqm
j (m) =

1
αj

ln

[
m

(md
j )

eqm

]
−

1
αj

lnW

(
e

m

(md
j )

eqm

)
< 0. (A-13)

Recalling that W (e) = 1 by the property of the Lambert W function, we know that

limm→(md
j )

eqm−0[q
opt
j (m) − q

eqm
j (m)] = 0. Noting that (A-13) is strictly increasing in m,21

and that (md
j )

opt < (md
j )

eqm, it is verified that limm→(md
j )

opt+0[q
opt
j (m)− q

eqm
j (m)] < 0.

Finally, since q
opt
j (m)− q

eqm
j (m) is continuous at (md

j )
opt by expressions (A-12) and (A-

13), limm→(md
j )

opt−0[q
opt
j (m) − q

eqm
j (m)] < 0 must hold in (A-12). Noting that expression

(A-12) is strictly decreasing in m, and that limm→+0[q
opt
j (m)− q

eqm
j (m)] > 0, we know that

there exists a unique m∗
j ∈ (0, (md

j )
opt) such that q

opt
j (m) > q

eqm
j (m) for m ∈ (0,m∗

j ) and

q
opt
j (m) < q

eqm
j (m) for m ∈ (m∗

j , (md
j )

opt]. This, together with the inequality in (A-13) for

m ∈ ((md
j )

opt, (md
j )

eqm) proves our claim. �

B. Proofs of the lemmas

B.1. Proof of Lemma 1. Multiplying the zep condition (7) by NE
j and using (5), we get

NE
j L

∫ md
j

0

pj(m)

w
qj(m)dGj(m) = NE

j

[
L

∫ md
j

0
mqj(m)dGj(m) + fjGj(m

d
j ) + Fj

]
= Lj . (B-1)

21To derive this property, we use W ′(x) = W (x)/{x[1 +W (x)]}.
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Eliminating pj(m) in the left-hand side by using (2), we get

NE
j

λjw

∫ md
j

0
u′j(qj(m))qj(m)dGj(m) =

Lj

L
. (B-2)

Using the definition of λj from (2), noting that NE
j uj(qj(m))/Uj = ζj(qj(m)), and setting

Euj ,qj(m) =
∫ md

j

0 Euj ,qj(m)ζj(qj(m))dGj(m), equation (B-2) can be rewritten as

U

λw
EU ,Uj

Euj ,qj(m) =
Lj

L
.

Summing over j and noting that ∑
J
j=1 Lj = L, we obtain

U

λw

J

∑
j=1

EU ,Uj
Euj ,qj(m) = 1 ⇒

U

λw
=

1

∑
J
j=1 EU ,Uj

Euj ,qj(m)

.

Hence, any equilibrium labor allocation in sector j = 1, 2, . . . , J satisfies

Lj =
U

λw
EU ,Uj

Euj ,qj(m)L =
EU ,Uj

Euj ,qj(m)

∑
J
ℓ=1 EU ,Uℓ

Euℓ,qℓ(m)

L. (B-3)

Turning to the mass of entrants, from (B-1) we obtain

NE
j =

Lj

L
∫ md

j

0 mqj(m)dGj(m) + fjGj(md
j ) + Fj

. (B-4)

Plugging mqj(m) = qj(m)pj(m)[1− ruj (qj(m))]/w = qj(m)[1− ruj (qj(m))]u′j(qj(m))/(λjw),

which is obtained from profit maximization and the consumer’s first-order conditions, into

(B-4), using λjw = (LNE
j /Lj)

∫ md
j

0 u′j(qj(m))qj (m)dGj(m) from (B-2), and noting the def-

inition of νj(qj(m)), we can solve the resulting equation for NE
j , which yields (10). This

completes the proof of Lemma 1. �

B.2. Proof of Lemma 2. Multiplying (15) by NE
j , we get

NE
j L

∫ md
j

0

uj(qj(m))

δj
dGj(m) = NE

j

{∫ md
j

0
[Lmqj(m) + fj ]dGj(m) + Fj

}
= Lj . (B-5)
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Since the left-hand side equals LUj/δj by definition of Uj , we have Lj/L = Uj/δj . Using

the definition of δj from (13) we thus have

Lj

L
=

U

δ
EU ,Uj

. (B-6)

Since ∑
J
j=1 Lj = L, it then follows using (B-6) that

U

δ

J

∑
j=1

EU ,Uj
= 1 ⇒

U

δ
=

1

∑
J
j=1 EU ,Uj

.

Hence, any optimal labor allocation in sector j = 1, 2, . . . , J satisfies

Lj =
U

δ
EU ,Uj

L =
EU ,Uj

∑
J
ℓ=1 EU ,Uℓ

L. (B-7)

Finally, turning to the mass of entrants, from (B-5) we can obtain (B-4) for the optimal

allocation. We know from (13) that mqj(m) = qj(m)u′j(qj(m))/δj . Using the definitions

of δj , EU ,Uj
, and Euj ,qj(m), and (B-6) then yields mqj(m) = (Lj/L)qj(m)u′j(qj(m))/Uj =

(Lj/L)Euj ,qj(m)uj(qj(m))/Uj for the optimal allocation. Plugging this into (B-4), noting that

Uj depends on NE
j , and using the definition of ζj(qj(m)), we can solve the resulting equation

for NE
j , which yields (20). This completes the proof of Lemma 2. �

B.3. Proof of Lemma 3. By definition, the weighted average of the elasticities of the subu-

tility functions is given by

Euj ,qj(m) =
∫ md

j

0

Euj ,qj(m)uj(qj(m))

∫ md
j

0 uj(qj(m))dGj(m)
dGj(m) =

∫ md
j

0 u′j(qj(m))qj (m)dGj(m)
∫ md

j

0 uj(qj(m))dGj(m)
. (B-8)

In what follows, we rewrite the numerator and the denominator of (B-8) by using cara

subutilities with Pareto productivity distributions. As shown in Appendix E, the equilib-

rium quantities are given by qj(m) = (1/αj)[1 −W (em/md
j )], where W is the Lambert W

function defined as ϕ = W (ϕ)eW (ϕ). To integrate the foregoing expressions, we use the

change in variables suggested by Corless et al. (1996, p.341). Let

z ≡ W

(
e
m

md
j

)
, so that e

m

md
j

= zez.
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This change in variables then yields dm = (1 + z)ez−1md
jdz, with the new integration

bounds given by 0 and 1. Substituting the expressions for quantities into the numerator

of (B-8), using the definition of W , and making the above change in variables, we have:

∫ md
j

0
u′j(qj(m))qj (m)dGj(m) =

∫ md
j

0
[1 −W (em/md

j )]e
W (em/md

j )−1gj(m)dm

= md
j

∫ 1

0
(1 − z)ez−1(1 + z)ez−1gj(zez−1md

j )dz. (B-9)

Applying the same technique to the denominator of (B-8), we obtain

∫ md
j

0
uj(qj(m))dGj(m) =

∫ md
j

0
[1 − eW (em/md

j )−1]gj(m)dm

= md
j

∫ 1

0
(1 − ez−1)(1 + z)ez−1gj(zez−1md

j )dz. (B-10)

Dividing (B-9) by (B-10), we then obtain:

Euj ,qj(m) =

∫ 1
0 (1 − z)ez−1(1 + z)ez−1gj(zez−1md

j )dz∫ 1
0 (1 − ez−1)(1 + z)ez−1gj(zez−1md

j )dz
, (B-11)

where (1 − z)ez−1 < 1 − ez−1 for all z ∈ [0, 1). With a Pareto distribution, we have

gj(zez−1md
j ) = kj(zez−1md

j )
kj−1(mmax

j )−kj , so that expression (B-11) can be written as (30).

�

C. Additional details for the quantification procedure

This appendix provides details on the data that we use and derives additional expressions

required for the different variants of the quantification procedure.

C.1. Data. Besides the firm-level esane dataset for France and the bsd dataset for the UK,

we build on industry-level information from the oecd stan database for both countries.

More specifically, we obtain sectoral expenditure shares and R&D expenditure data by isic

Rev. 3 from the French and UK input-output tables. These input-output tables contain

information on 35 sectors and dictate the level of aggregation in our analysis. We discard

the ‘Public Administration and Defense’ aggregate (12.12% of expenditure for France and

11.29% for the UK). Expenditure for each sector is computed as the sum of ‘Households

Final Consumption’ (code C39) and ‘General Government Final Consumption’ (code C41).
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In the baseline quantification we use the ratio of R&D expenditure to gross output at

basic prices to proxy for sunk entry costs and fixed costs. We also trim the employment data

by getting rid of the top and bottom 1.5% of the firm-level employment distribution across

all sectors.22

In the first robustness check, we do not need to construct a proxy for sunk entry costs

and fixed costs and directly use revenue data. We trim the data by focusing on firms with

revenue higher or equal to 50,000 GBP/EUR for the UK/France and trim the top 2.5% of the

revenue distribution across all sectors.

