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Estimates of the term structure of interest rates depend heavily on the quality of the market data 

from which it is constructed. Estimated rates can be incorrect because of observation errors and 

omissions in the data. The usual way to deal with the heteroscedasticity of observation errors is by 

introducing weights in the fitting procedure. There is currently no consensus in the literature about 

the choice of such weights. We introduce a non-parametric bootstrap-based method of introducing 

observation errors drawn from the empirical distribution into the model data, which allows us to 

perform a comparison test of different weighting schemes without implicitly favoring one of the 

contesting models – a common design flaw in comparison studies. We use government bonds from 

several countries with examples of both liquid and illiquid bond markets. We show that realistic 

observation errors can greatly distort the estimated yield curve. Moreover, we show that using 

different weights or other modifications to account for observation errors in bond price data does 

not always improve the term structure estimates, and often worsens the situation. Based on our 

comparison, we advise to either use equal weights or weights proportional to the inverse duration in 

practical applications. 
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1 Introduction 

Estimating the term structure of interest rates is a subject of great importance in financial 

economics, particularly in asset pricing, risk management, and long-dated liabilities such as 

pensions and life insurance. Forward rates may serve as indicators of monetary policy.  

The resulting estimates of the interest rate curve depend heavily on the quality of the market 

data used. There is extensive literature introducing various methods of accounting for observation 

errors in the data. For instance, the most popular method is to weight the data by inverse bond 

duration assuming that longer maturities (and longer durations), correspond to larger price errors 

(Ahi et al., 2016; Bliss, 1997; Cruz-Marcelo et al., 2011; Gimeno and Nave, 2009). However, the 

efficiency of these methods has not been investigated separately. Up until now, there was no 

comparison of the numerous methods, therefore the choice of the method to account for observation 

errors was usually ad hoc and without an evidence-based rationale. 

The purpose of this research is twofold. Our first objective is to demonstrate how errors in the 

input data can affect the estimates of the term structure of interest rates – by using data on 

government bonds from several different bond markets (in the alphabetical order): English, French, 

German, Greek, Italian, Portuguese, Russian, and Spanish. Our second objective is to check 

whether conventional methods of accounting for data errors actually improve the estimation results. 

For estimating the term structure of interest rates, we use the two most popular methods: the 

Svensson model (a parametric method) and cubic smoothing splines for the spot rate (a non-

parametric method). For both approaches, least squares with different weights are applied. We 

propose a non-parametric method of introducing observation errors drawn from the empirical 

distribution into the model data. In addition, we perform a real-data-based comparison based on 

estimating the posterior predictive power. We estimate it via a leave-out-one cross-validation. 

The paper proceeds as follows: Section 2 provides the literature review. Section 3 and 4 give 

details of the data and the comparison methodology. Section 5 discusses the empirical results. 

Section 6 concludes. 
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2 Literature review
4
 

Laurini and Ohashi (2015) investigated the reasons for the difference between yields to 

maturity and estimated forward rates, which was observed in many empirical studies. The authors 

considered that this discrepancy is due to data errors that led to a shift in the constructed term 

structure of interest rates. The causes of data errors lie in microstructural market effects. 

Ahi et al., (2018) used weighted least squares using the inverse duration, assuming that longer 

maturities (and longer durations), correspond to larger price errors. That is, they solve the following 

optimization problem: 

∑𝑤𝑖 (𝑃𝑖 − 𝑃̂𝑖(𝜃))
2

→ min
𝜃

N

i=1

, 

𝑤𝑖 =
1 𝐷𝑖⁄

∑ (1 𝐷𝑗⁄ )𝑁
𝑗=1

  , 

where 𝐷𝑖 is the Macaulay duration of bond 𝑖,  𝑃𝑖̂(𝜃) is the model price for bond i and the 

parameter vector 𝜃, 𝑃𝑖 is the observed price for bond i. 

Bliss (1997) compared several weighting methods. The best of them were weighting by term to 

maturity and by duration. However, the author asserted that the use of duration was more 

reasonable, since more frequent errors in market data were associated with a longer duration rather 

than with a long maturity period. Similar weights were used by Cruz-Marcelo et al. (2011) based on 

the assumption that the bond price data with shorter maturity were more reliable. 

Gimeno and Nave (2009) stated that small changes in the yields of short-term bonds caused 

more significant changes in the yield curve than similar changes in the yields of long-term 

securities. They used weights inversely proportional to the square root of the duration: 

𝑤𝑖 =
1

√𝐷𝑖
 . 

Ioannides (2003) weighted the data using the inverse square of the duration: 

𝑤𝑖 =
1

𝐷𝑖
2 . 

Bliss (1997) suggested that closing prices are calculated erroneously with respect to bid and ask 

prices. Therefore, for constructing a yield curve the author used bid and ask prices instead of the 

closing prices. The least squares functional employed in the paper only penalized prices outside the 

bid-ask interval: 

                                                           
4 Note that the objective of the paper is not to propose yet another term structure fitting model. Instead, we study the effect of 

observation errors and the efficiency of various approaches to dealing with them. Therefore, we just use the most widespread basic 

term structure estimation techniques – one parametric and one spline-based. Our literature review is limited to the problem we’re 

investigating, i.e. methods used to deal with observation errors. 
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∑(𝑤𝑖𝑒𝑖)
2

𝑁

𝑖=1

, 

where 𝑒 is the discrepancy term, which is non-zero only if the fitted price 𝑃̂ lies outside the bid-

ask spread: 

𝑒 = {
𝑃̂ − 𝑃𝐴𝑠𝑘,   𝑃̂ > 𝑃𝐴𝑠𝑘    ,   

𝑃𝐵𝑖𝑑 − 𝑃̂,   𝑃̂ < 𝑃𝐵𝑖𝑑   ,   
0,              otherwise.

 

Note that this approach can easily be combined with any weighting scheme. 

Hladikova and Radova (2012) compared several methods of weighting: by the number of 

bonds, by the reverse duration, by the inverse bid-ask spread and by the sum of the inverse duration 

and the inverse spread using data on Czech government bonds. To assess the performance of the 

weighting schemes, the authors used the MSE for prices for yields to maturity, weighted MSE for 

the smoothness of the constructed functions, and the stability of the model coefficients when one 

bond was excluded from the sample. Different indicators gave preference to different weighting 

methods, so it was not possible for the authors to select the best weighting scheme using their 

criteria.  

Thus, different authors have introduced different methods, which, in their opinion, should help 

reduce the effect of data errors. However, studies of their performance faced two main obstacles. 

The first concerns relative performance. One should be very careful about choosing the comparison 

criteria, since it’s very easy to accept a comparison criterion the construction of which favors one of 

the methods. Since the methods differ by the functionals they are optimizing, choosing a specific 

comparison criterion might easily introduce a bias towards the method which optimizes this exact 

functional (e.g. a simple non-weighted sum-of-squares will by construction penalize all weighted 

schemes and favor a non-weighted scheme, because the latter optimizes the same functional that is 

used to compare the models). To overcome this, we use two comparison criteria. One measures the 

discrepancy in the whole estimated yield curve rather than estimated bond prices, thus avoiding 

potential bias. The other tests the out-of-sample predictive power of the models via a leave-out-one 

cross-validation. We describe these criteria in detail later. 

The second obstacle comes from the fact that many comparison criteria require knowing the 

‘true’ bond prices without noise. This is impossible using real data, so model data must be used 

with artificially introduced errors. However, choosing a model distribution for observation errors 

presents a challenge since the true distribution is very complex and the performance of the methods 

greatly depends on it.  

This problem has been given some consideration in the literature. The following is a review of 

the different approaches to introducing simulated observation errors into model data. 
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Error modeling 

Bliss (1997) analyzed the ex-post errors of fitting spline models and an extension of the 

Nelson-Siegel model. He found that there is a significant interdependence of the errors in time and 

between models. For instance, if the error was positive in one model, the error for the same bond for 

the next day and the error for the same bond in another model will likely be positive too. The author 

also regressed the errors on various bond features: maturity, age (number of years after the 

issuance), time, trade volume, bid-ask spread and some calculated indicators. All regressors were 

significant, however, some coefficients (maturity and volume) had different signs for different 

models, which, considering the dependence of errors between models, was alarming. An empirical 

connection between the fitting errors and bond duration was also found by Fleming and Whaley 

(1994) and Carcano and Nicola (2011). 

