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Introduction 

Visually perceiving a 3D scene and the 3D shapes of objects within the scene is a difficult 
problem but we all perceive them veridically in our everyday life. Some have assumed that such 
veridical 3D perception requires some kind of extra-retinal information, usually memories of past 
experiences of moving ourselves, or our arms, or eyes around in our 3D world.  Any effect of such 
memories has been questioned, however, by psychophysical studies on the effect of memory on 3D 
visual perception (Hochberg & Brooks, 1962; Hochberg & Hochberg, 1952; Hochberg & McAlister, 
1955; Mershon & Gogel, 1975).  Studies by Pizlo and his colleagues have shown that the veridical 
perception of the 3D shapes of familiar objects  can be explained better  by a priori constraints than 
by the memorized shapes of the objects (Pizlo, 2008; Pizlo, Sawada, Li, Kropatsch, & Steinman, 
2010; Pizlo, Li, Sawada, & Steinman, 2014). This group has developed and tested computational 
models that emulate veridical human 3D shape and scene perception rather well by using only a few 

a priori constraints (priors), namely, 3D symmetry, the planarity of contours, minimum surface area, 
and maximum compactness. The present study addresses another classical visual problem in which 
oculomotor information has been assumed to be essential for the perception of 3D depth. Here, 
“binocular disparity”, which is an important input for eliciting and controlling slow vergence eye 

movements and disjunctive saccades, could provide information needed for the veridical perception 
of depth (see Erkelens, Van der Steen, Steinman, & Collewijn, 1989; Erkelens, Steinman, & 
Collewijn, 1989; Collewijn, Erkelens, & Steinman, 1995; for studies of vergence eye movements). It 
has been widely assumed that our visual system uses binocular disparity to perceive depth. The 
present study will show that the perception of depth can be recovered entirely on the basis of 
geometrical optics.  Our visual system does not need to make use of any oculomotor information. 
Note that my research problem, when viewed within the rubric called “Inverse Problem Theory,” is 

a “Direct” problem because its solution does not require the use of any a priori constraints (aka 

priors, see Pizlo, Sawada, Li, Kropatsch, & Steinman, 2010; Pizlo, Li, Sawada, & Steinman, 2014; 
Sawada, Li, & Pizlo, 2015). This Direct problem will be solved first by making a computational 
model that recovers depth without being given any oculomotor information or any a priori 
constraints. Having a computational model that can solve the Direct Problem of perceiving depth by 
using only geometrical optics prepares the way for finding out whether human beings can do this, 
too. Now, consider what we know about how the geometry involved in binocular disparity can be 
used to recover depth. 

Human eyes are separated about 6.5 cm which means that the retinal images of 3D scenes 
will be slightly different from one another. This difference between a stereo-pair of retinal images is 
called “binocular disparity”. Binocular disparity is one of several depth cues that the human visual 
system uses to perceive depth within 3D scenes. Depth perception, based on binocular disparity, has 
been studied for centuries. It is one of the best studied topics in visual science (see Howard & 
Rogers, 2012 for a review).  

Binocular disparity is often decomposed into its horizontal and vertical components (Read, 
Phillipson, & Glennerster, 2009). Horizontal disparity plays the major role in the perception of depth 
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when it is based on binocular disparity. It has been assumed that the visual system needs oculomotor 
information about the relative orientation between the two eyes to recover depth from horizontal 
disparity (Mayhew & Longuet-Higgins, 1982; Peek, Mayhew, & Frisby, 1984; Erkelens & van Ee, 
1998). This kind of oculomotor information can be estimated from the efference copy of the 
oculomotor signal (Skavenski, Haddad, & Steinman, 1972; Matin, Matin, & Pearce, 1969; 
Skavenski, 1971; Sommer & Wurtz 2002). 

