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1 Introduction

Social networks are an important source of information for individuals and
firms. The emergence of social media has led to an unprecedented level
of information sharing among “friends,” i.e. those who are connected and
communicate. Given this, should one expect people to agree in the long run?
We provide a new sufficient condition under which non-Bayesian agents in a
given network converge to consensus.

In our model, agents update their opinions based on the prior opinions of
their friends (and potentially themselves). Though we focus on opinions, the
model can accommodate any variable on a convex set, where the convex hull
of initial values is compact. For instance, instead of an opinion — a subjective
probability — agents may update their belief about the value of an unknown
parameter or adopt a cultural norm.

Literature on non-Bayesian learning beginning with DeGroot (1974) has
agents updating their beliefs to a weighted average of their friends’ beliefs.
Lorenz (2005) provides a generalization of the DeGroot model by allowing
the weights to depend on time and prior beliefs. The level of generality allows
for many types of updating behaviour, including those that exhibit optimism
or pessimism (over-weighting or under-weighting), and cognitive dissonance
(giving a higher weight to those with similar beliefs). He demonstrates that
aperiodic and strongly connected networks reach agreement if the weight
one gives to a friend’s opinion is bounded away from 0 by a positive num-
ber.! We provide a more permissive sufficient condition than that of Lorenz
(2005). Roughly speaking, our result says that consensus is achieved unless
some agents rely with an increasingly “faster” rate on their friends with the
minimal opinion while some others on those with the maximal opinion.

DeMarzo et. al. (2003) considers a time-varying social network in which

the agents weigh themselves differently over time. They show that opinions

n particular, Lorenz (2005) requires for each agent i that if there exists y and 7 such
that w7;(y) > 0 then there exists a § > 0 such that wf]- (z) > ¢ for all z and t.



converge when agents weigh other people’s opinions “often enough.” Our
result is related to DeMarzo et. al. (2003)’s, and the two are equivalent for
complete networks. In non-complete networks our condition is more restric-
tive. However, our condition is applicable in a wide range of environments
while DeMarzo et. al. (2003)’s condition is not applicable outside of their
specific model.

Mueller-Frank (2013) considers a general class of time-varying updating
rules that includes rules with belief-dependent weights. The main conditions
for convergence to consensus are (i) updating rules must satisfy continuity
and have posteriors be strictly in between the most extreme priors in one’s
neighborhood and (ii) the periodwise updating functions must be of finite
type. Our result does not require updating rules to be continuous or be of
finite type. The assumption of continuity is especially strong in environments
with endogenous network formation (Kivinen, 2017).

Several results on Bayesian updating in groups (Aumann, 1976; Geanako-
plos and Polemarkis, 1982) highlight the role of common knowledge and com-
mon priors in generating consensus. When agents communicate in a network,
common knowledge of the network structure is also required (Mueller-Frank,
2014). There is a subtle difference between the models on Bayesian and non-
Bayesian updating. In the former, the agents have priors regarding some
parameter as well as private information. Based on the agents’ observed ac-
tions (which could involve revealing one’s posteriors), each updates one’s own
prior. Here, the consensus occurs if the private information becomes “pub-
lic” as time progresses. The focus is on whether agents eventually agree, and
whether they learn the underlying data generating process.

The common knowledge assumption is demanding, and the agents require
a powerful calculating ability to properly tease out the sources of informa-
tion. In models on non-Bayesian updating the agents reveal their prior to
each other, leading to an update. Private information spreads through the
network but information may not be aggregated perfectly due to the lack

of rationality on the agents’ part. Thus, consensus may be reached but the



outcome is not necessarily the same as if the private information was pooled.
Molavi et. al. (2018) considers “quasi-Bayesian” learning which we consider
in Section 4.

The paper is structured as follows. Next we introduce preliminary con-
cepts and results. Section 3 contains our main results. We conclude with a
discussion, which includes examples and additional results. Proofs are found

in the Appendix.

2 Preliminaries

2.1 Networks and Communication

A finite set A = {1,--- ,a} of agents interact with each other. Each agent
i € A listens to a fixed group of agents — agent i’s (1-) neighborhood. A
function €' : A — 24 identifies each agent’s neighborhood. Specifically, C(7)
is i’s neighborhood and it does not necessarily include 7. If some agent j is in
agent ¢’s neighborhood, we say j is i’s neighbor. A pair (A, C) is a network.
For any integer k > 2, we iteratively define agent i’s k-neighborhood C*(7)
as follows: C*(i) = Ujec(iyC* ().

We say that agent j communicates to i if there exist a natural number
k such that j € C*(i). Whenever j communicates to i, the distance from
agent j to i is d;; = min{k € Z : j € C*(i)}. Note here that d;; could be
different than dj;.

Definition 1. Network (A, C) is irreducible if every agent in A communi-

cates with all the agents including herself.