Several researchers conducted tests for robustness to possible errors in the input data via the 

scheme in Figure 1. Term structure is estimated from the initial data. Then randomly generated 

errors are added to the original data. The distribution of errors is chosen according to the 

assumptions on the real fitting errors. Then new yield curves are constructed based on the data with 

errors. Estimation errors for all maturities are usually calculated as the difference between the initial 

(true) yield curve and the curve estimated from noisy data. After repeating the procedure several 

times, the resulting sets of estimation errors are aggregated – usually their mean and variance is 

calculated. 

 

Figure 1. A flowchart for checking the resistance to errors in the input data. 

 

In comparing five methods for estimating the term structure, Jordan and Mansi (2003) 

investigated the effect of interpolation and observation errors on the estimate. For this purpose, the 

authors generated model spot rate term structures and added normally distributed errors to the 

calculated model prices. They assumed a theoretical error term that was homoscedastic in yields, 

but heteroscedastic in prices: 

𝑃𝑖
𝑒 = 𝑃𝑖 + 𝜀𝑖, 𝜀𝑖 = 𝜎 (

𝑑𝑃

𝑑𝑦
)
𝑖

𝜂𝑖, 𝜂𝑖  ~ 𝑁(0,1). 

To generate errors, they used the following procedure. 
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Step 1: calculate the sensitivity of bond prices with respect to their returns: 

(
𝑑𝑃

𝑑𝑦
)
𝑖
= 𝑀𝐷𝑖 ⋅ 𝑃𝑖, 

where 𝑀𝐷𝑖 is the modified duration of bond 𝑖. 

Step 2: draw  𝜂𝑖 from the standard normal distribution. 

Step 3: calculate 𝜎 so that the modelled observation error variance ∑ (𝜎𝑃𝑖𝑀𝐷𝑖𝜂𝑖)
2𝑛

𝑖=1  is equal 

to the estimated actual error variance S (exogeneous): 

𝜎 =
𝑆

∑ (𝑃𝑖𝑀𝐷𝑖𝜂𝑖)2
𝑛
𝑖=1

 . 

The interpolation error was found to be a significant factor, not dominated by the observation 

error. Two methods from five, the Nelson and Siegel and the Mansi and Phillips models, stood out 

in terms of good interpolation properties and robustness with respect to observation errors.  

Bertocchi et al. (2000) built a yield curve based on the Black-Derman-Toy model (BDT). They 

conducted a similar study of the model sensitivity with respect to random changes in the initial term 

structure. Prices with errors were simulated by adding normally distributed random perturbations to 

the ‘true’ prices. It turned out that errors due to small perturbations of the yield curve propagated to 

large errors in the short-term interest rates. The acceptable magnitude of perturbations for the 

optimal solution to be stable was found to be very small. 

For constructing a Bayesian hierarchical model, Cruz-Marcelo et al. (2011) assumed a normal 

distribution of bond prices with the mean equal to the sum of the discounted cash flows and the 

variance directly proportional to the bond duration. 

Laurini and Ohashi (2015) and Ubukata and Fukushige (2009) modeled errors with an 

autoregressive process with normally distributed innovations, the coefficients for which were taken 

from empirical studies. The authors also assumed a non-zero correlation between the errors for 

different bonds, which were also calculated from the observed fitting errors. Bolder (2006) also 

assumed a normal error distribution. 

Another kind of the error distribution was used by Ahi et al. (2018) and Bliss et al. (2011). Ahi 

et al. used the Svensson model to construct a yield curve for four bond markets: American, 

Brazilian, Mexican and Turkish. The goals were to compare various optimization methods, but they 

also checked the models’ robustness with respect to data errors. 

The errors they introduced into bond prices were uniformly distributed within the bid-ask 

interval: 

𝜀𝑖 = (𝑃𝑎𝑠𝑘,𝑖 − 𝑃𝑏𝑖𝑑,𝑖) ∗ 𝜑𝑖 , 

𝜑𝑖  ~ 𝑈 [0, 1]. 
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Thus, the methods of error simulation proposed in the literature are diverse and involve both 

different types of distributions and different dependencies on parameters such as duration and 

spread. Unfortunately, real data errors are unobservable, therefore it is impossible to verify these 

assumptions, however, it is generally considered highly unlikely that observation errors are, in fact, 

normally distributed. Moreover, introducing normally distributed errors with equal variances 

implicitly favors the ordinary least squares estimation method (it being the maximum likelihood 

estimate for this observation error setting). The homoscedastic-in-yields scheme described above 

implicitly favors weighted least squares with the weights being inversely proportional to the 

durations. 

To overcome this obstacle, we introduce a non-parametric bootstrap-like method of sampling 

observation errors from the empirical distribution while approximately preserving both correlations 

and marginal distributions. 

 

3 Data 

To ensure accurate results we use market quotations of government bonds of Russia and several 

countries of the Eurozone from 2016 to the end of 2017 (data from 2017 is used directly in the 

construction of the yield curve, data from 2016 is needed for auxiliary calculations) obtained from 

Bloomberg. The sample includes only bonds denominated in the home currency with fixed coupons 

and without embedded options. We exclude bonds with the maturity less than three months at the 

settlement date and illiquid bonds (those with less than 10 trading days for 2017). The total sample 

includes 70 English bonds, 145 French bonds, 102 German bonds, 42 Greek bonds, 105 Italian 

bonds, 24 Portuguese bonds, 30 Russian bonds, 55 Spanish bonds. While the dataset is 

homogeneous for each country as there no significant changes in the yield curves during the period 

considered, we get enough observations for our research. Including several countries in the sample 

allows us to compare the results for bond markets of different liquidity.  
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4 Methodology 

Basic Models 

For each country, we select all trading days from 01 Jan 2017 to 31 Dec 2017 with price data 

for at least 10 bonds. For each of these days, at market closing prices, zero-coupon yield curves are 

constructed using two methods. 

1) A parametric method (Svensson model) defining the spot rate 𝑟(𝑡, 𝛽) for the term to maturity 

𝑡 and the parameter vector 𝜃 = (𝛽0, 𝛽1, 𝛽2, 𝛽3, 𝜏1, 𝜏2)
𝑇: 

𝑟(𝑡, 𝜃)

= 𝛽0 + 𝛽1
1 − 𝑒(−𝑡 𝜏1⁄ )

𝑡 𝜏1⁄
+ 𝛽2 (

1 − 𝑒(−𝑡 𝜏1⁄ )

𝑡 𝜏1⁄
− 𝑒(−𝑡 𝜏1⁄ ))

+ 𝛽3 (
1 − 𝑒(−𝑡 𝜏2⁄ )

𝑡 𝜏2⁄
− 𝑒(−𝑡 𝜏2⁄ )). 

The model parameters are determined from minimizing the least squares functional: 

∑(𝑃𝑖 − 𝑃̂𝑖(𝜃))
2

𝑁

𝑖=1

→ min
𝜃

, 

where 𝑃̂𝑖(𝜃) is the model price of bond i equal to the sum of the discounted cash flows 𝐶𝑖(𝑡𝑗) 

promised at the corresponding terms 𝑡𝑗 , 𝑗 = 1. .𝑀𝑖 with parameter vector 𝜃 =

(𝛽0, 𝛽1, 𝛽2, 𝛽3, 𝜏1, 𝜏2)
𝑇, and 𝑃𝑖 is its observed price:  

𝑃̂𝑖(𝜃) =∑𝐶𝑖(𝑡𝑗)𝑒
−𝑟(𝑡𝑗,𝜃)⋅𝑡𝑗

𝑀𝑖

𝑗=1

 . A spline method. We used 

𝑟(𝑡, 𝜃) =  {

𝑟1(𝑡) =  𝑎1 + 𝑎2𝑡 + 𝑎3𝑡
2 + 𝑎4𝑡

3,              𝑡 ∈ [0, 𝑇1]

𝑟2(𝑡) = 𝑏1 + 𝑏2𝑡 + 𝑏3𝑡
2 + 𝑏4𝑡

3,              𝑡 ∈ [𝑇1, 𝑇2]
⋮

𝑟𝑀(𝑡) = 𝑘1 + 𝑘2𝑡 + 𝑘3𝑡
2 + 𝑘4𝑡

3, 𝑡 ∈ [𝑇𝑀−1, 𝑇]

, 

where 𝜃 = (𝑎1, 𝑎2, 𝑎3, 𝑎4, 𝑏1, … , 𝑘4)
𝑇 is the parameter vector. The optimization functional also 

includes a regularization smoothness term: 

∑(𝑃𝑖 − 𝑃̂𝑖(𝜃))
2

𝑁

𝑖=1

+  𝛼∫(𝑟′′(𝜏, 𝜃))
2
𝑑𝜏

𝑇

0

→ min
𝜃

, 

where 𝛼 is the regularization parameter. The second derivative of the spot rate with respect to 

the term to maturity 𝑟′′(𝑡, 𝜃) is used as the criterion for smoothness to avoid overfitting. The usual 

problem with smoothing splines is choosing the right amount of smoothing 𝛼. If 𝛼 is too low, the 
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yield curve will fluctuate strongly trying to fit the noisy data but a high smoothing coefficient 

increases the approximation errors 𝑃𝑖 − 𝑃̂𝑖(𝜃) and worsens the fit. 