In our second robustness check, we use the industry-level profits-to-revenue ratio as a

proxy for sunk entry costs and fixed costs. Industry-level revenue and profits are obtained

by summing firm-level revenue and profits. We trim the data by getting rid of the top and

bottom 1.5% of the firm-level employment distribution across all sectors.23

C.2. Additional expressions. We derive the expressions needed to back out the structural

parameters of the model for the different variants of our quantification procedure.

cara subutility. In the cara case, firm variable employment used for production in the

market equilibrium with Pareto productivity distribution is given by:

empcara
j (m) =

m

αj
(1 −Wj) ,

where Wj ≡ W (em/md
j ) denotes the Lambert W function. Using z ≡ W (em/md

j ), em/md
j =

zez and dm = (1 + z)ez−1md
jdz, the conditional mean of ln[empcara

j (m)] is given by:

mean_lnempcara
j =

1
Gj(md

j )

∫ md
j

0
ln
[
m

αj
(1 −Wj)

]
dGj(m) = Mj + lnmd

j − lnαj ,

22We first match the R&D expenditure data with our 34 sectors and compute, for each sector, the ratio of
R&D expenditure to gross output at basic prices (code R49) with the latter information coming from input-
output tables. We then multiply the ratio by total employment in that sector, divide it by the number of firms
to get a proxy measure of Fj and fj , and subtract it from the employment of each firm. We ignore those firms
ending up with a non-positive employment.

23We multiply the industry-level profits-to-revenue ratio by total employment in that sector, divide it by the
number of firms to get a proxy measure of Fj and fj , and subtract it from the employment of each firm. We
ignore those firms ending up with a non-positive employment.
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where Mj ≡ −1/kj + kj
∫ 1

0 (zez−1)kj−1(1 + z)ez−1 ln(1 − z)dz is a function of kj only. In
turn, the standard deviation of ln[empcara

j (m)] becomes:

sd_lnempcara
j =

√√√√ 1
Gj(md

j )

∫ md
j

0

{
ln
[
m

αj

(1 −Wj)

]
− mean_lnempcara

j

}2

dGj(m)

=

√
2
k2
j

−M2
j + kj

∫ 1

0
ln [(zez−1)2(1 − z)] (zez−1)kj−1(1 + z)ez−1 ln(1 − z)dz. (C-1)

Moving to firm revenue, we have:

revcara
j (m) =

mw

αj
(W−1

j − 1).

Hence, the conditional mean of ln[revcara
j (m)] is given by:

mean_lnrevcara
j =

1
Gj(md

j )

∫ md
j

0
ln
[
mw

αj
(W−1

j − 1)
]

dGj(m) = M̃j + lnmd
j + ln(w/αj),

where M̃j = −1/kj + kj
∫ 1

0 (zez−1)kj−1(1+ z)ez−1 ln(z−1 − 1)dz is a function of kj only. The
standard deviation of ln[revcara

j (m)] is then:

sd_lnrevcara
j =

√√√√ 1
Gj(md

j )

∫ md
j

0

{
ln
[
mw

αj

(W−1
j − 1)

]
− mean_lnrevcara

j

}2

dGj(m)

=

√∫ 1

0

{
ln[zez−1(z−1 − 1)]− M̃j

}2
kj (zez−1)

kj−1 (1 + z)ez−1dz. (C-2)

ces subutility. Turning to the ces case, firm variable employment used for production in

the market equilibrium with Pareto productivity distribution is given by:

empces
j (m) =

fjρj

1 − ρj

(
md

j

m

) ρj
1−ρj

.

The conditional mean of ln[empces
j (m)] is given by:

mean_lnempces
j =

1
Gj(md

j )

∫ md
j

0
ln


 fjρj

1 − ρj

(
md

j

m

) ρj
1−ρj


dGj(m) = ln

(
fjρj

1 − ρj

)
+

ρj

kj(1 − ρj)
.
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Using the same approach than in the cara case, one can obtain the standard deviation of

ln[empces
j (m)], which depends on kj and ρj , as follows:

sd_lnempces
j =

ρj

kj(1 − ρj)
. (C-3)

Moving to firm log-revenue, its standard deviation is identical to that of log-employment:

sd_lnrevces
j =

ρj

kj(1 − ρj)
. (C-4)

Indeed, both firm revenue and variable employment in the CES case are given by a bundle

of parameters multiplied by m−ρj/(1−ρj). When taking the log, the standard deviation of the

whole expression is thus simply the standard deviation of ln[m−ρj/(1−ρj)] in both cases.

D. Allais surplus

This appendix derives the Allais surplus (Allais, 1943, 1977), which is the welfare measure

we use when quantifying aggregate welfare distortions. In our context, the Allais surplus is

defined as the maximum amount of the numeraire that can be saved when the social planner

minimizes the resource cost of providing the agents with the equilibrium utility. We thus

consider the following optimization problem:

min
{NE

j ,md
j , qj (m)}

LA ≡
J

∑
j=1

NE
j

{∫ md
j

0
[Lmqj(m) + fj]dGj(m) + Fj

}
(D-1)

s.t. U
(
Ũ1(U1), Ũ2(U2), . . . , ŨJ(UJ )

)
≥ U ,

where U is a fixed target utility level that needs to be provided to each agent. The solution

to this problem yields the minimum resource cost, LA(U), required to achieve the target

utility level. Setting U = Ueqm, the Allais surplus is formally defined as:

A ≡ L− LA(Ueqm), (D-2)

where the first term L is the amount of labor needed for the market economy to attain the

equilibrium utility since the labor market clears in equilibrium. If there are distortions, the

planner requires, by definition, less labor to attain the equilibrium utility than the market

economy does. Thus, the minimum resource cost must satisfy LA(Ueqm) ≤ L, so that A ≥ 0.

Let µ denote the Lagrange multiplier associated with the utility constraint. From (D-1),
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the first-order conditions with respect to qj(m), md
j , and NE

j are given by

u′j(qj(m)) =
L

µj
m, µj ≡ µ

∂U

∂Ũj

∂Ũj

∂Uj
(D-3)

µjuj(q
d
j ) = Lmd

jq
d
j + fj (D-4)

µj

∫ md
j

0
uj(qj(m))dGj(m) =

∫ md
j

0
[Lmqj(m) + fj ]dGj(m) + Fj (D-5)

as well as the constraint U = U
(
Ũ1(U1), Ũ2(U2), . . . , ŨJ (UJ )

)
. Comparing (D-3)–(D-5) with

(13)–(15) reveals that the first-order conditions are isomorphic. Thus, we can conclude that

the optimal cutoffs and quantities are the same in the Allais surplus problem and the ‘primal’

optimal problem in Section 2.2. In what follows, we focus on the optimal labor allocation

and entry.

D.1. cara subutility. Assume that the subutility function is of the cara form uj(qj(m)) =

1 − e−αjqj (m), that the upper-tier utility function U is of the ces form as in (E-1), that

Ũj(Uj) = Uj , and that Gj follows a Pareto distribution. We also assume that fj = 0 in

the cara subutility case.

To derive the optimal masses of entrants, we use the multipliers µj ≡ µEU ,Uj

U
Uj

. Given

the ces upper-tier utility, the ratio of multipliers in sectors j and ℓ is

µj

µℓ
=

βj

βℓ

(
Uℓ

Uj

) 1
σ

=
αℓ

αj

md
j

md
ℓ

, (D-6)

where we have used (D-3) evaluated at m = md
j to get the last equality. It follows from (D-6)

that

Uℓ =

(
αℓβℓ

αjβj

md
j

md
ℓ

)σ

Uj ,

which, together with the utility constraint U = [∑J
ℓ=1 βℓU

(σ−1)/σ
ℓ ]σ/(σ−1), yields

U = Uj ·


β1−σ

j

(
md

j

αj

)σ−1
J

∑
ℓ=1

βσ
ℓ

(
md

ℓ

αℓ

)1−σ



σ
σ−1

. (D-7)

Since the optimal quantities and cutoffs are the same in the ‘primal’ and ‘dual’ problems, we

can plug (E-24) into (D-7) to eliminate Uj . We can then use Gj(md
j ) = αjFj(kj + 1)2/(Lmd

j )
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from the expression of the optimal cutoff (E-28) to solve for NE
j as follows

NE
j =

ασ−1
j βσ

j [(m
d
j )

opt]1−σ

[
∑

J
ℓ=1 α

σ−1
ℓ βσ

ℓ [(m
d
ℓ )

opt]1−σ
] σ

σ−1

LU

Fj(kj + 1)
= (NE

j )opt U

Uopt , (D-8)

where Uopt = {∑
J
ℓ=1 α

σ−1
ℓ βσ

ℓ [(m
d
ℓ )

opt]1−σ}1/(σ−1) as given by (E-33) and where (NE
j )opt is

given by (E-30). As can be seen from (D-8), the mass of entrants in sector j needed to

achieve U is proportional to this target utility level.

