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1 Introduction

Social networks are an important source of information for individuals and

firms. The emergence of social media has led to an unprecedented level

of information sharing among “friends,” i.e. those who are connected and

communicate. Given this, should one expect people to agree in the long run?

We provide a new sufficient condition under which non-Bayesian agents in a

given network converge to consensus.

In our model, agents update their opinions based on the prior opinions of

their friends (and potentially themselves). Though we focus on opinions, the

model can accommodate any variable on a convex set, where the convex hull

of initial values is compact. For instance, instead of an opinion – a subjective

probability – agents may update their belief about the value of an unknown

parameter or adopt a cultural norm.

Literature on non-Bayesian learning beginning with DeGroot (1974) has

agents updating their beliefs to a weighted average of their friends’ beliefs.

Lorenz (2005) provides a generalization of the DeGroot model by allowing

the weights to depend on time and prior beliefs. The level of generality allows

for many types of updating behaviour, including those that exhibit optimism

or pessimism (over-weighting or under-weighting), and cognitive dissonance

(giving a higher weight to those with similar beliefs). He demonstrates that

aperiodic and strongly connected networks reach agreement if the weight

one gives to a friend’s opinion is bounded away from 0 by a positive num-

ber.1 We provide a more permissive sufficient condition than that of Lorenz

(2005). Roughly speaking, our result says that consensus is achieved unless

some agents rely with an increasingly “faster” rate on their friends with the

minimal opinion while some others on those with the maximal opinion.

DeMarzo et. al. (2003) considers a time-varying social network in which

the agents weigh themselves differently over time. They show that opinions

1In particular, Lorenz (2005) requires for each agent i that if there exists y and τ such
that wτij(y) > 0 then there exists a δ > 0 such that wtij(x) ≥ δ for all x and t.



converge when agents weigh other people’s opinions “often enough.” Our

result is related to DeMarzo et. al. (2003)’s, and the two are equivalent for

complete networks. In non-complete networks our condition is more restric-

tive. However, our condition is applicable in a wide range of environments

while DeMarzo et. al. (2003)’s condition is not applicable outside of their

specific model.

Mueller-Frank (2013) considers a general class of time-varying updating

rules that includes rules with belief-dependent weights. The main conditions

for convergence to consensus are (i) updating rules must satisfy continuity

and have posteriors be strictly in between the most extreme priors in one’s

neighborhood and (ii) the periodwise updating functions must be of finite

type. Our result does not require updating rules to be continuous or be of

finite type. The assumption of continuity is especially strong in environments

with endogenous network formation (Kivinen, 2017).

Several results on Bayesian updating in groups (Aumann, 1976; Geanako-

plos and Polemarkis, 1982) highlight the role of common knowledge and com-

mon priors in generating consensus. When agents communicate in a network,

common knowledge of the network structure is also required (Mueller-Frank,

2014). There is a subtle difference between the models on Bayesian and non-

Bayesian updating. In the former, the agents have priors regarding some

parameter as well as private information. Based on the agents’ observed ac-

tions (which could involve revealing one’s posteriors), each updates one’s own

prior. Here, the consensus occurs if the private information becomes “pub-

lic” as time progresses. The focus is on whether agents eventually agree, and

whether they learn the underlying data generating process.

The common knowledge assumption is demanding, and the agents require

a powerful calculating ability to properly tease out the sources of informa-

tion. In models on non-Bayesian updating the agents reveal their prior to

each other, leading to an update. Private information spreads through the

network but information may not be aggregated perfectly due to the lack

of rationality on the agents’ part. Thus, consensus may be reached but the
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outcome is not necessarily the same as if the private information was pooled.

Molavi et. al. (2018) considers “quasi-Bayesian” learning which we consider

in Section 4.

The paper is structured as follows. Next we introduce preliminary con-

cepts and results. Section 3 contains our main results. We conclude with a

discussion, which includes examples and additional results. Proofs are found

in the Appendix.