We choose the smoothness coefficient so that the sum of the squares of the fitting errors for the 

spline method are approximately equal to the same quantity for the Svensson model. To deal with 

outliers, we clip the Svensson fitting error to its 95% quantile from above for this purpose as 

follows. If the sum of the squares of the fitting errors for a given date is less than its 95% quantile 

for all dates, then the sum of the squares of the spline fit errors should be approximately equal. If, 

however, the sum of the squared fitting errors is greater than the 95% quantile, then the spline 

model is tuned to produce the same sum of error squares as the 95% quantile. This method of 

selecting the smoothness coefficient is used for all variants of the spline model. 

We used splines for the spot rate curve, the forward rate curve and the discount function. The 

results are almost identical, so we report only one of these settings – the spot rate. Our results do not 

really depend on the number of knot points for the spline (in the range from 10 to 40 knot points), 

since most of the regularization is done via the regularization coefficient 𝛼. We use 12 knot points 

in our spline model, from one day to the longest maturity.  

 

Dealing with errors 

For both approaches (parametric and non-parametric), several variations of the method of least 

squares with different weights are used: 

∑(𝑤𝑖𝜀𝑖(𝜃))
2

𝑁

𝑖=1

→ min
𝜃

#(1)  

for the parametric model and 

∑(𝑤𝑖𝜀𝑖(𝜃))
2

𝑁

𝑖=1

+  𝛼∫(𝑟′′(𝜏, 𝜃))
2
𝑑𝜏

𝑇

0

→ min
𝜃

 

for the spline model, where 𝜀𝑖(𝜃) =  𝑃𝑖 − 𝑃̂𝑖(𝜃) are the fitting errors, 𝑤𝑖 are the weights to be 

chosen, where 𝜃 is the parameter vector of the respective model.  

We apply the most commonly used methods of accounting for errors and introduce several new 

ones, which could improve the results of estimating the yield curve. 

1. Standard model – unweighted least squares (‘Standard’): 

𝑤𝑖 = 1 . 

This is the basic model with which we compare all the subsequent modifications. Note that due 

to the particular form of the optimization problem (1) above, the optimal yield curve depends on 

weights 𝑤𝑖 up to a multiplicative constant. Therefore, we do not normalize the weights in any way. 

2. Inverse duration weights (‘1/D’): 
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𝑤𝑖 =
1

𝐷𝑖
 . 

The most commonly used weighting scheme in studies, based on the assumption that the longer 

the maturities (and correspondingly higher duration), the larger the observation errors in the data. 

3. Duration weights (‘D’): 

𝑤𝑖 = 𝐷𝑖  . 

Reverses the previous scheme. 

4. Inverse bid-ask spread weights (‘1/S’): 

𝑤𝑖 =
1

𝑆𝑖
 . 

It is logical to assume that observation errors should be greater in the prices of less liquid 

bonds. The bid-ask spread is often considered as a liquidity indicator (for liquid securities the 

spread is smaller). Weighting by the inverse spread could possibly improve the results by assigning 

more weight to more liquid bonds. 

5. Penalizing atypical spreads (‘1/log(S/MS)’). 

An improvement of the previous scheme – we recognize that various bonds have different 

typical spreads and penalize atypical spreads (compared to the average spread for the previous 180 

days) – because both unusually large and unusually small bid-ask spreads could indicate a departure 

from equilibrium state: 

 𝑤𝑖𝑡 =
1

1 + |log (
𝑆𝑖𝑡
𝑀𝑆𝑖𝑡

)|
 . 

where 𝑀𝑆𝑖𝑡 is the average spread for bond i for the previous 180 days: 

𝑀𝑆𝑖𝑡 = 
1

180
∑ 𝑆𝑖ℎ

𝑡−1

ℎ=𝑡−181

 . 

6. An improvement of the previous scheme. Instead of an arbitrary penalty for unusual 

spreads, we construct an empirical probability density function and assign weights 

according to the likelihood of the bid-ask spread data (‘HIST’): 

Step 1: We calculate a histogram of log (
𝑆𝑖𝑡

𝑀𝑆𝑖𝑡
) for the bond in question for the previous 

six months (this histogram updates daily). 

Step 2: For the current spread value 𝑆𝑖𝑡, we calculate log (
𝑆𝑖𝑡

𝑀𝑆𝑖𝑡
) and its corresponding 

empirical frequency calculated during Step 1. This is taken as the weight for 

bond i.  
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Note that this approach can assign exactly zero weights if the observed spread is atypical 

enough. 

 

Figure 2. Determination of the probability weight with which the logarithm of the ratio of the 

spread to the average takes the current value 

7. Only penalize model prices outside the observed bid-ask spread (‘Bid-Ask’): 

∑𝑒𝑖
2

𝑛

𝑖=1

→ min
𝜃

, 

where 

𝑒𝑖 = {

𝑃̂𝑖(𝜃)−𝑃𝑖
𝐴𝑠𝑘, 𝑃̂𝑖(𝜃) > 𝑃𝑖

𝐴𝑠𝑘,

𝑃𝑖
𝐵𝑖𝑑 − 𝑃̂𝑖(𝜃), 𝑃̂𝑖(𝜃) < 𝑃𝑖

𝐵𝑖𝑑,
0,                     otherwise.

 

This model is used by some authors on the basis that closing prices can possibly carry 

erroneous information about the form of the yield curve. Consequently, they stipulate that it is 

better to use bid and ask quotations. 

Comparison Methodology 

We compare the estimation methods described above using two approaches to measuring the 

fitting quality. The fitting quality could refer to either the accuracy of the resulting term structure 

estimate or the accuracy of the predicted bond prices. In theory, they could be very different – with 

abundant data (many bonds), weighting would not impact the term structure estimate, however, if 

the model incorrectly gives more weight to the bonds with more variable quotes, then their 

predicted price distribution would have less variance and might be way off the real data. Therefore, 

for choosing the weighting scheme, we recommend cross-validation, but we also report the quality 

of the term structure fitting. 
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The two approaches are described in detail in what follows. A high-level summary of their 

differences is presented in Table 1.  

Table 1. Comparison of two tests 

 Bond Price Fitting Term Structure Fitting 

Fitting quality 

definition 

Expected log-likelihood of new 

(out-of-sample) bond quotes. 

The difference between the estimated 

zero-coupon yield curve and the ‘true’ 

one. 

Optimal model Correctly identifies observation 

error distribution. 

Correctly identifies the term structure 

– regardless of observation errors. 

Quality 

compared using 

Leave-out-one cross-validation 

on the real data. 

Model data with model errors 

generated with a special algorithm. 

Useful for Estimating term structure for 

further bond-related work: 

pricing bonds, estimating effects 

of various factors on bond 

prices, etc. 

Estimating the term structure for uses 

not directly connected with bonds 

(discounting, pricing derivatives, 

monetary policy). 

 

Comparison of Term Structure Fitting 

The main problem is designing a simulation scheme so that the random observation errors 

introduced into bond prices do not favor one estimation method over the others. For example, if we 

use i.i.d. normal errors, then the best way to estimate the yield curve is to use equal weights. Thus, 

the best estimation scheme is actually determined by the assumed distribution of observation errors. 

Once we assume a specific form for the observation error distribution, there is no need for a 

comparison of various estimation methods. One can easily devise a method tailored specifically for 

this kind of distribution (e.g. maximum likelihood estimate). 