The diameter of a network d(A,C) is the maximal distance from any
agent to another, i.e., d(A,C) = max; jea di;. A sequence of agents
1,02, - ,1i is a cycle if for each [ = 1,--- |k, 4;41 is 4;’s neighbor where
ix+1 = 41. The length of a cycle is the number of agents in the cycle. For
each agent i € A, we define V;(A, C) as the lengths of cycles containing i.
Formally, V;(A,C) = {k € Zy : i € C*(i)}. Notice that V;(4,C) is closed
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under addition: p,q € V;(A, C) implies p+ g € V;(A, C). In other words, if 4
belongs to a cycle of length p and a cycle of length ¢ then i also belongs to
a cycle of length p + q.

Definition 2. A network (A, C) is aperiodic if for each agent i, the greatest

common divisor of numbers in V;(A,C) is 1.

Let us fix a network (A4, C) which is irreducible and aperiodic. We use

the following notation:
0 = argmin{k € Z,|C"(i) = A,Vi € A,Vk > k}.
k

It is well-known that 6 exists for irreducible, aperiodic networks. We
start with a broad class of networks in which each agent is in her own neigh-
borhood. In real world applications, it is hard to imagine an agent who

completely disregards her own opinion.

Proposition 1. Consider any irreducible, acyclic network (A, C) such that
1€ C(i) for alli. Then 6 =d(A,C).

Proof. By the definition of d(A,C), it must be that 8 > d(A,C). Fix any
i,j € A. By definition, j € C%i(i). Because i € C(i), j € C¥(i) for all
k > d;;. Furthermore, d;; < d(A,C) and i, j are selected arbitrarily. Thus,
0 =d(A,CQC). O

For networks in which some agent is not in her own neighborhood, we can
only identify a bound. To do so, let us define ¢} = ming{k|k, k+1 € V;(A,C)}

which is known to exist.2

Proposition 2. For any irreducible, acyclic network (A, C)

< et (et —1).
0 —= I?G%(Ijneaj( dl] + =i (Cz 1))

2See Kemeny et. al. (1966) for a proof of this result.



The proposition above provides a bound on € for any network. This
bound is not tight. To see this, consider a network in which C(i) = A\ {i}
and C(j) = A for all j # i. One can show that ¢/ = 2 and d;; = 2.
Consequently, the bound is 4 but § = 2.

2.2 Beliefs and Updating

An opinion/belief of the agents is an a-dimensional vector x € [0, 1]* where x;
is agent ¢’s opinion about some parameter. We use the following conventional
notation: for each i € A, x_; = ()2 and x = (x;,2_;).

Time is discrete and starts at period 0. At the initial period, the agents
have an exogenously given opinion, and they exchange their opinions ac-
cording the network structure. Afterwards they update their opinions which
become the following period’s initial opinions. In the following period, the
agents again exchange and update their opinions. The process repeats ev-
ery period. We formalize this opinion updating process by introducing an
(opinion) updating function T : N x [0,1]* — [0,1]* where N is the set of
non-negative integers. Agent i’s updating function is 7; and the process is
a Markov chain. If the opinion is z in period ¢ then T'(¢,z) is the opinion
in period t + 1. We will sometimes use the notation T%!(x) for T'(¢,z) and
iteratively define T*(x) as T'(t + k — 1, T**~1(x)) for all integer k > 2. In
words, T%*(z) is the vector of opinions in period 4+ k when the period ¢
vector of opinions is x.

We are interested in how the agents’ opinions evolve in the long-run.
In this sense, the main focus of our study is the properties of T°(x) =
limg o0 T 07’“(30) when it is well-defined. We say a network reaches consensus
it 77°(z) = T7°(x) for all , i and j.

As we indicated before, the network structure must affect the updating
function. Specifically, we assume that (i) one’s opinion is not affected by the
opinions of those who are not in the agent’s neighborhood, i.e., for each x
and T_c(y), Ti(t,x) = Ti(t,xc(), T_c()) for all t > 0, and (ii) if agent j is

©’s neighbor then j’s opinion affects i’s in some cases, i.e., for each j € C(i),
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there exists  and Z;, and ¢ such that T; (¢, x) # T;(t, Z;, z—;). We sometimes

refer to T'(t,-) as the period-t updating function.

We assume that no agent updates her opinion outside of the extremal

opinions of her neighbors.

Assumption 1. Ti(t,z) € [minjcc() Tj, Maxjec() ;] for all i and x.

Unless stated otherwise, Assumption 1 holds for the rest of this paper.

Next we present some examples of updating functions, each of which satisfies

Assumption 1.