Summing up, to achieve the target utility U in the resource minimization problem, the

planner imposes the socially optimal cutoffs (md
j )

opt and firm-specific quantities q
opt
j (m) =

(1/αj) ln(mopt
j /m), and chooses the mass of entrants (D-8) that is proportional to U . Thus,

to achieve a higher U the planner would allow more entrants, but always choose the same

level of selection. The associated resource cost LA(U) can be obtained by plugging this

solution back into the objective function as follows

LA(U ) =
J

∑
j=1

(NE
j )opt U

Uopt

[∫ (md
j )

opt

0
Lmq

opt
j (m)dGj(m) + Fj

]
=

U

UoptL.

The last equality holds because the optimal allocation in Appendix E, by definition, clears

the labor market. Setting U = Ueqm yields

LA(Ueqm)

L
=

Ueqm

Uopt < 1, i.e.,
L− LA(Ueqm)

L
=

Uopt − Ueqm

Uopt , (D-9)

where the numerator of the left-hand side is the Allais surplus. This expression provides a

measure of the aggregate welfare distortion in the economy. Note that we may use the wel-

fare measure based on utility and the measure based on the Allais surplus interchangeably.

D.2. ces subutility. Assume that the subutility function is of the ces form uj(qj(m)) =

qj(m)ρj , that the upper-tier utility function U is of the ces form as in (E-1), that Ũj(Uj) =

U
1/ρj
j , and that Gj follows a Pareto distribution. We also assume that fj > 0.

To derive the optimal masses of entrants, we use the multipliers µj ≡ µ ∂U

∂Ũj

∂Ũj

∂Uj
. Given

the ces upper-tier utility, the ratio of multipliers in sectors j and ℓ is

µj

µℓ
=

βj/ρj
βℓ/ρℓ

U

1−σ(1−ρℓ)
σρℓ

ℓ

U

1−σ(1−ρj )

σρj

j

=
ρℓ(q

d
j )

1−ρjmd
j

ρj(qdℓ )
1−ρℓmd

ℓ

, (D-10)

53



where we have used (D-3) evaluated at m = md
j in the second equality. Since the optimal

cutoffs and quantities are as in Appendix E, using (E-35) allows us to rewrite expression

(D-10) as follows:

U

1−σ(1−ρj )

σρj

j

U

1−σ(1−ρℓ)
σρℓ

ℓ

=

(
βj

βℓ

) [
fjρj

L(1 − ρj)

]ρj−1 [
fℓρℓ

L(1 − ρℓ)

]1−ρℓ (md
j )

−ρj

(md
ℓ )

−ρℓ
. (D-11)

Since the right-hand side of (D-11) is the same as that of (E-40), we obtain

U

1−σ(1−ρj )

σρj

j

U

1−σ(1−ρℓ)
σρℓ

ℓ

=
(U

opt
j )

1−σ(1−ρj )

σρj

(U
opt
ℓ )

1−σ(1−ρℓ)
σρℓ

.

As in Appendix E, we now consider that σ → 1 in order to derive closed-form solutions.

We then have Uj/Uℓ = U
opt
j /Uopt

ℓ and from the definition of U we obtain:

U =
J

∏
ℓ=1

U

βℓ
ρℓ
j

(
Uℓ

Uj

) βℓ
ρℓ

=
J

∏
ℓ=1

U

βℓ
ρℓ
j

(
U

opt
ℓ

U
opt
j

)βℓ
ρℓ

=
J

∏
ℓ=1

(U
opt
ℓ )

βℓ
ρℓ

J

∏
ℓ=1

(
Uj

U
opt
j

)βℓ
ρℓ

= Uopt

(
Uj

U
opt
j

)∑
J
ℓ=1

βℓ
ρℓ

. (D-12)

Using (E-38), and because md
j = (md

j )
opt, we know that Uj/Uopt

j = NE
j /(NE

j )opt. Plugging

this expression into (D-12), we obtain

NE
j = (NE

j )opt
(

U

Uopt

) 1

∑J
ℓ=1

βℓ
ρℓ .

Thus, we have

LA(U) =
J

∑
j=1

(NE
j )opt

(
U

Uopt

) 1

∑J
ℓ=1

βℓ
ρℓ

{∫ (md
j )

opt

0

[
Lmq

opt
j (m) + fj

]
dGj(m) + Fj

}

=

(
U

Uopt

) 1

∑J
ℓ=1

βℓ
ρℓ L,

where the last equality holds because the optimal allocation clears the labor market. Hence,
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evaluating U at Ueqm, we obtain

L− LA(Ueqm)

L
= 1 −

(
Ueqm

Uopt

) 1

∑J
ℓ=1

βℓ
ρℓ . (D-13)

This expression provides a measure of the aggregate welfare distortion in the economy.

Note that we may not use the welfare measure based on utility and the measure based on

the Allais surplus interchangeably in this case, as we could in the cara case in Appendix

D.1. The reason is the presence of Ũj , which is a transformation of the lower-tier utility.

Without that transformation, which in the ces case would amount to setting all ρℓ’s that

appear in the power of (D-13) equal to one, the foregoing result that utility and the Allais

surplus can be used interchangeably would still hold.

E. Analytical expressions

We assume that the upper-tier utility is of the ces form:

U =

{
J

∑
j=1

βj

[
Ũj(Uj)

](σ−1)/σ
}σ/(σ−1)

, (E-1)

where σ > 1 is the intersectoral elasticity of substitution, and where the βj are strictly pos-

itive parameters that sum to one. The lower-tier utility is Uj ≡ NE
j

∫ md
j

0 uj
(
qj(m)

)
dGj(m).

In what follows, we focus on cases in which the ces form in (E-1) satisfies condition (25),

so that there exist unique intersectoral equilibrium and optimal allocations. As explained in

the main text, this is always the case for cara subutility functions and Ũj(Uj) = Uj , and it is

the case for homothetic lower-tier ces utility functions with Ũj(Uj) = U
1/ρj
j when the lower-

tier elasticity of substitution exceeds the upper-tier elasticity of substitution. Observe that

(E-1) includes the Cobb-Douglas form as a limit case. All results based on the Cobb-Douglas

specification, as given in the main text, can be retrieved from the following expressions by

letting σ → 1.

E.1. cara subutility. We provide detailed derivations of the equilibrium and optimal allo-

cations in the cara case.

55



Equilibrium allocation. We first derive the equilibrium cutoffs and quantities.24 Assume

that Ũj(Uj) = Uj , and that uj(qj(m)) = 1 − e−αjqj (m), so that u′j(qj(m)) = αje−αjqj(m),

u′′j (qj(m)) = −α2
je−αjqj(m), and ru(qj(m)) = αjqj(m). We assume in what follows that

there are no fixed costs for production, i.e., fj = 0 for all sectors j. We can do so since,

as in Melitz and Ottaviano (2008) but contrary to Melitz (2003), the marginal utility of each

variety is bounded at zero consumption so that demand for a variety drops to zero when

its price exceeds some threshold. Since for the least productive firm, which is indifferent

between producing and not producing, we have qdj ≡ qj(md
j ) = 0, the first-order conditions

(2) evaluated for any m and at the cutoff md
j imply the following demand functions:

qj(m) =
1
αj

ln

[
pdj

pj(m)

]
for 0 ≤ m ≤ md

j , (E-2)

where pdj ≡ pj(md
j ). Making use of the profit maximizing prices (5), ru(qj(m)) = αjqj(m),

and qdj = 0, we have

qj(m) =
1
αj

ln

[
md

j

1 − ruj (q
d
j )

1 − ru(qj(m))

m

]
=

1
αj

ln

{
md

j

m
[1 − αjqj(m)]

}
.

