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1 Introduction

The search and matching framework due to Diamond, Mortensen and Pis-

sarides (e.g. Diamond, 1982, Mortensen, 1986 and Pissarides, 2000), DMP

hereafter, has become the workhorse for modeling labour market frictions. It

has an equally canonical optimality condition that minimizes frictions in the

model, the Hosios condition (Hosios, 1990). However, while it is well under-

stood that the Hosios condition is a coincidence of bargaining weights with

the elasticity of matching, it is less appreciated that the Hosios condition

only holds with linear technology.

To make this point,this paper employs the basic ingredients of the DMP

framework (matching function, Beveridge Curve, Nash Bargaining). Our

innovation is to assume that the production technology requires two workers

to be present. Admittedly, this is an extreme form of complementarity, but

the results hold for any number of workers larger than one1. The model of

this paper is set in continuous time, preventing instantaneous occupation of

all employment slots. Thus, there will be a phase between unemployment

1This echoes the contributions on matching of Becker (1973) and Shimer and Smith
(2000) in that multiple agents are needed for a match, but we abstract from sorting issues
by assuming homogenous agents.
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and productive employment. In turn this gives rise to additional thin-market

and congestion externalities.

As Mangin and Julien (2018) demonstrate, the Hosios Condition (in

a modified form) does work when the match surplus depends on the labour

market tightness if the bargaining weight is equal to the elasticity of matching

plus the elasticity of the surplus. However, there the production technology

continues to be linear in individual workers and it turns out multiple-worker

setups do not lend themselves to such a solution. An important paper intro-

ducing multiple workers is Stole and Zwiebel (1996) which extends the Nash

Bargaining approach to firms with multiple workers and diminishing returns

to scale. There, the firm bargains with each worker as marginal. They find

that there is a motive to overextend on the part of firms since that way they

can diminish the marginal contribution of the marginal worker and thus

reduce wages. This means, as Mortensen (2009) demonstrates, there is a

distortion the Hosios condition cannot correct for on top of thin-market and

congestion externalities.

One may think with simple multilateral Nash-Bargaining and a simpler

production function (linear for two workers), the Hosios Condition may be

restored. This paper investigates this first in a random search framework,
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much like the classical DMP model. It then takes cues from Moen (1997),

Montgomery (1991) and Peters (1991) to let search be directed2. The re-

sults, in both cases, are that the Hosios condition is insufficient to ensure

optimality. With random search it is impossible and in the directed search

setup a knife-edge case.

The Hosios condition’s lack of generality is not an arcane point. Many

scholars make use of it in calibration exercises. Examples include: Albertini

and Fairise (2013), Hornstein et al. (2005) and Shimer (2005). While these

studies have other aims, so this not a diminishment of their contributions, it

is important to point out assuming this condition is with loss of generality.

Section 2 solves for the decentralized case with random search and com-

pares it to the social optimum. Section 3 treats directed search. Section 4

concludes.

2The setup resembles that of Acemoglu and Shimer (1999) that also proposed a hybrid
model of Bargaining and directed search (but no wage posting as in Menzio and Shi, 2009).
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2 Random Search

2.1 The Model

Production can only commence once two workers are employed at the job.

Together, and only together they produce y. Here however, agents are as-

sumed to be homogenous, infinitely lived and risk neutral. This means the

production function is essentially a Leontief-production function in that the

first and the second worker are perfect complements. Let us discuss the

Bellman-equations:

rVU =
m(V,U)

U

vL
vL + vEL

(VL − VU ) +
m(V,U)

U

(
vEL

vL + vEL

)
(VE − VU )