Unfortunately, the true error distribution is unknown. Therefore, we use a specially designed 

bootstrap-based procedure to make sure that the distribution of the modeled errors is as close to the 

real distribution as possible. The comparison thus makes sense since we do not assume any kind of 

error distribution a priori. 

 

Step 1: For each estimation method 𝑘 and for each date 𝑡, yield curves 𝑟𝑡,𝑘(⋅) are estimated and 

the model prices 𝑃̂𝑖,𝑡,𝑘 are calculated. For each date 𝑡, we randomly choose the base (‘true’) yield 

curve for that date 𝑟𝑡,𝑏𝑎𝑠𝑒(⋅) at random from all estimated yield curves 𝑟𝑡,𝑘(⋅) for that date. 
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The sole purpose of this step is to choose a realistic ‘true’ yield curve for further experiments. 

Step 2: For each bond 𝑖 for each date 𝑡 and for each model 𝑘, a set of errors is formed 𝜀𝑖,𝑡,𝑘: 

𝜀𝑖,𝑡,𝑘 = 𝑃𝑖,𝑡 − 𝑃̂𝑖,𝑡,𝑘, 

where 𝑃𝑖,𝑡 are the observed bond prices. 𝜀𝑖,𝑡,𝑘 are the fitting errors on date 𝑡 for all bonds traded 

on that day. We assume that this sample is representative of the true observation errors at least in 

the sense of the marginal distribution (we filter out outliers for each bond individually).  

The above steps are only performed once. The next steps are designed to replicate the 

correlations between observation errors for different bonds and are performed each time we need to 

simulate a noisy set of bond prices (i.e. for every date t, but nothing stops us from simulating many 

scenarios for the same date t). 

Step 3: To obtain noisy bond prices for date t, we calculate theoretical prices for all bonds i 

using the base yield curve 𝑃̂𝑖,𝑡,𝑏𝑎𝑠𝑒 and add random errors 𝜀𝑖̂ to them. The errors are determined in 

the next two steps: 

Step 4: From all dates in the dataset, we randomly choose the reference date 𝑡𝑡
∗ (one for all 

bonds i, but different for each simulation 𝑡). 

Step 5: For each bond i: 

 a random date 𝜏𝑖,𝑡, separated from the reference date 𝑡𝑡
∗ by no more than T days is 

chosen; 

 a random fitting model 𝜅𝑖,𝑡 is chosen, in order not to give preference to one of the 

models, as noted above; 

 the model observation error  𝜀𝑖̂ for the bond i is taken to be equal to real fitting error for 

the randomly selected date 𝜏𝑖,𝑡 and the randomly selected fitting model 𝜅𝑖,𝑡: 

𝜀𝑖̂ = 𝜀𝑖,𝜏𝑖,𝑡,𝜅𝑖,𝑡 . 

The parameter T regulates the correlation structure of the modeled errors. Small values of T 

ensure that the model errors for the same day are taken from neighboring days (from the same day if 

𝑇 = 0), which ensures the plausibility of this combination of errors. However, the assortment of 

real fitting errors to sample from, is very small in this case. On the other hand, large values of T 

mean that real fitting errors are sampled from all the available history almost independently for each 

bond.  

Note that since bond fitting errors have previously been found to be persistent over time, this 

sampling scheme is actually sensible for 𝑇 > 0. 

In our simulation, we use 𝑇 = 20. 
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Step 6: For all fitting models k, yield curves 𝑟𝑡,𝑘
𝑒𝑠𝑡(⋅) are estimated from the noisy model data 

generated in the previous steps. 

Step 7: For each model 𝑘, we calculate the yield curve fitting error: 

𝜀𝑡,𝑘
𝑒𝑠𝑡(𝜏)  =  𝑟𝑡,𝑘

𝑒𝑠𝑡(𝜏)  − 𝑟𝑡,𝑏𝑎𝑠𝑒(𝜏) , 

where 𝑟𝑡,𝑘
𝑒𝑠𝑡(𝜏) is the zero-coupon yield for term to maturity 𝜏, estimated from the noisy data for 

date 𝑡 using model 𝑘 (see Step 6), and 𝑟𝑡,𝑏𝑎𝑠𝑒(𝜏) is the corresponding ‘true’ model zero-coupon rate 

(see Step 1).  

Note that it would be more logical to use relative errors, rather than absolute ones. However, as 

the yields in some European countries (Germany, France) reach zero and negative values during the 

time period considered, the relative errors become inadequately large. Therefore, we use the 

absolute errors. 

 

Steps 1–7 are repeated for each date t in the dataset. For each date t, steps 3–7 are repeated 

𝑁𝑟𝑎𝑛𝑑𝑜𝑚 = 100 times with new random noisy prices to obtain a sample 𝜀𝑡,𝑘,𝑗
𝑒𝑠𝑡 (𝜏), 𝑗 = 1 . . 𝑁𝑟𝑎𝑛𝑑𝑜𝑚 

from the yield curve fitting error distribution. 

The error statistics reported below are calculated from the joint sample of all fitting errors for 

all simulations for all dates in the dataset. 

 

Comparison of Bond Price Fitting 

This comparison technique is based on estimating the posterior predictive power using real 

data. We estimate it via a leave-out-one cross-validation as described below. 

Step 1: One bond 𝑖 is excluded from the sample. Using the truncated sample, a yield curve  

𝑟−𝑖,𝑡,𝑘(⋅) is constructed via fitting model k. 

Step 2: The model price 𝑃̂−𝑖,𝑡,𝑘 of the excluded bond 𝑖 and the model prediction error 𝜀−𝑖,𝑡,𝑘 are 

calculated from the yield curve 𝑟−𝑖,𝑡,𝑘(⋅). 

Step 3: Since all our estimation methods feature independent observation errors, the posterior 

predictive error distribution for the excluded bond coincides with its prior distribution (normal with 

standard deviations 𝑤𝑘). Therefore, the expected out-of-sample log-likelihood for model k, 𝐸𝐿𝐿𝑘 

can easily be approximated as: 

𝐸𝐿𝐿𝑘 =
1

𝑇
∑[

1

𝑛
∑log 𝑝𝑖,𝑡,𝑘 (𝜀𝑖,𝑡,𝑘)

𝑛

𝑖=1

]

𝑇

𝑡=1

, 

where 𝑝𝑖,𝑡,𝑘(𝑥) is the predictive probability density function of the observation error for bond 𝑖 

on date 𝑡 according to model 𝑘: 
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 For models 1–6 (‘Standard’, ‘D’, ‘1/D’, ‘1/S’, ‘1/log(S/MS)’, ‘HIST’), 𝑝𝑖,𝑡,𝑘(𝜀) is a 

normal pdf with the standard deviation equal to the inverse of the corresponding weight 

𝑤𝑖,𝑡,𝑘: 

𝑝𝑖,𝑡,𝑘(𝜀) =
𝑤𝑖,𝑡,𝑘𝐶𝑖,𝑡,𝑘

√2𝜋
exp [−

𝜀2𝑤𝑖,𝑡,𝑘
2 𝐶𝑖,𝑡,𝑘

2

2
] . 

Note that up until now, the weights could have been specified up to a multiplicative constant 

𝐶: the change of variables 𝑤′𝑖,𝑡,𝑘 = 𝐶 ⋅ 𝑤𝑖,𝑡,𝑘 does not change the optimization problem in 

(1). 𝐸𝐿𝐿𝑘 clearly depends on this constant (these constants), so to compute 𝑝𝑖,𝑡,𝑘(𝜀), we 

estimate the respective constant via maximum likelihood. Since 𝑝𝑖,𝑡,𝑘(𝜀) is the predictive 

density for the observation error 𝜀−𝑖,𝑡,𝑘, in computing it we cannot use information on bond 

i. Therefore, we can estimate: 

𝐶𝑖,𝑡,𝑘 = argmax∑[log
𝑤𝑗,𝑡,𝑘𝐶𝑖,𝑡,𝑘

√2𝜋
−
𝜀𝑗,𝑡,𝑘
2 𝑤𝑗,𝑡,𝑘

2 𝐶𝑖,𝑡,𝑘
2

2
]

𝑛

𝑗=1
𝑗≠𝑖

=
√

𝑛 − 1

∑ 𝜀𝑗,𝑡,𝑘
2 𝑤𝑗,𝑡,𝑘

2𝑛
𝑗=1
𝑗≠𝑖

 . 