1
e = 3w
Jjec(i)
where wfj > 0, Z wfj(x) =1
JeC(d)

Ti(t,.’lﬁ) = )\t Z Wi T4 + (1 — )\t)SL’Z‘

JEC(d)
where w;; > 0, Z wi; = 1, € [0,1]
JEC()
Wjece®; ™

T;i(t, ) = " wt
Hjccu (I —z5)" + jecuyz;

where wfj > 0, Z wf»j =1

JEC()
T;(t,x) = Z wfj(x)xj
JeC (@)
where w};(z) > 0, Z wh;(z) =1
JEC()

The updating rule in (1) is a (weighted) L,-norm of opinions. Notice

that the weights, w};, vary over time. When p = 1 and wj; is time invariant,

95
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this rule reduces to the one in DeGroot (1974). The updating rule in (2) is
considered in DeMarzo et. al. (2003). This updating function has a very
specific structure: the time-varying weight is on a constant group of friends
and one’s own prior. This is equivalent to varying inertia in opinions.

The updating rule in (3) is considered by Molavi et. al. (2018)3 with
time-varying weights. They study the foundations of social learning using
an axiomatic approach. This updating functions is “more Bayesian” than
the standard DeGroot one in the sense that it violates fewer properties of
a Bayesian updating function. Lorenz (2005) studies rule (4), and notice
here that the weights, wfj(-), vary over time and are a function of current
opinions. It is easy to see that any updating function can be written in the
form of (4).

Lorenz (2005) considers the following condition: if w};(z) > 0 for some
t > 0 and z then wf](x) >6 >0forallt>0and z, for all i € A. It
is shown that if this condition is satisfied then agents’ opinions converge to
consensus in the long run (assuming an irreducible and aperiodic network).
This sufficient condition is not satisfied for (2) when A\* — 0, or for (1) when
wfj — 0 for some i and j € C(i). However, in these cases consensus is
sometimes reached. We will introduce a general condition that subsumes

Lorenz’s.

3 Main Results

3.1 Sufficiency

To introduce our condition, we need to define the following two variables:

Q;\x T (t,x)—minje o) Tj

‘) { 1 if |C(i)] = 1 or if maxjccq) 25 = minjeo() o5

= in all other cases
maXjec () ¥ —MINjec () Tj

3In Malavi et. al. (2018) the weights w!

; are time-independent, and Z]’ec(i) wlt-j need
not equal 1.



and

max;cc (i) € —1i(t,x)

. 1 if |C(i)] = 1 or if max;cc@) z; = minjec() 5
Bi(z) =

- in all other cases
maxjec(i) xj —mlnjec(i) x]'

Observe here that

Ti(t,z) = (1 — t i C 1ot :
it ) = ( az(m))jggg)% az(x)jrggg)x

= fi(z) min o;+(1-p(z)) max o;.

If we think of T;(¢, ) as the convex combination of the extremal opinions
in i’s neighborhood, then a(z) and fS!(x) are the weights ¢ places on the
maximal and minimal opinions, respectively.

Let of be the lowest weight given by any agent to the maximal opinion
in her neighborhood, i.e., o = inf;c agzefo]e @ (). In addition, for any
integer k > 1, let ot* = Hf;}i_lgf Similarly, we define 5* and ét’k.
Observe here that gf"k—l—ﬁt’k < 1 for all integers t > 0 and k > 1 in irreducible
networks because af(x) = 1 — ff(x) for all i and z with maxjccu) ©; #
minjec () ;-

In the lemma below, we consider how the extremal opinions behave.

Lemma 1. Let (A,C) be an irreducible, aperiodic network. Then for all x
and t > 0,

t,0 .t t0 _ pto :
b b < , ; - ).
Ijl_leanjj (x) grgn]} (Jj) (1 a 6 ) (IJI_1€aX$J ?élnﬂb)

If the network is complete, i.e., if C(i) = A for all i € A, then the

¢ and ét give the lemma above with § = 1. In non-complete

definitions of «
networks, the intuition behind the lemma is as follows: because the network
is irreducible and aperiodic, all the agents communicate with one another
after 0 periods. This means that both maximal and minimal (initial) opinions

affect each agent’s opinion in 6 periods. The lowest weight one assigns to the
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maximal opinion in her neighborhood in period 7 is a”. Thus, each agent
must assign at least the weight of o? to the period-t maximal opinion in
the whole network after § periods. Thus, Tit’e(x) > (1 - ab?)minjeq z; +

att

max;eca x; for all ¢. A similar logic yields that Tit’g(:r) < ét’e minjea T+
(1 —gt’e) maxjc4 ¢;. By rearranging terms, we obtain that between periods ¢
and t+6, the distance between extremal opinions shrinks at least by o/ + ﬁt’e

fraction.

Theorem 1. Let (A, C) be an irreducible, aperiodic network. Then consen-
sus is reached if there exists a sequence {ty} such that (i) tp41 —tr, > 0 for
all k and (i)

T

lim ) (o™ 4 ") = o0

T—00
k=1

To prove this theorem, note that the extremal opinions in the network
cannot move further apart over time because (by Assumption 1) no agent’s
updated opinion falls outside of the interval formed by the extremal opinions
in the agent’s neighborhood. The lemma preceding the theorem means that
after 7 blocks of § periods (where block k starts at period ¢;), the extremal
opinions will be at most [];_,(1 — a'*? — ") fraction of the distance
between extremal opinions in the initial period. We complete the proof
by showing that this maximal fraction goes to 0 as the number of blocks
increases as long as the sum of (af*? + ﬁt""a) over k converges to infinity.