(2.1)

where m(V,U) is the constant returns to scale, decreasing returns in both

arguments, matching function. V is the total number of vacancies and U

is the unemployed. r is the common discount rate. VU is the net present

value of being unemployed. Assuming no unemployment benefits its value

is derived from potential employment and the search effort that is assumed

to be costless for the worker. Either the worker gets the value VL because

he finds an employer who has not yet found another team member, with the
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probability m(V,U)/U times the probability of being an opening for a first

slot vL/(vL + vEL) (vL being the number of vacancies for the first slot and

vE the number of vacancies for the second slot), or he/she gets VE because

the employer has another worker and can start production, with probability

m(V,U)/U times the probability of this being an opening for a second slot

vEL/(vL + vEL). VL is:

rVL = wL +
vE

vL + vEL
m(V,U)(VEL − VL) + s(VU − VL) (2.2)

wL is the wage rate of being in the loop. The probability of finding a second

worker is (vEL/(vL + vEL))m(V,U) since once a worker is in a loop his prob-

ability of finding a second worker and obtaining VEL, is the same as for the

employer who posts vE vacancies. The last term reflects that with Poisson-

rate s the match is destroyed and the worker goes back unemployment while

the employer goes back to not having any workers. Once a productive match

has been made, workers get depending on when they joined:

rVE = wE + s(VU − VE) (2.3)

rVEL = wEL + s(VU − VEL) (2.4)
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wE and wEL are the wages of being productively employed immediately and

after having been in the loop. VV is the value of a vacancy, V 1
2

the value of

having one worker and JE the value of having two workers.

rVV =
m(V,U)

vL + vEL
V1/2 − k (2.5)

rV1/2 = −wL + vE
m(V,U)

vL + vEL
(JE − V1/2)− vEk − sV1/2 (2.6)

rJE = y − wE − wEL − sJE (2.7)

Employers post vacancies for a loop vL until there is no profit from doing

so. Therefore we have the free entry condition VV = 0. Once an employer

has obtained a first worker, vE vacancies will be posted until there is no

profit. The total number of vacancies posted at a time will be vL+vEL. We

also need to define the flows between employment E, Unemployment U and

being in the Loop L. The total number of workers is a large number N . The

number of unemployed U and workers in the loop L evolve according to:

U̇ = s(L+ 2E)−m(V,U) = 0 (2.8)

L̇ = m(V,U)
vL

vL + vEL
− sL−m(V,U)

vEL

vL + vEL
= 0 (2.9)

8



Together U and L define E, the number of workers in productive employ-

ment.

Ė = 2m(V,U)
vEL

vL + vEL
− s2E (2.10)

These equations are the equivalent of the Beveridge curve in the standard

model. To stay as close as possible to the standard DMP model the rents

will be divided according to the Nash Bargaining solution. Formally, when

an employer meets a worker and has not another worker in the loop the wage

must satisfy:

argmax(V1/2 − VV )µ(VL − VU )1−µ (2.11)

When a second worker arrives the bargaining problem for three parties is:

argmax(JE − V1/2)1−φ1−φ2(VE − VU )φ1(VEL−VL
)φ2 (2.12)

Examination of equation (2.5) yields that V1/2 = k/q(θ) where q(.) is

m(V,U)/(vL + vEL) and θ is (vL + vEL)/U . From (2.6) we get (m(V,U)/(vL + vEL))(JE−

V1/2) = k, using V1/2 = k/q(θ) implies:

JE = 2
k

q(θ)
(2.13)
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Using (2.6) and applying the previous results, we get:

wL = − (s+ r)k

q(θ)
(2.14)

This means the first employee that meets a given employer has to pay the

employer to take him on and post vacancies. This is because in this stage

no production takes place but still rent has to be shared. Since the utility

from V1/2 must be k/q(θ) but adding another vacancy yields 0 net returns

by the free entry condition the looped employee must compensate for this.

