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1 Introduction

In imperfectly competitive markets, equilibria and optima generally differ in many respects
such as the number of firms and firm-level outputs. While this is well understood theoret-
ically, it is unclear how large the welfare losses from these distortions are in the aggregate
economy. Do they matter quantitatively? To answer this question, we develop a multi-sector
model of monopolistic competition with endogenous firm entry and selection, productivity,
and markups. Using data from France and the United Kingdom (UK), we quantify the gap
between the equilibrium and optimal allocations, and document patterns of inter- and intra-
sectoral distortions that translate into welfare losses of about 6-10% of Gpr. The welfare
costs of monopolistic competition are hence sizable.

The theoretical literature on equilibrium versus optimum allocations under monopolistic
competition dates back at least to Dixit and Stiglitz (1977). They analyze the tradeoff between
product diversity and output per firm as a source of inefficiencies in general equilibrium
models with unspecified utility functions. More recently, Zhelobodko, Kokovin, Parenti, and
Thisse (2012) introduce heterogeneous firms into those models, and Dhingra and Morrow
(2017) show that markets generally deliver a socially inefficient selection of firms.

While these insights are valuable, they are derived from models with a single monopolis-
tically competitive sector. Extant studies thus abstract from a first-order feature of the data:
sectors are highly heterogeneous. In France in 2008, for example, there are 4,889 textile and
footwear producers, which compete for an expenditure share of 2% by French consumers.
Those firms operate, arguably, in a different market and face different demands than the
4,607 manufacturers of wood products or the 124,202 health and personal service providers,
on which French consumers spend less than 0.1% and almost 20% of aggregate income,
respectively.’

Therefore, to answer the basic ‘so-what’ question—how great the overall welfare losses
from imperfectly competitive markets are—we need to enrich existing general equilibrium
models to have both between-sector and within-sector heterogeneity. For instance, the textile
industry may have some firms that produce too little and others that produce too much, and
at the same time, it may also attract too many (or too few) firms and workers in equilibrium.
This, in turn, means that some other industries may have fewer (or more) firms and workers
than are socially optimal.

Quantifying the magnitude of the aggregate welfare distortion in such a general equilib-

'See Table 1 in Section 4 for more details about the data. The large number of firms in each sector suggests
that monopolistic competition is a reasonable approximation of the market structure.



rium framework is important for at least two reasons. First, since the seminal contribution
by Dixit and Stiglitz (1977), the existence of a gap between the equilibrium and optimal
allocations has been one of the most influential theoretical results in various applied fields
of economics. Yet, despite its importance, we are not aware of any attempt to put numbers
on it while taking into account heterogeneity both between and within sectors. Second,
the rationale for government interventions in a particular sector typically relies on a partial
equilibrium analysis, thus ignoring the interdependencies between heterogeneous sectors.
For example, the question of excess or insufficient entry into industries should be viewed
from a general equilibrium perspective: limited resources imply that excessive entry in some
industries is likely to go hand-in-hand with insufficient entry in others.

Assessing the welfare costs of imperfect competition in a general equilibrium setting is
also difficult for at least for two reasons. First, to capture misallocations within and between
sectors, we need a model with heterogeneous firms and sectors. Developing such a model
is challenging, especially with general utility functions and productivity distributions that
can accommodate various specifications used in the literature. Second, we need to compare
the equilibrium and optimal allocations. While the former is observable from the data, the
latter is not. It is thus not obvious how we can measure the gap between the equilibrium
and the optimum—quantifying something unobservable is not an easy task.

We address the first problem by building on Zhelobodko et al. (2012) and Dhingra and
Morrow (2017), who study the positive and normative aspects of a single monopolistically
competitive industry. We extend their approach to incorporate multiple sectors and allow
the sectors to differ in many respects such as utility functions and productivity distributions.
Imposing standard assumptions on the upper-tier utility function, we establish existence
and uniqueness of the equilibrium and optimal allocations. Comparing those two alloca-
tions enables us to characterize various distortions, which include inefficiencies in the labor
allocation and the masses of entrants between sectors, as well as inefficient firm selection
and output per firm within sectors.

We cope with the second problem by using a novel way to quantify the gap between the
equilibrium and the optimum: the Allais surplus (Allais, 1943, 1977). Roughly speaking, we
consider a planner who minimizes the resource cost while achieving the equilibrium utility
level. Since by definition the planner can do better than the market economy, it requires
less resources, thus generating a surplus. The advantage of the Allais surplus is that it can
be used for comparing the equilibrium with the first-best allocation, i.e., even in contexts
where equivalent or compensating variations—or other related criteria to compare different

equilibria—cannot be readily applied due to a lack of prices.



Previewing our theoretical findings, we show that the distortion in the labor allocation
depends on the interaction between two types of elasticities: the elasticities of the upper-tier
utility that govern the inter-sectoral allocation; and the elasticities of the subutilities that shape
the intra-sectoral allocation. These elasticities are related to the equilibrium and optimal
entry conditions. In equilibrium, entry in each sector occurs until the expected revenue
equals the expected cost of labor allocated to that sector. Since each firm takes consumers’
demands as given, its expected revenue depends on both types of elasticities that govern
consumers’ expenditure allocations between and within sectors. In contrast, the planner
equates the marginal social benefit of entry with the marginal social cost of labor required
for entry. Since the former equals the expected sectoral utility, it depends only on the upper-
tier elasticities and does not require information on the elasticities of the subutilities. In fact,
the planner does not face consumers’ demand functions when determining entry in each
sector, whereas firms do. This difference creates distortions in the sectoral labor allocation.

One key message of multi-sector general equilibrium models is that, contrary to the
conventional approach that has studied single industries in partial equilibrium, distortions
in one sector depend on the characteristics of all sectors in the economy. Indeed, sectors are
interdependent, so that an excessive labor allocation to some sectors, for example, implies
an insufficient labor allocation to others. The inefficient labor allocation across sectors, in
turn, causes distortions in entry patterns. In particular, sectors with an excessive labor share
tend to feature an excessive number of entrants. Thus, too many entrants in some sectors
are accompanied by too few entrants in others, though this inter-sectoral prediction on entry
needs to be adjusted by standard intra-sectoral business stealing and limited appropriability
effects as in Mankiw and Whinston (1986).

Our general framework nests many specifications—in terms of utility functions and pro-
ductivity distributions—that are used in the literature. We take two of those specifications to
data. The first one builds on Cobb-Douglas upper-tier utility functions and constant elastic-
ity of substitution (CEs) subutility functions. Dhingra and Morrow (2017) show that selection
and firm-level outputs are efficient in a single-sector economy if and only if the subutility
function is of the cEs form. This result is shown to hold in our multi-sector setting, thus
implying that there are no intra-sectoral distortions. However, with multiple sectors, distor-
tions in the labor allocation and firm entry still arise in general. Both disappear if and only if
the elasticities of the cEs subutility functions are identical across all sectors. Otherwise, the
labor allocation and firm entry are efficient within but not between sectors. In particular, sec-
tors with a higher elasticity of the subutility attract too many workers and firms, regardless

of productivity distributions.



Our second example is a tractable model with variable elasticity of substitution (VEs),
where demands exhibit smaller price elasticities at higher consumption levels. Unlike the
ces model, this vEs model can account for variable markups and incomplete pass-through
(e.g., Weyl and Fabinger, 2013; Mrazovad and Neary, 2017). It features all the kinds of dis-
tortions that we highlight in the general framework. We show that high-productivity firms
always produce too little and low-productivity firms too much, and that the market de-
livers too little selection compared to the social optimum. Entry and the labor allocation
are also inefficient, and with Pareto distributions the market allocates too many firms and
workers to sectors where a larger mass of the productivity distribution is concentrated on
low-productivity firms.

Previewing our empirical findings, we establish four key results using data from France
and the UK. First, there are substantial aggregate welfare distortions. In the multi-sector vEs
model, they equal 6-10% of the total labor input in either country. Second, inter-sectoral
misallocations are crucial for these aggregate distortions. When we constrain the economy
to consist of a single sector, thereby shutting down inefficiencies in entry and the labor
allocation, the aggregate distortion can be 30% lower than the one predicted in the multi-
sector case. Put differently, a single-sector model yields downward-biased predictions for
the total welfare loss. Third, the multi-sector ces model predicts an aggregate distortion of
0.3—2.5%, which is much smaller than the viEs model. The intuition is that this model displays
by construction efficient selection and firm-level outputs, thereby missing distortions within
sectors. Last, we find similar patterns of inefficient entry and selection between France and
the UK. Insufficient entry arises almost exclusively for services, while manufacturing sectors
tend to exhibit excessive entry. Equilibrium firm selection is generally closer to optimal one
in manufacturing sectors. These results are robust to using different measures of firm size,
e.g., employment or revenue, and different strategies to deal with fixed costs.

Our paper is closely related to the recent literature on the equilibrium and optimal al-
locations in models with a single monopolistically competitive sector, most notably Zhelo-
bodko et al. (2012), Nocco, Ottaviano, and Salto (2014), Dhingra and Morrow (2017), and
Parenti, Ushchev, and Thisse (2017). Relative to this recent strand of literature, we make
two contributions. First, we characterize both the equilibrium and optimal allocations in a
multi-sector monopolistic competition model. Second, while those papers focus exclusively
on theory, we take our model with heterogeneous sectors and firms to data to assess the
quantitative importance of the distortions under monopolistic competition—a question that
remains unanswered since Spence (1976) and Dixit and Stiglitz (1977). Our work is further

related to the classic literature in industrial organization that studies welfare implications of



market power and inefficient entry for single industries in partial equilibrium. Harberger
(1954) is a seminal reference for the former, and Mankiw and Whinston (1986) for the lat-
ter. Our monopolistic competition model is complementary to this line of research, and
recognizes general equilibrium interdependencies between sectors.

The rest of the paper is organized as follows. Section 2 presents our general model, while
Section 3 turns to the specific solvable examples. The quantification procedure and results

are discussed in Section 4. Section 5 concludes.

2 General model

Consider an economy with a mass L of agents. Each agent is both a consumer and a
worker, and supplies inelastically one unit of labor, which is the only factor of production.
There are j = 1,2, ..., J sectors producing final consumption goods. Each good is supplied
as a continuum of differentiated varieties, and each variety is produced by a single firm
under monopolistic competition. Firms can differ by productivity, both within and between
sectors. We denote by G; the continuously differentiable cumulative distribution function,
from which firms draw their marginal labor requirement, m, after entering sector j. An
entrant need not operate and only firms with high productivity 1/m survive. Let NV jE and
m? be the mass of entrants and the marginal labor requirement of the least productive firm
in sector j, respectively. Given N jE ,amass N JE Gj (m;-l) of varieties are then supplied by firms

with m < m?.

2.1 Equilibrium allocation

The utility maximization problem of a representative consumer is given by:

max UEU(Ul,Uz,...,UJ)

{g;(m), Vj,m}
.
Uj = NJE/O uj(gj(m))dG;(m)
J m‘j
s.t. Z NJE/ pi(m)gj(m)dG;(m) = w, (1)
j=1 0

where U is a strictly increasing and strictly concave upper-tier utility function that is twice
continuously differentiable in all its arguments; u; is a strictly increasing, strictly concave,

and thrice continuously differentiable sector-specific subutility function satisfying u;(0) =



0; pj(m) and g¢;j(m) are the price and consumption of a sector-j variety produced with
marginal labor requirement m; and w denotes a consumer’s income. We assume that
limy;, ,0(OU /90U ) = oo for all sectors to be active in equilibrium.

Let A denote the Lagrange multiplier associated with (1). The utility-maximizing con-

sumptions satisfy the following first-order conditions:

A

oU /oU; @)

uj(qj(m)) = \jpj(m), where ;=
To alleviate notation, let p;-l = p; (m?) and q“f = qj(mf) denote the price set and quantity
sold by the least productive firm operating in sector j, respectively. From the first-order

conditions (2), which hold for any sector j and any firm with m < m?, we then have

wle) _ v o owld) N 3
Wi (gj(m))  pi(m) wp(af) — Mepf

which determine the equilibrium intra- and intersectoral consumption patterns, respectively.

We assume that the labor market is competitive, and that workers are mobile across
sectors. All firms hence take the common wage w as given. Turning to technology, entry
into each sector j requires to hire a sunk amount F} of labor paid at the market wage. After
paying the sunk cost, Fjw > 0, each firm draws its marginal labor requirement m from G},
which is known to all firms. Conditional on survival, production takes place with constant
marginal cost, mw, and sector-specific fixed cost, fjw > 0.

Let 7;(m) denote the operating profit of a firm with productivity 1/m, divided by the
wage rate w. Making use of condition (2), and of the equivalence between price and quantity
as the firm’s choice variable under monopolistic competition with a continuum of firms

(Vives, 1999), the firm maximizes

ul;(q;(m))

mj(m) =L | ==~
J

— m] ¢j(m) — f; (4)

with respect to quantity ¢;j(m). Although )\jw contains the information of all the other
sectors by (2), each firm takes this market aggregate as given because there is a continuum

of firms. From (4), the profit-maximizing price satisfies

pitm) == ru; (g5 (m))

, (5)



where 1y (z) = —au](2)/u}(r) denotes the ‘relative risk aversion” or the ‘relative love for
variety” (Behrens and Murata, 2007; Zhelobodko et al., 2012).> In what follows, we refer to
1/[1 = ry;(gj(m))] as the private markup charged by a firm that produces output g;(m).

4)eam, and equi-

librium quantities, q;?qm(m) for all m € [0, m?], we consider the zero cutoff profit (zcp)

?) = 0, and the zero expected profit (zep) condition, defined as

To establish the existence and uniqueness of an equilibrium cutoff, (m

condition, given by 7;(m

md
Jo 7 mj(m)dG;j(m) = F;. Using (2), (4), and (5), the zcp and zep conditions can be expressed

respectively as follows:

L (70 R
ll—ruj(qj) HWma = 7 ©)
L7 [ty 1] i = resonty+ 5, 7

which—even in our multi-sector economy—allow us to prove the existence and uniqueness

of the sectoral cutoff and quantities. Formally, we have the following result.

Proposition 1 (Equilibrium cutoff and quantities) Assume that the fixed costs, f;, and sunk
costs, Fj, are not too large. Then, the equilibrium cutoff and quantities {(m{)°a™, qjeqm( ), Ym €
0, (mj )e9™ |} in each sector j are uniquely determined.

Proof See Appendix A.1. [

d
Turning to the labor allocation, L; = NJ[L fomj mq;(m)dG;(m) + f;Gj(md) + Fj], and
the mass of entrants, V. jE, in each sector j, we first provide two important expressions that
must hold in equilibrium.3 We then establish the existence and uniqueness of the equilib-

rium labor allocation and entry. To this end, we introduce the following notation. Let

v, = 7 and € i(m) = . (8)

denote the elasticities of the upper-tier utility and of the subutility, respectively. Let further

/
_ u;(gj(m _ uj(gj(m))g;(m)
Glaim) = ——9W0) g (g m)) = —
Jo 7 ujlg;(m))dG;(m) Jo 7 wj(a;(m))g; (m)dGj(m)
2We assume that the second-order conditions for profit maximization, Ty (z) = —2uj'(z)/u] () < 2 forall

j=12,...,J, hold (Zhelobodko et al., 2012, p.2771).
3To alleviate notation, we henceforth suppress the ‘eqm” superscript when there is no possible confusion.

8



denote the shares that a variety produced with marginal labor requirement m in sector j
contributes to the lower-tier utility U; and to sectoral expenditure, respectively. Using these

expressions, we obtain the following result.

Lemma 1 (Labor allocation and firm entry) Any equilibrium labor allocation in sector j = 1,2,
., J satisfies

L = EU,U;€ uj,q5(m)

i L, (9)
ZZ/]:1 gUfUlgwrQe(m)

_ meé
where &, 4. (m) = Jo? Euyq;(m)Gi(a5(m))dG(m) is a weighted average of the elasticities of the
subutility functions, where the weights are given by the contribution of each variety to the sectoral

utility. Furthermore, any equilibrium mass of entrants satisfies

1—fo (gj(m))]w;j(g;(m))dG;(m)
fJ (m}i)"‘Fj

E
Ny =1L,

(10)

Proof See Appendix B.1. L

Lemma 1 shows that, in any equilibrium, the labor allocation L; can be expressed by
the elasticities &,y of the upper-tier utility function and the weighted average Eujlqj(m) of
the elasticities of the subutility functions. We will discuss the intuition for those terms in
Section 2.3. The mass of entrants is affected not only by L;, but also by effective entry cost
er (m?) + Fj, the distribution of the markup terms 1 —r,,(¢;(m)), and the expenditure
shares v;(¢q;(m)). It is worth emphasizing that we have not specified functional forms for
either utility or productivity distributions to derive those results.

Note that Lemma 1 does not yet imply existence and uniqueness of the equilibrium labor
allocation and the equilibrium mass of entrants. The reason is that, while the expression
in the braces in (10) is uniquely determined by Proposition 1, the labor allocation L; can
depend on {N JE }i=12,.,7 via SU,UJ.. Thus, to establish those properties, we impose some
separability on the upper-tier utility function. More specifically, assume that the derivative
of the upper-tier utility function with respect to the lower-tier utility in each sector can be

divided into an own-sector and an economy-wide component as follows:

8U

8U USJ Us, (11)

where v; > 0, §; < 0,and £ > 0 are parameters.# Specification (11) includes, for example, the

4The crucial points are that, under condition (11), the ratio of the derivatives in (2) with respect to j and ¢



cases where the upper-tier utility function is of the Cobb-Douglas or the ces form. When

condition (11) holds, we can prove the following result:

Proposition 2 (Equilibrium labor allocation and firm entry) Assume that (11) holds. Then,
the equilibrium labor allocation and masses of entrants {L?qm, (N JE )™}z 0,., g are uniquely de-

termined by (9) and (10).

Proof See Appendix A.2. []

2.2 Optimal allocation

Having analyzed the equilibrium allocation, we now turn to the optimal allocation.> Assume
that the planner chooses the quantities, cutoffs, and masses of entrants to maximize welfare

subject to the resource constraint of the economy as follows:

max L-U(U,Up, ..., Uy
d

U = NP [ ui(a3m))dG; )

s.t. ZNE{/ "

The planner has no control over the uncertainty of the draws of m, but knows the underlying

[Lmgj(m) + f;]dG;(m) + Fj} = L. (12)

distributions G;. Let 0 denote the Lagrange multiplier associated with (12). The first-order

conditions with respect to quantities, cutoffs, and the masses of entrants are given by:

o

ui(gj(m)) = d&m, 5j£m (13)
(4
L“jg’f) = Ll + f; (14)
L/ 5 uj(gi(m)) 4M) 46 my = /Omj (Lmg; (m) + ;] dG;(m) + F. (15)

is independent of N ,f for k # j, ¢, and that it satisfies some monotonicity properties. Otherwise, the resulting
system of equations becomes generally intractable.

5In the main text, we consider the ‘primal’ first-best problem where the planner maximizes utility subject
to the economy’s resource constraint. When quantifying the gap between the equilibrium and the optimum in
Section 4, we will analyze a ‘dual” problem where the planner minimizes the resource cost subject to a utility
level. The latter allows us to derive the Allais surplus (Allais, 1943, 1977) that can be used for comparing the
equilibrium with the first-best allocation, i.e., even in contexts where equivalent or compensating variations—
or other related criteria to compare different equilibria—cannot be readily applied due to a lack of prices.
More details are relegated to Appendices D and F.
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From the first-order conditions (13), which hold for any sector j and any firm with m < m?,

we then have

u/. d md u/. d 5 md
/ i) _m f(qﬁ) i}
ui(gj(m))  m up(qf) — demf

which determine the optimal intra- and intersectoral consumption patterns, respectively.