Another source of oculomotor information is the 2D distribution of vertical disparity (e.g. 
Gillam and Lawergren, 1983; Howard & Kaneko, 1994). It has also been shown that depth 
perception based on horizontal disparity is affected by the vertical disparity distribution. This is 
often referred to as an “induced” effect. This induced effect is often explained by saying that the 
visual system estimates the relative eye orientations from the vertical disparity distribution. 
Psychophysical results also suggest that the human visual system relies on the distribution of 
vertical disparity, rather than on the oculomotor efference signal, whenever the information in the 
disparity distribution is sufficiently reliable (Mitsudo, 2007; Mitsudo, Kaneko, & Nishida, 2009; 
Backus, Banks, van Ee, & Crowell, 1999; Bradshaw, Glennerster, & Rogers, 1996). The visual 
system's speed, however, for processing the vertical disparity distribution is rather low (Ames, 1946; 
Caziot, Backus, & Lin, 2017; Fukuda, Kaneko, & Matsumiya, 2006; Ogle, 1938). These authors 
showed that the visual system needs around 500 msec for processing a change of the vertical 
disparity distribution. Note, however, that the human beings' intersaccadic intervals during 
maintained fixation are often shorter than 500 msec (e.g. Steinman, Cunitz, Timberlake, & Herman, 
1967; Cunitz & Steinman, 1969), which means that the visual system must be able to use a very 
efficient mechanism for processing binocular disparity. This mechanism must work fast whenever 
saccadic eye movements occur frequently. Now that we have considered the role of vertical 
disparity in the perception of depth, we will consider depth perception based on horizontal disparity. 

The visual system can process horizontal disparity for each point, or for each pair of points, 
while the visual system processes the distribution of vertical disparity. The visual system encodes 
horizontal disparity as absolute disparity first, and then converts it to relative disparity (Chopin, 
Levi, Knill, Baveli, 2016; Neri, Bridge, & Heeger, 2004; Norcia, Gerhard, & Meredith, 2017). This 
absolute disparity is the difference between the eccentricity angles of a point between a stereo-pair 
of retinal images. This relative disparity is the difference between the visual angles of two points 
between the retinal images (Erkelens & Collewijn, 1985a, b).3 It has been shown that the perception 
of depth based on horizontal disparity primarily depends on the relative disparity (Westheimer, 
1979; Erkelens and Collewijn, 1985b; Regan, Erkelens, & Collewijn, 1986; Cottereau, McKee, & 
Norcia, 2012). Note that the relative disparity, as well as the visual angle, is invariant against any 
eye movement. Potentially, this invariance of the visual angle could allow the visual system to 
recover depth from binocular disparity in the presence of eye movements, but note, also, that all 

                                                      
3 Relative disparity can also be computed as the difference between the absolute disparities of two points (Chopin, Levi, 
Knill, Baveli, 2016; Schor, 2000; Westheimer & McKee, 1979). Note that this method of computing relative disparity 
assumes that two lines-of-sight from a stereo-pair of foveae intersect with one another at a point within a 3D scene. But 
note that this assumption may be violated under a natural viewing conditions. Malinov, Epelboim, Herst, & Steinman 
(2000) showed that the two lines may be skewed with respect to one another. 
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prior modeling of depth perception from binocular disparity has assumed that oculomotor 
information was either given or recovered first. 

Models of depth perception based on binocular disparity can be categorized into two types. 
The first type, either implicitly or explicitly, recovers oculomotor information from binocular 
disparity itself before recovering depth (e.g. Longuet-Higgins, 1982; Mayhew & Longuet-Higgins, 
1982; Peek, Mayhew, & Frisby, 1984). The second type of model implicitly assumes that the 
necessary oculomotor information is available. Many existing models of depth perception, based on 
binocular disparity, use images on a computer screen representing the left and right eyes as input to 
the models, rather than the retinal images in the eyes. Note that the retinal image is a two-
dimensional projection of the image on a screen. This means that the retinal and the computer screen 
images can be transformed into one another, but doing this requires knowing both the positions and 
the orientations of the eyes relative to the screen. The second type also includes a model that 
represents 2D visual information by using a head-centric coordinate system (Erkelens & van Ee, 
1998; Koenderink & van Doorn, 1976; Zhang, Cantor, & Schor, 2010). The retinal image 
represented in a retino-centric coordinate system can be transformed into the head-centric 
representation, but, once again, this transformation requires knowing the positions and orientations 
of the eyes relative to the head. 