This is only acceptable to the employee because the probability of entering

productive work is so much higher because the employer posts many vE

vacancies. Now, this result should of course not be taken literally. In reality

a positive wage will be paid even for an employee in something of a waiting

position, but this wage might be below the reservation wage. Since the

employee expects a promotion to a much better job in the future. Using

(2.14) and (2.11) and (2.12) we can solve for VL given in (2.2). This yields:

rVL = − (s+ r)k

q(θ)
+

vEq(θ)φ2k

(1− φ1 − φ2)q(θ)
− s µk

(1− µ)q(θ)
(2.15)
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Next, we plug VL into the FOC for (2.11) and get:

rVU =
kvEφ2

1− φ1 − φ2
− k(r + s)

q(θ)(1− µ)
(2.16)

Using unemployment and the solutions for V 1
2

and JE we have:

rVU =
µkvL

(1− µ)U
+

vELkφ1
(1− φ1 − φ2)U

(2.17)

Together they yield the first equilibrium condition:

(r + s)

q(θ)(1− µ)
=

vEφ2
(1− φ1 − φ2)

− µvL
(1− µ)U

− vELφ1
(1− φ1 − φ2)U

(2.18)

The equation represents the decision of an employer to post vacancies

vL taking the number of vE as given. The LHS is (s + r) times the total

surplus in the first stage W1 (to be discussed later). The first term on the

RHS represents the gain the first employee gets once a second worker is

found. The second term represents what the employer will have to give up

in terms of rent to the first employee in the first stage divided by the number

of unemployed so representing the chance of each unemployed to receive it

once a match is made for a loop contract. The third represents what the
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second employee receives. Using VE and VEL, the solution for VU , VL and

the FOCs of Nash Bargaining, we get:

wE =
(s+ r)φ1k

(1− φ1 − φ2)q(θ)
+

µkvL
(1− µ)U

+
vELφ1k

(1− φ1 − φ2)U
(2.19)

and

wEL =
(s+ r)φ2k

(1− φ1 − φ2)q(θ)
− (s+ r)k

q(θ)
+

vEφ2k

1− φ1 − φ2
(2.20)

as well as:

(s+ r)k

q(θ)
= y− (s+ r)(φ1 + φ2)k

(1− φ1 − φ2)q(θ)
− µkvL

(1− µ)U
− vELφ1k

(1− φ1 − φ2)U
− vEφ2k

(1− φ1 − φ2)

(2.21)

This condition is for an employer with a looped employee. It determines the

optimal number of vE for any given U,L and vL. The LHS represents the

gain of the employer from a match that results in immediate production.

This is equal to the produce y minus the rent that needs to be given up to

both employees which is the second term but also minus a measure of the

respective reservation utilities of both employees represented in the third and

fourth term. The last term on the RHS is the utility the looped employee

got from being in the loop. With (2.18), (2.21) and the flow equations (2.8)

and (2.9) we define equilibrium:
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Definition 1 With random matching for 2 workers a decentralized equilib-

rium consists of vE, vL, L and U with (2.18),( 2.21), (2.8) and (2.9) satis-

fied.

2.2 Optimality

To find the optimal allocation, we set up the Hamiltonian and use two of

the flow equations as constraints, the evolution of looped employees and of

employment.

H =
( y

2E
− V k

)
e−rt+λ1e

−rt(−m(V,U)p−sL+m(V,U)(1−p))+λ−2e−rt(2m(V,U)p−2sE)

(2.22)

We have used E instead of U and expressed the division among vL and vE

as the ratio p = vEL/(vL + vEL). The λ are costate variables. Using:

∂H
∂p

= 0 (2.23)

∂H
∂v

= 0 (2.24)

−∂H
∂L

= −λ̇1 + rλ1 (2.25)

−∂H
∂E

= −λ̇2 + rλ2 (2.26)
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and solving for the steady state, we get (∂m/∂x = ∂m(V,U)/∂x for brevity)

−k + λ1(−∂m
∂v

p+
∂m

∂v
(1− p) + λ2(2

∂m

∂v
p)) = 0 (2.27)

λ1(−m(V,U)−m(V,U)) + λ2(2m(V,U) = 0 (2.28)

which leads to:

λ1 = λ2 (2.29)

which is already a striking result. The surplus form the first mach must

exactly equal the surplus from the final match. Using this, one can obtain:

λ1 = λ2 =
k
∂m
∂v

(2.30)

This optimality condition where a social planner would stop posting va-

cancies is in contrast to where the employers stop posting vacancies, i.e:

V1/2 = k/q(θ) and JE = 2k/q(θ). This shows in the market equilibrium we

have the agents not taking into account the negative congestion externalities

not only on the other agents like themselves but also on employers in the

other stage of search, because each vacancy that gets posted decreases the

chance of any given vacancy to attract a worker. They do not take into ac-

count the positive externality on the laborers in the economy by increasing
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their chance of matching. Next:

− λ̇1 + rλ1 = −(λ1(
∂m

∂U
p− ∂m

∂U
(1− p)− s)) + λ2

∂m

∂U
p) (2.31)

Using the previous result and assuming we are in the steady state, we get:

(r − s) =
∂m

∂U
(2.32)

This means that at the optimum the value of an additional match per ad-

ditional unemployed in the matching function must be equal to r − s. This

means that r > s. Essentially, at the optimum we need to take the risk of

losing the match in the looped stage into account. This means that more

unemployed are needed to increase the number of matches to make up for

the potential premature loss of matches. The FOC for E is:

− λ̇2 + rλ2 =
y

2
+ λ1(p

∂m

∂U
− (1− p)∂m

∂U
) + λ2(2p

∂m

∂U
− s) (2.33)

Which combining previous results leads to:

λ2 =
y

2
(2r + s) = λ1 (2.34)
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and:

∂m

∂V
=

2k(2r + s)

y
(2.35)

Definition 2 The optimal allocation of the random search model for teams

is characterized by p, V, U and L such that (2.34) and (2.35) as well as (2.8)

and (2.9) are satisfied. Also r > s for the from the relationship (2.32) is

needed.

2.3 Implementing the Optimal Allocation

The next step is to see if there are values for the parameters of the model

such that the competitive equilibrium coincides with the optimal allocation.

Define:

W1 = V1/2 + VL − VU (2.36)

W2 = JE + VEL + VE − V1/2 − VL − VU (2.37)
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as total surplus generated in the first and second stage respectively. They

imply:

(r + s)W1 =
vEφ2k

1− φ1 − φ2
− vLµk

U(1− µ)
− vELφ1k

U(1− φ1 − φ2)
(2.38)

and

(r + s)W2 = y − vEφ2k

1− φ1 − φ2
− vLµk

U(1− µ)
− vELφ1k

U(1− φ1 − φ2)
(2.39)

From the bargaining solution we get that k = (1− µ)q(θ)W1. Plugging this

into equation (2.34), we get:

λ1 =
(1− µ)q(θ)W1

∂m
∂v

(2.40)

Substituting this into (2.24) yields:

2(r + s)
(1− µ)W1

ηv
= y − (1− µ)W1

ηv
(
∂m

∂U
+ s)2 (2.41)
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From this we subtract (2.42) to obtain:

(r + s)
2(1− µ)

ηv − 1
=

y

W1
− 2r(1− µ)q(θ)

∂m
∂v

− vEφ2(1− µ)q(θ)

(1− φ1 − φ2)
+ (2.42)

+
vLµq(θ)

U
+
vELφ1q(θ)(1− µ)

U(1− φ1 − φ2)
(2.43)

using ∂m/∂U = r − s which must hold at the optimal allocation to make

sure the decisions of the workers are optimal and rearranging we get:

(2r + s)2(1− µ)

ηv
−(r+s) =

y

W1
− vEφ2(1− µ)U

(1− φ1 − φ2)V ηU
+
vLµ

V ηU
+

vELφ1(1− µ)

V (1− φ1 − φ2)ηU

(2.44)

Recognizing the last three terms on the RHS can be re-expressed using (2.19):

−U(r + s)

ηUV q(θ)
= −1 (2.45)

Which is with r − s = ∂m
∂U equal to -1. So we get:

(1− µ) =
λ1ηU
W1

(2.46)

If λ1 = W1, this is exactly the Hosios condition. It needs to be adapted for

the fact that the first matching does not yield an immediate production so if

for instance W1 is smaller than λ1 the bargaining weight for the first match
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for the employer must be larger than in the standard case to compensate

for the fact that this match does not yield an immediate benefit in terms

of production. Since k = (1 − µ)q(θ)W1 = (1 − φ1 − φ2)q(θ)W2 a similar

analysis can be made for W2 and λ2. It yields after similar rearrangement

as above:

(2r + s)(1− µ)

ηv
=

(r + s)2(1− µ)

(1− φ1 − φ2)
− r − s (2.47)

Rearranging we get:

ηv =
(1− φ1 − φ2)(1− µ)(2r + s)2)

(φ1 + φ2 − µ)(r + s)
(2.48)

Using both of these results gives:

W1 =
(1− φ1 − φ2)y

(φ1 + φ2)(r + s)
,W2 =

(1− µ)y

(φ1 + φ2)(r + s)
(2.49)

Now, if the competitive equilibrium is going to be equal to the optimal

equilibrium we need W1 = W2 = λ1 = λ2 since not only the marginal

decisions must be optimal but also the levels of activity. This leads to:

φ1 + φ2 = µ (2.50)
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but then the denominator of (2.47) is not defined, establishing the following:

Result 1 In a random matching framework with ex-post bargaining and the

necessity of two workers it is impossible equalize the decentralized equilibrium

from definition 1 with the optimal allocation given in definition 2.

This means we cannot implement the optimal allocation by matching the

Hosios condition. The result echoes Acemoglu and Shimer(1999) in Propo-

sition 2. There decentralization was impossible due to ex ante investment.

Wages need to optimize three decision margins, the first entry and how many

vacancies to open once the employer has found a first employee as well as

the decisions of the laborers. This cannot be achieved because we can adapt

the bargaining weights to optimize the entry decisions at the margin, but

not at optimal levels.

The result that optimality is infeasible with random search is because

the externalities are along more dimensions than parameters can adapt for.

For workers there are externalities they exert on others when entering the

labour market. First, they exert a negative externality on other unemployed

due to the crowding effect. Second, they exert a positive externality on em-

ployers posting vL vacancies. Thirdly they exert a positive externality on
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employers posting vE vacancies and on attached workers. The same for em-

ployers. A vL posting employer exerts a positive externality on the other side

of the market on the unemployed and at the same time a negative externality

on other vL-employers and the vE -employers and attached workers as well.

A vE-employer exerts the same negative externalities. Table 1 summarizes:

Table&1

Each of the three decision makers is exerting three externalities upon others.

But the bargaining weights can only adapt on two dimensions. We can for

example adapt the bargaining weights such that the vL posting employers

take into account externalities they exert on unemployed and on other em-

ployers seeking workers for an initial match and the vE posting employers

can internalize the externalities on unemployed and other employers search-

ing for a second worker. This would yield the standard Hosios conditions

(Hosios, 1990). However, if we internalize these externalities, we cannot in-
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ternalize the negative externalities a vL and vE employers inflict on each

other.

3 Directed Search

3.1 The Modified Model

To see why we cannot decentralize the optimal allocation in the framework

of completely random search it is instructive to look at what happens if we

allow for some degree of directed search. To this end the previously presented

model will be modified to allow unemployed agents to choose for what kind

of slot to apply for. This is not the kind of directed search model that is

dealt with in the bulk of the literature, where wages are posted, or entry

fees are posted to join a club (Moen, 1997). Rather, this is a hybrid model,

to put it in the words of Acemoglu and Shimer(1999), and represents only

a minimal departure from the standard Mortensen-Pissarides Framework.

We still have ex post bargaining.This sidesteps the issue of commitment and

makes the resulting model more comparable to the one of random search.