(16)

We start again with the cutoff and quantities. Noting that §; = u/(g;(m))/m for any

value of m from (13), we can rewrite condition (15) as follows:

L/ [ —1] mq]'(m)de() [iG ( ) Fj, (17)

where &, () is defined in (8). We refer to 1/&,_ ;.(m) as the social markup that a firm with
marginal labor requirement m should optimally charge, and to m/&, ;. (m) as the shadow
price of a variety produced by a firm with m in sector j.° Condition (17)—which equates
the marginal social benefit of entry in sector j with its marginal social cost—may then be
understood as the zero expected social profit (zesp) condition, which is analogous to the zep
condition (7). Furthermore, evaluating (13) at m;l and plugging the resulting expression into

(14), we obtain an expression similar to the zcr condition (6) as follows:
1 fi
(e )= e
Uj,qj

which we call the zero cutoff social profit (zcsr) condition. Using (17) and (18), we can establish

the existence and uniqueness of the sectoral cutoff and quantities.

Proposition 3 (Optimal cutoff and quantities) Assume that the fixed costs, f;, and the sunk
costs, F;, are not too large. Then, the optimal cutoff and quantities {(m )Opt, q;)Pt( ), Vm €
[0, (m?)oPt]} in each sector j are uniquely determined.

Proof See Appendix A.3. [

Turning next to the optimal labor allocation, L;, and the optimal masses of entrants, N jE,
we proceed in the same way as for the equilibrium case, and provide the following two

expressions.

®Dhingra and Morrow (2017) refer to 1 — Eujgiim) = [u;(q;(m)) — 6;mqj(m)]/u;(q;(m)) as the social
markup, which captures the utility from consumption of a variety net of its resource costs. Moreover, they
label [p;(m) — mw]|/p;(m) = ru;(g;(m)) as the private markup. We adopt their terminology but redefine the
two markups in a slightly different way.

11



Lemma 2 (Labor allocation and firm entry) Any optimal labor allocation in sector j = 1,2,...,J

satisfies
Evu;
By v (19)
"Xl g,
Furthermore, any optimal mass of entrants satisfies
L gy £,y 0m)) G ()
NJE _ Lj 0 5,45 (m) J J (20)

fiGi(m$) + F
Proof See Appendix B.2. [J

Lemma 2 shows that, in any optimum, the labor allocation L; can be expressed by the
elasticities £y y; of the upper-tier utility. The mass of entrants is affected not only by L;,

but also by effective entry costs ijj(m?) + F}, the distribution of the social markup terms
&

uj,qj(m)s

duced with marginal labor requirement m to utility in sector j.

and the shares (;(g;(m)) that capture the relative contribution of a variety pro-

Finally, similarly to the equilibrium analysis, Lemma 2 does not yet imply the existence
and uniqueness of the optimal labor allocation and the optimal masses of entrants. We thus

impose again the separability condition (11) to establish those properties as follows:

Proposition 4 (Optimal labor allocation and firm entry) Assume that (11) holds. Then, the
optimal labor allocation and masses of entrants {L?pt, (N JE )oPY} 10,y are uniquely determined by
(19) and (20).

Proof See Appendix A.4. [

2.3 Equilibrium versus optimum

Having established existence and uniqueness of the equilibrium and optimal allocations in
Propositions 1-4, we now investigate the difference between these two allocations.

The novel feature of our model lies in labor and entry distortions between sectors. It is
important to notice that characterizing labor and entry distortions for one sector requires
information on all sectors. Put differently, the labor allocation and, thus, entry are interde-
pendent when there are multiple sectors. Hence, entry distortions in our multi-sector model
generally differ from those in models with a single imperfectly competitive sector such as

Mankiw and Whinston (1986) and Dhingra and Morrow (2017).
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To characterize the labor distortions, we compare expressions (9) from Lemma 1 with

(19) from Lemma 2. We then obtain the following proposition.

Proposition 5 (Distortions in the labor allocation) The equilibrium and optimal labor alloca-
. . eqm > ropt . .
tions satisfy L;” = L;* if and only if

J <
eqm seqm J eqm -seqm
i SU,U»gu-,q-(m) > Zf:l EU,Ueguzrqg(m)
T = i Y545 = (21)
J= £OPt < ZJ gopt '
U,U; t=1%U,U,

Assume, without loss of generality, that sectors are ordered such that 1 is non-decreasing in j. If
there are at least two different 1’s, then there exists a unique threshold j* € {1,2,...,J — 1} such
that the equilibrium labor allocation is not excessive for sectors j < j*, whereas it is excessive for

sectors j > j*. The equilibrium labor allocation is optimal if and only if all T; terms are the same.
Proof See Appendix A.s5. [

As can be seen from (21), the interdependence of heterogeneous sectors is important for
distortions in the labor allocation. Which sectors have an excessive labor allocation depends
on two types of statistics: the elasticities &y, of the upper-tier utility function, evaluated at
the equilibrium and the optimum; and the weighted averages £, , () of the elasticities of
the subutility functions, evaluated at the equilibrium.

To build intuition for these statistics we focus on expressions (9) and (19) from Lemmas 1
and 2. The former comes from the equilibrium free entry condition (7) and the latter from

the optimal entry condition (15). Multiplying (7) and (15) by N JE and rearranging, we have

L(NEyeam o
L = % 7 5y (m)ay ()G (m) (22)
o L(NJP)Pt rmj
LJ,Pt — (;7]/0 uj(qj(m))dG](m) (23)

The key difference is that the former reflects zero expected profit by each firm, whereas
the latter equates the marginal social benefit and the marginal social cost of entry for the
planner to maximize social welfare. Since firms and the planner have different objectives,
the two allocations differ in general. Using (22) and (23) we discuss them in terms of EU,UJ.

for equilibrium and optimum and of Eujlqj(m) for equilibrium.

Elasticities of the upper-tier utility function. Expressions (22) and (23), together with the

definition of ); in (2) and the definition of J; in (13), reveal why L;qm and L?p " involve the
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elasticities of the upper-tier utility function, Equglj and Egp[tjj.
Intuitively, at the free entry equilibrium, the private cost wL?qm /(N JE )™ of an en-

trant in equation (22) is just offset by the private benefit, i.e., firms’ expected revenue

(L/Xj) fom? u’(g;(m))g;j(m)dG;(m). Since the latter depends on the inverse demand func-
tions (2), the equilibrium labor allocation qum is affected by the elasticities of the upper-tier
utility via A;.

By contrast, the social cost of an additional entrant is proportional to LOPt / (NJE )OPt,
which by equation (23) must be equal to (L/d;) fo u;(g;(m))dG;(m) at optimum. Note
that the latter reflects the (expected) marginal social benefit generated by the additional
entrant. Thus, the optimal labor allocation L?pt depends on the elasticities of the upper-tier
utility via 9;.

It is worth emphasizing that even when the equilibrium and optimal elasticities of upper-

eqm

tier utility in each sector are the same, i.e., & Egp[t] , their sectoral heterogeneity plays

a crucial role in the labor distortions as long as there is sectoral heterogeneity in & eam s (m)°

Indeed, although SU,UJ» and EU,U,- in the left-hand side of (21) cancel out when they are
identical, the elasticities in the right-hand side remain. We will elaborate on this point in the

next section where we illustrate some examples.

Weighted average of the elasticities of the subutility functions. Expressions (22) and
(23) reveal why L;Tqm depends on the weighted averages of the elasticities of the subutility
. Feqm opt

functions, £ w45 (m)” whereas L i does not.

To understand this difference, recall that the private benefit of an entrant is given by

d

(L/ ;) fomj u’(g;(m))g;j(m)dG;(m). Since this expected revenue for the entrant involves the
consumers’ inverse demand functions, the equilibrium labor allocation L;Tqm depends not
only on Equglj via \; but also on ?i? (m) Via (qj(m)).7

While the equilibrium labor allocat1on is determined by the firms that care about zero
expected profit conditional on the consumers” demand, the optimal labor allocation is de-
termined by the planner who maximizes social welfare with respect to the mass of entrants.
Since the latter does not involve the inverse demand functions, it is independent of £ ) qj( )

Other things equal, the higher Suj,qj(m) the more labor is allocated to sector j by (9)
because consumers allocate a large share of their budget to that sector by (22). Furthermore,

a sector with higher Ee‘im_ relative to the other sectors tends to display an excessive labor
Uyj,4q4 (m)

7The weighted average satisfies feqmj( ) <1 because Eujq;(m) < 1forallm e [0, m§ ] by concavity of u;,

d
and because fomj Eujq;(m)Si(aj(m) ) < fo Cy q;(m de(m) = 1 by the definition of (;(q;(m)).

14



allocation by (21).

. . —eqm . . .
To see why a sector with higher £ w05 (m) tends to display an excessive labor allocation,

assume that qugz = 88%7, for all j, which is the case with the Cobb-Douglas upper-tier

utility. If Ee‘im_ L= Eeqm holds for all j # 1, then the equilibrium labor allocation is
Usj,95 (m) UlrQl(m) —edam —edgm —egm
optimal by (9) and (19). However, if &7 ) > &7 =N for j =2,3,.,7 -1,

then expenditure on—and thus the labor allocation to—sector J gets larger at the expense
of the other sectors, whereas the optimal labor allocation does not change. Thus, sector J
displays an excessive labor allocation, whereas the other sectors j = 1,2, ..., J — 1 exhibit an
insufficient labor allocation. The latter is a general equilibrium effect: an excessive allocation
to one sector must go hand in hand with an insufficient allocation to the other sectors.
Note that what matters is the relative magnitude of EZ?E(m). Indeed, it is easy to see
that a proportionate increase in Eij(m) for all j does not affect the equilibrium allocation

by (9) and, hence, excess or insufficient labor allocation by (21).

Turning to entry distortions, we compare expression (10) from Lemma 1 with (20) from

Lemma 2 to obtain the following proposition.

Proposition 6 (Distortions in firm entry) The equilibrium and optimum masses of entrants sat-
isfy (NJ7)ea™ /(N[ )opt % 1, if and only if

eqm

L™ G (m)P) + By 1 fo(m?) - ruy (457 (m)) ] (@ (m) )G (m)

opt e d\eqm - md)opt o
Lj f]GJ((m]) )+FJ 1— fO( 2 Euj’q;?pt(m)(jpt(qj‘(m))dG]‘ (m)

AV

L. (24)

Proof Expression (24) directly follows from (10) and (20). [

Expression (24) shows that (N JE )eam /(N jE )°Pt depends on three terms. The first term
opt
. J

model, however, the gap between qum and L?p plays a crucial role, as mentioned above.

L?qm / L?pt vanishes in a single-sector model, because L?qm = L.* = L. In a multi-sector

The second and third terms in (24) capture two additional margins, namely ‘effective
fixed costs” and ‘private and social markups’, which depend on the cutoffs and quantities
both at equilibrium and optimum. Recall that by the proofs of Propositions 1 and 3, Ajw and
d; are uniquely determined without any information on the other sectors. Hence, even in
our multi-sector framework, the analysis of cutoff and quantity distortions in each sector j
turns out to work as in the single-sector model by Dhingra and Morrow (2017). We shall
not repeat their theoretical analysis here, but we first briefly discuss them, and then provide

specific examples in the next section. Those examples will be taken to the data in Section 4.
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Effective fixed costs. The second term in (24) shows that if the market delivers too little

d
J

survival probability in equilibrium, as compared to the optimum, increases the expected

selection, (m?)ed™ > (m‘j?l)OPt, entry tends to be insufficient. The reason is that the higher
fixed costs that entrants have to pay. This reduces expected profitability and discourages
entry more in equilibrium than in optimum. In contrast, other things equal, too much

equilibrium selection, (m?)eqm < (m?)OPt, leads to excessive entry.

Private and social markups. The last term in (24) shows that the gap between equilibrium
and optimal entry depends on the private and social markup terms, which may exacerbate
or attenuate excess entry (Mankiw and Whinston, 1986; Dhingra and Morrow, 2017). The
numerator can be related to the business stealing effect: the higher the private markups 1/[1 —
ru;(gj(m))], the more excessive the entry. The denominator, in turn, captures the limited
appropriability effect: the greater the social markups 1/€,. , (), the more insufficient the
entry. Thus, the last term in (24) depends on the relative strength of these two effects,
as well as on the weighting schemes v;(g;(m)) and (;(g;(m)) that are determined by the

properties the subutility function «; and the productivity distribution function G;.

To sum up, the difference between market equilibrium and social optimum in terms of
the labor allocation and firm entry across heterogeneous sectors depends, in general, on four
key ingredients: the elasticities of the upper-tier utility; the weighted averages of the elastic-
ities of the subutilities; effective fixed costs; and private and social markups. While distor-
tions in a single-sector model are characterized solely by u; and G; for that sector (Dhingra
and Morrow, 2017), in a multi-sector setting characterizing distortions for one sector requires
additional information on the elasticities of the upper-tier utility, £y y,, and the weighted
averages of the elasticities of the subutilities, Euj,qj(m), for all sectors. Hence, when assess-
ing distortions we need to take into account the interdependence between heterogeneous

sectors.

3 Examples

Our results in the Propositions and Lemmas presented so far are general enough to encom-
pass various specifications of utility functions and productivity distributions used in the
literature. We now consider specific upper-tier utility and subutility functions that enable
us to express the two types of elasticities, &y, and Euj’qj(m), in simple parametric forms.

We then take the parametric models to data in Section 4.
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Concerning the subutility function u;, we first analyze in Section 3.1 the ubiquitous CEs
case that has dominated much of the literature on monopolistic competition. We then turn
to a tractable ‘variable elasticity of substitution” (vEs) model in Section 3.2

In doing so, notice that the lower-tier utility U; in specification (1) does not nest the stan-
dard homothetic cEs aggregator. To nest it, we consider a simple monotonic transformation

of the lower-tier utility in (1) as U;(U;). In Section 3.1 we assume that U;(U;) = U;/pj =

[NjE fom;l q;(m)PidG;(m)]"/ i, whereas we retain U;(U;) = U; in Section 3.2.

Even with the transformation U; of the lower-tier utility, we can re-establish the general
results shown in Section 2, as long as we let U;(0) = 0, U 1 >0, and limy,; e U;(U;) = oo,
while replacing the condition in (11) with

g—%g—gj = Vjﬁijfz (25)
where v; > 0,&; <0,and { > 0 are parameters.8

Turning to the upper-tier utility function, we consider in the remainder of this paper
the standard cEes form: U = {2}]:1 B;[U;(U)le-D/oya/le=1) where ¢ > 1, B; > 0 for
all j, and Zle pj = 1. Thus, the elasticity of the upper-tier utility function is given by
Eu, = (0U/0U;)(0U;/0U;)(U;/U) = B;(0U;/9U;)(U;/U;)(U;/U) "~ D/?. When o — 1,
the upper-tier utility reduces to the Cobb-Douglas form, U = ]_[}]:1 [U;(U;)]%, so that

oU; U,
Euu; = B (8—Uj(~]_j> : (26)

The Cobb-Douglas upper-tier utility function always satisfies condition (25) that guarantees
the existence and uniqueness of the equilibrium and optimal allocations. When the upper-
tier utility function is of the cks form, whereas the lower-tier utility is of the homothetic ces
o 1/p; ~ o ~ol_ s .
form with U;(U;) = U Pi, we have (09U /0U;)(0U;/9U;) = B/ pi)U; P1t71/7 Hence, in
that case, it is required that (¢ —1)/0 < p; for condition (25) to hold with §; < 0.9

o—1
o

Retaining ¢ — 1 for now, we consider two specific forms for the subutility functions for

which the weighted averages of the elasticities of the subutility functions display a simple

8The proofs are virtually identical to the ones in Appendices A and B, except that 9U/9U; needs to be
replaced with (0U/9U;)(0U;/0U;). Observe that in a single-sector model, the choice of U; does not affect
distortions because it is a monotonic transformation of the overall utility in that case. In a multi-sector model,
however, sectoral allocations and thus aggregate distortions are affected by U. iz

9Should (0 —1)/0 > p; hold, goods are Hicks-Allen complements (see, e.g., Matsuyama, 1995) so that
multiple equilibria with some inactive sectors may arise. Since {; < 0 is not satisfied in that case, we exclude
it from our analysis.
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behavior. We will return to the case with o > 1 in Section 4 where we quantify the model.

3.1 CES subutility

We first discuss the case of the cEs subutility that has been widely used in the literature.

Assume that uj(qj(m)) = ¢j(m)? and U;(U;) = U;/pj, where p; € (0,1) for all sectors j.
The labor distortion in Proposition 5, and thus the first term of (24) that characterizes

Using (26), the

elasticity of the upper-tier utility function can be rewritten as qug; = Egp[t]j = B;/pj. Fur-

entry distortion in Proposition 6, depend on 55?2; , 58%3_, and Eijfzj (m)*
thermore, when the subutility function is of the ces form, we know that 5uj,qj(m) = pj for
all m, so that ?;ﬁr,?j = p; by the definition in Lemma 1.

The entry distortion in Proposition 6 depends also on the cutoffs and quantities. Since
we have shown that the cutoff and quantity distortions can be studied on a sector-by-sector
basis even in our multi-sector model, we can apply the single-sector result by Dhingra and
Morrow (2017), i.e., in the CEs case (m;l)eqm = (771;[)01’t and q?qm(m) = qjo.pt(m) for all m
irrespective of the underlying productivity distribution G;. Furthermore, since &, , () =
1 —rj(gj(m)) and vj(¢;(m)) = (j(gj(m)) hold for all m, the second and the third terms in
(24) vanish, so that (N[)ea™ /(N [)oPt = qum / L?pt. Hence, we can restate Propositions 5

and 6 for this specific example as follows:

Corollary 1 (Distortions in the labor allocation and firm entry with ces subutility) Assume
that the subutility function in each sector is of the CEs form, w;(q;(m)) = q;j(m)Pi. Then, the labor
allocation and the masses of entrants satisfy L?qm % ?pt and (N JE )yeam % (N jE)Opt, respectively, if
and only if

1

=_ 4
<Y/ 1B/pe

Assume, without loss of generality, that sectors are ordered such that p; is non-decreasing in j. If

Pj (27)

there are at least two different p;’s, there exists a unique threshold j* € {1,2,...,J — 1} such that
the equilibrium labor allocation and firm entry are not excessive for sectors j < j*, whereas they
are excessive for sectors j > j*. The equilibrium labor allocation and firm entry in the CES case are
optimal if and only if all p;’s are the same.

Proof See above. [J

Several comments are in order. First, since there are no cutoff and quantity distortions

in the case of ks subutility functions, the market equilibrium is fully efficient if and only if
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the p;’s are the same across all sectors. However, there are distortions in the labor allocation
and in the masses of entrants when the p;’s vary across sectors.™

Second, p; in the cEs model can be related not only to the inverse of the markup, but
also to &y,y; and to Euj’qj(m). It is the latter two elasticities that matter for the labor and
entry distortions. The reason is that the difference between the equilibrium and optimal

labor allocations comes from &y, = 5;/p; and £ = pj, which are determined by the

;g5 (m
first derivatives of U ; and u; as seen from (26) and ’Zhé(d()efinition of guj’qj(m). In contrast, the
markup depends on r,;, which involves the second derivative of u;. Thus, in the case of the
Cobb-Douglas upper-tier utility and ces subutility functions, markup heterogeneity is not a
determinant of labor and entry distortions.

Third, Corollary 1 holds irrespective of the functional form for ;. Hence, productivity
distributions play no role in the optimality of the market outcome for the standard case with
the Cobb-Douglas upper-tier utility and cEs subutility functions.

Last, since Corollary 1 only pertains to the class of ces subutility functions, it must not
be read as a general ‘if and only if” result for any subutility function. Indeed, as we show in
the next subsection, the labor allocation and entry can be efficient even when the subutility

function is not of the ces form.

3.2 VES subutility

We have so far examined the case of CEs subutility functions without cutoff and quantity
distortions. We now turn to our VEs example where all types of distortions—cutoff, quantity,
labor, and entry distortions—can operate. Specifically, we consider the ‘constant absolute
risk aversion’ (CarA) subutility as in Behrens and Murata (2007), uj(q;(m)) = 1 — e~ %% (™),
where «; is a strictly positive parameter.

This specification can be viewed as an example of the vEs subutility analyzed in the sem-
inal paper by Krugman (1979). It is analytically tractable, and generates demand functions
exhibiting smaller price elasticities at higher consumption levels. Unlike the ces model,
this VEs case can therefore account for the empirically well-documented facts of incomplete
pass-through and higher markups charged by more productive firms within each sector.