Checking our condition could be somewhat impractical because one has
to look for a sequence {tx} with a certain characteristics. However, be-
cause we provide only a sufficient condition, one may want to impose the
restriction that the blocks of # periods must be consecutive. Specifically, if
lim, o Z,Z:O (k09 + ﬁke’g) = oo then consensus is reached. Although this
new sufficient condition is more practical than the original, it is narrower in
scope.

Our sufficient condition means that unless some agents rely on the min-
imal opinion while others on the maximal opinion at an increasingly “faster

rate,” consensus is reached in irreducible, aperiodic networks. It is easy to see
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that our condition is significantly more general than that of Lorenz (2005).
He considers updating functions in the form of (4) and requires conditions on
each weight wf-j (z) to guarantee consensus. Our condition is only in terms
of the weights assigned to the extremal opinions. In fact, as long as one of
these is bounded below or is converging to 0 slowly then our condition is
satisfied. Consequently, our condition subsumes the condition from Lorenz
(2005).

It is also easy to see that consensus occurs in the long term if a? + @t’e =
1 for some . In non-complete networks, this condition requires that either
everyone updates her opinion to the maximal one in each period between t
and t 4+ 6 or everyone to the minimal one. In complete networks, the con-
dition could mean one more scenario in which everyone weighs the maximal
and minimal opinions in the same way. Finally, we note here that our suffi-
cient condition is satisfied when at least one of the following conditions are
satisfied: Y2 | aft? = 400 or Y50, B0 = 40

A simple corollary follows from Theorem 1.

Corollary 1. Suppose the network is complete, i.e., C(i) = A for all i € A.

. . t
Then convergence to consensus occurs if limy_, o Zkzl(gk + ﬂk) = +00.

The corollary follows from the fact that complete networks have 6 = 1.
This weaker condition is essentially the condition of DeMarzo et. al. (2003),
though applicable to a larger set of updating functions. We will return to

this issue in Section 4.2.

4 Discussion

4.1 Sufficient Condition in Specific Models

We now consider how our condition translates to specific updating functions
we considered in the previous section. The next example is a generalization

of a weighted average.
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Example 1 (L,-updating function). If every agent has the same updating

function in (1), then the weights do not depend on the current opinion. Thus,
t t+0—1
ij 7 T=t

t > 0. In this case, our sufficient condition is satisfied if there exists {tj}

let w! = minjec)wl;, w' = mingeaw!, and wh? =] w” for all

with tg41 — t > 0 and kat’“’e = oo0. To see this, observe that when
p = 1 we have that of = ét = w'. Thus, >, w'*? = oo is equivalent to
Sp(a? + g0 = oo, Let p € (0,1). Then we know that by Jensen’s

inequality,

p
Y whrh <[ D] wha
jeC (i) JEC(3)
Subsequently,
1/p
: — t .p t o ¢ mi ; —w' j
Ti(t,x) = Z Wi T = Z Wagy =10 jlencl*%)xﬁ(l “ )jglgfz(‘)x“
JEC(d) JEC()

Thus, Y, wh? = 0o implies that >k ét’“g = 0o0. A similar proof works for

the p>1 or p <0 cases.

Theorem 1 is not necessarily useful for Bayesian models, as Bayesian up-
dating functions are often difficult to characterize and there exists a large
literature characterizing Bayesian consensus under common knowledge and
common priors. However, Molavi et. al. (2018) provides a model of quasi-
Bayesian updating in which Theorem 1 can be useful. The following example
illustrates that if 2° € [0,1)® or 2° € (0,1]* (but not the union)* and As-
sumption 1 holds then Theorem 1 applies.

Example 2 (Quasi-Bayesian Updating). If every agent’s updating function
is the form of (3), then the weights do not depend on the current opin-

ion. In this case, we will show that, unless the initial opinions satisfy both

4Cromwell’s rule states that subjective beliefs should always be in (0,1). This is a
standard assumption in applying Bayes’s rule.
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min;e 4 2¥ = 0 and max;ca 29 = 1, consensus is reached. Clearly, if either
min;e 4 29 = 0 or max;ea 29 = 1 (but not both) then opinions converge to 0
or 1, respectively (for irreducible, aperiodic networks). Thus, let us concen-
trate on opinions where 0 < min;c 4 x? < maxX;eA x? <1.

As in the previous example let us define wt and w'? for allt > 0. In this
case, our sufficient condition is satisfied if there exists {ty} with tg41—1t; > 6
and >, w'? = oo.