The important addition is that workers can now choose the probability
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which market segment to join. This probability is going to be defined as

a ∈ [0, 1], where a is the probability of applying for a job with a completely

unmatched employer. We can interpret this as an individual probability or

as the proportion of workers applying for one kind of job or the other. This

leads to modified conditions for the value of unemployment:

rVUL = 0 +
mL(vL, aU)(VL − VUL)

aU
(3.1)

rVUE = 0 +
mE(vEL, (1− a)U)(VE − VUE)

(1− a)U
(3.2)

For an equilibrium these need to be equal otherwise arbitrage will take place.

mL and mE are the respective matching functions for the market for looped

slots and for second slots. In mL only vL and the proportion aU feature and

in mE only vEL and (1− a)U .

rVUL = rVUE = rVU (3.3)
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This further changes the equations for VL, V1/2 and VV

rVL = wL +
vEmE(vEL, (1− a)U)(VEL − VL)

vEL
+ s(VU − VL) (3.4)

rV1/2 = −wL +
vEmE(vEL, (1− a)U)(JE − V1/2)

vEL
+ s(VV − V1/2)− vEk(3.5)

rVV =
mL(vL, aU)(V1/2 − VV )

vL
− sVV − k (3.6)

The Bellman-equations for VE ,VEL and JE are reproduced for convenience:

rVE = wE + s(VUE − VE) (3.7)

rVEL = wEL + s(VUL − VEL) (3.8)

rJE = y − wE − wEL − sJE (3.9)

Again VV yields:

V1/2 =
k

qL(θL)
(3.10)

mL/vL = qL(θL) and θL = vL/aU and qE(θE) and θE are defined analo-

gously. Also:

JE =
k

qE(θE)
+

k

qL(θL)
(3.11)

Already we can see a difference to the random search variant. The value

of a half filled vacancy V1/2 is determined by the probability of finding an
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applicant conditional on being in the market for initial job offers while that

of JE is determined by the sum of two terms related to the applicant finding

rates in both markets. We can also see that if the markets were to be

merged again, these expressions reduce to the expressions for the random

search model. Similar to the result above we have:

wL =
−(r + s)k

qL(θL)
(3.12)

The looped worker pays the employer (or accepts a wage below reservation

wage) to induce the employer to search for a second employee. Using the first

order conditions from Nash-Bargaining, after rearrangements we get that:

VUE =
θEkφ1

(1− φ1 − φ2)r
(3.13)

Substituting this into the equation for VE we get:

wE =
(r + s+ p(θE))kφ1

(1− φ1 − φ2)

1

q(θE)
(3.14)

The weights for the first stage of bargaining do not appear as the directed

search isolates the bargaining processes at the different stages and the influ-

ence of the negotiation weight for the already looped labourer only features
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in as much as it decreases the pie to be shared. For wEL we have:

wEL =
(s+ r)φ2k

(1− φ1 − φ2)qE(θE)
+

vEkφ2
(1− φ1 − φ2)

− (r + s)K

qL(θL)
(3.15)

Continuing to solve the model we get the first novel condition:

φ1vEL

(1− φ1 − φ2)(1− a)
=

µvL
(1− µ)a

(3.16)

This condition determines the a chosen by the labourers for any given com-

bination of L,vL and vE . If for example the number of vL increases the RHS

increases, so a must increase to equalize the condition again. The probability

of being matched conditional of applying for a vL vacancy is now increased

for any given number of unemployed in that market. This means that more

workers will apply for a newly opened production site and try to become the

first matched worker. The next condition is equivalent to (2.18):

(r + s)

(1− µ)qL(θL)
=

vEkφ2
(1− φ1 − φ2)

− µθLk(1− µ) (3.17)

The LHS is similar to the random search analogue , but the RHS shows some

differences. We do not have a term for the bargaining strength of the worker

should he be the second to join a match, since in this set up the worker has
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opted to not apply for such a match and hence has 0 probability of finding

such a slot. For subsequent analysis (3.17) is described in the vL − U space

as an increasing and concave function. In the vL − L space (3.17) is always

satisfied since L does not feature. This is because the decision to post a

vL vacancy is independent of the other market. The condition analogous to

(2.19) is:

(r + s)k

qE(θE)
= y− θEkφ1

(1− φ1 − φ2)
− (s+ r)(φ1 + φ2)k

(1− φ1 − φ2)qE(θE)
− vEkφ2

(1− φ1 − φ2)
(3.18)