In what follows, we assume that U;(U:) = U;, so that £0r = SOpt‘ = f(; by (26). To
. J( J) J U,U; U,U; ; by (26)
u]rqj(m)

Gj(m) = (m/ m?“ax)kj, where both the upper bounds m

express £ in a parametric form, we also assume that G; follows a Pareto distribution
max

;% > 0 and the shape parameters

°Hsieh and Klenow (2009) consider a heterogeneous firms model where the mass of firms is either fixed or
invariant, and where the p;’s are the same across all sectors. In contrast, Epifani and Gancia (2011) allow for
heterogeneity in the p;’s across sectors, yet consider homogeneous firms within sectors.

19



k; > 1 may differ across sectors. We relegate most analytical details for the case with cara
subutilities and Pareto productivity distributions to Appendix E. We show there that the

equilibrium and optimal cutoffs are given as follows:

1 1
W Oszj (mmax)kj (k‘j + 1)2 W

max)kj
and (m?)°Pt = J 7 ,

aij(mj

d)eqm _
KjL

J - (28)

(m J

where r; = kje~ (k1) fol(l +2) (271 +2-2) (2¢%) e*dz > 0 is a function of the shape

parameter k; only. Using expressions (28), we can establish the following result:

Proposition 7 (Distortions in the cutoff and quantities with cArA subutility) Assume that
the subutility function in each sector is of the CARA form u;(qj(m)) =1 — e=%("), and that the

productivity distribution follows a Pareto distribution, G;(m) = (m/ m;-“ax)kj. Then, the equilib-
rium cutoff exceeds the optimal cutoff in each sector, i.e., (mJ)°¥™ > (m)°P'. Furthermore, there

J
exists a unique threshold m; € (0, (m?)oPt) such that q;.}qm(m) < q;pt(m) for all m € [0,m}) and

;7" (m) > ¢;F'(m) for all m € (m?, (md)eam),

Proof See Appendix A.6. []

*
j
overproduce in equilibrium

Three comments are in order. First, in this model, more productive firms with m < m
*
J
as compared to the optimum in each sector j. Notice that both types of firms coexist in

underproduce, whereas less productive firms with m > m

equilibrium since the threshold m] satisfies the inequalities 0 < m} < (m;l)"lDt < (md)eam 11

Second, using (28), the gap b(i,tween the equilibrium and optimal selection cain be ex-
pressed as a simple function of the sectoral shape parameter only: (m?)olf’t / (m;l)eqm =
[k (k; +1)2]Y/®i+1) < 1. Since this expression increases with k;, the larger the value of
k; (i.e., a larger mass of the productivity distribution is concentrated on low-productivity
firms) the smaller is the magnitude of insufficient selection in sector j.

Finally, Proposition 7 holds on a sector-by-sector basis, regardless of the labor allocation
and the masses of entrants. Thus, our results on cutoff and quantity distortions would also
apply to a single-sector version of the CARA model.

Turning to the labor and entry distortions, the combination of cara subutility functions

and Pareto productivity distributions yields the equilibrium and optimal masses of entrants

"'This need not always be the case, however. For example, Dhingra and Morrow (2017) derive general
conditions for cutoff and quantity distortions in a single-sector framework. In their model with an arbitrary
subutility function and an arbitrary productivity distribution, it is possible that m; exceeds (m;»l)eqm. In that
case, all firms (even the least productive ones) would underproduce, whereas in our model some firms (the
least productive ones) always overproduce from a social welfare point of view.
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as follows (see expressions (E-15)—(E-16) and (E-30)-(E-31) in Appendix E):

eqm opt
( NE)eqm — Lﬂi and ( NE)Opt _ Lfi (29)
I (kj +1)F; ! (kj +1)F;

Thus, as in the cEs case, we have (NjE)eqm /(N jE JoPt = qum / L?p ‘. From Proposition 5

we know that distortions in the labor allocation are determined by ?Zq_r;l_(m), together with
J74]

qugz = S[(}%j = ;. When the subutility function is of the cara form and the productivity

distribution follows a Pareto distribution, we can show that E,

5.4;(m) depends solely on the

sectoral shape parameter k; as follows:

Lemma 3 (Weighted average of the elasticities of the cara subutility functions) Assume that
the subutility function in each sector is of the CARA form, u;(q;(m)) =1— e~ % (m), and that the
productivity distribution follows a Pareto distribution, G;(m) = (m/ m?“ax)k‘j. Then, the weighted
average £, o.(m) Of the elasticities of the subutility functions in each sector can be rewritten as

fol(l —2)e* (14 2)e* ! (zez_l)kj_1 dz
fol(l —e 1) (142)er 1 (ze= ) Tdy

0; = (30)

Proof See Appendix B.3. U

To characterize the labor and entry distortions, we rank sectors such that §; < 6, < ... <
7. Since §; is increasing in k;, ranking sectors by ¢, is equivalent to ranking them by £;.
Plugging (30) into (21), using &y,y; = B; from the upper-tier Cobb-Douglas specification,
and noting that (N )™ /(N [)oPt = Ljiqm/ L?p “ by (29), we can restate Propositions 5 and 6
for this example as follows:

Corollary 2 (Distortions in the labor allocation and firm entry with cara subutility) Assume
that the subutility function in each sector is of the CARA form, uj(g;(m)) =1 — e~ %), and that
the productivity distribution follows a Pareto distribution, Gj(m) = (m/ m?“ax)kj. Then, the labor
allocation and the masses of entrants satisfy L™ = L and (N )eam % (N7)°PY, respectively, if

o<
and only if
J
0 % Y Bebe. (31)
=1

Assume, without loss of generality, that sectors are ordered such that 0; is non-decreasing in j. If
there are at least two different 6;'s, there exists a unique threshold j* € {1,2,...,J — 1} such that

the equilibrium labor allocation and firm entry are not excessive for sectors j < j*, whereas they are
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excessive for sectors j > j*. The equilibrium labor allocation and firm entry in the CARA case are
optimal if and only if all ;’s, and thus all k;’s, are the same.

Proof See above. [J

Corollary 2 states that sectors with larger values of k; (i.e., sectors where a larger mass of
the productivity distribution is concentrated on low-productivity firms) are more likely to
display excess entry and excess labor allocation in equilibrium. As mentioned after Propo-
sition 7, sectors with larger values of k; also display smaller cutoff distortions. Thus, more
excessive entry comes with more efficient selection. Furthermore, Corollary 2 shows that
all sectors with 6; above the weighted average Y./, 5,0, display excess entry and labor al-
location, whereas the opposite is true for all sectors with ¢; below that threshold. Hence,
interdependence of heterogeneous sectors matters for those distortions. If there is no het-
erogeneity in k;, then the labor allocation and entry are efficient although the cutoffs and

quantities are inefficient in all sectors.

4 Quantification

In this section, we take our model to the data in order to quantify the gap between the
equilibrium and optimal allocations.™ Our approach only requires data that is accessible
for many countries. In particular, we need the expenditure shares across sectors, and some
aggregate statistics of the firm-size distribution within sectors. We make use of firm-level
data from France in 2008 and from the UK in 2005. Using two different countries enables us
to assess the robustness of our quantification approach, and to compare the distortions in
those two different cases. We show that our results are robust to the use of two alternative
measures of firm size (employment and revenue). In the employment case, we further
consider two alternative measures of fixed costs (R&D expenditure and aggregate profits).
As explained below, the revenue case does not require information on fixed costs.

We first focus on the vis model from Section 3.2 that captures all types of distortions.
We then quantify the ces model from Section 3.1, where cutoff and output distortions are

absent. Finally, we put the quantitative predictions of the two models into perspective.

2Qur paper differs from the literature that uses various equilibria to quantify the impact of resource misal-
location on aggregate TFP. Hsieh and Klenow (2009), for example, compare observed equilibria in China and
India with counterfactual equilibria in which those countries would attain the “U.S. efficiency” level. Unlike
this literature, we compare the observed market equilibrium and the optimal allocation that the social planner
would choose.
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4.1 Data

Our quantification procedure requires expenditure shares at the sectoral level and a firm-
level measure of size (employment or revenue). The employment case further requires R&D
outlays or aggregate profits at the sectoral level.’3 Data on sectoral expenditure shares and
R&D outlays are rather standard and available for many countries, while at the same time
information on firm-level revenue and/or employment is becoming increasingly accessible.
In this respect, France and the UK are two ideal countries for our study because in both
instances data on firm-level employment and revenue are available for virtually the whole
firm population.

For France, the firm-level data come from the ‘Elaboration des Statistiques Annuelles
d’Entreprises’ (ESANE) database, which combines administrative and survey data to produce
structural business statistics. We use the administrative part of the dataset that contains rev-
enue and employment figures for almost all business organizations in France. It is compiled
from annual tax returns that companies file to the tax authorities and from annual social se-
curity data that supply additional information on the employees. We focus on the year 2008,
for which there are 1,100,220 firms with positive employment records.’* For each firm, we
also have information about its sectoral affiliation. The French input-output tables contain
information on 35 sectors, the public sector plus 34 private sectors, roughly corresponding
to 2-digit NACE (revision 1.1) codes. This dictates the level of aggregation in our analysis.
We discard the public sector (12.12% of expenditure) and focus on the remaining 34 private
sectors. For those sectors, we obtain expenditure shares ¢; by re-scaling total expenditure
such that the shares sum up to one. These observed expenditure shares are reported in
Table 1.

The data for the UK have the same structure. We use the ‘Business Structure Database’
(Bsp), which contains a small number of variables, including employment, revenue, and sec-
toral affiliation for almost all business organizations in the UK. The BsD is derived primarily
from the ‘Inter-Departmental Business Register” (1DBR), which is a live register of data col-
lected by ‘Her Majesty’s Revenue and Customs’ (HMRC) via VAT and ‘Pay As You Earn’
(pAYE) records. We focus on the year 2005 for which there are 1,704,543 firms with positive
employment records.”> We can distinguish the exact same 34 sectors as for France for the

sectoral affiliation of those firms, for which we obtain expenditure shares from the British

BFurther details concerning the datasets can be found in Appendix C.1.

'4The dataset contains 3 employment variables. We use employment on December 31st from the French
Business Register (OCSANE) source.

'5The dataset contains 2 employment variables. We use employment count excluding the firm owners.
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input-output tables. These observed expenditure shares, ¢;, re-scaled again to sum to one,
are reported in Table 2.

In order to assess the robustness of our quantification exercise we consider several vari-
ants of our procedure. In the baseline quantification procedure we use firm employment
in order to back out heterogeneity in productivity across firms and employ a measure of
industry-level fixed costs based on R&D outlays. More specifically, we measure fixed costs
as the industry-level ratio of R&D expenditure to gross output (see below for more details).

As a first robustness check, we use firm revenue in order to back out heterogeneity in
productivity across firms. In this case, we do not need a measure of fixed costs to quantify
the gap between the equilibrium and optimal allocations. Despite being less demanding
in terms of assumptions on the measurement of fixed costs, the analysis based on firm-
level revenue is more vulnerable than the analysis based on firm-level employment to the
presence of measurement error. This is why we see them as complementary.’® Revenue
data are in fact more likely to be measured with error than employment because the latter
are cross-validated, for both France and the UK, from information coming from different
sources (social security, tax returns, balance sheets, etc.), while the former is sometimes
estimated /imputed for small firms.

As a second robustness check, we use firm employment as in the baseline case to back out
heterogeneity in productivity across firms but employ a different measure of industry-level
fixed costs. More specifically, we use the profits-to-revenue ratio, where data on industry-
wide profits and revenue are obtained via aggregation of firm-level profits and revenue.
Firm-level profits for the whole firm population are available only for France from the ESANE

database. Thus, this procedure is not readily applicable to the UK."”

4.2 Quantifying distortions: the cara subutility case

To quantify the ves model, we first match a theory-based moment of the sector-specific
firm-size distribution to its empirical counterpart.

In our baseline case we derive an analytical expression for the standard deviation of (log)
firm-level employment in sector j, excluding the labor input F; that all firms have to bear as

a sunk entry cost. The resulting expression depends only on the shape parameter £; of the

6Part of the variation in revenue data is thus attributable to measurement error rather than to differences in
underlying productivity across firms. This is less of a problem in the case of employment data.

'7The BsD dataset for the UK contains information on firm revenue but not profits. Some UK datasets, like
the Annual Respondents Database, do contain information on both variables but cover only a small portion
(roughly 70,000 firms) of the UK firm population.
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sector-specific Pareto productivity distribution (see equation (C-1) in Appendix C.2).

To construct its empirical counterpart, we compute for each sector j the ratio of R&D
expenditure (our proxy for sectoral sunk entry costs) to gross output and then multiply
the ratio by total employment in that sector. Dividing this by the number of firms yields a
measure for F;, which we then subtract from the employment of each firm in the respec-
tive sector (see Appendix C.1 for more details). Finally, we calculate for each sector j the
standard deviation of the resulting (log) number of employees. This data moment and the
number of firms in each sector are reported in Table 1 for France, and in Table 2 for the UK.

With the standard deviation of the (log) number of employees at hand, we can then
uniquely back out Ej for each sector and compute @ and x;, which depend solely on Ej.
Using @ and the observed expenditure shares ¢;, we obtain Bj by solving Y7_, 3 = 1 and
e = Bj/éj /Y¥7_1Bes.*® We can proceed in a similar way in the case of CEs upper-tier utility,
and the details are provided in Appendix F.

We summarize the structural parameters that we obtain for the two countries in Tables 1
and 2. Observe the substantial heterogeneity across French sectors: the shape parameters
Ej of the sectoral Pareto distributions range from 2.0 to 24.3, with an (unweighted) average
of 5.7. In the UK, the differences are even larger, as the values of %j range from 1.5 to 41.3,

with an (unweighted) average of 7.4.

Cutoff distortions. Given the values of Ej, aj, Kj, and Bj, we can now quantify the distor-
tions in France and in the UK. We first compare the equilibrium and optimal cutoffs in each
sector. Using the expressions in (28), we compute for each sector j the following measure of

cutoff distortions:

1

dyeqm __ (,,d)opt —
(m§)ea™ — (mf)°P 100 — {[%j(ij)Z] A —1} x 100, (32)

J J
(mdr

which depends only on k; as x; is a function of k; only. Since there is too little selection
by Proposition 7, (m¢)®™ > (m4)°Pt holds, so that expression (32) is always positive. The
gap between the equilibrium and optimal cutoffs is smaller the larger is the sectoral shape
parameter k;, i.e., a larger mass of the productivity distribution is concentrated on low-
productivity firms.

Tables 1 and 2 report the magnitudes of cutoff distortions for all sectors in France and

the UK, which we illustrate in Figures 1 and 2 for those two countries. We find substantial

BThe latter equality can be obtained by noting that the total revenue equals the total wage in each sector,
ie., Lejw = wL;, which implies e; = L;/L. We then evaluate (9) for the case of Cobb-Douglas upper-tier
utility and cara subutility functions, where &y 7, = 8; and fuj,qj(m) =0;.
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Table 1: Sectoral data, parameter values, and distortions for France in 2008.

Cobb-Douglas - CARA & Pareto

Cobb-Douglas - CES & Pareto

Std. dev. Cutoff  Entry Cutoff  Entry
Sector Description Firms €j log emp ZJ Ej Rj Bj distortions D §J distortions

1 Agriculture 5551 0.0188  1.0038 2.8670 0.8721 0.0312 0.0188 | 21.8406 -0.1886 | 0.7421 0.0188 o 0.3470
2 Mining and quarrying 1132  0.0002  1.0523 3.5570 0.8911 0.0227 0.0002 | 17.9533 1.9848 | 0.7892 0.0002 o 6.7070
3 Food products, beverages, tobacco 38582 0.0697  0.9858 2.6642 0.8653 0.0346 0.0704 | 23.3225 -0.9765 | 0.7242 0.0697 o -2.0711
4 Textiles, leather and footwear 4889 0.0205 1.0354 | 3.2891 0.8845 o0.0255 0.0203 | 19.2867 1.2213 | 0.7730 0.0205 o 4.5251
5 Wood products 4607  0.0008  1.1811 8.4447 0.9471 0.0055 0.0007 | 7.9290 8.3958 | 0.9089 0.0008 o 22.8950
6 Pulp, paper, printing and publishing | 12136 0.0086 1.1805 8.3928 0.9469 0.0055 0.0079 | 7.9764 8.3625 | 0.9083 0.0086 o 22.8198
7 Coke, refined petroleum, nuclear fuel 27 0.0168  1.1447 | 6.1501 0.9303 0.0094 0.0158 | 10.7480 6.4650 | 0.8756 0.0168 o 18.3985
8 Chemicals and chemical products 1194 0.0285 1.1688 | 7.5071 0.9413 0.0067 0.0264 | 8.8810 7.7318 | 0.8977 0.0285 0 21.3827
9 Rubber and plastics products 2760 0.0037 1.0332 | 3.2565 0.8836 0.0259 0.0037 | 19.4626 1.1220 | 0.7709 0.0037 o 4.2374
10 Other non-metallic mineral products 3426 0.0020 1.0428 | 3.4013 0.8873 0.0243 0.0019 | 18.7050 1.5521 | 0.7801 0.0020 o 5.4774
11 Basic metals 602  0.0001  1.2166 | 13.1203 0.9646 0.0025 0.0001 | 5.1666 10.3951 | 0.9410 0.0001 o 27.2453
12 Fabricated metal products 17249 0.0021  1.1442 6.1200 0.9301 0.0095 0.0020 | 10.7833 6.4415 | 0.8752 0.0021 o 18.3419
13 Machinery and equipment 8227 0.0053  1.1003 4.5835 0.9109 0.0153 0.0050 | 14.1902 4.2470 | 0.8345 0.0053 o 12.8416
14 Office, accounting, computing mach. 160 0.0033 1.0684 | 3.8519 0.8976 0.0201 0.0032 | 16.6828 2.7305 | 0.8045 0.0033 0 8.7831
15 Electrical machinery and apparatus 1656  0.0034 1.2466 | 24.2501 0.9802 0.0008 0.0030 | 2.8241 12.1791 | 0.9680 0.0034 o 30.8871
16 Radio, TV, communication equip. 786  0.0042  1.1439 6.1119 0.9299 0.0095 0.0040 | 10.8121 6.4223 | 0.8749 0.0042 o 18.2957
17 Medical, precision, optical instr. 3753 0.0050 1.0383 | 3.3327 0.8856 0.0250 0.0049 | 19.0565 1.3517 | 0.7758 0.0050 o 4.9020
18 Motor vehicles and (semi-)trailers 835 0.0326 1.1046 | 4.7020 0.9127 0.0147 0.0312 | 13.8546 4.4568 | 0.8386 0.0326 o 13.3862
19 Other transport equipment 452 0.0028  1.1128 4.9432 0.9162 0.0135 0.0026 | 13.2186 4.8581 | 0.8462 0.0028 o 14.4165
20 Manufacturing n.e.c; recycling 9802 0.0130 1.1760 | 8.0324 0.9447 0.0060 0.0120 | 8.3212 8.1207 | 0.9043 0.0130 o 22.2727
21 Electricity, gas and water supply 1279  0.0225  0.9745 2.5480 0.8610 0.0368 0.0228 | 24.2650 -1.4664 | 0.7129 0.0225 o -3.6039
22 Construction 188513 0.0082  0.9992 2.8127 0.8704 0.0320 0.0083 | 22.2182 -0.3915 | 0.7376 0.0082 o -0.2700
23 Wholesale and retail trade; repairs 274437 0.1377  1.0151 | 3.0067 0.8765 0.0291 0.1373 | 20.9236 0.3099 | 0.7532 0.1377 o 1.8463
24 Hotels and restaurants 113317 0.0489 0.9489 | 2.3083 0.8512 0.0420 0.0502 | 26.4702 -2.5803 | 0.6866 0.0489 o -7.1669
25 Transport and storage 26847 0.0291  0.9962 2.7783 0.8692 0.0326 0.0292 | 22.4649 -0.5232 | 0.7346 0.0291 o) -0.6727
26 Post and telecommunications 1144 0.0191  1.0374 | 3.3186 0.8852 0.0252 0.0188 | 19.1303 1.3099 | 0.7749 0.0191 o 4.7813
27 Finance and insurance 12383 0.0376  0.9141 2.0264 0.8379 0.0498 0.0393 | 29.6331 -4.1024 | 0.6494 0.0376 [¢) -12.1881
28 Real estate activities 36902 0.1649 0.9517 | 2.3334 0.8523 0.0414 0.1691 | 26.2215 -2.4570 | 0.6895 0.1649 o -6.7672
29 Renting of machinery and equipment | 4815 0.0022  1.1101 4.8613 0.9151 0.0139 0.0021 | 13.4279 4.7255 | 0.8437 0.0022 0 14.0777
30  Computer and related activities 16355 0.0010 1.1944 | 9.7504 0.9535 0.0042 0.0010 | 6.8991 9.1285 | 0.9209 0.0010 0 24.5238
31 Research and development 1562  0.0074 1.2375 | 19.2934 0.9754 0.0012 0.0067 | 3.5386 11.6260 | 0.9598 0.0074 o 29.7810
32 Other Business Activities 132159 0.0073  1.0964 | 4.4803 0.9092 0.0159 0.0070 | 14.4958 4.0571 | 0.8309 0.0073 o 12.3453
33 Education 11401 0.0799  1.0726 | 3.9371 0.8994 0.0194 0.0776 | 16.3484 2.9297 | 0.8085 0.0799 o 9.3287
34 Health, social work, personal services | 124202 0.1930 0.9659 | 2.4642 0.8577 0.0385 0.1966 | 24.9935 -1.8394 | 0.7042 0.1930 0 -4.7851

Notes: Column 1 reports the number of firms in each sector in the ESANE database for France in 2008 after trimming, column 2 the observed (re-scaled) expenditure
shares from the French input-output table, and column 3 the observed standard deviation of the log number of employees across firms, where data are constructed
as described in Appendix C.1. Column 4 reports the values of Ej that we obtain by matching the numbers from column 3 to expression (C-1) in Appendix C.2.
Columns 5 and 6 report the values of 5 and =; which are transformations of E Column 7 reports the value BJ obtained as described in Section 4.1. In columns 8 and
9 we report the magnitudes of cutoff and entry distortions at the sectoral level obtained from (32) and (33), respectively. Column 10 reports the value of p; obtained
by matching the numbers from column 3 to expression (C-3) in Appendix C.2 while using A from column 4. Column 11 reports the values 8 which correspond
to the expenditure shares from column 2. Finally, column 12 reports only zeroes as the ces model does not exhibit cutoff distortions, and column 13 reports the
magnitudes of entry distortions as computed in (36).
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Table 2: Sectoral data, parameter values, and distortions for the United Kingdom in 2005.