 

The values for 𝐶𝑖,𝑡,𝑘 can be computed after solving the optimization problem (1), but before 

making the predictions, because the fitting does not depend on 𝐶𝑖,𝑡,𝑘, only the predictive distribution 

does. 

 For model 7 (‘Bid-Ask’): 

𝑝𝑖,𝑡,𝑘(𝜀) =
𝑤𝑗,𝑡,𝑘𝐶𝑖,𝑡,𝑘

√2𝜋 + 𝑠𝑖,𝑡𝑤𝑗,𝑡,𝑘𝐶𝑖,𝑡,𝑘
exp [−

𝑤𝑖,𝑡,𝑘
2 𝐶𝑖,𝑡,𝑘

2 𝜙2(𝜀, 𝑠𝑖,𝑡)

2
], 

where 𝜙(𝜀, 𝑠) =

{
 
 

 
 𝜀 +

𝑆

2
, 𝜀 ≤  −

𝑠

2
;

𝜀 −
𝑆

2
,   𝜀 ≥  

𝑠

2
;

0, −
𝑠

2
≤ 𝜀 ≤

𝑠

2
;

 

𝑠𝑖,𝑡 is the bid-ask spread of bond i at date t, 𝐶𝑖,𝑡,𝑘 is the multiplicative constant to be 

estimated via maximum likelihood. As before, 

𝐶𝑖,𝑡,𝑘 = argmax∑[log
𝑤𝑗,𝑡,𝑘𝐶𝑖,𝑡,𝑘

√2𝜋 + 𝑠𝑖,𝑡𝑤𝑗,𝑡,𝑘𝐶𝑖,𝑡,𝑘
−
𝜀𝑗,𝑡,𝑘
2 𝑤𝑗,𝑡,𝑘

2 𝐶𝑖,𝑡,𝑘
2

2
]

𝑛

𝑗=1
𝑗≠𝑖

. 



 
 

17 
 

A closed form solution for 𝐶𝑖,𝑡,𝑘 is available, but it requires solving a cubic equation, so 

the formula is too complex to be included here. As before, this constant can be computed 

before making the prediction for the price of bond i. 

 

These steps are repeated for each date 𝑡 forming a set of expected log-likelihoods to be 

compared, but we also record the individual prediction errors 𝜀−𝑖,𝑡,𝑘, as their mean and standard 

deviation  (taken across the random simulations and across the time dimension 𝑡) could serve as a 

measure of robustness of the weighting models considered. 

 

5 Empirical Results 

The Effect of Observation Errors on Term Structure Estimations 

Figure 3 shows an example of the yield curves estimated by the Svensson model for 𝑁𝑑𝑎𝑡𝑒𝑠 = 252 

days. As bonds with a maturity of less than 90 days were excluded from the sample, the constructed 

curves at short terms are excessively volatile, that is, they have anomalously low or high values. 

Therefore, the term structure of interest rates is also considered only for terms from 90 days. 

 

Figure 3. The yield curves for different days for the Svensson model – Spain. 
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Next, 𝑁𝑟𝑎𝑛𝑑𝑜𝑚 = 100 sets of random errors are added to the model prices for each bond for 

each day according to the procedure described above. Then, for each noisy set of model bond 

prices, zero-coupon yield curves are estimated via every fitting model. For every day, we get 

𝑁𝑟𝑎𝑛𝑑𝑜𝑚 ⋅ 𝑁𝑚𝑜𝑑𝑒𝑙𝑠 interest rate term structures constructed from noisy data (Figure 4). 

  

Figure 4. The yield curve for the Svensson model at market prices – Spanish data on 3 Feb 2017, 

the average for 100 noisy curves, 5% and 95% quantiles for noisy curves. 

The estimation error distribution would ideally have a zero mean and a small standard 

deviation. However, Figure 5 shows that this is not always the case – in practice, noisy estimates are 

usually biased away from zero for a given date. 

We consider four term to maturity intervals for convenience – short-term (from 90 days to 1 

year), medium-term (1–8 years), long-term (8–49 years) and all maturities (90 days to 49 years). 
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Figure 5. Box plots of interest rate estimation errors for the Svensson model – UK data for 3 Feb 

2017 and 21 Jun 2017. 

 

The means of the error distributions are non-zero for a given date. What distribution do these 

non-zero means follow over different dates? Figure 6 plots estimated means for all dates.  

To assess the impact of data errors on the estimation results for all models, we retain the term 

to maturity dimension 𝜏 and compute the mean 𝑀𝑡,𝑘(𝜏) and the standard deviation 𝐷𝑡,𝑘(𝜏) of the 

errors across all random samples within each date. 

The mean and the standard deviation of errors in rates behave in a similar way (Figures 6, 7) – 

they have maximum values for small terms (means from -10% to 5%, standard deviations from 

0.1% to 10%), then fall and fluctuate at a certain level for medium and long terms to maturity 

(means from -0.3% to 0.3%, standard deviations from 0.03% to 0.2%). The average of the mean 

errors for different days varies around zero while the average standard deviation is about 0.1%. 
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Figure 6. Mean of interest rate estimation errors for the parametric model – UK, various dates. 

 

Figure 7. Standard deviation of interest rate estimation errors for the parametric model – UK, 

various dates. 

One can see that realistic observation errors in bond prices can, in general, greatly affect the 

estimated term structure. 

Term Structure Fitting 

To compare the term structure estimates, for each fitting method, 𝑘, we calculate the median 

absolute deviation of the fitting errors for each term to maturity 𝜏: 𝑀𝑘(𝜏) = median𝑡,𝑗|𝜀𝑡,𝑘,𝑗
𝑒𝑠𝑡 (𝜏)|. 
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Table 2 presents an example of the median term structure deviation levels with additional 

aggregation over the term to maturity 𝜏. We also report significance levels for the null hypothesis of 

insignificant differences vs. the standard model. Almost all differences turn out to be significant – 

mainly due to large sample sizes (hundreds of thousands). 

The significance levels are produced using the Wilcoxon-Mann-Whitney test. According to Fay 

and Proschan (2010), it should be preferred to the t-test in our case – many observations which are 

subject to errors and outliers (due to possible numerical optimization issues). Note that although the 

Wilcoxon-Mann-Whitney test does not, strictly speaking, test for the difference in medians for non-

equal distributions, we report median values to provide additional intuition. 

Table 2. Median term structure fitting errors Mk(τ) for the French data. Less is better. Significance 

levels via Wilcoxon-Mann-Whitney test comparing the Mk(τ) levels with the Standard model (*). 

(+) indicates the best model. 

Weighting 
Scheme  

From 90 months to 
the year 

From 1 to 8 years From 8 to 49 years All 

 Paramet
ric 

Non-
paramet

ric 

Paramet
ric 

Non-
paramet

ric 

Paramet
ric 

Non-
paramet

ric 

Paramet
ric 

Non-
paramet

ric 
Standard 0,129% 

+++ 
1,54% 0,05% 

+++ 
0,128% 0,007% 

+++ 
0,062% 0,007% 

+++ 
0,066% 

D 0,497% 
*** 

0,56% 
*** 

0,231% 
*** 

0,107% 
*** 

0,024% 
*** 

0,062% 
* 

0,027% 
*** 

0,065% 
*** 

1/D 2,836% 
*** 

0,565% 
*** 

0,216% 
*** 

0,108% 
*** 

0,276% 
*** 

0,056% 
*** 

0,271% 
*** 

0,058% 
*** 

1/S 2,681% 
*** 

0,702% 
*** 

0,181% 
*** 

0,129% 
** 

0,279% 
*** 

0,043% 
***,+++ 

0,279% 
*** 

0,046% 
***,+++ 

1 / 
log(S/MS) 

0,137% 
*** 

1,798% 
*** 

0,056% 
*** 

0,172% 
*** 

0,007% 
*** 

0,082% 
*** 

0,008% 
*** 

0,09% 
*** 

HIST 0,223% 
*** 

0,567% 
*** 

0,084% 
*** 

0,105% 
*** 

0,016% 
*** 

0,059% 
*** 

0,018% 
*** 

0,062% 
*** 

Bid-ask 0,235% 
*** 

0,565% 
*** 

0,056% 
*** 

0,12% 
*** 

0,033% 
*** 

0,051% 
*** 

0,035% 
*** 

0,055% 
*** 

Different from the standard model: ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 

Best in column: ‘+++’ 0.001 ‘++’ 0.01 ‘+’ 0.05 

 

We also report the results without aggregation over the term-to-maturity dimension. Figure 8 

schematically depicts the results. Each horizontal line corresponds to a weighting scheme as 

indicated via the legend. For a given weighting scheme, a portion of the line is black for those terms 

to maturity, for which its 𝑀𝑘(𝜏) is the best (several schemes might be marked as best if the 

difference is insignificant).  A portion of the line is dark gray if for these maturities the scheme 
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performs worse than the best, but better than the standard model. Light gray line segments mean the 

model differs from the standard model insignificantly. Finally, white regions mean the model 

performs worse than the standard model.  