To prove this, let Z! = (1f’;§) and z! = InZ!. The updating function can

be rewritten as Zf“ = Hjec(,-)(Z;)w:‘fj and therefore:

t+1 _ Lot
z = E W%

JEC(i)

Notice that this has the same structure as time-varying DeGroot (1974),
which is a special case of (1). The only difference is that z! € (—oo,+00),
which is not a compact set. However, our proof for Theorem 1 is valid
when [min;e 4 20, max;e 4 2] is a compact set, which occurs when min;e 4 22,
max;ea ) € (0,1). Thus, consensus is reached as long as there exists {t;}

with tyy1 —ti, > 6 and Y, wt? = 0o as we have shown in Example 1.

4.2 Necessity

A natural question is whether the sufficient condition is also necessary. Un-
fortunately, the answer to this question is negative. Below we present an
example of a complete network which reaches consensus despite violating

the sufficient condition we have identified.

Example 3 (Complete Network Consensus). There are only two agents 1
and 2 who behave as in the time-dependent DeGroot model. The weight one

places on the other’s opinion is a function of time and how different the
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opinions of the two agents are. Specifically, fori=1,2, j #1i and x,

3 .

2 if |lx; — x| <0.5
wzt»j(x): 4 1 J

1—39¢ if lvi —x5] > 0.5

and

wfz(x) =1- wf](z)
Observe here that o' = ' = 1. Hence, ,(a! 4+ ) < 0o. Observe here
that thanks to DeGroot (1974), consensus will emerge if the agents’ opinions
become closer than 0.5. This happens by period 1 no matter how different

the opinions were in period 0. Thus, consensus always emerges.

The example demonstrates that our sufficient condition is not necessary
for reaching consensus. One may argue that the sufficient condition can be
adjusted to cover the example above which has a very specific structure. In-
deed, after one period, all the initial opinions enter the interval on which our
sufficient condition holds. One approach to identify the necessary conditions
may involve (i) identifying intervals of opinions where our sufficient condi-
tion is satisfied and (ii) determining if the opinions outside the interval enter
it after some periods. However, both seem to be highly arbitrary. Thus,
such an approach does not appear to be fruitful for identifying the necessary

conditions for reaching consensus in general models such as ours.

4.3 Counter-Example and Non-Convergence

Based on the previous subsection, one needs to explore if our sufficient con-
dition can be weakened. We look for possible directions based on DeMarzo
et. al. (2003) which identify both necessary sufficient conditions for reaching
consensus in a specific setting. They consider the updating functions in the
form of (2) and show that consensus is reached if Z::f Al = 400. Our con-
dition would require the existence of a sequence {tx} with t541 —tp > 6
and Y25 A0 = oo where AYY = [[7H971 A7, Thus, our condition is

T=t
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more restrictive than that of DeMarzo et. al. (2003). The two condi-
tions however are equivalent in complete networks. This observation raises

the following question: can our condition be replaced in Theorem 1 by

“+o0
t=1

demonstrates this.

(a'+ ") = 0o? Our answer is negative: the following counter-example

Example 4. There are four agents and agent 1 listens to agents 1 and 2,
agent 2 to agents 1, 2 and 3, agent 3 to agents 2, 3 and 4, and agent 4 to
agents 8 and 4. The updating functions are as follows (for e < %)

Tyt 2) (1 =0} minjecqy zj 4 0f maxjecpyz;  if i = 1,2
i ’{Ij =
(5:’ Hlinjec(i) :l?j + (1 — 55) nlanGC(i) {L‘j Zf’L = 37 4

where
t— gt s if t is even
01 =05 = ( @ Do
0.5 if t is odd
and
s_g ) T Ui even
b=10% 2E(21)e ey oad
2T (27T —T)e

Let us consider the sequence {T%%(0,0.5,0.5,1)}. One can calculate that

Zte2e,1- 26,1 - Z=te) ift s odd

TO’t(O,0-570~571) = 9t_1 1 1 1_ ot_q )

5i=1 €555 35 1€ if t is even.

One can easily see that the first and last agent’s opinion converges to 2¢ and
1—2¢, respectively. However, the opinions of agents 2 and 8 do not converge.

Observe here that o = gt = min;—y ... 4{6!}. Furthermore, Y, a' =
Do ét = 00 because the even numbered o' s and éts converge to 0 while the odd
numbered ones to 0.5. However, as we already mentioned above, the agents
do not converge to a consensus. Our sufficient condition is not satisfied here.
To see this, observe that 0 = 3 in this ezample. Thus, any three consecutive

periods will have at least one odd period and ot and @t decrease by 4th between
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any two consecutive odd periods. Subsequently, whatever 3 period blocks we
choose, both o? and ét’e decrease at least by half between two blocks, which

s a too fast of a decrease.

To understand the mathematical structure of the example, consider a se-
quence of numbers {ag}r=1,23,. comprising of two subsequences:
{agk—1}k=1,23,. and {asx}r=1,23,.. . If it possible to choose these subse-
quences such that sz asp_1 = +oo and Z;:; asr, < 400, and still have
Z;::i ask_1a2r < +00, then one can violate the sufficient condition of Theo-
rem 1 while keeping the weaker condition similar to DeMarzo et. al. (2003).
In the example above {gk}k:172,37,__ and {gk}k:172737,,_ satisfy an analogous
condition.