Our computational model recovers depth from a stereo-pair of retinal images without 
recovering or being given any oculomotor information. This model is based entirely on the pure 
geometry of optics. It does not use any a priori constraints. The depth recovered is represented in a 
head-centered coordinate system, except for a rotation around the interocular axis between the two 
eyes. Both the process for recovering depth and the representation of the recovered depth does not 
vary with eye movements. 

Model 

This study used a "pinhole" camera with a perfectly spherical retina as the model for our 
human eye. This simplified eye has the center of its optics and its center of rotation at the center of a 
spherical eyeball. Note that when this simplified eye rotates around its optical center, the position of 
the eye’s optical center does not change. Lines of projection from any pair of points in a 3D scene 

will intersect with one another at the optical center of this simplified eye. The visual angle between 
these lines is the same as the distance between the projections of these points on the spherical retina 
of this simplified eye, and the visual angle does not change when the eye rotates. Now, consider a 
3D scene composed of N points. The model developed in this study represents the retinal image of a 
scene as a set of N(N−1)/2 visual angles between pairs of the points. This representation does not tell 
us where the projections of the N points are on the retina relative to the fovea but they do not change 
when the eye rotates. 

The model recovers the depth of a 3D scene from a stereo-pair of its retinal images that are 
represented as two sets of visual angles. The correspondence between projections of points between 
the stereo-pair of retinal images is taken as a given in this study. This allows our model to recover 
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depth without using any information about the orientations of the eyes. The model recovers the 3D 
depth of a scene by using an optimization method. The 2D space in this optimization is 
characterized by the shape of a triangle formed by the arbitrary selection of any 3 points within the 
scene. This triangle is discussed in next section. 

3D interpretations of a triangle based a stereo-pair of its retinal images 

Consider 3 points P1, P2, and P3 in a 3D scene and the triangle T123 formed by these points. 
The 3D scene is viewed by the eye EL (Figure 1). The visual angles between all pairs of these points 
are shown and labeled as: ∠P1ELP2, ∠P2ELP3, and ∠P3ELP1. The length of an edge |P1 ˗ P2| between 
P1 and P2 can be set to 1 without any loss of generality. This length specifies the size of T123. The 
shape of T123 is controlled by two angles, namely, ∠P3P1P2 and ∠P1P2P3 of T123. If the shape of T123 
is given, four, or fewer than four, possible positions of EL relative to T123 can be determined. This 
problem is referred to as the Perspective-3-Point (P3P) problem (Fischler & Bolles, 1981; Gao, Hou, 
Tang, & Cheng, 2003; Sawada & Minkov, 2018). The positions of EL were computed with an 
algorithm used to solve the P3P problem (Fischler & Bolles, 1981; see also Sawada & Minkov, 
2018). 

Now, consider what happens when T123 is viewed by another eye ER. The visual angles at ER 

for all pairs of the points are shown and labeled as: ∠P1ERP2, ∠P2ERP3, and ∠P3ERP1. Four, or fewer 
than four, possible positions of ER, as well as EL, relative to T123 can be computed for the given 
shape of T123. 

Recall that the shape of T123 can be controlled by two angles, namely, ∠P3P1P2 and ∠P1P2P3 
of T123. This means that the positions of both EL and ER are also controlled by ∠P3P1P2 and ∠P1P2P3. 
There are only 16 possible combinations of the positions of EL and ER (4 for each EL and ER) for a 
given shape of T123. 
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Figure 1. A stereo-pair of eyes EL and ER and the triangle T123 formed by points P1, P2, and P3 and 

additional two points P4 and P5 in a 3D scene. 