One can see that for the parametric model any modification is significantly worse than the 

standard model with equal weights. While this might seem counterintuitive at the first glance (e.g. 

one would expect better results for the ‘D’ scheme for longer maturities and for ‘1/D’ scheme for 

shorter maturities), it can be explained. 

    

Figure 8. A graphical representation of the comparison results. French data. Black = the best, dark 

grey = better than the standard, light gray = insignificantly different from the standard, white = 

worse than standard. 

Consider, for example, the ‘1/D’ scheme. It gives much more weight to short-term bonds and 

less weight to long-term bonds. It is to be expected that the estimate of the long-term rates will be 

worse for the ‘1/D’ scheme than for the standard approach. However, the estimate of the short-term 

rates will also be worse, because the Svensson parametric equation is not flexible enough. Some 

bonds have much more weight than others and fitting the curve to these bonds (very short-term 

bonds in this case) will inevitably mess with other maturities. Basically, instead of normal fitting for 

all maturities we have overfitting for some bonds and underfitting for others. The same applies to 

other approaches – variance in weights decreases the effective amount of data used to fit the curve, 

which results in overfitting of some bonds and underfitting of others.  

The non-parametric model has more interpretable results – ‘D’ is better for longer maturities, 

‘1/D’ – for shorter, etc. The results for other countries do not exhibit a single pattern. They are 

summarized in Table 4 below (see the Appendix for the detailed results). 
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Bond Price Fitting 

Using cross-validation, we estimate the posterior predictive log-likelihood for all weighting 

schemes. Since the underlying stochastic model is the same (independent normally distributed 

observation errors), the log-likelihood values are directly comparable – more is better. Once again, 

we assess the significance of the differences in log-likelihoods using the Wilcoxon-Mann-Whitney 

test, which is preferred due to outliers in the data. As before, we report median values for the 

predictive log-likelihood even though the statistical test we use does not actually test for the 

difference in medians in a general case. 

An example is presented in Table 3. Results for other countries are reported in the Appendix. 

They are summarized in Table 4 below. 

Table 3. Results of cross-validation (the median value of the expected log-likelihood). More is 

better. French data. Significance levels via Wilcoxon-Mann-Whitney test comparing the ELL levels 

with the Standard model (*). (+) indicates the best model. 

 

 

 

 

 

 

Different from the standard model: ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 

Best in column: ‘+++’ 0.001 ‘++’ 0.01 ‘+’ 0.05 

 

Aggregated results 

We report the aggregated statistics for all countries. We indicate the preferred method 

according to the two approaches (term structure fitting and bond price fitting) and within the two 

models (parametric and non-parametric). 

Table 4. Summary of comparison results for various countries. Reporting the best method 

(methods) for each setting. 

Country Term Structure Fitting Bond Price Fitting 

Parametric Non-parametric Parametric Non-

parametric 

France Standard 1/S, other equal Standard HIST 

Germany Standard Various Standard Standard and 

Weighting Scheme Parametric model Non-parametric model 

Standard -1,71+++ -3,96 

D -2,85*** -5,17*** 

1/D -2,04*** -2,89*** 

1/S -3,27*** -3,53*** 

1/log(S/MS) -2,06*** -4,21*** 

HIST -2,75*** -1,89***, +++ 

Bid-Ask -1,99*** -3,97 
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1/log(S/MS) 

Greece Standard Standard 1/D 1/D 

Italy Standard All equal Standard 1/D 

Portugal Standard 1/D and Standard 1/D 1/D 

Russia Standard Standard Standard Standard 

Spain Standard 1/D and Standard 1/S 1/S, Standard 

United 

Kingdom 

1/D, D and 

Standard 

Standard, D and 

1/D 

1/D 1/D and HIST 

 

6 Conclusion 

Our results are twofold. We propose a non-parametric bootstrap-based method of sampling 

real-like observation errors in model bond price data. This allows us to estimate the magnitude of 

errors in estimating the zero-coupon yield curve from bond prices. 

We stipulate that this procedure does not introduce an unjust bias towards one weighting 

scheme and use it to compare different weighting schemes. The weighting schemes for the 

comparison are taken from the literature along with several other plausible choices. 

The results of the comparison are somewhat surprising. If one is interested in the quality of 

fitting the zero-coupon yield curve, the standard method (equal weights) is preferred for almost all 

datasets for the Svensson model and mixed results with no discernible pattern for the spline method. 

However, real-life bond price fitting errors can be assumed to be roughly proportional to the inverse 

duration, which is one of the most common weighting schemes used in the literature. We think that 

other schemes lose in this comparison due to the fact that their weights are too volatile themselves 

(e.g. the bid-ask spread changes too much for a given bond from one day to another, which 

introduces additional volatility into the model). 

 

We can summarize the practical takeaway as follows: 

1. Typical observation errors in bond prices are relatively large, resulting in fitting 

discrepancies in the zero-coupon yield curve of about 10–100 basis points. 

2. In light of such large discrepancies, we do not advise to introduce weights for bonds, as 

most choices result in overfitting for bonds with large weights and underfitting for bonds 

with small weights. 
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3. The variance of the real-life observation errors in bond prices can be considered to be 

proportional to the inverse duration of the bond, which is one of the most popular choices in 

the literature. 

Therefore, if one feels like introducing varying weights for bonds, they should be proportional to 

the inverse duration. However, equal weights are equally fine if one is interested in the term 

structure estimates and not in the bond price distribution.  
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Appendix 

In what follows, we present the results for all countries in our dataset. 

Term Structure Fitting 

Germany 

Table 5. Median term structure fitting errors Mk(τ) for the German data. Less is better. Significance levels via Wilcoxon-Mann-Whitney test 

comparing the Mk(τ) levels with the Standard model (*). (+) indicates the best model. 

Weighting 
Scheme 

From 90 months to the year From 1 to 8 years From 8 to 49 years All 

 Parametric Non-
parametric 

Parametric Non-
parametric 

Parametric Non-
parametric 

Parametric Non-
parametric 

Standard 0,245%+++ 1,055% 0,023%+++ 0,208%+++ 0,007%+++ 0,999% 0,008%+++ 0,895% 
D 0,86%*** 2,28%*** 0,1%*** 0,278%*** 0,028%*** 0,996%** 0,034%*** 0,92%*** 

1/D 
2,486%*** 

0,574% 
 (***,+++) 0,309%*** 0,282%*** 0,207%*** 1,001%*** 0,228%*** 0,85% 

1/S 
0,506%*** 0,669%*** 0,078%*** 0,298%*** 0,186%*** 

0,954% 
(***,+++) 0,17%*** 0,778%. 

1/log(S/MS) 0,334%*** 1,03%*** 0,031%*** 0,275%*** 0,01%*** 0,996%*** 0,012%*** 0,871%*** 
HIST 2,274%*** 0,693%*** 0,097%*** 0,226%*** 0,029%*** 1,007%*** 0,034%*** 0,874%*** 

Bid-ask 0,307%*** 0,974%*** 0,033%*** 0,223%*** 0,012%*** 1,001%*** 0,014%*** 0,885%. 
Different from the standard model: ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 

Best in column: ‘+++’ 0.001 ‘++’ 0.01 ‘+’ 0.05 
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Figure 9. A graphical representation of the comparison results. German data. Black = the best, dark grey = better than the standard, light gray = 

insignificantly different from the standard, white = worse than standard. 
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Greece 

Table 6. Median term structure fitting errors Mk(τ) for the Greek data. Less is better. Significance levels via Wilcoxon-Mann-Whitney test 

comparing the Mk(τ) levels with the Standard model (*). (+) indicates the best model. 