Cobb-Douglas - CARA & Pareto

Cobb-Douglas - CES & Pareto

Std. dev. Cutoff  Entry Cutoff  Entry
Sector Description Firms € log emp k; 8; Rj B3 distortions D B distortions

1 Agriculture 57969 0.0127  0.8424 1.5152 0.8069 0.0706 0.0138 | 37.7850 -8.1349 | 0.5607 0.0127 o -24.3233
2 Mining and quarrying 1124 0.0008 1.2580 | 35.5036 0.9863 0.0004 0.0007 | 1.9363 12.2922 | 0.9781 0.0008 o 32.0111
3 Food products, beverages. tobacco 4606  0.0442 1.1260 | 5.3830 0.9220 0.0118 0.0421 | 12.1970 4.9662 | 0.8584 0.0442 o 15.8529
4 Textiles, leather and footwear 9041 0.0213 1.1829 | 8.6063 0.9480 0.0053 0.0198 | 7.7852  7.9348 | 0.9106 0.0213 o 22.8954
5 Wood products 7301  0.0014 1.1079 | 4.7949 0.9141 0.0142 0.0013 | 13.6024 4.0730 | 0.8416 0.0014 o 13.5846
6 Pulp, paper, printing and publishing | 24882 o0.0112 1.1142 | 4.9862 0.9168 0.0133 0.0108 | 13.1112 4.3825 | 0.8475 0.0112 o 14.3787
7 Coke, refined petroleum, nuclear fuel | 122  0.0104 1.1442 | 6.1295 0.9301 0.0095 0.0098 | 10.7826 5.8902 | 0.8752 0.0104 o 18.1245
8 Chemicals and chemical products 1989 0.0088  1.2614 | 41.2898 0.9882 0.0003 0.0079 | 1.6669 12.5055 | 0.9812 0.0088 o 32.4242
9 Rubber and plastics products 5152 0.0035 1.1077 | 4.7899 0.9140 0.0142 0.0034 | 13.6159 4.0646 | 0.8414 0.0035 o 13.5630
10  Other non-metallic mineral products 3412 0.0017 1.0171 | 3.0332 0.8773 0.0287 0.0017 | 20.7588 -0.1201 | 0.7552 0.0017 o 1.9273
11 Basic metals 1203 0.0003 1.1800 | 8.3555 0.9466 0.0056 0.0002 | 8.0108 7.7767 | 0.9079 0.0003 o 22.5386
12 Fabricated metal products 24116  0.0019  1.2025 | 10.7654 0.9575 0.0035 0.0017 | 6.2663 9.0180 | 0.9283 0.0019 0 25.2887
13 Machinery and equipment 8719 0.0064 1.1206 5.1953 0.9196 0.0125 0.0061 | 12.6131 4.6993 | 0.8534 0.0064 (o) 15.1825
14 Office, accounting, computing mach. 898  0.0006 1.0715 | 3.9145 0.8989 0.0196 0.0006 | 16.4360 2.3441 | 0.8075 0.0006 o 8.9841
15 Electrical machinery and apparatus 2694 0.0015 1.0675 | 3.8347 0.8973 0.0202 0.0014 | 16.7521 2.1569 | 0.8037 0.0015 o 8.4690
16 Radio, TV, communication equip. 1004  0.0057  1.2070 | 11.4206 0.9598 0.0032 0.0052 | 5.9160 9.2724 | 0.9324 0.0057 o 25.8380
17 Medical, precision, optical instr. 2443 0.0016  1.0956 | 4.4595 0.9089 0.0160 0.0016 | 14.5590 3.4788 | 0.8301 0.0016 o 12.0353
18 Motor vehicles and (semi-)trailers 2059 0.0272 1.1459 | 6.2088 0.9308 0.0093 0.0256 | 10.6513 5.9773 | 0.8768 0.0272 o 18.3347
19 Other transport equipment 1012  0.0036  1.2551 | 31.7979 0.9848 0.0005 0.0032 | 2.1599 12.1161 | 0.9756 0.0036 o 31.6677
20  Manufacturing n.e.c; recycling 16028 0.0109 1.0735 | 3.9535 0.8997 0.0193 0.0107 | 16.2857 2.4335 | 0.8093 0.0109 o 9.2289
21 Electricity, gas and water supply 428  0.0261 1.1854 8.8336 0.9492 0.0050 0.0241 | 7.5915 8.0711 | 0.9128 0.0261 0 23.2015
22 Construction 156266 0.0085 0.9638 | 2.4443 0.8569 0.0389 0.0087 | 25.1733 -2.4391 | 0.7020 0.0085 o -5.2515
23 Wholesale and retail trade; repairs 306437 0.1850 0.9788 | 2.5911 0.8626 0.0359 0.1884 | 23.9071 -1.7932 | 0.7172 0.1850 o -3.2016
24 Hotels and restaurants 130213 0.0781  0.9975 | 2.7940 0.8697 0.0323 0.0789 | 22.3519 -0.9789 | 0.7359 0.0781 o -0.6720
25 Transport and storage 31912 0.0392 0.9289 | 2.1417 0.8436 0.0464 0.0408 | 28.2533 -3.9495 | 0.6655 0.0392 o -10.1799
26 Post and telecommunications 4654 0.0181  0.9526 | 2.3417 0.8527 0.0412 0.0186 | 26.1401 -2.9224 | 0.6905 0.0181 o -6.8087
27 Finance and insurance 15890 0.0807  0.9190 2.0638 0.8398 0.0486 0.0844 | 29.1713 -4.3838 | 0.6548 0.0807 o -11.6270
28 Real estate activities 80146 0.1104 0.8570 | 1.6199 0.8141 0.0654 0.1192 | 35.7739 -7.3083 | 0.5813 0.1104 o -21.5440
29 Renting of machinery and equipment | 13615 0.0061  1.0636 3.7599 0.8957 0.0209 0.0059 | 17.0596 1.9760 | 0.8000 0.0061 o] 7.9678
30 Computer and related activities 102580 0.0010  0.8645 1.6720 0.8176 0.0630 0.0010 | 34.8511 -6.9194 | 0.5911 0.0010 o -20.2240
31 Research and development 1603 0.0001  1.0575 | 3.6486 0.8932 0.0218 0.0001 | 17.5386 1.6963 | 0.7942 0.0001 o 7.1867
32 Other Business Activities 371014 0.0041  0.9100 1.9952 0.8363 0.0508 0.0043 | 30.0287 -4.7829 | 0.6448 0.0041 o -12.9669
34 Education 23494 0.0625 1.1440 | 6.1179 0.9300 0.0095 0.0591 | 10.8019 5.8774 | 0.8750 0.0625 o 18.0934
35 Health, social work, personal services | 215336 0.2044 1.0816 | 4.1275 0.9031 0.0180 0.1988 | 15.6477 2.8157 | 0.8170 0.2044 o 10.2671

Notes: Column 1 reports the number of firms in each sector in the Bsp database for the UK in 2005 after trimming, column 2 the observed (re-scaled) expenditure
shares from the UK input-output table, and column 3 the observed standard deviation of the log number of employees across firms, where data are constructed
as described in Appendix C.1. Column 4 reports the values of k; that we obtain by matching the numbers from column 3 to expression (C-1) in Appendix C.2.
Columns 5 and 6 report the values of 5 and %; which are transformations of @ Column 7 reports the value B] obtained as described in Section 4.1. In columns
8 and 9 we report the magnitudes of cutoff and entry distortions at the sectoral level obtained from (32) and (33), respectively. Column 10 reports the value of
p; obtained by matching the numbers from column 3 to expression (C-3) in Appendix C.2 while using lc from column 4. Column 11 reports the values J which
correspond to the expenditure shares from column 2. Finally, column 12 reports only zeroes as the ces model does not exhibit cutoff distortions, and column 13

reports the magnitudes of entry distortions as computed in (36).



distortions due to insufficient selection. For France, the simple average across sectors is
15.9%, but with huge sectoral variation from only 2.8% to almost 30%. In the UK, the
average is 16.7% and the range goes from 1.7% to 37.8%. The correlation of those distortions
between the two countries is 0.356, while the Spearman rank correlation is 0.328. Thus, the
model makes roughly similar predictions on which sectors in France and the UK exhibit

greater cutoff distortions. We discuss this point in more detail below.

Entry distortions. Turning to the gap between the equilibrium and optimal entry, or equiv-
alently the gap between the equilibrium and optimal labor allocations in our examples, we
use expressions (29) and Proposition 5, together with (30), to compute the following measure

of intersectoral distortions for each sector j:

(NFysm — (NE ) (L) — (L)P oo < !

X 100 = _
Y7—1 Bebe

(NjE)OPt (L)% — 1) x 100. (33)

Based on (33), our model predicts that 25 sectors in the French economy exhibit excess entry
by up to 12.2%. The remaining 9 sectors display insufficient entry by up to -4.1%. In the
UK, excess entry arises in 23 sectors, whereas insufficient entry occurs in 11 sectors, with a
range of entry distortions from -8.1% to 12.5%. See Tables 1 and 2 for the detailed numbers,
and Figures 1 and 2 for a graphical illustration of those distortions.

Digging deeper into these patterns, we find some similarities between France and the
UK. In both countries, excess entry typically occurs in manufacturing. See, for example,
[11] ‘Basic metals” and [15] ‘Electrical machinery and apparatus’ in France, or [8] ‘Chemical
products” and [19] ‘Transport equipment’ in the UK, where it is particularly strong. By
contrast, insufficient entry is almost exclusively a phenomenon of service sectors.” See, for
example, [24] ‘Hotels and restaurants’ and [27] ‘Finance and insurance” in France, or [28]
‘Real estate” and [32] ‘Other business services” in the UK, where we find strongly negative
values. Overall, the correlation of entry distortions across sectors in the two countries is
0.330 and the Spearman rank correlation is 0.328. Furthermore, the direction or ‘sign’ of
inefficient entry is the same in 26 out of 34 sectors, i.e., in more than three-quarter of the
sectors. Put differently, the model makes similar predictions as to which sectors in the two

countries tend to display excessive or insufficient entry.

The sector [1] ‘Agriculture” also exhibits insufficient entry in both countries, and particularly so in the UK,
but hardly any manufacturing sector in either country has too few entrants. Notice that these findings do,
of course, not imply that the mass of entrants in manufacturing is larger than that in services in equilibrium,
since they refer to a sector-by-sector comparison of the equilibrium and the optimal entry.
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Figure 1: Cutoff and entry distortions, Cobb-Douglas - CARA model for France in 2008.
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Figure 2: Cutoff and entry distortions, Cobb-Douglas - CARA model for the United Kingdom in 2005.

[34] Health, social work, personal services
[33] Education

[32] Other business services

[31] Research and development

[30] Computer and related activities

[29] Renting of machinery and equipment
[28] Real estate activities

[27] Finance and insurance

[26] Post and telecommunications

[25] Transport and storage

[24] Hotels and restaurants

[23] Wholesale and retail trade; repairs
[22] Construction

[21] Electricity, gas and water supply
[20] Manufacturing n.e.c; recycling

[19] Other transport equipment

[18] Motor vehicles and (semi-)trailers
[17] Medical, precision, optical instr.

[16] Radio, TV, communication equip.
[15] Electrical machinery and apparatus
[14] Office, accounting, computing mach.
[13] Machinery and equipment

[12] Fabricated metal products

[11] Basic metals

[10] Other non-metallic mineral products
[9] Rubber and plastics products

[8] Chemicals and chemical products

[7] Coke, refined petroleum, nuclear fuel
[6] Pulp, paper, printing and publishing
[5] Wood products

[4] Textiles, leather and footwear

[3] Food products, beverages, tobacco
[2] Mining and quarrying

[1] Agriculture

[li'""ll Il|"|[ll||"|"[[|{l[|l

I

-10
_ Cutoff distortions

o
—
o

I I

20 30
| Entry distortions

I

40



Recall that in the cARA model the larger the value of k;, the more excessive are the firm
entry and the labor allocation, but the smaller is the magnitude of insufficient selection.
In other words, manufacturing sectors in both countries not only tend to attract an exces-
sive number of firms and workers, but also display relatively smaller cutoff distortions, i.e.,
equilibrium firm selection relatively closer to the optimum. By contrast, there are too few
entrants in many service sectors, and firm selection is far less severe than it should be from
a social point of view. It is worth emphasizing that those predictions are based on a gen-
eral equilibrium model that recognizes all interdependencies across sectors in the economy.
Thus, our analysis differs from the conventional approach in industrial organization that

has typically studied entry and selection for a single industry in partial equilibrium.

Aggregate welfare distortion. Having analyzed cutoff and entry distortions in each sector,
we now consider the aggregate welfare distortion in the economy. To this end, we use the
concept of the Allais surplus (Allais, 1943, 1977) since compensating and equivalent varia-
tions, which are used to analyze the welfare change between two equilibria, are not readily
applicable to measuring the welfare gap between the equilibrium and optimum. Intuitively, we
measure the amount of labor—which is taken as the numeraire—that can be saved when the
planner minimizes the resource cost of attaining the equilibrium utility level.

Let LA(U®I™) denote the minimum amount of labor that the social planner requires to
attain the equilibrium utility level. By construction, L4 (U/®¥™) is not greater than the amount
of labor L that the market economy requires to reach the equilibrium utility level because
the labor market clears in equilibrium and because their may be distortions. As shown in
Appendix D, we can define a measure of the aggregate welfare distortion based on the Allais
surplus as follows:

By
B U K N B 0 Y ()
L Y1 Bebe

x 100. (34)

Plugging the values of Ej, /G\j, Kj, and Ej from Tables 1 and 2 into (34), we can compute the
magnitude of the aggregate welfare distortion in France and in the UK, respectively.

Table 3 summarizes our results. For France, the aggregate welfare distortion is 5.93%,
and for the UK it is 5.85%. In words, to achieve the equilibrium utility level in each of
the two countries, the social planner requires almost 6% less aggregate labor input when
compared to the case with utility maximizing consumers and profit maximizing firms.

Disentangling the relative contribution of the cutoff and entry distortions is difficult,
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Table 3: Aggregate welfare distortions as measured by the Allais surplus.

France UK
CARA CES | CARA CES

Aggregate distortion 5.93 0.34 | 585 0.99
(% of aggregate labor input saved)

Cutoff and quantity distortion 81.81 0 95.11 0
Entry and labor distortion 18.19 100 4.89 100

(as % of aggregate distortion)

since it is generally not possible to shut down one without affecting the other.*® To gauge
the potential importance of within and between sector distortions, we hence proceed as
follows. We pool our data across all sectors and proceed as if there were only a single sector.

Distortions in the labor allocation cannot arise in this single-sector case—since by definition

Leam —
j

equilibrium and optimum depends only on cutoff and output distortions. We then estimate

L?pt = L—and entry is efficient by (29). Therefore, the welfare gap between the

the value of %k for that single sector in the same way as before, by matching the standard
deviation of the (log) employment distribution across all firms. This yields k& = 3.5687 for
France and k = 3.0598 for the UK. Plugging that common value into (34), we compute
the associated Allais surplus for the single-sector economy and compare it with the Allais
surplus in the multi-sector case. The results are summarized in the bottom part of Table 3.
As can be seen, the distortions in the single-sector case are 18.19% smaller for France, and
4.89% smaller for the UK. Put differently, disregarding entry and labor distortions would
lead to an underestimation of the aggregate welfare distortion by 5%-18% in our cAra

example with a Cobb-Douglas upper-tier utility function.

CES upper-tier utility. We have also considered the case of an alternative upper-tier utility
function. In particular, we have replaced the Cobb-Douglas upper-tier function with the
CEs function U = {Z‘J]:l 8;[U;(U;))le=1/o}o/(e=1) The Allais surplus for that case with CEs
upper-tier utility and cAra subutility is given by (see Appendix F for details):

1-o

J
Y By | (ks + 1)y |

J=1

— x100= |1 — ——
L Y71 Beby

LA(Uea™) — [, 1 . { } - <100 (35)

2°We know from the results in Corollary 2 that entry in the CARA case is efficient if and only if all k;’s are
the same. Hence, one could think of setting all k;’s to same common value to shut down entry distortions.
However, the common value of k that is chosen has an effect on the magnitude of cutoff distortions.
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Notice that, once we choose a value of o, this expression for the aggregate welfare distortion

can be computed using k;, 6;, 7;, and j3; from Tables 1 and 2, respectively.

Figure 3: Aggregate welfare distortions in the CES - CARA model as a function of o.
(a) France. (b) UK.

Welfare distortion(%) Welfare distortion(%)

8.0 8.0

Figure 3 illustrates the magnitude of the aggregate welfare distortion given by (35) as a
function of ¢ for France (panel (a)) and the UK (panel (b)). We find that the higher is the
elasticity of substitution between sectors, the stronger is the aggregate welfare distortion in
both countries. It ranges between 6% and 7% in France, and between 6% and 8% in the UK.
Treating the economy as if it consisted of a single sector, as before, we re-quantify the entry
and labor distortions as a percentage of the aggregate welfare distortion. For ¢ € (1,10),
it ranges between 18% and 27% in France, and between 5% and 29% in the UK. Thus,
the higher the elasticity of substitution for the upper-tier utility function, the stronger the
underestimation of the aggregate welfare distortion from disregarding inefficient entry and

labor allocation. It can reach almost 30% for reasonable parameter values.

4.3 Quantifying distortions: the CEs subutility case

Finally, we quantify the workhorse model with Cobb-Douglas upper-tier and cEs subutility
functions. Recall that there are no cutoff distortions with ces subutility functions. However,
by Corollary 1, there are still labor and entry distortions due to heterogeneity in the elasticity
Eu,u; of the upper-tier utility function and in the weighted average Euj,qj(m) of the elasticities
of the subutility functions when the p; terms differ across sectors. How large are the welfare
distortions for France and the UK predicted by the cks model?