Recovering the Depth of a 3D Scene by Solving a 2D Optimization Problem 

The shape of the triangle T123 and the positions of both EL and ER can be determined if the 
retinal images of an additional two points, P4 and P5, viewed by EL and ER, are given. Consider P4 
first. The visual angles between P4 and the vertices of T123 at EL and ER are labeled as ∠P1ELP4, 
∠P2ELP4, ∠P3ELP4., ∠P1ERP4, ∠P2ERP4, and ∠P3ERP4. If the shape of T123, EL, and ER are given, the 
lines of projection to P4 from EL and from ER can be written as EL + k4LV4L and ER + k4RV4R where 
k4L and k4R are free parameters and V4L and V4R are 3D unit vectors. The vectors V4L and V4R can be 
computed as follows: 

 
(𝑃1 − 𝐸𝐿 𝑃2 − 𝐸𝐿 𝑃3 − 𝐸𝐿)𝑇𝑉4𝐿 = [

|𝑃1 − 𝐸𝐿| cos ∠𝑃1𝐸𝐿𝑃4

|𝑃2 − 𝐸𝐿| cos ∠𝑃2𝐸𝐿𝑃4

|𝑃3 − 𝐸𝐿| cos ∠𝑃3𝐸𝐿𝑃4

] (1) 

 

 
(𝑃1 − 𝐸𝑅 𝑃2 − 𝐸𝑅 𝑃3 − 𝐸𝑅)𝑇𝑉4𝑅 = [

|𝑃1 − 𝐸𝑅| cos ∠𝑃1𝐸𝑅𝑃4

|𝑃2 − 𝐸𝑅| cos ∠𝑃2𝐸𝑅𝑃4

|𝑃3 − 𝐸𝑅| cos ∠𝑃3𝐸𝑅𝑃4

] (2) 

 

where |V4L| and |V4R| are 1. Note that these two projection lines should intersect with one another at 
P4 in a 3D scene, if the scene specified by the shape of T123, EL, and ER, is a valid 3D interpretation 
of the stereo-pair of the retinal images of T123 and P4. The distance Δ4 between the two projection 
lines of P4 can be computed as:  

 
∆4=

|𝐸𝐿 − 𝐸𝑅|(𝑉4𝐿 × 𝑉4𝑅)

|𝑉4𝐿 × 𝑉4𝑅|
 (3) 

 

These two projection lines are skewed with respect to one another in the scene if Δ4 ≠ 0 and they are 

not parallel to one another. The distance Δ4 between the projection lines is the length of the shortest 
line segment whose endpoints are on the projection lines. These two endpoints can be written as EL 
+ ḱ4LV4L and ER + ḱ4RV4R where ḱ4L and ḱ4R represent the distance of the endpoints from EL and ER. 
For simplicity, ḱ4L and ḱ4R will be referred to as the distance of P4 from EL and ER later in this 
section. The distance Δ5 between the two projection lines from EL and from ER to P5 can be 
computed in the same way as Δ4 (see Equations 1, 2, and 3).  

 Some of 16 possible combinations of the positions EL and ER are invalid. Note that Δi, ḱiL, 
and ḱiR should be always positive if the 3D scene specified by the combination of EL and ER is a 
valid 3D interpretation of the stereo-pair of the retinal images of T123 and Pi. The combination of EL 
and ER, and the scene specified by this combination are also invalid if there is any set of 3 points 
(say Pj1, Pj2, and Pj3) that satisfy either of the following conditions: 
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{