Weighting 

Scheme 

From 90 months to the year From 1 to 8 years From 8 to 49 years All 

 Parametric Non-parametric Parametric Non-

parametric 

Parametric Non-

parametric 

Parametric Non-

parametric 

Standard 0,457%+++ 0,126%+++ 0,228%+++ 0,15%+++ 0,175%+++ 0,352%+ 0,178%+++ 0,268%+++ 

D 25,404%*** 0,284%*** 0,815%*** 0,339%*** 0,296%*** 0,842%*** 0,398%*** 0,541%*** 

1/D 2,776%*** 0,381%*** 0,441%*** 0,215%*** 0,602%*** 0,63%*** 0,579%*** 0,456%*** 

1/S 1,056%*** 0,887%*** 0,454%*** 0,492%*** 0,57%*** 2,457%*** 0,557%*** 1,45%*** 

1/log(S/MS) 7,518%*** 0,804%*** 0,502%*** 0,756%*** 0,344%*** 2,744%*** 0,369%*** 1,694%*** 

HIST 7,524%*** 0,197%*** 1,053%*** 0,283%*** 0,649%*** 0,853%*** 0,69%*** 0,599%*** 

Bid-ask 4,666%*** 0,186%*** 0,414%*** 0,167%*** 0,239%*** 0,355%* 0,264%*** 0,281%*** 

Different from the standard model: ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 

Best in column: ‘+++’ 0.001 ‘++’ 0.01 ‘+’ 0.05 
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Figure 10. A graphical representation of the comparison results. Greek data. Black = the best, dark grey = better than the standard, light gray = 

insignificantly different from the standard, white = worse than standard. 
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Italy 

Table 7. Median term structure fitting errors Mk(τ) for the Italian data. Less is better. Significance levels via Wilcoxon-Mann-Whitney test 

comparing the Mk(τ) levels with the Standard model (*). (+) indicates the best model. 

Weighting Scheme From 90 months to the year From 1 to 8 years From 8 to 49 years All 

 Parametric Non-parametric Parametric Non-parametric Parametric Non-parametric Parametric Non-parametric 

Standard 0,139%+++ 2,078% 0,031%+++ 0,288% 0,018%+++ 0,278% 0,018%+++ 0,274% 
D 8,913%*** 12,563%*** 0,275%*** 0,432%*** 0,071%*** 0,308%***,+++ 0,076%*** 0,339%***,+++ 

1/D 2,518%*** 2,309%*** 0,444%*** 0,262%***,+++ 0,395%*** 0,339%***,+++ 0,405%*** 0,32%***,+++ 
1/S 2,363%*** 1,314%*** 0,248%*** 0,57%***,+++ 0,257%*** 1,002%***,+++ 0,257%*** 0,803%***,+++ 

1/log(S/MS) 0,157%*** 0,673%***,+++ 0,056%*** 0,443%***,+++ 0,023%*** 0,522%***,+++ 0,024%*** 0,501%***,+++ 
HIST 0,492%*** 1,29%*** 0,149%*** 0,319%***,+++ 0,066%*** 0,452%***,+++ 0,069%*** 0,411%***,+++ 

Bid-ask 0,164%*** 1,616% 0,039%*** 0,309%***,+++ 0,019%*** 0,436%***,+++ 0,019%*** 0,396%***,+++ 
Different from the standard model: ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 

Best in column: ‘+++’ 0.001 ‘++’ 0.01 ‘+’ 0.05 
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Figure 11. A graphical representation of the comparison results. Italian data. Black = the best, dark grey = better than the standard, light gray = 

insignificantly different from the standard, white = worse than standard. 
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Portugal 

Table 8. Median term structure fitting errors Mk(τ) for the Portuguese data. Less is better. Significance levels via Wilcoxon-Mann-Whitney test 

comparing the Mk(τ) levels with the Standard model (*). (+) indicates the best model. 

Weighting 
Scheme 

From 90 months to the year From 1 to 8 years From 8 to 49 years All 

 Parametric Non-
parametric 

Parametric Non-
parametric 

Parametric Non-
parametric 

Parametric Non-
parametric 

Standard 0,307%+++ 0,148% 0,061%+++ 0,108% 0,024%+++ 0,105%+++ 0,028%+++ 0,106%+++ 
D 1,826%*** 0,266%*** 0,107%*** 0,163%*** 0,03%*** 0,118%*** 0,036%*** 0,126%*** 

1/D 1,712%*** 0,095%*** 0,199%*** 0,1%***,+++ 0,2%*** 0,13%*** 0,199%*** 0,117%*** 
1/S 1,738%*** 0,09%***,+++ 0,304%*** 0,115%*** 0,168%*** 0,146%*** 0,182%*** 0,134%*** 

1/log(S/MS) 0,567%*** 0,19%*** 0,076%*** 0,162%*** 0,027%*** 0,17%*** 0,032%*** 0,167%*** 
HIST 0,84%*** 0,174%*** 0,155%*** 0,121%*** 0,048%*** 0,125%*** 0,057%*** 0,121%*** 

Bid-ask 0,497%*** 0,149% 0,071%*** 0,115%*** 0,033%*** 0,116%*** 0,037%*** 0,117%*** 
Different from the standard model: ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 

Best in column: ‘+++’ 0.001 ‘++’ 0.01 ‘+’ 0.05 
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Figure 12. A graphical representation of the comparison results. Portuguese data. Black = the best, dark grey = better than the standard, light gray = insignificantly 

different from the standard, white = worse than standard. 
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Russia 

Table 9. Median term structure fitting errors Mk(τ) for the Russian data. Less is better. Significance levels via Wilcoxon-Mann-Whitney test 

comparing the Mk(τ) levels with the Standard model (*). (+) indicates the best model. 

Weighting 
Scheme 

From 90 months to the year From 1 to 8 years From 8 to 49 years All 

 Parametric Non-
parametric 

Parametric Non-
parametric 

Parametric Non-
parametric 

Parametric Non-
parametric 

Standard 0,235%+++ 0,084%+++ 0,037%+++ 0,036%+++ 0,042%+++ 0,038%+++ 0,041%+++ 0,036%+++ 
D 1,263%*** 0,09%*** 0,059%*** 0,038%*** 0,044%*** 0,04%*** 0,049%*** 0,038%*** 

1/D 0,257%*** 0,191%*** 0,044%*** 0,038%*** 0,063%*** 0,04%*** 0,054%*** 0,039%*** 
1/S 0,322%*** 0,17%*** 0,108%*** 0,099%*** 0,123%*** 0,072%*** 0,116%*** 0,078%*** 

1/log(S/MS) 0,594%*** 0,363%*** 0,1%*** 0,108%*** 0,254%*** 0,151%*** 0,176%*** 0,136%*** 
HIST 1,485%*** 0,098%*** 0,17%*** 0,052%*** 0,391%*** 0,055%*** 0,312%*** 0,053%*** 

Bid-ask 0,386% 0,09%*** 0,086%*** 0,039%*** 0,12%*** 0,042%*** 0,105%*** 0,04%*** 
Different from the standard model: ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 

Best in column: ‘+++’ 0.001 ‘++’ 0.01 ‘+’ 0.05 
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Figure 13. A graphical representation of the comparison results. Russian data. Black = the best, dark grey = better than the standard, light gray = 

insignificantly different from the standard, white = worse than standard. 

  

  



 
 

37 
 

Spain 

Table 10. Median term structure fitting errors Mk(τ) for the Spanish data. Less is better. Significance levels via Wilcoxon-Mann-Whitney test 

comparing the Mk(τ) levels with the Standard model (*). (+) indicates the best model. 