This implicit equation can be solved for qj(m) = (1 −Wj)/αj , where Wj ≡ W (em/md
j )

denotes the Lambert W function, defined as ϕ = W (ϕ)eW (ϕ) (see Corless et al., 1996). We

suppress its argument to alleviate notation whenever there is no possible confusion. Since

ruj = 1 −Wj , we then also have the following profit maximizing prices, quantities, and

operating profits divided by the wage rate:

pj(m) =
mw

Wj
, qj(m) =

1
αj

(1 −Wj) , πj(m) =
Lm

αj
(W−1

j +Wj − 2). (E-3)

By definition of the Lambert W function, we have W (ϕ) ≥ 0 for all ϕ ≥ 0. Taking logarithms

on both sides of ϕ = W (ϕ)eW (ϕ) and differentiating yields

W ′(ϕ) =
W (ϕ)

ϕ[W (ϕ) + 1]
> 0

for all ϕ > 0. Finally, we have: 0 = W (0)eW (0), which implies W (0) = 0; and e = W (e)eW (e),

which implies W (e) = 1. Hence, we have 0 ≤ Wj ≤ 1 if 0 ≤ m ≤ md
j . The expressions

24Additional information on the equilibrium cutoffs and quantities can be found in Behrens and Murata
(2007) and in Behrens et al. (2014).
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in (E-3) show that a firm with a draw md
j charges a price equal to marginal cost, faces zero

demand, and earns zero operating profits. Furthermore, using the properties of W ′, we

readily obtain ∂pj(m)/∂m > 0, ∂qj(m)/∂m < 0, and ∂πj(m)/∂m < 0. In words, firms with

higher productivity 1/m charge lower prices, produce larger quantities, and earn higher

operating profits. Our specification with variable demand elasticity also features higher

markups for more productive firms. Indeed, the markup

Λj(m) ≡
pj(m)

mw
=

1
Wj

(E-4)

is such that ∂Λj(m)/∂m < 0.

Using (E-3) and ruj = 1−Wj , and recalling that fj = 0, the zero expected profit condition

(7) can be expressed as

∫ md
j

0
m
(
W−1

j +Wj − 2
)

dGj(m) =
αjFj

L
. (E-5)

To derive closed-form solutions for various expressions with cara subutility functions, we

need to compute integrals involving the Lambert W function. This can be done by using the

change in variables suggested by Corless et al. (1996, p.341). Let

z ≡ W

(
e
m

md
j

)
, so that e

m

md
j

= zez.

The change in variables then yields dm = (1+ z)ez−1md
jdz, with the new integration bounds

given by 0 and 1. Using the change in variables, the LHS of (E-5) can be expressed as follows:

∫ md
j

0
m
(
W−1

j +Wj − 2
)

dGj(m) = (md
j )

2
∫ 1

0
z(1 + z)e2(z−1)(z−1 + z − 2)gj

(
zez−1md

j

)
dz

for an arbitrary distribution gj(·) of draws.

We consider the Pareto distribution Gj(m) = (m/mmax
j )kj with upper bound mmax

j > 0

and shape parameter kj ≥ 1. Then, the integral reduces to

∫ md
j

0
m
(
W−1

j +Wj − 2
)

dGj(m) = κj
(
mmax

j

)−kj (md
j )

kj+1, (E-6)

where κj ≡ kje−(kj+1)
∫ 1

0 (1 + z)
(
z−1 + z − 2

)
(zez)kj ezdz > 0 is a constant term which

solely depends on the shape parameter kj . Plugging (E-6) into (E-5), we obtain the equilib-
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rium cutoffs

(md
j )

eqm =

[
αjFj(mmax

j )kj

κjL

] 1
kj+1

(E-7)

and quantities q
eqm
j (m) = [1 −Wj(em/(md

j )
eqm)]/αj . Note that (E-7) implies that

[
(md

j )
eqm

mmax
j

]kj
= Gj((m

d
j )

eqm) =
αjFj

κjL

1
(md

j )
eqm , (E-8)

a relationship that we will use in what follows.

We now turn to the equilibrium labor allocation and masses of entrants. Using (E-3),

labor market clearing in sector j can be written as

NE
j

[
L

∫ md
j

0
mqj(m)dGj(m) + Fj

]
= NE

j

[
L

αj

∫ md
j

0
m (1 −Wj) dGj(m) + Fj

]
= Lj . (E-9)

Making use of the same change in variables for integration as before, and imposing the

Pareto distribution, we have

∫ md
j

0
m (1 −Wj)dGj(m) = κ1j

(
mmax

j

)−kj (md
j )

kj+1, (E-10)

where κ1j ≡ kje−(kj+1)
∫ 1

0 (1 − z2) (zez)kj ezdz > 0 is a constant term which solely de-

pends on the shape parameter kj . Plugging (E-10) into (E-9) and using (E-7), we have

Lj = NE
j Fj [(κ1j/κj) + 1]. It can be verified that κ1j/κj = kj , so that

Lj = NE
j Fj(kj + 1). (E-11)

To determine the masses of entrants, we insert the definition of λj into (3). Computing

∂U/∂Uj from (E-1) for Ũj(Uj) = Uj and recalling that qdj = 0 and pdj = md
jw for all j, we

obtain
αj

αℓ
=

md
j

md
ℓ

λj

λℓ
⇒

Uj

Uℓ
=

(
αj

αℓ

)σ (
βj

βℓ

)σ
[
(md

j )
eqm

(md
ℓ )

eqm

]−σ

. (E-12)

Using the definition of EU ,Uj
, (E-1), and (E-12), it is verified that

EU ,Uj
=

βjU
σ−1
σ

j

∑
J
ℓ=1 βℓU

σ−1
σ

ℓ

=
βj

∑
J
ℓ=1 βℓ

(
Uℓ
Uj

)σ−1
σ

=
βσ
j α

σ−1
j [(md

j )
eqm]1−σ

∑
J
ℓ=1 β

σ
ℓ α

σ−1
ℓ [(md

ℓ )
eqm]1−σ

. (E-13)
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From Lemmas 1 and 3, we have

Lj =
EU ,Uj

θj

∑
J
ℓ=1 EU ,Uℓ

θℓ
L. (E-14)

Substituting (E-11) and (E-13) into (E-14) yields

(NE
j )eqm =

ασ−1
j βσ

j θj [(m
d
j )

eqm]1−σ

∑
J
ℓ=1 α

σ−1
ℓ βσ

ℓ θℓ[(m
d
ℓ )

eqm]1−σ

L

(kj + 1)Fj
, (E-15)

so that from (E-11) we obtain

L
eqm
j =

ασ−1
j βσ

j θj [(m
d
j )

eqm]1−σ

∑
J
ℓ=1 α

σ−1
ℓ βσ

ℓ θℓ[(m
d
ℓ )

eqm]1−σ
L. (E-16)

Turning to the lower-tier utility, equation (B-8), the definition of Uj , and Lemma 3 imply

that

Uj =

∫ md
j

0 u′j(qj(m))qj (m)dGj(m)

θj/NE
j

. (E-17)

Making use of the same change in variables for integration as before, and imposing the

Pareto distribution, the numerator of (E-17) can be rewritten as

∫ md
j

0
(1 −Wj)eWj−1dGj(m) = κ2j

(
mmax

j

)−kj (md
j )

kj , (E-18)

where κ2j ≡ kje−(kj+1)
∫ 1

0 (1 − z2) (zez)kj−1 (ez)2dz > 0 is a constant term which solely

depends on the shape parameter kj . Using (E-18), (E-8), and (E-11), we can rewrite (E-17)

as U
eqm
j = [(αj/θj)(L

eqm
j /L)/(md

j )
eqm][(κ2j/κj)/(kj + 1)]. It can be verified that κ2j/κj =

kj + 1, so that

U
eqm
j =

αj

θj

(L
eqm
j /L)

(md
j )

eqm . (E-19)

Making use of the upper-tier utility (E-1), (E-16), and (E-19), the utility U is then

Ueqm =





∑
J
j=1 α

σ−1
j βσ

j [(m
d
j )

eqm]1−σ

[
∑

J
ℓ=1 α

σ−1
ℓ βσ

ℓ θℓ[(m
d
ℓ )

eqm]1−σ
] σ−1

σ





σ
σ−1

=

{
∑

J
j=1 α

σ−1
j βσ

j [(m
d
j )

eqm]1−σ
} σ

σ−1

∑
J
ℓ=1 α

σ−1
ℓ βσ

ℓ θℓ[(m
d
ℓ )

eqm]1−σ
.

(E-20)

When the upper-tier utility function is of the Cobb-Douglas form, σ = 1, so that (E-14)
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becomes L
eqm
j /L = βjθj/ ∑

J
ℓ=1(βℓθℓ). Hence, (E-20) reduces to

Ueqm =
J

∏
j=1

[
αjβj

∑
J
ℓ=1(βℓθℓ)

1
(md

j )
eqm

]βj
.