𝐸𝑅 − 𝐸𝐿 = 𝑤𝑗1𝐿𝑉𝑗1𝐿 + 𝑤𝑗2𝐿𝑉𝑗2𝐿 + 𝑤𝑗3𝐿𝑉𝑗3𝐿

|𝑤𝑗1𝐿 + 𝑤𝑗2𝐿 + 𝑤𝑗3𝐿| = |𝑤𝑗1𝐿| + |𝑤𝑗2𝐿| + |𝑤𝑗3𝐿|
 (4) 

 

or 

 
{

𝐸𝐿 − 𝐸𝑅 = 𝑤𝑗1𝑅𝑉𝑗1𝑅 + 𝑤𝑗2𝑅𝑉𝑗2𝑅 + 𝑤𝑗3𝑅𝑉𝑗3𝑅

|𝑤𝑗1𝑅 + 𝑤𝑗2𝑅 + 𝑤𝑗3𝑅| = |𝑤𝑗1𝑅| + |𝑤𝑗2𝑅| + |𝑤𝑗3𝑅|
 (5) 

 

where wj1L, wj2L, wj3L, wj1R, wj2R, and wj3R are constants, Vj1L, Vj2L, and Vj3L are vectors from EL to Pj1, 
Pj2, and Pj3, and Vj1R, Vj2R, and Vj3R are from ER to Pj1, Pj2, and Pj3. These equations show an invalid 
case in which some of the points Pj1, Pj2, and Pj3 are behind the head of the observer in the scene. 
After eliminating these invalid combinations of the positions of EL and ER, the best combination can 
be determined from the remaining valid combinations by ascertaining that the following function is 
minimized: 

 
∑

∆𝑖

√𝑘́𝑖𝐿 + 𝑘́𝑖𝑅

𝑁𝑃

𝑖=4
 

 

(6) 

 

where NP is the number of points in the scene, Δi represents the distance between the two lines of 
projection from EL and ER to the i-th point Pi (see Equation 3), and ḱ4L and ḱ4R represents the 
distance of Pi from EL and ER. Note that the number of points NP in the scene can be more than 5 (NP 
≥ 5). These additional points are used in the same way as P4 and P5 for determining the best valid 
combination of the positions of EL and ER in Equation (6). 

The model recovers the depth of the 3D scene by using an optimization method. The 2D 
space in this optimization is characterized by ∠P3P1P2 and ∠P1P2P3 that are angles of T123 (Figure 2). 
The cost function that is minimized in this optimization is given in Equation (6). Once this is done, 
the optimization process of the depth recovery can be written as: 

 
arg min

𝑇123

∑
∆𝑖

√𝑘́𝑖𝐿 + 𝑘́𝑖𝑅

𝑁𝑃

𝑖=4
 

 

(7) 
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Figure 2. A 2D distribution of the cost (Equation 6) computed from a stereo-pair of the retinal 
images of a simple 3D scene with 5 points: P1 = [−20 −20 57]t, P2 = [−20 20 57]t, P3 = [20 −20 57]t, 
P4 = [20, 20, 57]t, P5 = [0, 0, 57]t. This scene was viewed from a stereo-pair of eyes at [−3.3 0 0]t 
and [3.3 0 0]t. The abscissa and ordinate of these graphs represent ∠P3P1P2 and ∠P1P2P3 of the 
triangle T123 respectively. The grayscale levels indicate the cost computed with Equation (6). The 
checkered regions indicate invalid shapes of the triangle T123. These shapes are invalid either 
because they are inconsistent with the retinal images or because 3D interpretations of the retinal 
images do not satisfy the condition specified by Equations (4-5). Note that these distributions are not 
unimodal. They have multiple local minima. The global minimum of the distribution was found by 
using an exhaustive search method that sampled the distribution at every 0.2° of ∠P3P1P2 and of 
∠P1P2P3. The global minimum (1.10×10−14) of the distribution was found at (∠P3P1P2, ∠P1P2P3) = 
(90°, 45°), which represents the veridical shape of T123. The minimum cost was not exactly 0 
because of rounding and discretization errors. 