To quantify this model, we use the same sector-specific statistics as before: the standard
deviation of (log) firm-level employment, not including the labor input for R&D which we

use as a proxy for sunk entry and fixed costs. To match this observed data moment, we
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also assume sector-specific Pareto distributions for productivity draws, and then derive the
corresponding theoretical expression for the cks case. As can be seen from equation (C-3)
in Appendix C.2, this expression now depends on two parameters: p; and k;. Since the k;’s
are technology parameters that do not depend on consumer preferences, we keep the same
values of Ej from the vEs model above. We can then uniquely back out the corresponding
values for ;. Since the equilibrium expenditure share is 3; for this case, the value of j3; for
each sector can be obtained by setting EJ = ¢j, where Z}le Bj = Zle ¢; = 1 by definition of
the observed expenditure share.

The parameter values thus obtained for France and the UK are reported in Tables 1 and 2.
Equipped with those numbers, we can quantify the magnitude of entry distortions for each

sector j as follows:

(NE)eqm _ (NE)opt e L‘?Pt J B
! (NE)Oth x 100 = JLTJ x100= (p; ¥ p—j ~1)x100.  (36)
J j (=1

As can be seen from Tables 1 and 2, in both countries the ces and vis models make very
similar predictions as to which sectors display excess or insufficient entry. Yet, the CEs model
implies larger magnitudes than the ves model. In France, the range of inefficient entry and
labor allocation goes from -12.2% to 30.9%, and in the UK from -24.3% to 32.4%.

To quantify the aggregate welfare distortion, we again rely on the Allais surplus and
compute the following expression (see Appendix D for details):

Bj/pj
LA(Ueqm)—L J ( J 6@ Zzgzl(ﬂe/%)

- x100 = |1— piy = x 100. (37)
L Jljll J /=1 Pe

The results are 0.34% for France, and 0.99% for the UK, as summarized in Table 3. In
other words, less than 1% of the aggregate labor input could be saved if the social planner
minimized the resource cost to attain the equilibrium utility level. Compared to the vEs
model, where the corresponding number is roughly 6%, it appears that the aggregate welfare
distortion in the ces model is much smaller than that in the viEs model. However, correcting
the inefficiencies between sectors would still lead to substantial changes in entry patterns

and sectoral employment shares.
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4.4 Quantifying distortions: robustness checks

Tables G-1 to G-3 in Appendix G provide a set of results for two additional robustness
checks. Details on the data we use and the various expressions required to compute the
numbers are contained in Appendix C.

In the first robustness check, we back out heterogeneity in productivity across firms
from revenue data as compared to the employment data used in the baseline quantification.
Tables G-1 and G-2 in Appendix G provide detailed results. In this instance we do not need
a measure of fixed costs but, as explained above, revenue data are more likely to contain
measurement error. The correlation between the standard deviation of log employment and
log revenue is 0.67 for the UK and o0.39 for France. Patterns of excess/insufficient entry
are broadly in line with the baseline cases, with manufacturing (service) industries being
characterized by excess (insufficient) entry. In terms of aggregate welfare distortions, we
get 10.29% with cAra subutilites and 2.48% with cEs subutilities for France; and 9.85% for
CARA subutilities and 1.06% for cEs subutilities for the UK. These numbers are again similar
between the UK and France and close to those obtained in the baseline specification.

In the second robustness check, we employ an alternative measure of fixed costs based
on industry-level profits rather than R&D outlays. Such an exercise can be performed for
France only and results are reported in Table G-3. In terms of the correlation between the
standard deviation of log employment from Tables 1 and G-3 the value stands at 0.56. Pat-
terns of excess/insufficient entry are similar in those tables. More specifically, excess entry
is a manufacturing-industry phenomenon (the only common exception being the “Food
products, beverages and tobacco” industry) while service industries are often characterized
by insufficient entry. Crucially, as far as aggregate welfare distortions are concerned, we get
6.62% for the cAarA case and 0.95% for the CEs case, which are again in line with our baseline
quantification results (5.93% and 0.34%, respectively).

To summarize, throughout our quantification analyses we find consistent patterns and
numbers using different data to back out productivity differences across firms (and different
proxies for fixed costs). These findings suggest that our key results are robust and we may
conclude that the aggregate welfare distortions for France in 2008 and the UK in 2005 are in

the 6-10% range.

35



5 Conclusions

We have developed a general equilibrium model of monopolistic competition with multiple
sectors and heterogeneous firms. Comparing the equilibrium and optimal allocations in
our general framework with unspecified utility functions and productivity distributions, we
have characterized the various distortions that operate in our economy. We have considered
two examples that can be readily taken to the data. Using French data for 2008 and UK data
for 2005, we have quantified the aggregate welfare distortions while uncovering substantial
sectoral heterogeneity and assessing the contribution of each type of distortions to the overall
welfare losses.

Our preferred specification implies substantial aggregate welfare distortions for France
and for the UK, each of which amounts to almost 6% of the respective economy’s aggregate
labor input. Our results suggest that inefficiencies within and between sectors both matter
in practice. Removing those distortions would presumably require rather different interven-
tions: industry policies to address the latter problem, combined with policies targeted at
specific firms to address the former. A general lesson that one can deduce from our analysis
is that interdependencies are important for the design of such programs: the optimal policy
for one sector is not only influenced by conditions of that particular sector, but it depends
on the characteristics of all sectors in the economy. We leave it to future work to explore the

details of feasible policy schemes that alleviate misallocations.
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Appendix

A. Proofs of the propositions

This appendix provides all the proofs of the propositions. To alleviate notation, we suppress

indices for sectors and arguments wherever possible.

A.1. Proof of Proposition 1. This result can be established using a similar method as in
Zhelobodko et al. (2012). However, we provide an alternative proof that can be readily ap-
plied to the optimal cutoff and quantities (see Appendix A.3). Using the profit-maximizing

price (5) for the marginal variety, we can rewrite the zcp condition (6) as

d d
ru; (45) gt — o ( d)&qdzﬁ
N w L

which, together with the first-order condition (2) for the marginal variety, u;(qjd) = )\jp?,

yields

f.
rug (q)uj(af)af = —(a5)*uj (qf) = Fw.

The left-hand side is increasing in q}i since

dy" (4
aiqd(—w uf () = —df ;’<qj>[2—< q(—q(q;)ﬂ —qfuf () [2= s (@)] > 0,

where we use the second-order condition r,/ (¢j(m)) < 2. Thus, we know that q§l is increas-
J
ing in the market aggregate \jw.
Furthermore, using the first-order condition (2) and the profit-maximizing price (5) for

the marginal variety, we have
1= ruy(@)] W) = Oyw)m. (A-1)

The left-hand side is decreasing in q}i since

0

8—qd { [1 — ruj(q;‘l)] (QJ )} u;/(q;i) [2 — rug(qg)} < 0.

Hence, since we have shown above that 8q] /O(Ajw) > 0, the left-hand side in (A-1) decreases

as Ajw on the right-hand side of (A-1) increases. It then follows that mj is decreasing in \jw.
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Similarly, using the first-order conditions (2) and the profit-maximizing prices (5) for other

varieties, we have
[1 = ru,;(g;(m))] wj(g;(m)) = (Ajw)m

Since the left-hand side is decreasing in ¢;(m), we know that ¢;(m) is decreasing in \;w.

Next, we rewrite the zep condition (7) as

L H G i1 mastn) = facyo = (A-2)

Given that m? and ¢;j(m) are decreasing in \jw, we differentiate the left-hand side of this

expression with respect to Ajw as follows:

1 5 Omg
L { [W - 1] miq;(mj) — } gi(m d)a(Ajw)

ry; (4;(m)) ' ru; (qj(m)) dg;(m)
eh { il P T <qj<m>>}maujw>d@f(m)'

The first-term is zero by the zcr condition (6). Noting that

C gm)a(g;(m)
) = =)
ooy — L) a0 ) o) — g5 ) o)
w [ (g () ‘

the second term can be expressed as:

mid (2= ry (a5(m)ra; (q;m) | ag;(m) . |
L/O { [1—7u;(g5(m))]? }m Syt <0

where we use the second-order condition Tu (gj(m)) < 2. Hence, the left-hand side of the
zep condition (A-2) is decreasing in \jw.

Assume that fixed costs, f;, and sunk costs, F}j, are not too large. The former ensures
that profits are non-negative (see the zcr condition in (6)). The latter ensures existence. The
left-hand side of the zer condition is strictly decreasing in A;jw, whereas the right-hand side
is constant. Hence, if fixed costs, f;, and sunk costs, Fj, are not too large, then there exists a
unique solution for A\jw. Using the unique \;w thus obtained, we can establish the existence

and uniqueness of m? and ¢;(m) since both are decreasing in \jw.
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A.2. Proof of Proposition 2. The first-order conditions (2) and (3), when combined with

equation (11), imply that

md o
{NJE Jo’ uj(qa‘(m))dGa‘(m)] P e uj(af)

rf IRZRIAUA)

- (A-3)
{Nf J g (g (m))AG e (m)

When f; and Fj are not too large, the market aggregate \;w is uniquely determined by the

d
J

q;l and g¢j(m) (see Appendix A.1). Since the zEp condition does not include NJE, those

zEP condition and so are sector-specific cutoffs m¢ and the associated prices p;l and quantities

variables are independent of N jE . Thus, the integrals in (A-3) are independent of NV jE and
NF. The right-hand side of equation (A-3) is strictly positive and finite. By monotonicity,
there clearly exists a unique N;”(N/*). This relationship satisfies (N)" > 0, N(0) = 0 and
lim o N (N7) = oo.

In each sector j, labor supply L; equals labor demand N/ { fom? [Lmgj(m) + f;]dG;(m) +
Fj}, so that

L; m
N—7E —L /O mq;(m)dGj(m) = f;G;(m§) + Fj. (A-4)
J

Plugging expression (A-4) into (7) yields

g (™ mgi(m) , _ Ly )
NE [ e A = 2 (A-5)

Substituting N”(N/*) obtained from (A-3) into (A-5), summing over j, and using the over-
all labor market clearing condition L = 2}]:1 L;, we then have the following equilibrium

condition:

J m? ‘
Jg NFE(NF) /0 ' _TZJ ((g()m)) dG;(m) = 1. (A-6)
Observe that all integral terms on the left-hand side of (A-6) are positive and independent
of the masses of entrants, whereas the right-hand side equals one. Since the limit of the left-
hand side is zero when NF goes to zero, and infinity when NF goes to infinity, the existence
and uniqueness of a solution for N7 follows directly by the properties of N JE (+). Since the
terms in braces of the right-hand side of (10) are uniquely determined by Proposition 1, the

existence and uniqueness of V. JE implies those of L;, which proves Proposition 2. [
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A.3. Proof of Proposition 3. Plugging the first-order condition for the marginal variety

md = u/;(¢})/d; into (18), we have

_ b,

ui(q}) — uf(qf)qf = (A-7)

The left-hand side is increasing in q;l (since u}’ < 0), which establishes that q;l is increasing
in §;. Thus, v/ (q}i) is decreasing in ¢;. Then, from the first-order condition for the marginal
variety, we see that when §; increases, m¢?

J
m;l is a decreasing function of J;. From the first-order conditions for the other varieties,

must decrease because u; (q}i) /¢; decreases. Hence,

u/'(gj(m)) = d;m, we know that ¢;(m) is decreasing in d;.

Next, we rewrite the zesp condition (17) as

L/ [( 1) ma;(m) — %] g;(m)dm = .

Given that m? and ¢;(m) are decreasing in ¢;, we differentiate the left-hand side of this

expression with respect to J; as follows:

L o 9m
;g
e [ O 5m) _gs(m) 1 —EUj,qj<m>] TGP
ua q;(m) 9q;(m) Eujr%'(m) Eujrqj(m) 90;

where the first term is zero by (18). Using

ag“j/qg‘(m) g;(m)
dg;(m) Euerj(m)

=1- T, (Qj (m)) — SUj/Qj(m),

we finally have

mi 1y, (qi(m))  dg;(m)
L,

m gj(m)dm <0,
Eujarim) 00

where the inequality comes from dg;(m)/d0; < 0.

Assume that fixed costs, f;, and sunk costs, F}j, are not too large. The former ensures that
social profits are non-negative (see the zcsp condition (18)), and the latter ensures existence.
The left-hand side of the zesp condition is strictly decreasing in J;, whereas the right-hand
side is constant. Hence, if fixed costs, fj, and sunk costs, F};, are not too large, then there

exists a unique solution for ;. Using the unique J; thus obtained, we can establish the
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existence and uniqueness of m? and ¢;(m) since both are decreasing in ¢;. [J

A.4. Proof of Proposition 4. The first-order conditions (13) and (16), when combined with
equation (11), imply that

{NJE o™ s a3 (m)) G (m)] i (af)

(¢f)

Y

~

(A-8)

‘S
~allsTa

l
v

L~

d &
[NeE Jo W(Qe(m))dGe(m)]

When f; and F} are not too large, §; is uniquely determined by the zesp condition, and so
are the sector-specific cutoffs m“f
condition does not include N JE , those variables are independent of N jE . Thus, the integrals
in (A-8) are independent of N JE and NF. The right-hand side of equation (A-8) is strictly
positive and finite. By monotonicity, there clearly exists a unique N jE (NE). This relationship
satisfies (N/)' > 0, Nf°(0) = 0 and limye_,q, NP(NJ) =

Plugging expression (A-4) for the optimal allocation into (17) yields

and the associated quantities ¢/ and ¢;(m). Since the zsp

d
g [™ mqj(m) _
NE [ 2 4G () =

(A-9)

Substituting N”(N/°) obtained from (A-8) into (A-9), summing over j, and using the over-

all labor market clearing condition L = Y7_

i—1L;, we then have the following equilibrium

condition:

J md .
Y NE(NP) /O 1 ma(m) dG;(m) = 1. (A-10)
j=1

ujg;(m)
Observe that all integral terms on the left-hand side of (A-10) are positive and independent
of the masses of entrants, whereas the right-hand side equals one. Since the limit of the left-
hand side is zero when NF goes to zero, and infinity when NF goes to infinity, the existence
and uniqueness of a solution for N7 follows directly by the properties of N JE (+). Since the
terms in braces of the right-hand side of (20) are uniquely determined by Proposition 3, the

existence and uniqueness of N JE implies those of L;, which proves Proposition 4. [
A.5. Proof of Proposition 5. The former claim—substantiated by equation (21)—can read-

ily be obtained from (9) and (19). The latter claim can be shown as follows. Without loss of

generality, we order sectors by non-decreasing values of 7 such that 77 <71, < ... < 7.

43



Then, by that ranking, we must have

. eqm seqm opt opt eqm ~seqm .

Taking the sum of each side with respect to j and rearranging yield

geqm —ceqm Z eqm eqm
T]_ — U/Ul u1,491 (m) U U u]/qj (m)
- opt — opt
EU U1 Z

Conversely, we must have

) . eqm seqm opt opt eqm seqm .
TJ Z T]/ v.] = EU,UJSUJ,QJ(m)SU U > S gUrUjguJIQJ(m), Vj.

Taking the sum of each side with respect to j and rearranging yield

geqm seqm 2 eqm eqm
TJ — UUr~uy,q5 (m) U UJ uj,q;(m)
- opt — opt :
EU,UJ Z

Since the 7 are non-decreasing in j, we have 17 < 7 if there are at least two different 77;’s.
In that case, there exists a unique threshold j* € {1,2,...,.J — 1} such that no sector with
j < j* attracts too much labor in equilibrium, whereas all sectors with j > j* attract too
much labor in equilibrium.

To see that the intersectoral allocation is optimal if and only if all 7};’s are the same, we
proceed as follows. First, assume that 7; = c for all j, where c is independent of j. Then,
qugl _232(771) =cX 58{’;]]_ for all j, so that summing over j we have Z}]:1 qugl ?z?z(m) =
c X 23]:1 581?[;7,, which implies that the right-hand side of (21) equals c. Since all 7;’s equal
c by assumption and are equal to the right-hand side, this proves the if part. To see the
only if part, assume that L;qm = L?p " for all j. Equating (9) and (19) for all j, it can be
readily verified that this is only possible if ¥; = Y/, qu; EZEI; /Y7 gp[t] for all j.
This completes the proof of Proposition 5. [

A.6. Proof of Proposition 7. Taking the ratio of (m )Olf”E and (m )eqm from (28) yields

[ ()Pt

ki+1
W] = 1 (kj +1)% (A-11)
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Since #;(kj +1)% < 1 (see the discussion below (E-22) in Appendix E.1), this immediately
implies that (m¢)°P'/ (mg)ea™ < 1.

Next, taking the difference between the optimal quantity (E-23) and the equilibrium
quantity (E-2), evaluated at the equilibrium price (E-3), we have the following two cases.

First, when 0 < m < (m?)"Pt, we obtain

d\opt
opt eqm 1 (m]) 1 m
Recalling that W (0) = 0 by the property of the Lambert 1V function, we know that
limm_>+0[qjo.pt(m) — q?qm(m)] > 0. Second, when (m?)OP’f <m < (m?)eqm, we know that

¢;"'(m) = 0, and that ¢;%™ (m) > 0, so that

Opt eqm . ]. m ]. m
Recalling that W (e)
hm ( eqm O[q] ( )
and that ( )Olf’t (m‘j)eqm it is verified that lim,,_, ,, 4ot [q;)p “(m) — q;qm( m)] < 0.
P(m

=1 by the property of the Lambert W function, we know that
™ (m)] = 0. Noting that (A-13) is strictly increasing in m,>*

Finally, since ¢; ) — q?qm( ) is continuous at (m )Olot by expressions (A-12) and (A-
13), lim (mj)opt_o[q;?Pt (m) — qqu(m)] < 0 must hold in (A-12). Noting that expression
(A-12) is strictly decreasing in m, and that lim,,_, . [q;) (m) — qqu( m)] > 0, we know that
there exists a unique m; € (0, (m?)"Pt) such that q;pt(m) > q] " (m) for m € (0, m}) and

qjo-pt(m) < qqu( m) for m € (m%, (m?)°P!]. This, together with the inequality in (A-13) for

J
m € ((m9)°Pt, (mg)ea™) proves our claim. [J

B. Proofs of the lemmas

B.1. Proof of Lemma 1. Multiplying the zer condition (7) by N jE and using (5), we get
NFPL /

21To derive this property, we use W' (x) = W (z)/{z[1 4+ W (z)]}.

m)dG;(m) = NJE [L /Omj mg;(m)dG;(m) —l—ijj(m;l) + Fj| = L;. (B-1)
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Eliminating p;(m) in the left-hand side by using (2), we get

NE  rmd , L.
S o e m))as (m) G (m) = - (B-2)

Using the definition of A\; from (2), noting that Nij(qj(m))/ U; = (j(gj(m)), and setting

md
Eujgy(m) = Jo’ Eujq;(m)Gi(¢5(m))dGj(m), equation (B-2) can be rewritten as
U = L;
EEU,Ujguj,qj(m) = f

Summing over j and noting that 2 —1L; = L, we obtain

U < =1 U 1
wo L fnumm =1 = 5=

23]:1 EU,Ujguj,qj (m) .