To understand how the example works, notice that agents behave very
differently depending on whether it is an odd period or and even period.
Let us focus on agents 1 and 2 because their behavior is symmetric to other
two’s. Intuitively, agent 2 is bouncing between 0.5 and a point close to agent
1’s opinion. When agent 2 is close to agent 1, then agent 1 puts a lot of
weight on agent 2’s prior. However, when agent 2 is at 0.5 then agent 1
almost ignores agent 2. In fact, agent 1 becomes more and more isolated
over time in odd period only. Similarly, agent 2 puts a lot of weight on agent
1 when they are far apart but pays more attention to agent 3 when they are
close. In this way, agent 2 and 3 act as counter-weight to one another.

It should be noted that Example 4 produces a type of convergence but
not a consensus. Agents 2 and 3 each converge to a set of opinions that
are cycled through, and these sets intersect with the limiting sets of other
agents. Because agents 2 and 3 are the more centrist agents, this prevents
the agents with extreme opinions from converging. This observation raises
a question: can our sufficient condition be weakened to guarantee consensus
if we assume convergence? The following theorem says that if opinions con-
verge and Zj:lo al+ ﬁt = 400 then there exist two individuals who converge

to agreement on an extreme opinion. Define z} as agent ¢’s limiting opin-
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ion, z* as the minimum limiting opinion, and Z* as the maximum limiting

opinion.

Theorem 2. Let (A,C) be an irreducible network. If the opinion of each
agent i € A converges to a singleton x}, and Y .o, (a' + B') = 400 then

there exists j,k € A such that x5 =z}, and z},z} € {z*,T*}.

The proof works because there is a gap between limiting points for ev-
ery period after some £ and extreme individuals are their own extreme prior.
While the condition does not rule out disagreement altogether, it does estab-
lish that there cannot be complete disagreement (ie. z} # 7 for alli,j € A).
In conclusion, Theorem 2 allows us to rule out certain types of disagreement

by weakening our original condition and assuming convergence.

4.4 Discontinuity

An important feature of Theorem 1 is that continuity of T is not required to
guarantee consensus. Given that there are many applications that involve
discontinuous updating functions, we explore the conditions under which
discontinuity derails consensus. Mueller-Frank (2013) establishes conditions
that, together with continuity, guarantee consensus. In particular, the up-
dating function can be time variant but must be of only finite types, and

must satisfy the following assumption.
Assumption 2. T satisfies Assumption 1 and
T;(t,r) € ( min x;, max x,
i(t,2) (jEC(z‘) 7 jec )
for all i and x such that x; # T;.

Assumption 2 is a stronger version of Assumption 1, which requires be-
liefs be strictly between the extreme beliefs among one’s neighbours. The
following example assumes that the updating function is time invariant and
satisfies Assumption 2. However, it is discontinuous which leads to disagree-

ment.
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Example 5. Let there be two agents, A = {1,2}, each of which has the

following updating functions:

[

Ty(z) = (51%4—(1—51)1‘1 ifx1<% and xo >
! 0.521 + 0.5z otherwise

T({E)— 62%4—(1—62)%2 ifl’1<% andw2>%
2 N 0.521 + 0.5 otherwise

Notice that, with the exception of continuity, the assumptions of Mueller-
Frank (2013) hold. However, if (§1,62) € (0,1)% and the initial opinions

20 = (29, 29) satisfy 2§ < i and 29 > % then opinions converge to a non-

consensus point (i, %)

Example 5 demonstrates that a “small” amount of discontinuity can
lead to non-consensus for a large class of initial opinions. Furthermore,
it is clear that even though the updating function has a specific structure
there are many updating functions (i.e., values of (d1,d2)) that can lead to
non-consensus. Can a “smaller” amount of discontinuity prevent consen-
sus? The minimal amount of discontinuity required to get non-consensus is
for two agents’ updating functions to be discontinuous. This follows from
our condition Z::i off + gk’g = 4o00: one agent’s discontinuity can lead

0 ak < oo or S 7’“’9 < +00 but not both.

4.5 Conclusion

A general sufficient condition was established to guarantee convergence to
consensus in a social network, and this condition was related to the properties
of the network. It was demonstrated that the condition applies to many
models currently used in the literature, and it collapses to a weaker condition
if the network topology is restricted to a complete network. Furthermore,
certain types of disagreement can be ruled out when the set of updating

functions is restricted to those that converge.
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Discontinuous updating is analyzed and it was shown that, when our con-
dition is violated, consensus is not robust to small amounts of discontinuity.
In particular, if there exists one discontinuous point on the updating func-
tions of at least two agents then long-run disagreement can arise for some
set of initial beliefs of positive measure.