Another way of deriving the equilibrium utility is useful for proving some analytical

results. Using the demand functions (E-2) and the profit-maximizing prices in (E-3), the

lower-tier utility is given by

Uj = NE
j

[
Gj(m

d
j )−

1
md

j

∫ md
j

0
mW−1

j dGj(m)

]
, (E-21)

which can be integrated (using again the same change in variables as before) to obtain:

∫ md
j

0
mW−1

j dGj(m) = κ3j
(
mmax

j

)−kj (md
j )

kj+1,

where κ3j ≡ kje−(kj+1)
∫ 1

0 (z
−1 + 1) (zez)kj ezdz > 0 is a constant term which solely depends

on the shape parameter kj . One can verify that 1 − κ3j = 1
kj+1 − (κ1j + κj), so that the

lower-tier utility (E-21) becomes

Uj =

[
1

kj + 1
− (κ1j + κj)

]
NE

j Gj(m
d
j ). (E-22)

Since Uj > 0 by construction of the lower-tier utility, we have (κ1j + κj)(kj + 1) < 1, which

is equivalent to κj(kj + 1)2 < 1 since κ1j = κjkj .

Optimal allocation. We next derive the expressions for the optimal cutoffs and quantities

in the cara case. From the first-order conditions (13), the optimal consumptions must satisfy

αje
−αjqj(m

d
j )

αje−αjqj (m)
=

md
j

m
and

αje
−αjqj(m

d
j )

αℓe−αℓqℓ(m
d
ℓ )

=
δj

δℓ

md
j

md
ℓ

.

The first conditions, together with qj(md
j ) = 0, can be solved to yield:

qj(m) =
1
αj

ln

(
md

j

m

)
for 0 ≤ m ≤ md

j . (E-23)
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Plugging (E-23) into Uj and letting mj ≡ (1/Gj(md
j )]
∫ md

j

0 mdGj(m) denote the average

value of m, we obtain:

Uj =

(
1 −

mj

md
j

)
NE

j Gj(m
d
j ) =

NE
j Gj(md

j )

kj + 1
, (E-24)

where we have used the property of the Pareto distribution that mj = [kj/(kj + 1)]md
j to

obtain the second equality.

Assuming that the upper-tier utility function is given by (E-1), the planner’s problem can

be redefined using (E-24) as follows:

max
{NE

j ,md
j}

V̂ ≡ L ·





J

∑
j=1

βj

[
NE

j Gj(m
d
j )

kj + 1

]σ−1
σ





σ
σ−1

(E-25)

s.t.
J

∑
j=1

NE
j

[
L

αj

kj

(kj + 1)2m
d
jGj(m

d
j ) + Fj

]
= L, (E-26)

where the resource constraint is obtained by plugging (E-23) into (12) and integrating the

resulting expression. Denoting by δ̂ the Lagrange multiplier of this redefined problem, the

first-order conditions with respect to NE
j and md

j are given by

βj V̂

NE
j

[
NE

j Gj(m
d
j )

kj+1

]σ−1
σ

∑
J
ℓ=1 βℓ

[
NE

ℓ Gℓ(m
d
ℓ )

kℓ+1

] σ−1
σ

= δ̂

[
L

αj

kj

(kj + 1)2m
d
jGj(m

d
j ) + Fj

]
(E-27)

βj V̂
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j

[
NE

j Gj(m
d
j )

kj+1

]σ−1
σ

∑
J
ℓ=1 βℓ

[
NE

ℓ
Gℓ(m

d
ℓ
)

kℓ+1

] σ−1
σ

= δ̂
L
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kj

(kj + 1)2

Gj(m
d
j )

G′
j(m

d
j )

[
Gj(m

d
j ) +md

jG
′
j(m

d
j )
]

.

Because the left-hand side is common, we obtain the optimal cutoffs

(md
j )

opt =

[
αjFj(mmax

j )kj (kj + 1)2

L

] 1
kj+1

(E-28)
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and quantities q
opt
j (m) = (1/αj) ln[(md

j )
opt/m]. Note that (E-28) implies that

[
(md

j )
opt

mmax
j

]kj
= Gj((m

d
j )

opt) =
αjFj(kj + 1)2

L

1
(md

j )
opt , (E-29)

a relationship that we will use repeatedly in what follows.

Using (E-29), the right-hand side of (E-27) becomes δ̂Fj(kj + 1). Moreover, taking the

ratio of (E-27) for sectors j and ℓ, we have

NE
j

NE
ℓ

=

(
βj

βℓ

)σ
[
Gj(m

d
j )

kj + 1

]σ−1 [
Gℓ(m

d
ℓ )

kℓ + 1

]1−σ [
(kj + 1)Fj

(kℓ + 1)Fℓ

]−σ

for all j = 1, 2, . . . , J . Plugging this relationship into the resource constraint (E-26), and

using (E-29), we readily obtain the optimal mass of entrants in sector j:

(NE
j )opt =

ασ−1
j βσ

j [(m
d
j )

opt]1−σ

∑
J
ℓ=1 α

σ−1
ℓ βσ

ℓ [(m
d
ℓ )

opt]1−σ

L

(kj + 1)Fj
. (E-30)

Plugging (E-28) into (E-26), we have Lj = NE
j Fj(kj + 1), which implies the optimal labor

allocation as follows:

L
opt
j =

ασ−1
j βσ

j [(m
d
j )

opt]1−σ

∑
J
ℓ=1 α

σ−1
ℓ βσ

ℓ [(m
d
ℓ )

opt]1−σ
L. (E-31)

Finally, plugging (E-29) and (E-30) into (E-24), the lower-tier utility from sector j at the

optimal allocation can be expressed as

U
opt
j = αj

(L
opt
j /L)

(md
j )

opt , (E-32)

so that

Uopt =

{
J

∑
j=1

ασ−1
j βσ

j [(m
d
j )

opt]1−σ

} 1
σ−1

. (E-33)

When the upper-tier utility function is of the Cobb-Douglas form, σ = 1, so that (E-31)

reduces to L
opt
j /L = βj . Expression (E-32) can then be rewritten as U

opt
j = αjβj/(md

j )
opt.

Hence, (E-33) reduces to

Uopt =
J

∏
j=1

[
αjβj

(md
j )

opt

]βj
.
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E.2. ces subutility. We briefly summarize the equilibrium and optimal allocations in the

case with ces subutility functions, uj
(
qj(m)

)
= qj(m)ρj , where 0 < ρj < 1, and Pareto

distribution functions, Gj(m) = (m/mmax
j )kj . As in the existing literature, we also assume

that Ũj(Uj) = U
1/ρj
j and that fj > 0.

First, with ces subutility functions, 1 − ruj (qj(m)) = Euj ,qj(m) = ρj holds for all m, and

qj(m) = (md
j/m)1/(1−ρj )qdj holds for both the equilibrium and optimal allocations. Thus, the

zep and zcp conditions, (7) and (6), are equivalent to the zesp and zcsp conditions, (17) and

(18). The resulting equilibrium and optimum cutoffs are therefore the same and given by

(md
j )

eqm = (md
j )

opt = mmax
j

[
Fj

fj

kj(1 − ρj)− ρj

ρj

] 1
kj

, (E-34)

which implies that the demand functions qj(m) are common between the equilibrium and

the optimum for all m ≤ md
j . In particular qdj can be obtained from (6) or (18) as follows:

qdj =
fj

L

ρj

1 − ρj

1
md

j

. (E-35)

Second, given the foregoing results, νj(qj(m)) = ζj(qj(m)) holds for all m ≤ md
j , so that

the expressions in the braces of (10) and those of (20) are the same. Thus, the equilibrium

and optimal masses of entrants satisfy

(NE
j )eqm = L

eqm
j

ρj

kjFj
and (NE

j )opt = L
opt
j

ρj

kjFj
. (E-36)

Third, the conditions (3) for equilibrium intersectoral consumption can be rewritten as

U

1−σ(1−ρj )

σρj

j

U

1−σ(1−ρℓ)
σρℓ

ℓ

=

(
βjρj

βℓρℓ

) [
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]ρj−1 [
fℓρℓ

L(1 − ρℓ)

]1−ρℓ (md
j )

−ρj

(md
ℓ )

−ρℓ
.

To obtain closed-form solutions, we assume that σ = 1, so that the above expression reduces

to the Cobb-Douglas case:

Uj

Uℓ
=

(
βjρj

βℓρℓ

) [
fjρj

L(1 − ρj)

]ρj−1 [
fℓρℓ

L(1 − ρℓ)
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j )

−ρj

(md
ℓ )

−ρℓ
. (E-37)

Using (E-34) and (E-35), together with qj(m) = (md
j/m)1/(1−ρj )qdj and the Pareto distribu-
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tion, the lower-tier utility is given by

Uj =
NE

j kjFj

L

[
fjρj

L(1 − ρj)

]ρj−1

(md
j )

−ρj . (E-38)

Plugging (E-38) into (E-37) and using (E-36), we then obtain

(NE
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j .

Since ∑
J
ℓ=1 Lℓ = L, we finally obtain

L
eqm
j = βjL. (E-39)

Using (E-36) and (E-39), expression (E-38) can be rewritten as

U
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j = βjρj

[
fjρj
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]ρj−1 [
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eqm]−ρj ,

which yields
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.