 

The scale of the recovered scene is proportional to |P1 - P2|, which was set to be 1, but note 
that the scale cannot actually be determined no matter how many retinal images of the scene are 
available (Longuet-Higgins, 1981). Also, note that a line segment between EL and ER in the 
recovered 3D scene represents the interocular-axis between the stereo-pair of eyes. The scene should 
be scaled so that the length of the segment |EL ˗ ER| in the scaled scene becomes equal to the 
interocular distance of the observer when the interocular distance is given (around 6.5 cm for an 
adult human). 

The position of the observer's head in the recovered 3D scene can be determined from the 
positions of EL and ER with one free parameter, namely, a rotation around the interocular axis. This 
means that the recovered 3D scene can be represented in a head-centric coordinate system. Finally, 
recall that a 3D scene, which is represented in a head-centric coordinate system, does not vary when 
the eye moves. 
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Computer Simulation 

The mathematical validity and the computational robustness of the model were tested in a 
simulation experiment. In each trial of this experiment, a 3D scene, composed of points, was 
randomly-generated and a stereo-pair of its retinal images (visual angles between the points) were 
computed. The model was given these retinal images and used them to recover the 3D scene.  The 
recovered 3D scene was evaluated by comparing the shapes of triangle T123 in the original and 
recovered scenes:  

√(𝛼1 − 𝛼́1)2 + (𝛼2 − 𝛼́2)2 

(8) 

where α1 and ά1 are ∠P3P1P2 of the original and recovered scenes and α2 and ά2 are ∠P1P2P3 of the 
original and recovered scenes. This equation represents distance in the 2D space of the cost 
distribution (Figure 2) between the points representing the original and recovered scenes. 

Five hundred 3D scenes were generated for each session of the experiment. The points in 
each scene were randomly-positioned within a range specified in the scene relative to the observer’s 

head. The depth positions of the points from the observer were between γ and 2γ in front of the 
observer's head where γ is a free parameter (10, 40, and 160 cm). The head-centric eccentricity of 
these points was less than 45°. Eccentricity was defined as the angles between a vector along the 
direction of depth and vectors to the points from the observer’s cyclopean eye (the midpoint 

between the observer’s stereo-pair of eyes). The interocular distance between the stereo-pair of eyes 
was 6.6 cm. Note that the number of points in the scene and γ were blocked during the session. 

The results of the simulation of the 3D scenes with 5 points are shown in Figure 3A. The 
ordinate shows the discrepancy between the original and recovered scene (Equation 8), and the 
abscissa shows the range of the depth positions of the points (γ). The width of the plot represents 
frequency (Hintze & Nelson, 1998). The 3D scene recovered by the model is never perfect. The 
discrepancy between the original and recovered 3D scenes can be attributed to the optimization 
process used to find the global minimum of the cost distribution (Equation 7).4 The exhaustive 
search method used for the optimization process and the cost distribution was sampled at every 0.2° 
of ∠P3P1P2 and of ∠P1P2P3. The discrepancy between a perfectly veridical scene and the recovered 
scene could be more than 0.282° ≈ (0.22 + 0.22)0.5 even when the cost distribution was unimodal5. 
There were also cases where our exhaustive search method produced the local minimum of the 
distribution rather than its global minimum. Note that a cost distribution may have multiple global 
minima (Kruppa, 1913/2017; Thompson, 1959). Also note that it can be difficult to know whether 

                                                      
4 It was confirmed in a separate session that the cost in the distribution was virtually zero (< 10˗10) when ∠P3P1P2 and 
∠P1P2P3 was given in a perfectly veridical 3D scene. 
5 For example, consider finding the global minimum of the following unimodal function by using the optimization 
method: −𝑒−(𝑦−0.04𝑥−0.4)2 0.12⁄ − 𝑒−𝑥2 1002⁄ . Theoretically, the global minimum of this function is ˗2.00 at (x, y) = (0, 
0.4). But note that an exhaustive search method will estimate that the global minimum is ˗1.99 at (x, y) = (˗10, 0) when 

the equation is evaluated at every integer of x and y. The difference between the positions of this estimated global 
minimum and the real global minimum is substantially larger than 1.412 ≈ (12 + 12)0.5. 
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any local minimum of the cost distribution is the actual global minimum with any numerical 
optimization method. This problem has not been addressed in this study. 