Given that social networks exhibit the “small world” property (ie. small
diameters), our results suggest that widespread disagreement implies that
there are some people do not respond to others’ beliefs. This raises a ques-
tion: how can one produce (stable) disagreement in a highly connected net-
work with agents who listen to one another? We leave the answer to this

question for future research.
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Appendix

Proof of Proposition 2. Fix any i,j € A. By definition, j € Cldj (i) and

j ¢ C*(i) for any k < d;;. Kemeny et. al (1966) show that any

k> ct(c; —1)isin Vi(A,C) or equivalently, i € C*(i). Then j € Cdiitk(4)
for all k > ¢} (c¢; — 1) because C%5 5 (i) = Uyecr () C%9 (€). Because this is

true for all ¢ and j, we obtain

< (e —1)).
H_gle%(r]neagdzﬁcz(cz 1))

To prove Lemma 1 we first introduce some notation and definitions. Let
T:[0,1]" — [0,1]™ T :[0,1]™ — [0,1]™ be a function such that

T,(t,x) = 1—a') min z; 4+ o' max x;
Lyt 2) = *)jecu)] = jec(’

for all i and . We define 77" () in the same way as we defined T*+7*(z).

The following lemma plays a key role in the proof of Lemma 1.

Lemma 2. (a) For all natural number 7 > 1 and t >0, T"T7!(x) is

monotonic.
(b) For all natural number k > 1 and x, Tt (x) > T"*(z).
(c) Let (A,C) be irreducible and aperiodic. Then for any x and j € A,

min T;’G(x) > (1 —a"?)minz; + o™’ max x;.
JjeA jeEA JEA

Proof. (a) Because

T,(t,x) =o' max x; + (1 —a') min z;,

JeC(d) jec(i)
we have T'(x) > T'(z*) whenever x > z*. Furthermore, the monotonicity of
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T(r,z) for all 7 and the definition of 7"7™"(-) imply that T"7™(.) is
monotonic.

(b) By the definition of T'(t,x), we have that T'(7,y) > T'(7,y) for all
non-negative natural number 7 and y. Subsequently, T'(¢,z) > T(¢,x) and
Tt+1,T(tx))>T(t+1,T(t,z)) for all t. By combining these with the

monotonicity of T'(¢,-), we obtain that
T (x) = T(t+ 1, T(t,x) > T(t + 1, T(t,z)) > T(t + 1,T(t,z)) = T?(z).
One can extend the argument above and obtain that

TH(z) > T ()

for each natural number k£ > 1.
(c) Recall that 6 satisfies the following condition: j € C?(i) for all i,j € A.
We now show that for any x,

%iglﬁ’e(x) > (1-ab%) ?éing + o™’ max ;.
Let ¢ be an agent for whom z; = max;jca 2;. We know that each i € A
listens to 7 in @ steps, i.e., 1 € C?(i). Let y be an opinion such that
yi = minjca x; for all i # 4 and y; = 2; = max;jea zj. Clearly, > y. Thus,
by the monotonicity of T"7(-),

T () > T (y)
for all 7. We now concentrate on T'(¢,y). If i does not listen to 7 (i.e., if

i ¢ C(i)), then T;(t,y) = minjc 4 z;. On the other hand, if ¢ listens to only
i (ie., {i} = C(i)), then T,(t,y) = y; = max;ec4 z;. If i listens to some
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other agents in addition to i (i.e., {i} C C(i)), then

T.(t,y) = 1—a') min y; + o' max y;
Ti(ty) = (1—a) min y; + o max y;

=(1-a") min z; +a max z;.
Let y! be an opinion such that y} = min;c4 z; if i ¢ C(i) and
yl = (1 — ') minjeq z; + o’ max;eq z; if i € C(i). Observe that
T(t,y) > y" for all i. Thus, by the monotonicity of T7(-) for all 7,
T52(z) > T"*(y) > T(t + 1,y"). We now turn our attention to T'(t + 1,y").
If i does not listen to i in two steps (i.e., if i ¢ C?(i)), then
T,(t+1,y*) = minje ;. On the other hand, if i listens to ¢ in two steps
(ie., i € C?(4)), then

T,(t+1, H=(1-a") min y! + o't max yl =
( y)=( )jec(i)y max

> (1 — t+1 : . t+1 1— t : . t .
= (- )minz; +a™ (1 - o) minz; + o’ max ;)

2y, 2
=(1-a" )?él£$j + o max &

Let y? be an opinion such that y? = minje4 z; if i ¢ C?(i) and
y? = (1 — a"?)minjea zj + aP? maxjea z; if i € C?(i). Observe that
T(t+ 1,y*) > y2. Thus, by the monotonicity of T"7(-) for all T,
T3 (x) > T (y) > T H2(y') > T(t + 2,4%). We now turn our attention
to T(t +2,y%). If i does not listen to 4 in three steps (i.e., if i ¢ C3(i)),
then T',(t + 2,y%) = minje 4 x;. On the other hand, if i listens to ¢ in three
steps (i.e., : € C3(4)), then