Hence, any equilibrium labor allocation in sector j = 1,2,..., J satisfies

U, & Eu,0;€ uy45(m)
Li=—E v, omLl = L (B-3)
J A\w < uj,q;(m) Zé . EU Uggw 20(m)
Turning to the mass of entrants, from (B-1) we obtain
L .
NF = J (B-4)

L [y mg;(m)dGj(m) + f;G5(m?) + F;

Plugging mq;(m) = q;(m)p; (m)[1—ru;(q;(m))]/w = q;(m)[1—ru;(q;(m))]uj(g;(m))/ (Ajw),

which is obtained from profit maximization and the consumer’s first-order conditions, into
ma

(B-4), using \jw = (LNjE/Lj) fo”’ u’(g;(m))g;(m)dG;(m) from (B-2), and noting the def-

inition of vj(gj(m)), we can solve the resulting equation for N JE, which yields (10). This

completes the proof of Lemma 1. [

B.2. Proof of Lemma 2. Multiplying (15) by V. JE, we get

vEL J“JTE))dG( ) = Nﬁ{ /Om? [Lmqj<m>+fj]daj<m>+Fj}=Lj- (B-5)



Since the left-hand side equals LU;/J; by definition of U;, we have L;/L = U;/é;. Using

the definition of J; from (13) we thus have

Ly U
f — EEU,UJ.. (B-6)

Since 2 _1L; = L, it then follows using (B-6) that

U < U 1
R S R~ Svrs
j=1 1<U,U;

Hence, any optimal labor allocation in sector j = 1,2,. .., J satisfies

U Euu,
L: = —EU,U.L = 7IJL. (B-7)
T8 ’ Yl &,

Finally, turning to the mass of entrants, from (B-5) we can obtain (B-4) for the optimal
allocation. We know from (13) that mg;(m) = g;(m)u’(qj(m))/d;. Using the definitions
of d;, Eyu;, and &y, 4. (m), and (B-6) then yields mq;(m) = (L;/L)q;(m)u}(g;j(m))/U; =
(Lj/L)Ey; 4 (m)t (qj( ))/Uj for the optimal allocation. Plugging this into (B-4), noting that
Uj depends on N, and using the definition of (;(gj(m)), we can solve the resulting equation

for N JE , which yields (20). This completes the proof of Lemma 2. []

B.3. Proof of Lemma 3. By definition, the weighted average of the elasticities of the subu-

tility functions is given by

_uj’qj(m):/m? Euj,q,( yuj(g;(m)) 4G, (m) — Jo’ Z%(Qj(m))qJ‘(m)de(m). (B-8)
D fo 7 ug(ai(m))dG; (m) Jo? uj(g;(m))dG; (m)

In what follows, we rewrite the numerator and the denominator of (B-8) by using cara
subutilities with Pareto productivity distributions. As shown in Appendix E, the equilib-
rium quantities are given by ¢;(m) = (1/«a;)[1 — W (e m/m?)], where W is the Lambert W
function defined as ¢ = W (p)e"(¥). To integrate the foregoing expressions, we use the

change in variables suggested by Corless et al. (1996, p.341). Let

m m
zzW(e—d>, so that e—dzzez.
m m¢
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This change in variables then yields dm = (1+ z)ez_lm;ldz, with the new integration
bounds given by 0 and 1. Substituting the expressions for quantities into the numerator

of (B-8), using the definition of W, and making the above change in variables, we have:

d d

| s tagm)as (m)dGm) = [ =W (em/md)e™ € g ()
= m/ e 11+ 2)e" gi(ze" 'md)dz. (B-9)

Applying the same technique to the denominator of (B-8), we obtain

d d
J

[ witasm)dac;om) = /mju—eW@m/m”—l]gj(m)dm
0

= ms / (1—e)(1+42)e* 1gj(zez_1m?)dz. (B-10)

Dividing (B-9) by (B-10), we then obtain:

z fo e 11+ z)e" 1gj(ze* tmd)dz
u;, ( )
s fO (1—e*~ 1)(1 + z)ez_lgj(zez_lm?)dz

’ (B_ll)

where (1 — z)e* ! < 1 —e*! for all z € [0,1). With a Pareto distribution, we have
g;(ze* " Im? ) = kj(ze ?)ki_l(mg‘ax)_k’ﬂ', so that expression (B-11) can be written as (30).
O

C. Additional details for the quantification procedure

This appendix provides details on the data that we use and derives additional expressions

required for the different variants of the quantification procedure.

C.1. Data. Besides the firm-level ESANE dataset for France and the Bsp dataset for the UK,
we build on industry-level information from the oEcD sTaN database for both countries.
More specifically, we obtain sectoral expenditure shares and R&D expenditure data by 1s1C
Rev. 3 from the French and UK input-output tables. These input-output tables contain
information on 35 sectors and dictate the level of aggregation in our analysis. We discard
the ‘Public Administration and Defense” aggregate (12.12% of expenditure for France and
11.29% for the UK). Expenditure for each sector is computed as the sum of “Households

Final Consumption’ (code C39) and ‘General Government Final Consumption” (code C41).
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In the baseline quantification we use the ratio of R&D expenditure to gross output at
basic prices to proxy for sunk entry costs and fixed costs. We also trim the employment data
by getting rid of the top and bottom 1.5% of the firm-level employment distribution across
all sectors.**

In the first robustness check, we do not need to construct a proxy for sunk entry costs
and fixed costs and directly use revenue data. We trim the data by focusing on firms with
revenue higher or equal to 50,000 GBP/EUR for the UK/France and trim the top 2.5% of the
revenue distribution across all sectors.

In our second robustness check, we use the industry-level profits-to-revenue ratio as a
proxy for sunk entry costs and fixed costs. Industry-level revenue and profits are obtained
by summing firm-level revenue and profits. We trim the data by getting rid of the top and

bottom 1.5% of the firm-level employment distribution across all sectors.?3

C.2. Additional expressions. We derive the expressions needed to back out the structural

parameters of the model for the different variants of our quantification procedure.

CARA subutility. In the cARA case, firm variable employment used for production in the

market equilibrium with Pareto productivity distribution is given by:

emp$ A4 (m) = = (1-17)),
J

where W; = W(em/ m“f) denotes the Lambert W function. Using z = W (em/ m?), em/ m? =

CARA

ze? and dm = (1 + 2)e* 1mddz, the conditional mean of In[emp¢ m)| is given by:
j P; g y

me
mean_lnemp$ARA = ;)/ "In {E(l - Wj)} dG;(m) = M; + lnm? —Inay,
0

’ Gj(m{ aj

22We first match the R&D expenditure data with our 34 sectors and compute, for each sector, the ratio of
R&D expenditure to gross output at basic prices (code R49) with the latter information coming from input-
output tables. We then multiply the ratio by total employment in that sector, divide it by the number of firms
to get a proxy measure of F; and f;, and subtract it from the employment of each firm. We ignore those firms
ending up with a non-positive employment.

23We multiply the industry-level profits-to-revenue ratio by total employment in that sector, divide it by the
number of firms to get a proxy measure of F; and f;, and subtract it from the employment of each firm. We
ignore those firms ending up with a non-positive employment.

49



where M; = —1/k; + k; fo (ze* 1% 71(1 + 2)e* "1 In(1 — 2)dz is a function of k; only. In

CARA( )]

turn, the standard deviation of ln[emp becomes:

md
sd lnempCARA \l (1 d)/o ’ {ln [g(l—Wj)] mean lnempCARA} dG;(m)
J

\/— — M3 + k; /01 In[(ze*1)2(1 — 2)] (ze* )k~ 1(1 + 2)e*1In(1 — 2)dz. (C-1)

Moving to firm revenue, we have:

Vi a;
Hence, the conditional mean of In[rev§AR4(m)] is given by:
1 m{ mw —~
mean_Inrev$ARA = / In { (W_ )} dG;(m) = M; +Inm? +In(w/o;),
’ Gj (m?) 0 Qj ’ ’ ’ ’

where M; = —1/k; + k; fo (ze*" 1)k 71(1 + 2)e*!In(2! — 1)dz is a function of k; only. The

CARA( )]

standard deviation of In[rev; is then:

Gj(m9) o

ma
sd_ lnreVCARA = J L / ’ {ln [@(I/V1 - 1)} mean lnreVCARA} dG,(m)
0

2
\// nfzes—1(z-1—1)] - M-} ki (e 1)1 (1 4 2)er1de. (C-2)

CEs subutility. Turning to the CEs case, firm variable employment used for production in

the market equilibrium with Pareto productivity distribution is given by:
N
.- me\ 1-7j
empSES(m) = ;2 ()
pj\ M

The conditional mean of ln[empJCEs( m)] is given by:

Pj
m¢ Py d\ T=pj . :
mean lnempCES =3 (1 7 / "In 1‘72& <%> ’ dG;(m) = ln( fipj )+ T Pj
j\n;) Jo —Pj j
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Using the same approach than in the CARA case, one can obtain the standard deviation of

In[emp§*5(m)], which depends on k; and pj, as follows:

0
Sd_lnempJCEs = ]{jj(]_iipj) (C-B)

Moving to firm log-revenue, its standard deviation is identical to that of log-employment:

sd_Inrev¢ES = L. C-

’ ki(1 = pj) (4
Indeed, both firm revenue and variable employment in the CES case are given by a bundle
of parameters multiplied by m 73/ (1775). When taking the log, the standard deviation of the

whole expression is thus simply the standard deviation of In[m "3/ (1=,:)] in both cases.

D. Allais surplus

This appendix derives the Allais surplus (Allais, 1943, 1977), which is the welfare measure
we use when quantifying aggregate welfare distortions. In our context, the Allais surplus is
defined as the maximum amount of the numeraire that can be saved when the social planner
minimizes the resource cost of providing the agents with the equilibrium utility. We thus

consider the following optimization problem:

J md
min A=Y NP { /0 " [Lmg;(m) + £;]dG(m) + FJ} (D-1)
=1

{(NFmd,q;(m)} ;

s.t. U(ﬁl(Ul),ﬁz(Uz),...,ﬁJ(UJ)) ZU,

where U is a fixed target utility level that needs to be provided to each agent. The solution
to this problem yields the minimum resource cost, L*4(U), required to achieve the target

utility level. Setting U = U®I™, the Allais surplus is formally defined as:
A= L—LAUsI™), (D-2)

where the first term L is the amount of labor needed for the market economy to attain the
equilibrium utility since the labor market clears in equilibrium. If there are distortions, the
planner requires, by definition, less labor to attain the equilibrium utility than the market
economy does. Thus, the minimum resource cost must satisfy LA(U €M) < L, so that A > 0.

Let 1« denote the Lagrange multiplier associated with the utility constraint. From (D-1),
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d

the first-order conditions with respect to ¢;(m), m9, and N JE are given by

j’
/ L U oU;
uj(g;(m)) = U A “ﬁﬁ—(]’j (D-3)
J
piui(qf) = Lmfqf + f; (D-4)
Hj /Omj u;(g;(m))dG;(m) = /Omj [Lmg;(m) + f;]dG;j(m) + F; (D-5)

as well as the constraint U = U (Uy(U1), Ua(Ua),...,U;(Uy)). Comparing (D-3)-(D-5) with
(13)—(15) reveals that the first-order conditions are isomorphic. Thus, we can conclude that
the optimal cutoffs and quantities are the same in the Allais surplus problem and the “primal’
optimal problem in Section 2.2. In what follows, we focus on the optimal labor allocation

and entry.

D.1. CARA subutility. Assume that the subutility function is of the cARA form u;(g;(m)) =
1 — e %% (M), that the upper-tier utility function U is of the cEs form as in (E-1), that
@(Uj) = Uj, and that G follows a Pareto distribution. We also assume that f; = 0 in
the cara subutility case.

To derive the optimal masses of entrants, we use the multipliers p; = MgU,UjU%- Given

the CEs upper-tier utility, the ratio of multipliers in sectors j and ¢ is

Ko _ B <%)% _ oy (D-6)

- . Cond’
e Be Uj Qjmy,

where we have used (D-3) evaluated at m = m? to get the last equality. It follows from (D-6)

that N o
o m;
UZZ <—€B€—‘Zl> Uj
ajBjmg

which, together with the utility constraint U = [Y]_; 5,U, 6(0_1)/ 710/(e=1), yields

d o—1 J d 1-0 ﬁ
TT 7T, . l1-0o m o) @ -
U=U; lﬁj <Qj> Eﬁg <a€> ] : (D-7)

Since the optimal quantities and cutoffs are the same in the ‘primal” and ‘dual” problems, we
can plug (E-24) into (D-7) to eliminate U;. We can then use G;(m%) = o Fj(k; +1)*/(Lm?)
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from the expression of the optimal cutoff (E-28) to solve for N JE as follows

A LT _ yeyon D
[Eraz plmgyopr] 7T B DO

N} = (D-8)

where UPt = (Y], a7 7187[(m¢)oPt|1=}1/(e=1) ag given by (E-33) and where (NJF)°Pt is
given by (E-30). As can be seen from (D-8), the mass of entrants in sector j needed to
achieve U is proportional to this target utility level.

Summing up, to achieve the target utility U in the resource minimization problem, the
planner imposes the socially optimal cutoffs (m¢)°P* and firm-specific quantities qjo-pt(m) =
(1/aj) ln(m?pt/ m), and chooses the mass of entrants (D-8) that is proportional to U. Thus,
to achieve a higher U the planner would allow more entrants, but always choose the same
level of selection. The associated resource cost L*4(U) can be obtained by plugging this

solution back into the objective function as follows

()Pt opt U

The last equality holds because the optimal allocation in Appendix E, by definition, clears
the labor market. Setting U = U®4™ yields

LA {yeqm {yeqm I — LA {yeqm Uopt — peqm
(Usm) _ . (Usm) _ -
L ~ pyopt <l Le, L - [yopt ’ (D-9)

where the numerator of the left-hand side is the Allais surplus. This expression provides a
measure of the aggregate welfare distortion in the economy. Note that we may use the wel-

fare measure based on utility and the measure based on the Allais surplus interchangeably.

D.2. cEs subutility. Assume that the subutility function is of the ces form u;(g;(m)) =

q;(m)Ps, that the upper-tier utility function U is of the ces form as in (E-1), that U;(U;) =
U ]1 /pj, and that G follows a Pareto distribution. We also assume that f; > 0.

To derive the optimal masses of entrants, we use the multipliers y; = M%%- Given
7 J

the CEs upper-tier utility, the ratio of multipliers in sectors j and / is

1-0(1-py) 1 4
pi_ Bilpi Uy T pelgp) T m
te  Bel pe Ul"’(l”’i) p;(gd)1=remd’

(D-10)

o p7

J
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where we have used (D-3) evaluated at m = m?

cutoffs and quantities are as in Appendix E, using (E-35) allows us to rewrite expression

in the second equality. Since the optimal

(D-10) as follows:

170'(17pj)
u; ™" B; fip; rj_l [ fepe ]1_’” (md)=¢i
J =2 JFJ J . D-
Ulfa(ffl);pe) <ﬂg) {L(] — Pj) L(] _ Pé) (m‘})_ﬂé (D-11)
l

Since the right-hand side of (D-11) is the same as that of (E-40), we obtain

1-0(1-p;) opt 1—o(1-p;)
op; op;
v, T (U)o
1-o(l-py) opt. 1290=pg) °
u, " (U)o

As in Appendix E, we now consider that ¢ — 1 in order to derive closed-form solutions.
We then have U; /U, = U;pt/ U ; P! and from the definition of U we obtain:

By By
J B —£ J B opt\ »
— oo Up\ Pe =L Ug ¢
U = HUjpé <Uj) :HUJW (Uopt>

/=1 j

Be

J By
et P () e ()
_ _ (0
— pl Opt —UP W . (D'IZ)

J

Using (E-38), and because m§ = (m{)°P!, we know that U/ U;.)pt = N[/(NJ)°Pt. Plugging

this expression into (D-12), we obtain

1

NE = (NE)OPt <£) v 1% )

Thus, we have

_ 1

J
— Z Bf
AU = } (V) <_Ubopt> L7

U \x_
- (L)L

where the last equality holds because the optimal allocation clears the labor market. Hence,

{/O(mj?)OPt [Lmq;)pt(m) + fj] dG;(m) + Fj}
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evaluating U at U®I™, we obtain

A(7reqm eqm\ — 5,

L) (Y -

This expression provides a measure of the aggregate welfare distortion in the economy.
Note that we may not use the welfare measure based on utility and the measure based on
the Allais surplus interchangeably in this case, as we could in the cArRA case in Appendix
D.1. The reason is the presence of U;, which is a transformation of the lower-tier utility.
Without that transformation, which in the ces case would amount to setting all p,’s that
appear in the power of (D-13) equal to one, the foregoing result that utility and the Allais

surplus can be used interchangeably would still hold.

E. Analytical expressions

We assume that the upper-tier utility is of the ces form:

J N 1) /0 o/(c—1)
U= {Z Bj [Uj(Uj)}( ! } , (E-1)
j=1

where o > 1 is the intersectoral elasticity of substitution, and where the 3; are strictly pos-
itive parameters that sum to one. The lower-tier utility is U; = N fom;l uj(g;(m))dG;(m).
In what follows, we focus on cases in which the ces form in (E-1) satisfies condition (25),
so that there exist unique intersectoral equilibrium and optimal allocations. As explained in
the main text, this is always the case for cara subutility functions and U;(U;) = Uj, and it is
the case for homothetic lower-tier cEs utility functions with U i(U;)=U ]1 /%7 when the lower-
tier elasticity of substitution exceeds the upper-tier elasticity of substitution. Observe that
(E-1) includes the Cobb-Douglas form as a limit case. All results based on the Cobb-Douglas
specification, as given in the main text, can be retrieved from the following expressions by
letting o — 1.

E.1. cARA subutility. We provide detailed derivations of the equilibrium and optimal allo-

cations in the caAraA case.
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Equilibrium allocation. We first derive the equilibrium cutoffs and quantities.?* Assume
that U;(U;) = Uj, and that uj(g;(m)) = 1—e %™, so that u/(q;(m)) = aje %M,
ui(gj(m)) = —a?e_o‘ﬂ'qﬂ'(m), and 7,(¢j(m)) = ajg;j(m). We assume in what follows that
there are no fixed costs for production, i.e., f; = 0 for all sectors j. We can do so since,
as in Melitz and Ottaviano (2008) but contrary to Melitz (2003), the marginal utility of each
variety is bounded at zero consumption so that demand for a variety drops to zero when
its price exceeds some threshold. Since for the least productive firm, which is indifferent
between producing and not producing, we have ¢; = ¢; (m?) = 0, the first-order conditions

(2) evaluated for any m and at the cutoff m? imply the following demand functions:

v
pj(m)

gi(m) = i11r1 [

] for 0<m<mf, (E-2)
Qj

where p? = pj(m;-l). Making use of the profit maximizing prices (5), r,(gj(m)) = a;q;(m),

and qgl = 0, we have

1 (i (m me
qj<m>=i1n[ s 1o relgl ))]=i1n{—f[1—ajqj<m>]}.

aj |1 —ry(qf) m a;j m

This implicit equation can be solved for ¢;(m) = (1 — W;)/«;, where W; = W(em/ m?)
denotes the Lambert W function, defined as ¢ = W (p)e"(¥) (see Corless et al., 1996). We
suppress its argument to alleviate notation whenever there is no possible confusion. Since
ry; = 1 —Wj, we then also have the following profit maximizing prices, quantities, and
operating profits divided by the wage rate:
= ~la-w L N A E

Pj(m)—er Qj(m)—a—j( - Wj), Wj(m)—a—j( i W= )- (E-3)
By definition of the Lambert W function, we have W (¢) > 0 for all ¢ > 0. Taking logarithms
on both sides of ¢ = W (p)e" (¥) and differentiating yields

W(p)

EOES

W'(p) =

for all ¢ > 0. Finally, we have: 0 = 17 (0)e"V(©), which implies 17 (0) = 0; and e = W (e)e'V(®),
which implies W(e) = 1. Hence, we have 0 < W; < 1if 0 < m < m?. The expressions

?4Additional information on the equilibrium cutoffs and quantities can be found in Behrens and Murata
(2007) and in Behrens et al. (2014).
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in (E-3) show that a firm with a draw m? charges a price equal to marginal cost, faces zero
demand, and earns zero operating profits. Furthermore, using the properties of W/, we
readily obtain dp;(m)/0m > 0, 9g;(m)/0m < 0, and Orj(m)/0m < 0. In words, firms with
higher productivity 1/m charge lower prices, produce larger quantities, and earn higher
operating profits. Our specification with variable demand elasticity also features higher

markups for more productive firms. Indeed, the markup

_pim) 1
Aj(m)z o _Wj

(E-4)

is such that 9A;(m)/dm < 0.
Using (E-3) and r,,; = 1 — W}, and recalling that f; = 0, the zero expected profit condition
(7) can be expressed as
_ ok