Again, the different matching stages are disentangled. What happens in the

other market matters in so far as it alters the number of unemployed. The

reservation utilities of the workers in the match still need to be taken into

account and the LHS still represents the gain the employer makes from the

match. The second term on the RHS represents the reservation utility of

the second worker to join the match and the last the reservation utility of

the first worker to join. The third term on the RHS represents the rent that

needs to be given to both workers. Finally, we define the Beveridge Curves:

U̇ = s(2N − L− 2U)−mE(vEL, (1− a)U)−mL(vL, aU) (3.19)
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L̇ = mL(vL, aU)sL−mE(vEL, (1− a)U) (3.20)

Ė = 2mE(vE , (1− a)U)− 2s(N − L− U) (3.21)

As before, one of the above conditions is redundant.

Definition 3 With directed search, the equilibrium is defined by the a, vE,

vL, U and L such that (3.16), (3.17),( 3.18),( 3.19) and (3.20) are satisfied.

3.2 Optimality in Directed Search

Again, to derive the optimal allocation we have to adapt the procedure from

section 2 for the now separate labour markets. The Hamiltonian is:

H = (
y

2E
−k(vL+vEL)e−rt+λ1e

−rt(−mE(vEL, (1−a)U))−sL+mL(vL, aU))+

(3.22)

λ2e
−rt(2mE(vEL, (1− a)U − 2− sE)
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The first order conditions are:

∂H
∂vE

= 0 (3.23)

∂H
∂vL

= 0 (3.24)

∂H
∂a

= 0 (3.25)

∂H
∂L

= −λ̇1 + rλ1 (3.26)

∂H
∂E

= −λ̇2 + rλ2 (3.27)

These FOC’s can be rearranged to yield:

λ1 =
k

∂mL(vL,aU)
∂v

(3.28)

λ2 =
k

2∂mL(vL,aU)
∂v

+
k

2∂mE(vE ,aU)
∂v

(3.29)

∂mi/∂v is the derivative of the matching function w.r.t. vacancies, either

vL or vEL. The link between the first and second stage is loosened. In the

first market the marginal value of an additional vacancy matters and in the

second market the marginal impact of a vacancy and the value of an initial

match matter, since with each productive match we are destroying a looped

relationship. The new condition for a allows arbitrage of the returns of join-

ing the labour market for initial openings or half filled openings. Combining

29



the FOCs for vE and vL with that for a we obtain:

∂mE

∂v
∂mE

∂U

=
∂mL

∂v
∂mL

∂U

(3.30)

This condition means the relative impact of vacancies and unemployed

must be equal across the two markets. a will be adapted so that this condition

holds for the optimum. Rearrangement of the FOCs for L and E yields:

(r − s)λ1 = kvE + λ1

(
∂mL

∂U
− ∂mL

∂V
vE

)
(3.31)

(r + 2s)λ2 =
y

2
+ λ2

(
−

2∂mE

∂U
∂mL

∂V
∂mL

∂V + ∂mE

∂V

)
(3.32)

The first of these conditions together with (3.28) implies:

r − s =
∂mL

∂U
(3.33)

which means more unemployed must join the market for loops since the risk

of losing a looped worker before production needs to be compensated. Here

we can clearly see that this condition, which also featured in the previous

section, is relevant to the first market but not for the second market. There

the risk of separation is already fully taken into account by discounting the
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produce, but in the first market there is the additional risk of losing the

match before it becomes productive. These two equations are stating the

value of the loop must develop taking into account the marginal impact of

unemployed and vacancies of the first market. However, vE is crucial in

determining the value of joining a loop for a worker. The value of the first

match must incorporate the loss of one unemployed in the matching function,

one less vacancy competing for the unemployed that now the search process

for the second stage has started and the cost of posting vE vacancies per

looped worker.

The condition (3.32) means, the second slot the value needs to evolve

while taking into account the additional production per worker, the marginal

impact of an additional unemployed on the matching function for the second

stage and the marginal impact of an additional vacancy on both markets,

since when a productive match is made not only is a worker subtracted from

the stock of unemployed and thus no longer available, but there is also one

less looped worker and less competition for unemployed workers. This double

loss of income must be taken into account in the case of a separation, hence

s features twice.