Figure 4 shows the number of recovered 3D scenes that were nearly veridical. The ordinate 
shows the number of recovered 3D scenes whose discrepancy from perfectly veridical 3D scenes 
(Equation 8) was less than 1°. Symbols indicate the number of points in the 3D scenes and the 
abscissa shows the range of the depth positions of the points. The model could recover only about 
60% of the 3D scenes veridically with 5 points, but it could recover about 90% with 6 points (see 
also Figure 3B). It is possible that the 6th point helped the model avoid local minima.  Having more 
than 6 points only improved the model's performance a little (Figure 3B, 4). 

The results of the simulation experiment showed that the model can recover a 3D scene from 
a stereo-pair of its 2D retinal images veridically and reliably when there are 6, or more than 6 points, 
in the scene.  

Recall, the model uses 3 of the points in the 3D scene to define the 2D space of an 
optimization problem and uses the other points to compute the distribution of cost in the 
optimization space. Having these separate processes for recovering a 3D scene allowed us to 
develop a model that used a readily available algorithm that was developed to solve the P3P 
problem. Unfortunately, this algorithm, which is based on the P3P problem, does not resemble any 
known mechanism in our visual system.  

 

Figure 3. shows the frequency of the discrepancy (Equation 8) between the recovered 3D scenes and 
the perfectly veridical 3D scenes. The ordinate shows the size of the discrepancy and the width of 
the plot represents the frequency (Hintze & Nelson, 1998). (A) The abscissa of this graph shows the 
range of the depth positions of the points (γ). The number of points in the 3D scenes was 5. (B) The 
abscissa also shows the number of points in the 3D scene. The depth positions ranged between 40 
and 80cm (γ = 40cm). 
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Figure 4. shows the number of recovered 3D scenes where the discrepancy from perfect veridicality 
was less than 1°. The abscissa shows the range of the depth positions of the points in the scene.  

 

Discussion 

The model developed in this study can recover depth in a 3D scene from a stereo-pair of 
retinal images without making use of the relative orientations of the eyes. The model represents the 
retinal image of the scene as a set of visual angles between pairs of points within the scene. The 
model uses only these visual angles as its input. This means that eye movements play no role in the 
recovery of depth. This is possible because depth is recovered within a head-centered coordinate 
system. Having such a model allows us to consider whether the human visual system can recover 
depth in a 3D scene from retinal images in the same way that our model does this (Brewer & 
Lambert, 2000). 

This model shows that, at least from a computational perspective, the human visual system 
should be able to perceive depth by using only a stereo-pair of retinal images without any 
oculomotor information. It also shows that the perception of depth need not change when the eyes 
move. This can be described as a constancy of depth perception with different fixation points. Note 
that these properties of this visual system are consistent with our everyday life experience. Our 
perception of depth is reliable and it stays that way when we move our eyes (Logvinenko, Epelboim, 
& Steinman, 2001; Logvinenko & Steinman, 2002). These properties also allow the visual system to 
process stereo retinal images across eye movements which could improve the precision of depth 
perception (Enright, 1991; Wright, 1951). 

This model is based entirely on the geometry of the optics of  a schematic eye. It is not 
related to any known mechanisms in our visual system. This fact encourages us to revise this 
algorithm to make its recovery process plausible with respect to current psychophysical and 
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neuroscientifical evidence. Once this has been done, we will have a realistic, as well as an effective, 
model of human stereo-depth perception. 
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