Turning to the optimal allocation, the conditions (16) for optimal intersectoral consump-

tion can be rewritten as

U

1−σ(1−ρj )

σρj

j
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. (E-40)

Assume again that the upper-tier utility is Cobb-Douglas, i.e., σ → 1. In that case, we can

use the same procedure as above to obtain

(NE
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so that
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Using (E-36), expression (E-38) can be rewritten as

U
opt
j =

βj

∑
J
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[
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which yields
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.

F. Expressions for quantifying the ces-cara case.

Quantifying the Cobb-Douglas-cara case is relatively easy because when σ → 1 the equilib-

rium and optimal expenditure shares are independent of the αj parameters and the cutoffs

md
j (which subsume other parameters such as the sunk entry costs Fj). This no longer holds

in the ces-cara case, which makes the quantification more involved. However, we can

proceed as follows.

Let {êeqm
j }Jj=1 be the equilibrium expenditure shares from the data, and let {θ̂j}Jj=1 be the

weighted averages of the elasticities of the subutility functions obtained from the standard

deviation formula in Appendix C.2. Recall that in the Cobb-Douglas case those two pieces

of information allow us to back out {β̂eqm
j }Jj=1 by solving

ê
eqm
j =

β̂
eqm
j θ̂j

∑
J
ℓ=1 β̂

eqm
ℓ θ̂ℓ

, ∑
j

β̂
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In the ces case, using (E-16) and noting that the total revenue equals the total wage in each

sector, i.e., Lejw = wLj , the equilibrium expenditure share can be rewritten as

ê
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j βσ

j θ̂j [(m
d
j )

eqm]1−σ

∑
J
ℓ=1 α

σ−1
ℓ βσ

ℓ θ̂ℓ[(m
d
ℓ )

eqm]1−σ
=

[
αjβj

(md
j )

eqm

]σ−1

βj θ̂j

∑
J
ℓ=1

[
αℓβℓ

(md
ℓ
)eqm

]σ−1
βℓθ̂ℓ

=
β̃

eqm
j θ̂j

∑
J
ℓ=1 β̃

eqm
ℓ θ̂ℓ

,

where β̃
eqm
j ≡

[
(αjβj)/(md

j )
eqm
]σ−1

βj , and where ê
eqm
j and θ̂j come from the data. Clearly,

β̃
eqm
j = const. × β̂

eqm
j is a solution to the foregoing equation, i.e., the β̃

eqm
j parameters in the

ces case are proportional to the β̂
eqm
j parameters in the Cobb-Douglas case. The constant

term is shown to disappear in the end.

Using the same transformation for the β terms as above, the equilibrium utility (E-20)
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can be rewritten as
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which, using β̃
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Turning to the optimal labor share, we have
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(F-1)

The optimal utility in (E-33) can be rewritten as

Uopt =

{
J

∑
j=1

ασ−1
j βσ

j [(m
d
j )

opt]1−σ

} 1
σ−1

=





J

∑
j=1

[
αjβj

(md
j )

opt

]σ−1

βj





1
σ−1

=

(
J

∑
j=1

β̃
opt
j

) 1
σ−1

.

Hence, using (F-1), we have
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1
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where β̂
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β̂
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j . Finally, taking the ratio of Ueqm and Uopt, we
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obtain
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We already know β̂
eqm
j and θ̂j . Since the cutoff ratio is a function of kj only, the above

expression can be quantified for any given value of σ. Then, using (D-9), we can compute

the associated Allais surplus required to quantify the distortions.

G. Robustness checks
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Table G-1: Sectoral data, parameter values, and distortions for France in 2008. Alternative firm size measure (revenue).

Cobb-Douglas - CARA & Pareto Cobb-Douglas - CES & Pareto
Std. dev. Cutoff Entry Cutoff Entry

Sector Description Firms êj log emp k̂j θ̂j κ̂j β̂j distortions ρ̂j β̂j distortions
1 Agriculture 16225 0.0188 0.9490 1.0402 0.7658 0.1042 0.0200 50.6033 -6.3271 0.4968 0.0188 0 -17.0719

2 Mining and quarrying 1264 0.0002 1.2047 5.9058 0.9278 0.0101 0.0001 11.1708 13.4870 0.8768 0.0002 0 46.3639
3 Food products, beverages, tobacco 46279 0.0697 0.9535 1.0612 0.7680 0.1022 0.0742 49.8611 -6.0631 0.5030 0.0697 0 -16.0393
4 Textiles, leather and footwear 6672 0.0205 1.2566 18.4586 0.9743 0.0013 0.0172 3.6961 19.1735 0.9587 0.0205 0 60.0359

5 Wood products 5733 0.0008 1.2423 11.7605 0.9608 0.0030 0.0007 5.7492 17.5267 0.9359 0.0008 0 56.2412
6 Pulp, paper, printing and publishing 16433 0.0086 1.1744 4.1427 0.9034 0.0179 0.0078 15.5942 10.4938 0.8295 0.0086 0 38.4744
7 Coke, refined petroleum, nuclear fuel 32 0.0168 0.9853 1.2258 0.7837 0.0887 0.0175 44.7000 -4.1422 0.5471 0.0168 0 -8.6772

8 Chemicals and chemical products 1700 0.0285 1.2568 18.5717 0.9745 0.0013 0.0239 3.6740 19.1917 0.9589 0.0285 0 60.0770
9 Rubber and plastics products 3066 0.0037 1.2139 6.7456 0.9356 0.0081 0.0033 9.8403 14.4388 0.8912 0.0037 0 48.7676

10 Other non-metallic mineral products 4686 0.0020 1.2444 12.4217 0.9628 0.0027 0.0017 5.4504 17.7622 0.9392 0.0020 0 56.7918
11 Basic metals 567 0.0001 1.2570 18.7108 0.9746 0.0013 0.0001 3.6471 19.2137 0.9592 0.0001 0 60.1269
12 Fabricated metal products 19030 0.0021 1.2171 7.0925 0.9384 0.0074 0.0018 9.3788 14.7748 0.8962 0.0021 0 49.6046

13 Machinery and equipment 13954 0.0053 1.1780 4.2982 0.9062 0.0169 0.0047 15.0684 10.8363 0.8351 0.0053 0 39.4036
14 Office, accounting, computing mach. 255 0.0033 1.2315 9.2006 0.9510 0.0047 0.0028 7.2983 16.3280 0.9189 0.0033 0 53.3972

15 Electrical machinery and apparatus 2475 0.0034 1.2392 10.8874 0.9580 0.0035 0.0029 6.1979 17.1757 0.9310 0.0034 0 55.4157
16 Radio, TV, communication equip. 1728 0.0042 1.2380 10.5883 0.9569 0.0036 0.0036 6.3682 17.0433 0.9291 0.0042 0 55.1028
17 Medical, precision, optical instr. 8260 0.0050 1.0670 1.8662 0.8293 0.0552 0.0049 31.7869 1.4362 0.6657 0.0050 0 11.1253

18 Motor vehicles and (semi-)trailers 1411 0.0326 1.2365 10.2341 0.9555 0.0039 0.0279 6.5823 16.8775 0.9268 0.0326 0 54.7096
19 Other transport equipment 1846 0.0028 1.1541 3.4226 0.8879 0.0240 0.0025 18.5983 8.6012 0.7980 0.0028 0 33.2111
20 Manufacturing n.e.c; recycling 13789 0.0130 1.1481 3.2520 0.8835 0.0259 0.0120 19.4873 8.0615 0.7887 0.0130 0 31.6691

21 Electricity, gas and water supply 3444 0.0225 1.2325 9.3922 0.9519 0.0045 0.0193 7.1540 16.4381 0.9205 0.0225 0 53.6613
22 Construction 291286 0.0082 1.0048 1.3453 0.7939 0.0805 0.0085 41.5661 -2.8964 0.5748 0.0082 0 -4.0493

23 Wholesale and retail trade; repairs 403178 0.1377 1.1402 3.0476 0.8777 0.0285 0.1283 20.6695 7.3576 0.7765 0.1377 0 29.6296
24 Hotels and restaurants 156601 0.0489 0.9575 1.0801 0.7699 0.1005 0.0519 49.2101 -5.8293 0.5084 0.0489 0 -15.1287
25 Transport and storage 50914 0.0291 1.2573 18.9309 0.9749 0.0012 0.0244 3.6053 19.2479 0.9597 0.0291 0 60.2044