2 Preliminaries

2.1 Networks and Communication

A finite set A = {1, · · · , a} of agents interact with each other. Each agent

i ∈ A listens to a fixed group of agents – agent i’s (1-) neighborhood. A

function C : A→ 2A identifies each agent’s neighborhood. Specifically, C(i)

is i’s neighborhood and it does not necessarily include i. If some agent j is in

agent i’s neighborhood, we say j is i’s neighbor. A pair 〈A,C〉 is a network.

For any integer k ≥ 2, we iteratively define agent i’s k-neighborhood Ck(i)

as follows: Ck(i) = ∪j∈C(i)C
k−1(j).

We say that agent j communicates to i if there exist a natural number

k such that j ∈ Ck(i). Whenever j communicates to i, the distance from

agent j to i is dij ≡ min{k ∈ Z+ : j ∈ Ck(i)}. Note here that dij could be

different than dji.

Definition 1. Network 〈A,C〉 is irreducible if every agent in A communi-

cates with all the agents including herself.

The diameter of a network d(A,C) is the maximal distance from any

agent to another, i.e., d(A,C) = maxi,j∈A dij . A sequence of agents

i1, i2, · · · , ik is a cycle if for each l = 1, · · · , k, il+1 is il’s neighbor where

ik+1 = i1. The length of a cycle is the number of agents in the cycle. For

each agent i ∈ A, we define Vi(A,C) as the lengths of cycles containing i.

Formally, Vi(A,C) ≡ {k ∈ Z+ : i ∈ Ck(i)}. Notice that Vi(A,C) is closed
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under addition: p, q ∈ Vi(A,C) implies p+ q ∈ Vi(A,C). In other words, if i

belongs to a cycle of length p and a cycle of length q then i also belongs to

a cycle of length p+ q.

Definition 2. A network 〈A,C〉 is aperiodic if for each agent i, the greatest

common divisor of numbers in Vi(A,C) is 1.

Let us fix a network 〈A,C〉 which is irreducible and aperiodic. We use

the following notation:

θ ≡ arg min
k
{k ∈ Z+|Cκ(i) = A,∀i ∈ A,∀κ ≥ k}.

It is well-known that θ exists for irreducible, aperiodic networks. We

start with a broad class of networks in which each agent is in her own neigh-

borhood. In real world applications, it is hard to imagine an agent who

completely disregards her own opinion.

Proposition 1. Consider any irreducible, acyclic network 〈A,C〉 such that

i ∈ C(i) for all i. Then θ = d(A,C).

Proof. By the definition of d(A,C), it must be that θ ≥ d(A,C). Fix any

i, j ∈ A. By definition, j ∈ Cdij (i). Because i ∈ C(i), j ∈ Ck(i) for all

k ≥ dij . Furthermore, dij ≤ d(A,C) and i, j are selected arbitrarily. Thus,

θ = d(A,C).

For networks in which some agent is not in her own neighborhood, we can

only identify a bound. To do so, let us define c∗i ≡ mink{k|k, k+1 ∈ Vi(A,C)}
which is known to exist.2

Proposition 2. For any irreducible, acyclic network 〈A,C〉

θ ≤ max
i∈A

(max
j∈A

dij + c∗i (c
∗
i − 1)).

2See Kemeny et. al. (1966) for a proof of this result.
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The proposition above provides a bound on θ for any network. This

bound is not tight. To see this, consider a network in which C(i) = A \ {i}
and C(j) = A for all j 6= i. One can show that c∗i = 2 and dii = 2.

Consequently, the bound is 4 but θ = 2.

2.2 Beliefs and Updating

An opinion/belief of the agents is an a-dimensional vector x ∈ [0, 1]a where xi

is agent i’s opinion about some parameter. We use the following conventional

notation: for each i ∈ A, x−i ≡ (xj)j 6=i and x ≡ (xi, x−i).