Definition 4 In the directed search framework, the optimal allocation is
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characterized by values of vE,vL, a, U and L such that (3.30),(3.31),(3.32),

(3.19) and (3.20) are satisfied. Again, r > s is required.

3.3 Implementing Optimality

Can we decentralize the optimal allocation? Table 2 contrasts the the opti-

mal and the decentralized solution:

This version of the Hosios condition equalizes shadow value and welfare:

(1− µ) = ηLv (3.34)

(1− φ1 − φ2) = 2ηLv (3.35)

(1− φ1 − φ2) = 2ηEv (3.36)
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What remains is to see if the values of φ1 and φ2 can be adapted so the

dynamic equations also coincide. The same methodology is employed as

in the previous section. This time no contradiction emerges, rather two

conditions the parameters φ1 and φ2 must satisfy. We can derive:

φ1 =

(1−2s+4r)∂mE

(r−s)∂U − vEqE
mE

U(1−a) − vEqE
(3.37)

This value is within [0, 1− 2ηEv]. For this to be positive 1/U(1− a) > 1/L

and the numerator must be positive or 1/U(1− a) < 1/L and the numer-

ator negative. A worker entering the market for second slots must receive

a compensation proportional to the marginal input he/she has, scaled by

discounting and the probability of separation (1− 2s+ 4r)/(r − s). For φ2

we have:

φ2 =
Lφ1

U(1− a)2ηLv
+

(r + s)∂mL

vE∂v
− 1 = 1− 2ηEv − φ1 (3.38)

For this to even be possible the first two terms must together exceed 1. One

way to think of this is to realize that the following (necessary, not sufficient)

condition needs to be true:

1− 2ηEv − φ1 − φ2 ≥ 0 (3.39)
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Which is already more stringent than the Hosios condition. This establishes

the following result:

Result 2 In a directed matching framework with ex-post bargaining and the

necessity of two workers it is possible equalize the decentralized equilibrium

from definition 3 with the optimal allocation given in definition 4, but only

if equations (3.34)-(3.38) hold, conditions much stronger than the Hosios

Condition.

With this knife-edge result, while there is a positive probability of being pos-

sible, it remains dubious that the Hosios Condition can achieve optimality. It

is in principle possible because now there is an additional degree of freedom

to adapt for the externalities, discussed in section 2. The separation of the

effects of vL and vE on the other markets matching function is crucial as now

we do not have the negative externality of one kind of employer upon the

other. Table 3 gives externalities left for the bargaining weights to correct

for.
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Table&3

The workers are internalizing the negative externality they exert to a larger

degree than previously through their choice of a. This removes some exter-

nalities and directs the effects of the remaining ones, the congestion exter-

nalities among the same kind of employers and the thin market externalities

from employers to only the workers in their designated market and the neg-

ative externalities among the workers, can be corrected with the appropriate

choice of bargaining weights. This is what adding another stage in the hir-

ing process amounted to. In the random search framework externalities were

added and in the directed search version they were partially removed.
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4 Conclusion

This paper demonstrates that the Hosios condition generally does not hold

in a multi-worker setup. With random search even if we allow for simple

Nash Bargaining and not for Stole and Zwiebel type bargaining it cannot

hold. It may hold in a knife edge case with directed search, but this puts

one more coincidence on top of another. Thus, once we are interested in

modeling more complex labour markets it becomes not only unlikely, but

in most cases impossible to implement optimality. This illustrates in very

stark terms just how special a case the Hosios condition really is. Not only

do the bargaining weights need to almost magically coincide with the elas-

ticities of the matching function with respect to vacancies and unemployed,

the production function cannot be of any different from a linear AL style.

What the models also illustrate is that if the phenomenon of hiring workers

specifically for teamwork is sufficiently important, not only the number of

openings in any labour market will be of interest, but also the nature of each

opening because this might give us an indication if the filling of that vacancy

increases or decreases labour market tightness.
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