/0 ™ (Wt + W5 —2) dGj(m) = (E-5)

To derive closed-form solutions for various expressions with CARA subutility functions, we
need to compute integrals involving the Lambert W function. This can be done by using the

change in variables suggested by Corless et al. (1996, p.341). Let

md md

m m
zzW(e—), so that e — = ze®.
j j

The change in variables then yields dm = (1+ z)ez_lm?dz, with the new integration bounds

given by 0 and 1. Using the change in variables, the LHS of (E-5) can be expressed as follows:

md 1
fo (54 W = 2) dGytm) = m)? (04 )0 2= 2 (e

for an arbitrary distribution g;(-) of draws.

max
J
and shape parameter k; > 1. Then, the integral reduces to

We consider the Pareto distribution G;(m) = (m/m™®)* with upper bound my® >0

ma
/0 Do (W W5 = 2) dGj(m) = my (m) 7 (mi) (E-6)

where r; = kje~(kit1) fol(l +2) (271 +2-2) (z¢*) e*dz > 0 is a constant term which

solely depends on the shape parameter k;. Plugging (E-6) into (E-5), we obtain the equilib-
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rium cutoffs

1
.F.(mmaX)kj R+
dyeqm __ A _
and quantities q?qm(m) =[1—-Wj(em/ (m;-l)eqm)] /a;. Note that (E-7) implies that
(m?)eqm i G dyeqm Oéij 1 E-8
m;nax - J((m]) ) - KZJL (m?)eqm/ ( - )

a relationship that we will use in what follows.
We now turn to the equilibrium labor allocation and masses of entrants. Using (E-3),
labor market clearing in sector j can be written as

NJE L/O ! mqj(m)de(m) + Fj

= NP [£ /Omj m(1—W;)dG;j(m)+ F;| = L;. (E-9)

aj

Making use of the same change in variables for integration as before, and imposing the
Pareto distribution, we have
d

/Om'7 m (1 —W;)dG;(m) = ki (m?“ax)_kj (m§)kitt, (E-10)

where xi; = kje~(ki+1) fol(l — 22) (ze*)¥ e*dz > 0 is a constant term which solely de-
pends on the shape parameter k;. Plugging (E-10) into (E-9) and using (E-7), we have
L; = NjEFj[(mj/mj) +1]. It can be verified that x1;/r; = kj, so that

Lj = NP Fj(kj +1). (E-11)

To determine the masses of entrants, we insert the definition of ); into (3). Computing
oU/0oU; from (E-1) for ﬂ'j(Uj) = U; and recalling that qj = 0 and p? = m?w for all 7, we

obtain
d o o d -
o MmN Ui <ﬂ) (&) (mf)*™ . (E-12)
Qy mzl )\g Ug Qy 5@ (mg)eqm
Using the definition of 5U,Uj, (E-1), and (E-12), it is verified that

o1 — —0
BUT 8, 877 [(m4)eam]!

o-1 o1 J o, 0—1 dyeqmll—o
J q
Y U,° J U\ © Zé:l ﬁg ap [(mg) ]

Evu, = (E-13)
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From Lemmas 1 and 3, we have

Evu.b;
Lj= JU# ) (E-14)
Y1 €uu,b
Substituting (E-11) and (E-13) into (E-14) yields
(vEyeam _ 05 GOl (Ere
! Y10 876 (m)eami=e (k; + 1 E;
so that from (E-11) we obtain
L1 i .
’ Y1 af 57 0,[(m])eam]t=o

Turning to the lower-tier utility, equation (B-8), the definition of U;, and Lemma 3 imply
that

Jo" s 0m) gy (m) 4G m)

Uj =
’ 0;/ NP

(E-17)

Making use of the same change in variables for integration as before, and imposing the
Pareto distribution, the numerator of (E-17) can be rewritten as

/Om?(l — W;)eWi Gy (m) = ka; (m™) ™ (md), (E-18)
where #p; = kje~(hitD) fol(l — 22) (ze%)% 1 (e%)2dz > 0 is a constant term which solely
depends on the shape parameter k;. Using (E-18), (E-8), and (E-11), we can rewrite (E-17)
as U;qm = [(aj/Gj)(qum/L)/(m?)eqm] [(k2j/r;)/(kj +1)]. It can be verified that xy;/r; =
k; 41, so that

peam _ @ (L5™/L)

J - Hj (m(jj)eqm ' (E'19)

Making use of the upper-tier utility (E-1), (E-16), and (E-19), the utility U is then

g— o —0 ﬁ J o—1 po d 1—0 ﬁ
peam _ | Tief Bgl(mgeam)! {0 s lmgyemy)
o—1 o— e s .
(=71 af 7L B70,[(md)eam] Lo ] o Yi_q af 870l (mif)eam]!
(E-20)
When the upper-tier utility function is of the Cobb-Douglas form, ¢ = 1, so that (E-14)
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becomes L;Tqm/ L = p;0;/ Y7_1(Beby). Hence, (E-20) reduces to

/8.
[ream _ ﬁ a; B 1 J .
=1 Y 1(Beb) (m)eam
Another way of deriving the equilibrium utility is useful for proving some analytical
results. Using the demand functions (E-2) and the profit-maximizing prices in (E-3), the
lower-tier utility is given by

U = NP , (E-21)

J

1
Gy (mf) = /0 " mW;1dG; (m)
J

which can be integrated (using again the same change in variables as before) to obtain:

d
m; _ —k;j ,
/O ij 1de(m) = K3j (m?“ax) J (m?)kﬂ'l,
where r3; = kje (k1) fol(,z_1 +1) (2¢%)" e*dz > 0 is a constant term which solely depends
on the shape parameter k;. One can verify that 1 — x3; = ﬁ — (k15 + Kj), so that the
lower-tier utility (E-21) becomes

U; = — (k1j + &) Nij (m;?). (E-22)

k‘j—i-l

Since U; > 0 by construction of the lower-tier utility, we have (x1; + ;) (k; +1) < 1, which

is equivalent to r;(kj + 1)% < 1 since r1; = k;k;.

Optimal allocation. We next derive the expressions for the optimal cutoffs and quantities

in the cARA case. From the first-order conditions (13), the optimal consumptions must satisfy

d d
aje M) md 1 aje_ajqj(mj) §; m§
————=— and —— = =—.

The first conditions, together with ¢; (m?) = 0, can be solved to yield:

1 mj d
gilm) = —In| — for 0<m <mj. (E-23)
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md
Plugging (E-23) into U; and letting m; = (1/ Gj(m;l)] Jo 7 mdG;(m) denote the average

value of m, we obtain:

_ Ev (pd
UJ-:( ——) NEG () = M) (E-24)

mj k‘j—l—]

where we have used the property of the Pareto distribution that m; = [k;/(k; + 1)]m? to
obtain the second equality.
Assuming that the upper-tier utility function is given by (E-1), the planner’s problem can

be redefined using (E-24) as follows:

o—1 o—1
J NEG;(m)| =
T B o
| iNE LM pdaimty £ F| =L (E-26)
I~ R TN (P Y A L] B

where the resource constraint is obtained by plugging (E-23) into (12) and integrating the
resulting expression. Denoting by ¢ the Lagrange multiplier of this redefined problem, the

first-order conditions with respect to IV JE and m;-l are given by

o1
N NJEGJ(m(Ji) g
BV ki+1 ~[L k.
JE 1 P - zm?GJ(m?)"‘Fj (E-27)
Nj N Gg mg) o a] (k:]—i_l)
Zé 15 [W]
o1
R NEG;(md) | © &)
BV ki+1 ~ L k. i(m¢
o = = s G mf) + G ()
N; NEGy(md)] @ aj (kj +1) Gj(mj)
Zé 166 [W]

Because the left-hand side is common, we obtain the optimal cutoffs

a; Fy (mP@)ki (kj + 1)

L

d)opt —

J (E-28)

(m
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and quantities q;.)p ‘(m) = (1/;) ln[(m;-l)OPt/ m]. Note that (E-28) implies that

mdyopt 1% P (s
[( j) i ] _ G'((md)opt) _ a; Fj(k; + 1> 1 (E-29)
j

max J J d t’
m; L (mj )OP

a relationship that we will use repeatedly in what follows.
Using (E-29), the right-hand side of (E-27) becomes OF j(kj +1). Moreover, taking the

ratio of (E-27) for sectors j and ¢, we have

Ny _ (ﬁ_)
NEF Be

for all j = 1,2,...,J. Plugging this relationship into the resource constraint (E-26), and

o—1
Gj(m)

kj-l-l

Gy(mf)

1-0 .
(kj + 1) F;
ke+1

(ke +1)F,

using (E-29), we readily obtain the optimal mass of entrants in sector j:

A () it

Y1 af 87 [(m)or]t=o (ky + 1) F5

(Nj7)oPt = (E-30)
Plugging (E-28) into (E-26), we have L; = N JE Fj(kj + 1), which implies the optimal labor
allocation as follows: . I
Lo a3l
I YL ag Bg(md)ory o

Finally, plugging (E-29) and (E-30) into (E-24), the lower-tier utility from sector j at the

(E-31)

optimal allocation can be expressed as

LY/ 1)
opt ( 7 _
Uim =y (m?)opt ’ (E-32)
so that
J T
UoP = { Yo" Km?)"f“]l"’} . (E-33)
J:

When the upper-tier utility function is of the Cobb-Douglas form, o = 1, so that (E-31)
reduces to L?pt /L = p;. Expression (E-32) can then be rewritten as UjOpt = a3/ (m‘j)"Pt.

Hence, (E-33) reduces to

J 5 1P
e

J=1 (mJ
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E.2. cEs subutility. We briefly summarize the equilibrium and optimal allocations in the

case with CEs subutility functions, u;(gj(m)) = g¢;(m)?, where 0 < p; < 1, and Pareto

distribution functions, Gj(m) = (m/ m;“ax)kj. As in the existing literature, we also assume

that U; (U;) = U;/pj and that f; > 0.
First, with ces subutility functions, 1 —ry;(g;(m)) = €y, ¢ (m)

gj(m) = (m$/m)" (1_Pj)q3.1 holds for both the equilibrium and optimal allocations. Thus, the

= p; holds for all m, and

zeP and zcp conditions, (7) and (6), are equivalent to the zesp and zcsr conditions, (17) and

(18). The resulting equilibrium and optimum cutoffs are therefore the same and given by

1
Fi ki(1—pj) —pj|Fi
d)eqm _ (mzj)opt _ pmax | 1 i(L—pj) —pilh (E-34)

m 7
(m] 7oL pj

which implies that the demand functions ¢;(m) are common between the equilibrium and

the optimum for all m < m?. In particular ¢¢ can be obtained from (6) or (18) as follows:
p j P J

a_fi opi 1
1 _ 2 - E-
DT LT gy (E-35)

Second, given the foregoing results, vj(gj(m)) = ¢;j(q;(m)) holds for all m < m9, so that
the expressions in the braces of (10) and those of (20) are the same. Thus, the equilibrium

and optimal masses of entrants satisfy

Py ¢ P
(N7 )™ = qum—kj 2} and (Nj)P' =P WF i}' (E-36)

Third, the conditions (3) for equilibrium intersectoral consumption can be rewritten as

170(17;7]-)
U (ﬁjﬂj) { fip; ]pj_l { fepe T_p‘ (m§) "
U;_U"(;M Bepe ) LL(1 = pj) L(1— py) (mf)—re

To obtain closed-form solutions, we assume that o = 1, so that the above expression reduces

to the Cobb-Douglas case:

Ui _ 5jpj) [ fip; }pj_l [ﬂ] 1=pe (m?)_f’j ]
Ue (ﬁepe L(1— pj) L(1—py) (md)=—re” (E-37)

Using (E-34) and (E-35), together with ¢;(m) = (m? /m)V/ (1=p; )qjd and the Pareto distribu-
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tion, the lower-tier utility is given by

NPRF; [ faps 1771
¢ = J ) Jp‘] d —Pj -
== | e (39

Plugging (E-38) into (E-37) and using (E-36), we then obtain

B eqm
(NF)I™ Bipj keFy Ly pj keFy _peam _ Prpeqm

(NP)eam = Bepe kiFy Ly po ks CB

Since Z‘gzl Ly, = L, we finally obtain

L™ = B L. (E-39)

Using (E-36) and (E-39), expression (E-38) can be rewritten as

U = oy [ A1 [ty e
7T p) J '

which yields

Bj
J pi—1 P
f. . J o J
[eam — H Bip; iPj ‘ [(m?)eqm] Pj .
ol L(1—p;)
ji
Turning to the optimal allocation, the conditions (16) for optimal intersectoral consump-

tion can be rewritten as

1ol-py)
U Bi firj rj_l { Jepe T—”f (m§) =+
(D) | LE i .
T <ﬁe) [L(l = pj) L(1— pe) (md)—re (E-40)
J4

Assume again that the upper-tier utility is Cobb-Douglas, i.e., ¢ — 1. In that case, we can

use the same procedure as above to obtain

E opt
(N5 )opt _ Bk Li™ pj keFy Lot _ Be/ pe 0Pt
(NF)OPt BekjFy L9 pokjiF) LB/

so that
Lopt . 5]' / Py

T Yl Bel o)
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Using (E-36), expression (E-38) can be rewritten as

—1
[oPt — Bj [ fip ]pa I
! Y 7_1(Be/pe) LL(1—pjy) [(mJ) ]
which yields
B
UePt = Ii[ 5 { Jifs ]pj_l [(md)()pt] —pj %
Jj=1 Eg:1(5é/pe) L(1— pj) J .

F. Expressions for quantifying the CEs-CARA case.

Quantifying the Cobb-Douglas-CARA case is relatively easy because when o — 1 the equilib-
rium and optimal expenditure shares are independent of the «; parameters and the cutoffs
m;-l (which subsume other parameters such as the sunk entry costs /). This no longer holds
in the CES-CARA case, which makes the quantification more involved. However, we can
proceed as follows.

Let {Aeqm}‘]zl be the equilibrium expenditure shares from the data, and let {6} }.]:1 be the
weighted averages of the elasticities of the subutility functions obtained from the standard
deviation formula in Appendix C.2. Recall that in the Cobb-Douglas case those two pieces

of information allow us to back out { 5 1M by solving

Seqm7yy
~eqm _ 6 9

. T seqm _
& 7 T, ZB

In the cEs case, using (E-16) and noting that the total revenue equals the total wage in each

sector, i.e., Lejw = wLj, the equilibrium expenditure share can be rewritten as

;Bj . 7. ~ oam
B N (. NI )
] o 0'—1 ~ - n 7
g Y 1% 1870, (m)eam] - Zé 1[ afﬁefqm} B,0, RN

where 5eqm = [(o;8))/ (m?)eqm} ot B;, and where qum and ; come from the data. Clearly,
B;q = const. X Eiqm is a solution to the foregoing equation, i.e., the E;qm parameters in the
CES case are proportional to the B;qm parameters in the Cobb-Douglas case. The constant
term is shown to disappear in the end.

Using the same transformation for the § terms as above, the equilibrium utility (E-20)
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can be rewritten as

eam _ {50195 J)eqm]l—”}m (2 )™
Y7q af 7L B70,[(m)eam] 1= Y71 8,70,

. . -Segm ->eqm .
which, using 3 jq = const. X jq , can be rewritten as

an opr ()T S
U™ = (const.)o-1~ Y7 T, = (const.)o-1 m.
Turning to the optimal labor share, we have
o1
L;?pt ar 1ﬁg[( d)opt] 1= {#ﬂjﬂpt} Bj - B;’Pt
L 26:1 ae 16@ [(mg)opt]l— 24 1 [ gﬁ?opt]a_l 5, o ZZZ 160pt

where B;pt = [(ajﬁj)/(m?)optr_lﬁj. We know that

Reqm dyopt 171 dyopt 119 dyopt 1177
& = li(mj sl ] = ﬁOpt li(mj) ] B;qm = const. X li(mj) ] g,
m mY

Bj(?pt (m;l)eqm ( ;i)eqm ( ;i)eqm J
(F-1)
The optimal utility in (E-33) can be rewritten as
1
t 1 t = 2 ;3 ! o J Z0pt o
[opt — Z aa 60 Op ] - Z ( d)opt B; = Z 5]’ .
i=1 [\ i=1

Hence, using (F-1), we have

J o—1
~opt
U°Pt = (const.) ( Z d ) ,

1-0

where B;pt = [(m4)°Pt/ (md)eam] B;qm. Finally, taking the ratio of U®I™ and U°P!, we
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obtain

o1 1 1
const.) o1 " ———=com~ _
e ( ) SiaBp 0 Li1 Py 0y
Uopt 1 Sopt) 7T 1- =
(const.) -1 ( j:l 5jp ) ZJ (m4)opt 7 Beqm
i=1 | (md)eam j

We already know B;qm and @;. Since the cutoff ratio is a function of k; only, the above
expression can be quantified for any given value of 0. Then, using (D-9), we can compute

the associated Allais surplus required to quantify the distortions.

G. Robustness checks
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Table G-1: Sectoral data, parameter values, and distortions for France in 2008. Alternative firm size measure (revenue).