26 Post and telecommunications 2683 0.0191 1.1175 2.5707 0.8618 0.0363 0.0181 24.0753 5.4145 0.7418 0.0191 0 23.8287
27 Finance and insurance 18351 0.0376 0.9574 1.0794 0.7698 0.1006 0.0400 49.2333 -5.8377 0.5082 0.0376 0 -15.1616
28 Real estate activities 80723 0.1649 0.9748 1.1680 0.7784 0.0931 0.1732 46.3893 -4.7882 0.5324 0.1649 0 -11.1228

29 Renting of machinery and equipment 10616 0.0022 1.1887 4.8301 0.9146 0.0141 0.0020 13.5096 11.8725 0.8517 0.0022 0 42.1725
30 Computer and related activities 31426 0.0010 1.0817 2.0353 0.8384 0.0495 0.0010 29.5217 2.5484 0.6876 0.0010 0 14.7924

31 Research and development 3830 0.0074 0.9487 1.0386 0.7657 0.1043 0.0079 50.6588 -6.3465 0.4963 0.0074 0 -17.1482
32 Other Business Activities 228933 0.0073 1.0659 1.8543 0.8286 0.0556 0.0072 31.9586 1.3537 0.6640 0.0073 0 10.8497
34 Education 16908 0.0799 0.9907 1.2575 0.7865 0.0864 0.0830 43.8253 -3.8008 0.5547 0.0799 0 -7.3973

35 Health, social work, personal services 321184 0.1930 0.9529 1.0582 0.7677 0.1025 0.2056 49.9634 -6.0997 0.5021 0.1930 0 -16.1820

Notes: Column 1 reports the number of firms in each sector in the esane database for France in 2008 after trimming, column 2 the observed (re-scaled) expenditure
shares from the French input-output table, and column 3 the observed standard deviation of log revenue across firms, where data are constructed as described in
Appendix C.1. Column 4 reports the values of k̂j that we obtain by matching the numbers from column 3 to expression (C-2) in Appendix C.2. Columns 5 and 6

report the values of θ̂j and κ̂j which are transformations of k̂j . Column 7 reports the value β̂j obtained as described in Section 4.1. In columns 8 and 9 we report the
magnitudes of cutoff and entry distortions at the sectoral level obtained from (32) and (33), respectively. Column 10 reports the value of ρ̂j obtained by matching the
numbers from column 3 to expression (C-4) in Appendix C.2 while using k̂j from column 4. Column 11 reports the values β̂j which correspond to the expenditure
shares from column 2. Finally, column 12 reports only zeroes as the ces model does not exhibit cutoff distortions, and column 13 reports the magnitudes of entry
distortions as computed in (36).
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Table G-2: Sectoral data, parameter values, and distortions for the United Kingdom in 2005. Alternative firm size measure (revenue).

Cobb-Douglas - CARA & Pareto Cobb-Douglas - CES & Pareto
Std. dev. Cutoff Entry Cutoff Entry

Sector Description Firms êj log emp k̂j θ̂j κ̂j β̂j distortions ρ̂j β̂j distortions
1 Agriculture 94598 0.0127 0.9421 1.0092 0.7626 0.1072 0.0135 51.7394 -6.4710 0.4874 0.0127 0 -20.8092

2 Mining and quarrying 952 0.0008 1.2471 13.4142 0.9653 0.0024 0.0007 5.0559 18.3969 0.9436 0.0008 0 53.3165
3 Food products, beverages, tobacco 5458 0.0442 1.1922 5.0361 0.9175 0.0131 0.0393 12.9889 12.5313 0.8572 0.0442 0 39.2834
4 Textiles, leather and footwear 8688 0.0213 1.0916 2.1641 0.8447 0.0457 0.0206 28.0000 3.6024 0.7026 0.0213 0 14.1567

5 Wood products 7705 0.0014 1.0615 1.8084 0.8260 0.0574 0.0013 32.6408 1.3035 0.6575 0.0014 0 6.8289
6 Pulp, paper, printing and publishing 23234 0.0112 1.0998 2.2814 0.8501 0.0427 0.0108 26.7435 4.2582 0.7150 0.0112 0 16.1788
7 Coke, refined petroleum, nuclear fuel 138 0.0104 1.1090 2.4246 0.8561 0.0393 0.0099 25.3527 5.0019 0.7289 0.0104 0 18.4355

8 Chemicals and chemical products 2922 0.0088 1.2107 6.4233 0.9328 0.0088 0.0077 10.3116 14.4096 0.8861 0.0088 0 43.9677
9 Rubber and plastics products 5827 0.0035 1.1825 4.5093 0.9097 0.0157 0.0032 14.4085 11.5742 0.8421 0.0035 0 36.8224

10 Other non-metallic mineral products 4483 0.0017 1.1184 2.5888 0.8625 0.0360 0.0016 23.9258 5.7846 0.7433 0.0017 0 20.7703
11 Basic metals 1334 0.0003 1.1972 5.3524 0.9216 0.0119 0.0002 12.2630 13.0309 0.8650 0.0003 0 40.5480
12 Fabricated metal products 23394 0.0019 1.1157 2.5388 0.8606 0.0369 0.0018 24.3427 5.5538 0.7391 0.0019 0 20.0860

13 Machinery and equipment 11103 0.0064 1.1943 5.1615 0.9192 0.0126 0.0057 12.6910 12.7355 0.8604 0.0064 0 39.8017
14 Office, accounting, computing mach. 1577 0.0006 1.0105 1.3831 0.7969 0.0781 0.0007 40.6609 -2.2591 0.5829 0.0006 0 -5.2874

15 Electrical machinery and apparatus 4226 0.0015 1.2221 7.7129 0.9427 0.0064 0.0013 8.6530 15.6235 0.9041 0.0015 0 46.8970
16 Radio, TV, communication equip. 2149 0.0057 1.2044 5.8778 0.9275 0.0102 0.0050 11.2213 13.7603 0.8762 0.0057 0 42.3699
17 Medical, precision, optical instr. 5103 0.0016 1.1738 4.1164 0.9029 0.0181 0.0015 15.6868 10.7346 0.8285 0.0016 0 34.6205

18 Motor vehicles and (semi-)trailers 2904 0.0272 1.1167 2.5579 0.8613 0.0366 0.0257 24.1821 5.6426 0.7407 0.0272 0 20.3493
19 Other transport equipment 2176 0.0036 1.1189 2.5971 0.8628 0.0358 0.0034 23.8579 5.8224 0.7440 0.0036 0 20.8817
20 Manufacturing n.e.c; recycling 16374 0.0109 1.0424 1.6284 0.8147 0.0650 0.0109 35.6211 -0.0774 0.6293 0.0109 0 2.2434

21 Electricity, gas and water supply 326 0.0261 1.2541 16.7661 0.9719 0.0016 0.0219 4.0628 19.1982 0.9546 0.0261 0 55.1042
22 Construction 197153 0.0085 0.9524 1.0560 0.7675 0.1027 0.0090 50.0410 -5.8718 0.5014 0.0085 0 -18.5242

23 Wholesale and retail trade; repairs 347165 0.1850 1.0275 1.5064 0.8063 0.0711 0.1871 37.9630 -1.1141 0.6075 0.1850 0 -1.2915
24 Hotels and restaurants 139080 0.0781 0.9460 1.0265 0.7644 0.1055 0.0833 51.0996 -6.2470 0.4927 0.0781 0 -19.9519
25 Transport and storage 54673 0.0392 1.0951 2.2126 0.8470 0.0444 0.0377 27.4668 3.8789 0.7079 0.0392 0 15.0129

26 Post and telecommunications 8826 0.0181 1.0508 1.7043 0.8196 0.0616 0.0180 34.3017 0.5252 0.6417 0.0181 0 4.2615
27 Finance and insurance 20825 0.0807 1.0435 1.6386 0.8154 0.0645 0.0807 35.4367 0.0060 0.6310 0.0807 0 2.5243
28 Real estate activities 75252 0.1104 1.0094 1.3759 0.7963 0.0785 0.1131 40.8295 -2.3290 0.5814 0.1104 0 -5.5344

29 Renting of machinery and equipment 13256 0.0061 1.0735 1.9379 0.8333 0.0527 0.0059 30.7852 2.2001 0.6754 0.0061 0 9.7318
30 Computer and related activities 79335 0.0010 1.0543 1.7374 0.8217 0.0602 0.0009 33.7554 0.7787 0.6469 0.0010 0 5.1027

31 Research and development 2079 0.0001 1.1567 3.5017 0.8898 0.0232 0.0001 18.2132 9.1343 0.8020 0.0001 0 30.3091
32 Other Business Activities 332122 0.0041 1.0520 1.7154 0.8203 0.0611 0.0040 34.1159 0.6112 0.6434 0.0041 0 4.5472
34 Education 23005 0.0625 1.0551 1.7448 0.8221 0.0599 0.0620 33.6366 0.8343 0.6480 0.0625 0 5.2861