Time is discrete and starts at period 0. At the initial period, the agents

have an exogenously given opinion, and they exchange their opinions ac-

cording the network structure. Afterwards they update their opinions which

become the following period’s initial opinions. In the following period, the

agents again exchange and update their opinions. The process repeats ev-

ery period. We formalize this opinion updating process by introducing an

(opinion) updating function T : N × [0, 1]a → [0, 1]a where N is the set of

non-negative integers. Agent i’s updating function is Ti and the process is

a Markov chain. If the opinion is x in period t then T (t, x) is the opinion

in period t + 1. We will sometimes use the notation T t,1(x) for T (t, x) and

iteratively define T t,k(x) as T (t+ k − 1, T t,k−1(x)) for all integer k ≥ 2. In

words, T t,k(x) is the vector of opinions in period t + k when the period t

vector of opinions is x.

We are interested in how the agents’ opinions evolve in the long-run.

In this sense, the main focus of our study is the properties of T∞(x) ≡
limk→∞ T 0,k(x) when it is well-defined. We say a network reaches consensus

if T∞i (x) = T∞j (x) for all x, i and j.

As we indicated before, the network structure must affect the updating

function. Specifically, we assume that (i) one’s opinion is not affected by the

opinions of those who are not in the agent’s neighborhood, i.e., for each x

and x̄−C(i), Ti(t, x) = Ti(t, xC(i), x̄−C(i)) for all t ≥ 0, and (ii) if agent j is

i’s neighbor then j’s opinion affects i’s in some cases, i.e., for each j ∈ C(i),
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there exists x and x̄j , and t such that Ti(t, x) 6= Ti(t, x̄j , x−j). We sometimes

refer to T (t, ·) as the period-t updating function.

We assume that no agent updates her opinion outside of the extremal

opinions of her neighbors.

Assumption 1. Ti(t, x) ∈ [minj∈C(i) xj ,maxj∈C(i) xj ] for all i and x.

Unless stated otherwise, Assumption 1 holds for the rest of this paper.

Next we present some examples of updating functions, each of which satisfies

Assumption 1.

Ti(t, x) =

 ∑
j∈C(i)

wtijx
p
j

 1
p

(1)

where wtij > 0,
∑
j∈C(i)

wtij(x) = 1

Ti(t, x) = λt

 ∑
j∈C(i)

wijxj

+ (1− λt)xi (2)

where wij > 0,
∑
j∈C(i)

wij = 1, λt ∈ [0, 1]

Ti(t, x) =
Πj∈C(i)x

wtij
j

Πj∈C(i)(1− xj)w
t
ij + Πj∈C(i)x

wtij
j

(3)

where wtij > 0,
∑
j∈C(i)

wtij = 1

Ti(t, x) =
∑
j∈C(i)

wtij(x)xj (4)

where wtij(x) > 0,
∑
j∈C(i)

wtij(x) = 1

The updating rule in (1) is a (weighted) Lp-norm of opinions. Notice

that the weights, wtij , vary over time. When p = 1 and wtij is time invariant,
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this rule reduces to the one in DeGroot (1974). The updating rule in (2) is

considered in DeMarzo et. al. (2003). This updating function has a very

specific structure: the time-varying weight is on a constant group of friends

and one’s own prior. This is equivalent to varying inertia in opinions.

The updating rule in (3) is considered by Molavi et. al. (2018)3 with

time-varying weights. They study the foundations of social learning using

an axiomatic approach. This updating functions is “more Bayesian” than

the standard DeGroot one in the sense that it violates fewer properties of

a Bayesian updating function. Lorenz (2005) studies rule (4), and notice

here that the weights, wtij(·), vary over time and are a function of current

opinions. It is easy to see that any updating function can be written in the

form of (4).

Lorenz (2005) considers the following condition: if wtij(x) > 0 for some

t ≥ 0 and x then wtij(x) ≥ δ > 0 for all t ≥ 0 and x, for all i ∈ A. It

is shown that if this condition is satisfied then agents’ opinions converge to

consensus in the long run (assuming an irreducible and aperiodic network).