Weighting 
Scheme 

From 90 months to the year From 1 to 8 years From 8 to 49 years All 

 Parametric Non-
parametric 

Parametric Non-
parametric 

Parametric Non-
parametric 

Parametric Non-
parametric 

Standard 0,197%+++ 0,14% 0,05%+ 0,067% 0,007%+++ 0,029% 0,01%+++ 0,034% 
D 0,785%*** 0,849%*** 0,186%*** 0,356%*** 0,042%*** 0,043%*** 0,05%*** 0,058%*** 

1/D 1,96%*** 0,088%***,+++ 0,307%*** 0,061%***,+++ 0,296%*** 0,038%*** 0,305%*** 0,041%*** 
1/S 0,705%*** 0,105%*** 0,111%*** 0,076%*** 0,103%*** 0,046%*** 0,108%*** 0,051%*** 

1/log(S/MS) 0,32%*** 0,721%*** 0,074%*** 0,22%*** 0,011%*** 0,153%*** 0,014%*** 0,158%*** 
HIST 0,292%*** 0,29%*** 0,073%*** 0,128%*** 0,025%*** 0,041%*** 0,029%*** 0,049%*** 

Bid-ask 0,207%*** 0,141%** 0,051%* 0,078%*** 0,009%*** 0,041%*** 0,012%*** 0,045%*** 
Different from the standard model: ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 

Best in column: ‘+++’ 0.001 ‘++’ 0.01 ‘+’ 0.05 
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Figure 14. A graphical representation of the comparison results. Spanish data. Black = the best, dark grey = better than the standard, light gray = 

insignificantly different from the standard, white = worse than standard. 
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United Kingdom  

Table 11. Median term structure fitting errors Mk(τ) for the United Kingdom data. Less is better. Significance levels via Wilcoxon-Mann-Whitney 

test comparing the Mk(τ) levels with the Standard model (*). (+) indicates the best model. 

Weighting 
Scheme 

From 90 months to the year From 1 to 8 years From 8 to 49 years All 

 Parametric Non-
parametric 

Parametric Non-
parametric 

Parametric Non-
parametric 

Parametric Non-
parametric 

Standard 3,727% 0,095%+++ 0,306% 0,059%+++ 0,086%+++ 0,058%+++ 0,103%+++ 0,057%+++ 
D 4,701%*** 2,346%*** 0,8%*** 0,191%*** 0,115%*** 0,079%*** 0,133%*** 0,091%*** 

1/D 0,393%***,+++ 0,175%*** 0,115%***,+++ 0,119%*** 0,193%*** 0,053%***,+++ 0,18%*** 0,059%*** 
1/S 1,052%*** 0,2%*** 0,16%*** 0,093%*** 0,16%*** 0,124%*** 0,171%*** 0,118%*** 

1/log(S/MS) 3,776%*** 0,267%*** 0,287%*** 0,137%*** 0,093%*** 0,083%*** 0,113%*** 0,091%*** 
HIST 3,771%*** 0,184%*** 0,294%*** 0,112%*** 0,115%*** 0,076%*** 0,134%*** 0,08%*** 

Bid-ask 3,799%*** 0,13%*** 0,331%*** 0,077%*** 0,091%*** 0,075%*** 0,108%*** 0,075%*** 
Different from the standard model: ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 

Best in column: ‘+++’ 0.001 ‘++’ 0.01 ‘+’ 0.05 
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Figure 15. A graphical representation of the comparison results. United Kingdom data. Black = the best, dark grey = better than the standard, light gray 

= insignificantly different from the standard, white = worse than standard. 
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Bond Price Fitting 

 

Germany 

Table 12. Results of cross-validation (the median value of the expected log-likelihood). More is 

better. German data. Significance levels via Wilcoxon-Mann-Whitney test comparing the ELL 

levels with the Standard model (*). (+) indicates the best model. 

 

 

 

 

 

 

 

Different from the standard model: ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 

Best in column: ‘+++’ 0.001 ‘++’ 0.01 ‘+’ 0.05 

 

Greece 

Table 13. Results of cross-validation (the median value of the expected log-likelihood). More is 

better. Greek data. Significance levels via Wilcoxon-Mann-Whitney test comparing the ELL levels 

with the Standard model (*). (+) indicates the best model. 

 

 

 

 

 

 

 

Different from the standard model: ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 

Best in column: ‘+++’ 0.001 ‘++’ 0.01 ‘+’ 0.05 

 

  

Weighting Scheme Parametric model Non-parametric model 
Standard -0,66+++ -1,38 

D -1,95*** -1,98*** 
1/D -0,81*** -2,16*** 
1/S -0,94*** -2,58*** 

1/log(S/MS) -1,15*** -1,36*,+ 
HIST -1,99*** -2,72*** 

Bid-ask -2,46*** -1,52*** 

Weighting Scheme Parametric model Non-parametric model 
Standard -5,26 -4,8 

D -10,97*** -11,95*** 
1/D -3,85***,+++ -3,8***,+++ 
1/S -9,34*** -14,52*** 

1/log(S/MS) -5,41*** -5,29*** 
HIST -5,25*** -5,99*** 

Bid-ask -4,63*** -4,21*** 
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Italy 

Table 14. Results of cross-validation (the median value of the expected log-likelihood). More is 

better. Italian data. Significance levels via Wilcoxon-Mann-Whitney test comparing the ELL levels 

with the Standard model (*). (+) indicates the best model. 

 

 

 

 

 

 

 

Different from the standard model: ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 

Best in column: ‘+++’ 0.001 ‘++’ 0.01 ‘+’ 0.05 

 

Portugal 

Table 15. Results of cross-validation (the median value of the expected log-likelihood). More is 

better. Portuguese data. Significance levels via Wilcoxon-Mann-Whitney test comparing the ELL 

levels with the Standard model (*). (+) indicates the best model. 

 

 

 

 

 

 

 

Different from the standard model: ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 

Best in column: ‘+++’ 0.001 ‘++’ 0.01 ‘+’ 0.05 

 

  

Weighting Scheme Parametric model Non-parametric model 
Standard -2,55 -2,65 

D -3,38*** -3,39*** 
1/D -2,75*** -2,43 ***,+++ 
1/S -3,72*** -3,07*** 

1/log(S/MS) -2,77*** -2,92*** 
HIST -3,02*** -3,21*** 

Bid-ask -2,63*** -2,69*** 

Weighting Scheme Parametric model Non-parametric model 
Standard -1,52 -2,44 

D -3,48*** -4,66*** 
1/D -0,96***,++ -1,39 ***,+++ 
1/S -1,16*** -1,91*** 

1/log(S/MS) -1,62* -2,7*** 
HIST -4*** -4,93*** 

Bid-ask -1,6. -2,46 
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Russia 

Table 16. Results of cross-validation (the median value of the expected log-likelihood). More is 

better. Russian data. Significance levels via Wilcoxon-Mann-Whitney test comparing the ELL 

levels with the Standard model (*). (+) indicates the best model. 

 

 

 

 

 

 

 

Different from the standard model: ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 

Best in column: ‘+++’ 0.001 ‘++’ 0.01 ‘+’ 0.05 

 

Spain 

Table 17. Results of cross-validation (the median value of the expected log-likelihood). More is 

better. Spanish data. Significance levels via Wilcoxon-Mann-Whitney test comparing the ELL 

levels with the Standard model (*). (+) indicates the best model. 

 

 

 

 

 

 

Different from the standard model: ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 

Best in column: ‘+++’ 0.001 ‘++’ 0.01 ‘+’ 0.05 

 

  

Weighting Scheme Parametric model Non-parametric model 
Standard -1,46++ -1,37 

D -1,78*** -1,66*** 
1/D -1,54*** -1,5*** 
1/S -2,29*** -2,36*** 

1/log(S/MS) -2,17*** -1,46*** 
HIST -2,56*** -1,64*** 

Bid-ask -1,51** -1,42*** 

Weighting Scheme Parametric model Non-parametric model 
Standard -1,17 -1,29 

D -2,06*** -2,21*** 
1/D -1,04*** -1,17*** 
1/S -0,75***,+++ -1,32 

1/log(S/MS) -1,27*** -1,48*** 
HIST -2,06*** -1,9*** 

Bid-ask -2,09*** -1,54*** 
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United Kingdom  

Table 18. Results of cross-validation (the median value of the expected log-likelihood). More is 

better. United Kingdom data. Significance levels via Wilcoxon-Mann-Whitney test comparing the 

ELL levels with the Standard model (*). (+) indicates the best model. 

 

 

 

 

 

 

 

Different from the standard model: ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 

Best in column: ‘+++’ 0.001 ‘++’ 0.01 ‘+’ 0.05 

 

  

Weighting Scheme Parametric model Non-parametric model 
Standard -19,93 -11,89+++ 

D -10,78*** -14,46*** 
1/D -3,22***,+++ -3,92*** 
1/S -32,32*** -30,58*** 

1/log(S/MS) -7,24*** -8,74*** 
HIST -7,31*** -4,01*** 

Bid-ask -12,91*** -7,95*** 
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