Cobb-Douglas - CARA & Pareto

Cobb-Douglas - CES & Pareto

Std. dev. Cutoff  Entry Cutoff  Entry
Sector Description Firms €j log emp ZJ Ej Rj Bj distortions D §J distortions
1 Agriculture 16225 0.0188  0.9490 1.0402 0.7658 0.1042 0.0200 | 50.6033 -6.3271 | 0.4968 0.0188 o -17.0719
2 Mining and quarrying 1264 0.0002 1.2047 | 5.9058 0.9278 0.0101 0.0001 | 11.1708 13.4870 | 0.8768 0.0002 o 46.3639
3 Food products, beverages, tobacco 46279 0.0697  0.9535 1.0612 0.7680 0.1022 0.0742 | 49.8611 -6.0631 | 0.5030 0.0697 o -16.0393
4 Textiles, leather and footwear 6672 0.0205 1.2566 | 18.4586 0.9743 0.0013 0.0172 | 3.6961 19.1735 | 0.9587 0.0205 o 60.0359
5 Wood products 5733 0.0008  1.2423 | 11.7605 0.9608 0.0030 0.0007 | 5.7492 17.5267 | 0.9359 0.0008 o 56.2412
6 Pulp, paper, printing and publishing | 16433 0.0086 1.1744 | 4.1427 0.9034 0.0179 0.0078 | 15.5942 10.4938 | 0.8295 0.0086 o 38.4744
7 Coke, refined petroleum, nuclear fuel 32 0.0168 0.9853 | 1.2258 0.7837 0.0887 0.0175 | 44.7000 -4.1422 | 0.5471 0.0168 o -8.6772
8 Chemicals and chemical products 1700 0.0285 1.2568 | 18.5717 0.9745 0.0013 0.0239 | 3.6740 19.1917 | 0.9589 0.0285 0 60.0770
9 Rubber and plastics products 3066 0.0037 1.2139 | 6.7456 0.9356 0.0081 0.0033 | 9.8403 14.4388 | 0.8912 0.0037 o 48.7676
10 Other non-metallic mineral products 4686  0.0020  1.2444 | 12.4217 0.9628 0.0027 0.0017 | 5.4504 17.7622 | 0.9392 0.0020 o 56.7918
11 Basic metals 567  0.0001 1.2570 | 18.7108 0.9746 0.0013 0.0001 | 3.6471 19.2137 | 0.9592 0.0001 o 60.1269
12 Fabricated metal products 19030 0.0021  1.2171 7.0925 0.9384 0.0074 0.0018 | 9.3788 14.7748 | 0.8962 0.0021 o 49.6046
13 Machinery and equipment 13954 0.0053 1.1780 | 4.2982 0.9062 0.0169 0.0047 | 15.0684 10.8363 | 0.8351 0.0053 o 39.4036
14 Office, accounting, computing mach. 255  0.0033 1.2315 | 9.2006 0.9510 0.0047 0.0028 | 7.2983 16.3280 | 0.9189 0.0033 0 53.3972
15 Electrical machinery and apparatus 2475 0.0034 1.2392 | 10.8874 0.9580 0.0035 0.0029 | 6.1979 17.1757 | 0.9310 0.0034 o 55.4157
16 Radio, TV, communication equip. 1728 0.0042 1.2380 | 10.5883 0.9569 0.0036 0.0036 | 6.3682 17.0433 | 0.9291 0.0042 o 55.1028
17 Medical, precision, optical instr. 8260 0.0050 1.0670 | 1.8662 0.8293 0.0552 0.0049 | 31.7869 1.4362 | 0.6657 0.0050 o 11.1253
18 Motor vehicles and (semi-)trailers 1411 0.0326  1.2365 | 10.2341 0.9555 0.0039 0.0279 | 6.5823 16.8775 | 0.9268 0.0326 o 54.7096
19 Other transport equipment 1846  0.0028  1.1541 3.4226 0.8879 0.0240 0.0025 | 18.5983 8.6012 | 0.7980 0.0028 o 33.2111
20 Manufacturing n.e.c; recycling 13789 0.0130  1.1481 3.2520 0.8835 0.0259 0.0120 | 19.4873 8.0615 | 0.7887 0.0130 o 31.6691
21 Electricity, gas and water supply 3444  0.0225  1.2325 0.3922 0.9519 0.0045 0.0193 | 7.1540 16.4381 | 0.9205 0.0225 0 53.6613
22 Construction 291286 0.0082  1.0048 1.3453 0.7939 0.0805 0.0085 | 41.5661 -2.8964 | 0.5748 0.0082 o -4.0493
23 Wholesale and retail trade; repairs 403178 0.1377  1.1402 | 3.0476 0.8777 0.0285 0.1283 | 20.6695 7.3576 | 0.7765 0.1377 o 29.6296
24 Hotels and restaurants 156601 0.0489  0.9575 1.0801 0.7699 0.1005 0.0519 | 49.2101 -5.8293 | 0.5084 0.0489 o -15.1287
25 Transport and storage 50914 0.0291  1.2573 | 18.9309 0.9749 0.0012 0.0244 | 3.6053 19.2479 | 0.9597 0.0291 o 60.2044
26 Post and telecommunications 2683 0.0191  1.1175 2.5707 0.8618 0.0363 0.0181 | 24.0753 5.4145 | 0.7418 0.0191 @) 23.8287
27  Finance and insurance 18351 0.0376  0.9574 | 1.0794 0.7698 0.1006 0.0400 | 49.2333 -5.8377 | 0.5082 0.0376 o -15.1616
28 Real estate activities 80723 0.1649  0.9748 1.1680 0.7784 0.0931 0.1732 | 46.3893 -4.7882 | 0.5324 0.1649 o -11.1228
29 Renting of machinery and equipment | 10616 0.0022 1.1887 | 4.8301 0.9146 0.0141 0.0020 | 13.5096 11.8725 | 0.8517 0.0022 () 42.1725
30  Computer and related activities 31426 0.0010 1.0817 | 2.0353 0.8384 0.0495 0.0010 | 29.5217 2.5484 | 0.6876 0.0010 o 14.7924
31 Research and development 3830 0.0074 0.9487 | 1.0386 0.7657 0.1043 0.0079 | 50.6588 -6.3465 | 0.4963 0.0074 o -17.1482
32 Other Business Activities 228933 0.0073 1.0659 | 1.8543 0.8286 0.0556 0.0072 | 31.9586 1.3537 | 0.6640 0.0073 o 10.8497
34 Education 16908 0.0799 0.9907 | 1.2575 0.7865 0.0864 0.0830 | 43.8253 -3.8008 | 0.5547 0.0799 o -7.3973
35 Health, social work, personal services | 321184 0.1930 0.9529 | 1.0582 0.7677 0.1025 0.2056 | 49.9634 -6.0997 | 0.5021 0.1930 0 -16.1820

Notes: Column 1 reports the number of firms in each sector in the ESANE database for France in 2008 after trimming, column 2 the observed (re-scaled) expenditure
shares from the French input-output table, and column 3 the observed standard deviation of log revenue across firms, where data are constructed as described in
Appendix C.1. Column 4 reports the values of Ej that we obtain by matching the numbers from column 3 to expression (C-2) in Appendix C.2. Columns 5 and 6
report the values of §; and #; which are transformations of %;. Column 7 reports the value j3; obtained as described in Section 4.1. In columns 8 and 9 we report the
magnitudes of cutoff and entry distortions at the sectoral level obtained from (32) and (33), respectively. Column 10 reports the value of ; obtained by matching the
numbers from column 3 to expression (C-4) in Appendix C.2 while using k from column 4. Column 11 reports the values 3 which correspond to the expenditure
shares from column 2. Finally, column 12 reports only zeroes as the CEs model does not exhibit cutoff distortions, and column 13 reports the magnitudes of entry
distortions as computed in (36).
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Table G-2: Sectoral data, parameter values, and distortions for the United Kingdom in 2005. Alternative firm size measure (revenue).

Cobb-Douglas - CARA & Pareto Cobb-Douglas - CES & Pareto
Std. dev. Cutoff  Entry Cutoff  Entry
Sector Description Firms €j log emp ZJ Ej Rj Bj distortions D §J distortions
1 Agriculture 94598 0.0127  0.9421 1.0092 0.7626 0.1072 0.0135 | 51.7394 -6.4710 | 0.4874 0.0127 o -20.8092
2 Mining and quarrying 952  0.0008  1.2471 | 13.4142 0.9653 0.0024 0.0007 | 5.0559 18.3969 | 0.9436 0.0008 o 53.3165
3 Food products, beverages, tobacco 5458 0.0442 1.1922 | 5.0361 0.9175 0.0131 0.0393 | 12.9889 12.5313 | 0.8572 0.0442 o 39.2834
4 Textiles, leather and footwear 8688 0.0213  1.0916 2.1641 0.8447 0.0457 0.0206 | 28.0000 3.6024 | 0.7026 0.0213 o 14.1567
5 Wood products 7705  0.0014 1.0615 1.8084 0.8260 0.0574 0.0013 | 32.6408 1.3035 | 0.6575 0.0014 o 6.8289
6 Pulp, paper, printing and publishing | 23234 o0.0112 1.0998 | 2.2814 0.8501 0.0427 0.0108 | 26.7435 4.2582 | 0.7150 0.0112 o 16.1788
7 Coke, refined petroleum, nuclear fuel | 138  0.0104 1.1090 | 2.4246 0.8561 0.0393 0.0099 | 25.3527 5.0019 | 0.7289 0.0104 o 18.4355
8 Chemicals and chemical products 2922  0.0088 1.2107 | 6.4233 0.9328 0.0088 0.0077 | 10.3116 14.4096 | 0.8861 0.0088 o 43.9677
9 Rubber and plastics products 5827 0.0035 1.1825 | 4.5093 0.9097 0.0157 0.0032 | 14.4085 11.5742 | 0.8421 0.0035 o 36.8224
10  Other non-metallic mineral products 4483 0.0017 1.1184 | 2.5888 0.8625 0.0360 0.0016 | 23.9258 5.7846 | 0.7433 0.0017 o 20.7703
11 Basic metals 1334 0.0003 1.1972 | 5.3524 0.9216 0.0119 0.0002 | 12.2630 13.0309 | 0.8650 0.0003 o 40.5480
12 Fabricated metal products 23394 0.0019 1.1157 | 2.5388 0.8606 0.0369 0.0018 | 24.3427 5.5538 | 0.7391 0.0019 o 20.0860
13 Machinery and equipment 11103 0.0064  1.1943 5.1615 0.9192 0.0126 0.0057 | 12.6910 12.7355 | 0.8604 0.0064 o 39.8017
14 Office, accounting, computing mach. 1577  0.0006  1.0105 1.3831  0.7969 0.0781 0.0007 | 40.6609 -2.2591 | 0.5829 0.0006 0 -5.2874
15 Electrical machinery and apparatus 4226  0.0015 1.2221 | 7.7129 0.9427 0.0064 0.0013 | 8.6530 15.6235 | 0.9041 0.0015 o 46.8970
16 Radio, TV, communication equip. 2149 0.0057 1.2044 | 5.8778 0.9275 0.0102 0.0050 | 11.2213 13.7603 | 0.8762 0.0057 o 42.3699
17 Medical, precision, optical instr. 5103 0.0016  1.1738 | 4.1164 0.9029 0.0181 0.0015 | 15.6868 10.7346 | 0.8285 0.0016 o 34.6205
18 Motor vehicles and (semi-)trailers 2904 0.0272 1.1167 | 25579 0.8613 0.0366 0.0257 | 24.1821 5.6426 | 0.7407 0.0272 o 20.3493
19 Other transport equipment 2176  0.0036  1.1189 2.5971 0.8628 0.0358 0.0034 | 23.8579 5.8224 | 0.7440 0.0036 o 20.8817
20 Manufacturing n.e.c; recycling 16374 0.0109  1.0424 1.6284 0.8147 0.0650 0.0109 | 35.6211 -0.0774 | 0.6293 0.0109 o 2.2434
21 Electricity, gas and water supply 326  0.0261  1.2541 | 16.7661 0.9719 0.0016 0.0219 | 4.0628 19.1982 | 0.9546 0.0261 o 55.1042
22 Construction 197153 0.0085  0.9524 1.0560 0.7675 0.1027 0.0090 | 50.0410 -5.8718 | 0.5014 0.0085 o -18.5242
23 Wholesale and retail trade; repairs 347165 0.1850 1.0275 | 1.5064 0.8063 o0.0711 0.1871 | 37.9630 -1.1141 | 0.6075 0.1850 o -1.2915
24  Hotels and restaurants 139080 0.0781  0.9460 | 1.0265 0.7644 0.1055 0.0833 | 51.0996 -6.2470 | 0.4927 0.0781 o -19.9519
25  Transport and storage 54673 0.0392 1.0951 | 2.2126 0.8470 0.0444 0.0377 | 27.4668 3.8789 | 0.7079 0.0392 o 15.0129
26 Post and telecommunications 8826 0.0181  1.0508 1.7043 0.8196 0.0616 0.0180 | 34.3017 0.5252 | 0.6417 0.0181 o 4.2615
27  Finance and insurance 20825 0.0807  1.0435 1.6386 0.8154 0.0645 0.0807 | 35.4367 0.0060 | 0.6310 0.0807 o 2.5243
28 Real estate activities 75252  0.1104  1.0094 1.3759 0.7963 0.0785 0.1131 | 40.8295 -2.3290 | 0.5814 0.1104 o -5.5344
29 Renting of machinery and equipment | 13256 0.0061  1.0735 1.9379 0.8333 0.0527 0.0059 | 30.7852 2.2001 | 0.6754 0.0061 o 9.7318
30  Computer and related activities 79335 0.0010  1.0543 1.7374 0.8217 0.0602 0.0009 | 33.7554 0.7787 | 0.6469 0.0010 o 5.1027
31 Research and development 2079 0.0001 1.1567 | 3.5017 0.8898 0.0232 0.0001 | 18.2132 9.1343 | 0.8020 0.0001 o 30.3091
32 Other Business Activities 332122 0.0041  1.0520 1.7154 0.8203 0.0611 0.0040 | 34.1159 0.6112 | 0.6434 0.0041 o 4.5472
34 Education 23005 0.0625  1.0551 1.7448 0.8221 0.0599 0.0620 | 33.6366 0.8343 | 0.6480 0.0625 o 5.2861
35 Health, social work, personal services | 209071 0.2044  0.9945 1.2801 0.7884 0.0848 0.2114 | 43.2211 -3.2995 | 0.5600 0.2044 0 -9.0025

Notes: Column 1 reports the number of firms in each sector in the Bsp database for the UK in 2005 after trimming, column 2 the observed (re-scaled) expenditure
shares from the UK input-output table, and column 3 the observed standard deviation of log revenue across firms, where data are constructed as described in
Appendix C.1. Column 4 reports the values of Z, that we obtain by matching the numbers from column 3 to expression (C-2) in Appendix C.2. Columns 5 and 6
report the values of #; and #; which are transformations of k;. Column 7 reports the value j3; obtained as described in Section 4.1. In columns 8 and 9 we report the
magnitudes of cutoff and entry distortions at the sectoral level obtained from (32) and (33), respectively. Column 10 reports the value of p; obtained by matching the
numbers from column 3 to expression (C-4) in Appendix C.2 while using %j from column 4. Column 11 reports the values 3] which correspond to the expenditure
shares from column 2. Finally, column 12 reports only zeroes as the cEs model does not exhibit cutoff distortions, and column 13 reports the magnitudes of entry
distortions as computed in (36).
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Table G-3: Sectoral data, parameter values, and distortions for France in 2008. Alternative fixed costs measure (profits).

Cobb-Douglas - CARA & Pareto

Cobb-Douglas - CES & Pareto

Std. dev. Cutoff  Entry Cutoff  Entry
Sector Description Firms €j log emp ZJ Ej Rj Bj distortions D §J distortions

1 Agriculture 3842 0.0188  0.8891 1.8433 0.8280 0.0560 0.0196 | 32.1195 -4.2374 | 0.6211 0.0188 o -12.0899
2 Mining and quarrying 854  0.0002  0.9922 2.7343 0.8677 0.0333 0.0002 | 22.7878 0.3562 | 0.7307 0.0002 o 3.4283
3 Food products, beverages, tobacco 31667 0.0697  0.9296 2.1471  0.8439 0.0462 0.0714 | 28.1916 -2.3974 | 0.6662 0.0697 o -5.6964
4 Textiles, leather and footwear 4260 0.0205  1.0493 3.5065 0.8899 0.0232 0.0199 | 18.1903 2.9254 | 0.7863 0.0205 o 11.2992
5 Wood products 3828 0.0008 1.0996 | 4.5651 0.9106 0.0154 0.0008 | 14.2437 5.3165 | 0.8339 0.0008 o 18.0360
6 Pulp, paper, printing and publishing 9214 0.0086  1.1002 | 4.5819 0.9109 0.0153 0.0082 | 14.1948 5.3472 | 0.8345 0.0086 o 18.1191
7 Coke, refined petroleum, nuclear fuel 13 0.0168  1.2149 | 12.7673 0.9637 0.0026 0.0150 | 5.3062 11.4585 | 0.9394 0.0168 o 32.9766
8 Chemicals and chemical products 1084 0.0285 1.0949 | 4.4426 0.9086 0.0161 0.0271 | 14.6108 5.0863 | 0.8295 0.0285 o 17.4118
9 Rubber and plastics products 2834 0.0037 1.1573 | 6.7956 0.9360 0.0080 0.0035 | 9.7710 8.2557 | 0.8872 0.0037 o 25.5820
10 Other non-metallic mineral products 2465 0.0020 1.0980 | 4.5233 0.9099 0.0156 0.0019 | 14.3670 5.2390 | 0.8324 0.0020 o 17.8265
11 Basic metals 484  0.0001  1.1200 | 5.4942 0.9233 0.0114 0.0001 | 11.9633 6.7831 | 0.8612 0.0001 o 21.8983
12 Fabricated metal products 14200 0.0021  0.9881 2.6891 0.8661 0.0341 0.0021 | 23.1298 0.1737 | 0.7266 0.0021 o 2.8445
13 Machinery and equipment 6894 0.0053 1.2044 | 11.0308 0.9585 0.0034 0.0047 | 6.1195 10.8538 | 0.9300 0.0053 o 31.6414
14 Office, accounting, computing mach. 193  0.0033 1.1264 | 5.3971 0.9221 0.0117 0.0031 | 12.1670 6.6494 | 0.8587 0.0033 () 21.5544
15 Electrical machinery and apparatus 1467 0.0034 1.1876 | 9.0384 0.9503 0.0048 0.0031 | 7.4250 9.9033 | 0.9148 0.0034 o 29.4866
16 Radio, TV, communication equip. 1266  0.0042 1.1216 | 5.2292 0.9200 0.0123 0.0040 | 12.5360 6.4087 | 0.8543 0.0042 o 20.9311
17 Medical, precision, optical instr. 3780 0.0050 1.0524 | 3.5596 0.8912 0.0227 0.0048 | 17.9412 3.0711 | 0.7893 0.0050 o 11.7257
18 Motor vehicles and (semi-)trailers 1111 0.0326  1.2031 | 10.8443 0.9578 0.0035 0.0294 | 6.2219 10.7784 | 0.9288 0.0326 o 31.4728
19 Other transport equipment 517  0.0028  1.2064 | 11.3219 0.9595 0.0032 0.0025 | 5.9662 10.9670 | 0.9318 0.0028 o 31.8934
20 Manufacturing n.e.c; recycling 6750 0.0130  1.0681 3.8455 0.8975 0.0201 0.0125 | 16.7083 3.8022 | 0.8042 0.0130 o 13.8346
21 Electricity, gas and water supply 383  0.0225 1.2034 | 10.8938 0.9580 0.0035 0.0203 | 6.1944 10.7986 | 0.9291 0.0225 o 31.5181
22 Construction 134776 0.0082  0.8944 | 1.8810 0.8301 0.0546 0.0086 | 31.5745 -3.9897 | 0.6272 0.0082 o -11.2209
23 Wholesale and retail trade; repairs 197330 0.1377 0.9079 | 1.9796 0.8355 0.0513 0.1425 | 30.2319 -3.3691 | 0.6425 0.1377 o -9.0529
24 Hotels and restaurants 79898 0.0489  0.8493 1.5655 0.8104 0.0680 0.0521 | 36.7927 -6.2683 | 0.5707 0.0489 o -19.2121
25 Transport and storage 22606 0.0291  1.0931 | 4.3980 0.9079 0.0163 0.0277 | 14.7491 5.0000 | 0.8278 0.0291 o 17.1764
26 Post and telecommunications 196  0.0191  1.0917 | 4.3623 0.9073 0.0165 0.0182 | 14.8618 4.9300 | 0.8265 0.0191 o 16.9848
27  Finance and insurance 5773  0.0376  0.8535 1.5952 0.8125 0.0666 0.0401 | 36.2304 -6.0324 | 0.5765 0.0376 o -18.3915
28 Real estate activities 17452 0.1649 0.8937 1.8764 0.8299 0.0548 0.1718 | 31.6403 -4.0197 | 0.6264 0.1649 o -11.3262
29 Renting of machinery and equipment | 3399 0.0022 1.1475 | 6.2862 0.9316 0.0091 0.0021 | 10.5261 7.7413 | 0.8783 0.0022 o 24.3168
30 Computer and related activities 9088 0.0010 1.0515 3.5439 0.8908 0.0228 o0.0010 | 18.0139 3.0285 | 0.7884 0.0010 o 11.6011
31 Research and development 905  0.0074 1.0744 | 3.9733 0.9001 0.0192 0.0071 | 16.2104 4.1024 | 0.8102 0.0074 o 14.6854
32 Other Business Activities 71871  0.0073  1.0110 | 2.9548 0.8749 0.0298 0.0072 | 21.2555 1.1880 | 0.7492 0.0073 o 6.0484
34 Education 8205 0.0799 1.0220 | 3.0983 0.8792 0.0279 0.0785 | 20.3633 1.6834 | 0.7600 0.0799 o 7.5763
35 Health, social work, personal services | 70236 0.1930 1.0317 | 3.2343 0.8830 0.0262 0.1890 | 19.5840 2.1230 | 0.7694 0.1930 0 8.9117

Notes: Column 1 reports the number of firms in each sector in the ESANE database for France in 2008 after trimming, column 2 the observed (re-scaled) expenditure
shares from the French input-output table, and column 3 the observed standard deviation of the log number of employees across firms, where data are constructed
as described in Appendix C.1. Column 4 reports the values of Ej that we obtain by matching the numbers from column 3 to expression (C-1) in Appendix C.2.
Columns 5 and 6 report the values of 5 and =; which are transformations of E Column 7 reports the value BJ obtained as described in Section 4.1. In columns 8 and
9 we report the magnitudes of cutoff and entry distortions at the sectoral level obtained from (32) and (33), respectively. Column 10 reports the value of p; obtained
by matching the numbers from column 3 to expression (C-3) in Appendix C.2 while using A from column 4. Column 11 reports the values 8 which correspond
to the expenditure shares from column 2. Finally, column 12 reports only zeroes as the ces model does not exhibit cutoff distortions, and column 13 reports the
magnitudes of entry distortions as computed in (36).
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