35 Health, social work, personal services 209071 0.2044 0.9945 1.2801 0.7884 0.0848 0.2114 43.2211 -3.2995 0.5600 0.2044 0 -9.0025

Notes: Column 1 reports the number of firms in each sector in the bsd database for the UK in 2005 after trimming, column 2 the observed (re-scaled) expenditure
shares from the UK input-output table, and column 3 the observed standard deviation of log revenue across firms, where data are constructed as described in
Appendix C.1. Column 4 reports the values of k̂j that we obtain by matching the numbers from column 3 to expression (C-2) in Appendix C.2. Columns 5 and 6

report the values of θ̂j and κ̂j which are transformations of k̂j . Column 7 reports the value β̂j obtained as described in Section 4.1. In columns 8 and 9 we report the
magnitudes of cutoff and entry distortions at the sectoral level obtained from (32) and (33), respectively. Column 10 reports the value of ρ̂j obtained by matching the
numbers from column 3 to expression (C-4) in Appendix C.2 while using k̂j from column 4. Column 11 reports the values β̂j which correspond to the expenditure
shares from column 2. Finally, column 12 reports only zeroes as the ces model does not exhibit cutoff distortions, and column 13 reports the magnitudes of entry
distortions as computed in (36).
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Table G-3: Sectoral data, parameter values, and distortions for France in 2008. Alternative fixed costs measure (profits).

Cobb-Douglas - CARA & Pareto Cobb-Douglas - CES & Pareto
Std. dev. Cutoff Entry Cutoff Entry

Sector Description Firms êj log emp k̂j θ̂j κ̂j β̂j distortions ρ̂j β̂j distortions
1 Agriculture 3842 0.0188 0.8891 1.8433 0.8280 0.0560 0.0196 32.1195 -4.2374 0.6211 0.0188 0 -12.0899

2 Mining and quarrying 854 0.0002 0.9922 2.7343 0.8677 0.0333 0.0002 22.7878 0.3562 0.7307 0.0002 0 3.4283
3 Food products, beverages, tobacco 31667 0.0697 0.9296 2.1471 0.8439 0.0462 0.0714 28.1916 -2.3974 0.6662 0.0697 0 -5.6964
4 Textiles, leather and footwear 4260 0.0205 1.0493 3.5065 0.8899 0.0232 0.0199 18.1903 2.9254 0.7863 0.0205 0 11.2992

5 Wood products 3828 0.0008 1.0996 4.5651 0.9106 0.0154 0.0008 14.2437 5.3165 0.8339 0.0008 0 18.0360
6 Pulp, paper, printing and publishing 9214 0.0086 1.1002 4.5819 0.9109 0.0153 0.0082 14.1948 5.3472 0.8345 0.0086 0 18.1191
7 Coke, refined petroleum, nuclear fuel 13 0.0168 1.2149 12.7673 0.9637 0.0026 0.0150 5.3062 11.4585 0.9394 0.0168 0 32.9766

8 Chemicals and chemical products 1084 0.0285 1.0949 4.4426 0.9086 0.0161 0.0271 14.6108 5.0863 0.8295 0.0285 0 17.4118
9 Rubber and plastics products 2834 0.0037 1.1573 6.7956 0.9360 0.0080 0.0035 9.7710 8.2557 0.8872 0.0037 0 25.5820

10 Other non-metallic mineral products 2465 0.0020 1.0980 4.5233 0.9099 0.0156 0.0019 14.3670 5.2390 0.8324 0.0020 0 17.8265
11 Basic metals 484 0.0001 1.1290 5.4942 0.9233 0.0114 0.0001 11.9633 6.7831 0.8612 0.0001 0 21.8983
12 Fabricated metal products 14200 0.0021 0.9881 2.6891 0.8661 0.0341 0.0021 23.1298 0.1737 0.7266 0.0021 0 2.8445

13 Machinery and equipment 6894 0.0053 1.2044 11.0308 0.9585 0.0034 0.0047 6.1195 10.8538 0.9300 0.0053 0 31.6414
14 Office, accounting, computing mach. 193 0.0033 1.1264 5.3971 0.9221 0.0117 0.0031 12.1670 6.6494 0.8587 0.0033 0 21.5544

15 Electrical machinery and apparatus 1467 0.0034 1.1876 9.0384 0.9503 0.0048 0.0031 7.4250 9.9033 0.9148 0.0034 0 29.4866
16 Radio, TV, communication equip. 1266 0.0042 1.1216 5.2292 0.9200 0.0123 0.0040 12.5360 6.4087 0.8543 0.0042 0 20.9311
17 Medical, precision, optical instr. 3780 0.0050 1.0524 3.5596 0.8912 0.0227 0.0048 17.9412 3.0711 0.7893 0.0050 0 11.7257

18 Motor vehicles and (semi-)trailers 1111 0.0326 1.2031 10.8443 0.9578 0.0035 0.0294 6.2219 10.7784 0.9288 0.0326 0 31.4728
19 Other transport equipment 517 0.0028 1.2064 11.3219 0.9595 0.0032 0.0025 5.9662 10.9670 0.9318 0.0028 0 31.8934
20 Manufacturing n.e.c; recycling 6750 0.0130 1.0681 3.8455 0.8975 0.0201 0.0125 16.7083 3.8022 0.8042 0.0130 0 13.8346

21 Electricity, gas and water supply 383 0.0225 1.2034 10.8938 0.9580 0.0035 0.0203 6.1944 10.7986 0.9291 0.0225 0 31.5181
22 Construction 134776 0.0082 0.8944 1.8810 0.8301 0.0546 0.0086 31.5745 -3.9897 0.6272 0.0082 0 -11.2209

23 Wholesale and retail trade; repairs 197330 0.1377 0.9079 1.9796 0.8355 0.0513 0.1425 30.2319 -3.3691 0.6425 0.1377 0 -9.0529
24 Hotels and restaurants 79898 0.0489 0.8493 1.5655 0.8104 0.0680 0.0521 36.7927 -6.2683 0.5707 0.0489 0 -19.2121
25 Transport and storage 22696 0.0291 1.0931 4.3980 0.9079 0.0163 0.0277 14.7491 5.0000 0.8278 0.0291 0 17.1764

26 Post and telecommunications 196 0.0191 1.0917 4.3623 0.9073 0.0165 0.0182 14.8618 4.9300 0.8265 0.0191 0 16.9848
27 Finance and insurance 5773 0.0376 0.8535 1.5952 0.8125 0.0666 0.0401 36.2304 -6.0324 0.5765 0.0376 0 -18.3915
28 Real estate activities 17452 0.1649 0.8937 1.8764 0.8299 0.0548 0.1718 31.6403 -4.0197 0.6264 0.1649 0 -11.3262

29 Renting of machinery and equipment 3399 0.0022 1.1475 6.2862 0.9316 0.0091 0.0021 10.5261 7.7413 0.8783 0.0022 0 24.3168
30 Computer and related activities 9088 0.0010 1.0515 3.5439 0.8908 0.0228 0.0010 18.0139 3.0285 0.7884 0.0010 0 11.6011

31 Research and development 905 0.0074 1.0744 3.9733 0.9001 0.0192 0.0071 16.2104 4.1024 0.8102 0.0074 0 14.6854
32 Other Business Activities 71871 0.0073 1.0110 2.9548 0.8749 0.0298 0.0072 21.2555 1.1880 0.7492 0.0073 0 6.0484
34 Education 8205 0.0799 1.0220 3.0983 0.8792 0.0279 0.0785 20.3633 1.6834 0.7600 0.0799 0 7.5763

35 Health, social work, personal services 70236 0.1930 1.0317 3.2343 0.8830 0.0262 0.1890 19.5840 2.1230 0.7694 0.1930 0 8.9117

Notes: Column 1 reports the number of firms in each sector in the esane database for France in 2008 after trimming, column 2 the observed (re-scaled) expenditure
shares from the French input-output table, and column 3 the observed standard deviation of the log number of employees across firms, where data are constructed
as described in Appendix C.1. Column 4 reports the values of k̂j that we obtain by matching the numbers from column 3 to expression (C-1) in Appendix C.2.
Columns 5 and 6 report the values of θ̂j and κ̂j which are transformations of k̂j . Column 7 reports the value β̂j obtained as described in Section 4.1. In columns 8 and
9 we report the magnitudes of cutoff and entry distortions at the sectoral level obtained from (32) and (33), respectively. Column 10 reports the value of ρ̂j obtained
by matching the numbers from column 3 to expression (C-3) in Appendix C.2 while using k̂j from column 4. Column 11 reports the values β̂j which correspond
to the expenditure shares from column 2. Finally, column 12 reports only zeroes as the ces model does not exhibit cutoff distortions, and column 13 reports the
magnitudes of entry distortions as computed in (36).
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