T.(t+2,9?) = min v+ a'™? | max y? — min 3>
1 v) jeom T jecin VT jectn Y
>(1- gt’s) min x; +at? max ;.
JEA jEA
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By following the same procedure iteratively, let us define yf ~1. Observe
that T(t + 6 — 2,4°~2) > y?~1. Thus, by the monotonicity of T"7 for all T,
TH(z) > THO(y) > T (yl) > ... > P11 (y0-1) = (g — 1,40 1).
We now turn our attention to T'( — 1,4%~1). We know that each i listens

to ¢ in @ periods. Thus,

T.0-1,9") = min v/ '+a’ ' max ¢y’ — min ¢?*
L v jectn ¥ - jetw ject

> (1 —a"?)minz; + o' max x;
JjEA JEA
This means that min;e 4 IE’G () > (1 —at?) minjea x; + at? maxjea &j.

By combining this with (b) of this lemma, we obtain (c). O

Proof of Lemma 1. Parts b and ¢ of Lemma 2 yield that
min Tit’e(x) > (1 —a"?)minz; + o’ max ;.

i€A JEA jEA

Similarly, one can show that

Consequently,

t,0 . t,0 t,0 t,0 :
Ly ts < s ) . .
IzneaXT’ (;1:) IilémT (:z:) (1 « 153 )(rjneaxxj 5%111 :cj)

O

Proof of Theorem 1. Fix any x. Set 2° = z and 2! = T%!(x) for all ¢ > 1.
¢

Now consider the sequence {z'}. Let 2! = min;c4 ! and T' = max;e 4 x!.
To prove the theorem it suffices to show limtﬁoo{i"t — gt} — 0. Because
T;(7,x) € [minjea xj, max;ca z;] for all ¢ and 7, {z" — 2} is a

non-increasing sequence. Thus, we only need to show that the distance
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between extremal opinions converges to 0 for some subsequence. Let {¢x}
be a subsequence with t;41 — tx > 0 for all k and

lHm, e 3 or_q (s + ) = co. Because {z! — 2!} is non-increasing and
{tr} satisfies txy1 — t > 0 for all k, Lemma 1 gives that for all 7 > 2,

Ftr —QtT < rineaj(;rlwilfr7179($t.,.—1) - Iiléi}‘lTitT7179($t"_l).
(1 _ at77179 _ Btr—he) (.,Z.TT—I _ .,1:7'7—1_)
1
(1 _gtkﬂ _étkﬁ) (jo _ xo) '
1

IN

T

IN
i

Consequently, we complete the proof by showing that
lm;, oo [[ey (1 —af®f — ﬁt’“’g) — 0 when lim, o0 >/, (a'* —|—§t"') = oo0.

It is easy to see that for any 7 > 1,

Sr (s 59)
1 o = — .

T

T
H(l _gtkﬂ _étk,e) S
k=1

In addition,

i 1 2 (2 2m)\ < exp < > (a +5”“’9)> Wl e N,

T—00 T
=1

O

. l .
Furthermore, because lim;_, Zk:l (gt’“@ + Bt’“e) = 00, the previous

three inequalities give that

: P 77 ti,0 _
Tlgngolcli[l(l o — gy = 0.

Proof of Theorem 2. Assume that agents converge to different limit points,

and only one agent converges to z* and one to z*. We will derive a
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contradiction.
Because convergence occurs by assumption, after a certain time ¢ > 0 then
each agent is in the neighbourhood of their own limit point. For a > 1 this
means z* # T*.
Denote 4 as the agent with x7 = z*. By the assumption of irreducibility,
there exists a j € C(i) such that 7 < x7. We examine the behaviour of i’s
opinion after time ¢.
Case 1: z! > x!. Due to the constriction assumption, and the assumption
that z! is outside the neighbourhood of x}, a contradiction is established as
i’s posterior must lie outside the neighbourhood of their limit point 7.
Case 2: z! = 2! and, without loss of generality, Z! is in the neighbourhood
of 2. First notice that, for some x > 0:

x;H — xf“ > K
This is because the neighborhoods of the limiting points are
non-intersecting for large enough t, and are thus separated by a positive
distance. Therefore, we can find a 2 such that zf < z < zf for all ¢ >t and

z —zt > Kk — € > 0 for small enough € > 0. Therefore:

p—e<z—aftt =2 - (1= aj(e")s] - al(e)]
< 2= (1-al(@")a! - al(a")z)
<z= (1= al@))al - al()
<(1-a")(z—xh)

By the same logic of Theorem 2, that the distance between z and z!
shrinks to zero in the limit as ¢ — +o0o when Z;O;’ at = +oo. This
produces a contradiction because it is assumed that there is a gap Kk —e > 0

between ¢ and j’s neighbourhoods.
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A similar proof can be done for the maximum individual, giving our result
LOE al + B = +cc.

O
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