This sufficient condition is not satisfied for (2) when λt → 0, or for (1) when

wtij → 0 for some i and j ∈ C(i). However, in these cases consensus is

sometimes reached. We will introduce a general condition that subsumes

Lorenz’s.

3 Main Results

3.1 Sufficiency

To introduce our condition, we need to define the following two variables:

αti(x) =

{
1 if |C(i)| = 1 or if maxj∈C(i) xj = minj∈C(i) xj

Ti(t,x)−minj∈C(i) xj
maxj∈C(i) xj−minj∈C(i) xj

in all other cases

3In Malavi et. al. (2018) the weights wtij are time-independent, and
∑
j∈C(i) w

t
ij need

not equal 1.
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and

βti (x) =

{
1 if |C(i)| = 1 or if maxj∈C(i) xj = minj∈C(i) xj

maxj∈C(i) xj−Ti(t,x)

maxj∈C(i) xj−minj∈C(i) xj
in all other cases

.

Observe here that

Ti(t, x) = (1− αti(x)) min
j∈C(i)

xj + αti(x) max
j∈C(i)

xj

= βti (x) min
j∈C(i)

xj + (1− βti (x)) max
j∈C(i)

xj .

If we think of Ti(t, x) as the convex combination of the extremal opinions

in i’s neighborhood, then αti(x) and βti (x) are the weights i places on the

maximal and minimal opinions, respectively.

Let αt be the lowest weight given by any agent to the maximal opinion

in her neighborhood, i.e., αt ≡ infi∈A&x∈[0,1]a α
t
i(x). In addition, for any

integer k ≥ 1, let αt,k ≡
∏t+k−1
τ=t ατ . Similarly, we define βt and βt,k.

Observe here that αt,k+βt,k ≤ 1 for all integers t ≥ 0 and k ≥ 1 in irreducible

networks because αti(x) = 1 − βti (x) for all i and x with maxj∈C(i) xj 6=
minj∈C(i) xj .

In the lemma below, we consider how the extremal opinions behave.

Lemma 1. Let 〈A,C〉 be an irreducible, aperiodic network. Then for all x

and t ≥ 0,

max
j∈A

T t,θj (x)−min
j∈A

T t,θj (x) ≤ (1− αt,θ − βt,θ)
(

max
j∈A

xj −min
j∈A

xj

)
.

If the network is complete, i.e., if C(i) = A for all i ∈ A, then the

definitions of αt and βt give the lemma above with θ = 1. In non-complete

networks, the intuition behind the lemma is as follows: because the network

is irreducible and aperiodic, all the agents communicate with one another

after θ periods. This means that both maximal and minimal (initial) opinions

affect each agent’s opinion in θ periods. The lowest weight one assigns to the
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maximal opinion in her neighborhood in period τ is ατ . Thus, each agent

must assign at least the weight of αt,θ to the period-t maximal opinion in

the whole network after θ periods. Thus, T t,θi (x) ≥ (1 − αt,θ) mini∈A xj +

αt,θ maxi∈A xj for all i. A similar logic yields that T t,θi (x) ≤ βt,θ minj∈A xj+

(1−βt,θ) maxj∈A xj . By rearranging terms, we obtain that between periods t

and t+θ, the distance between extremal opinions shrinks at least by αt,θ+βt,θ

fraction.

Theorem 1. Let 〈A,C〉 be an irreducible, aperiodic network. Then consen-

sus is reached if there exists a sequence {tk} such that (i) tk+1 − tk ≥ θ for

all k and (ii)

lim
τ→∞

τ∑
k=1

(αtk,θ + βtk,θ) = +∞

To prove this theorem, note that the extremal opinions in the network

cannot move further apart over time because (by Assumption 1) no agent’s

updated opinion falls outside of the interval formed by the extremal opinions

in the agent’s neighborhood. The lemma preceding the theorem means that

after τ blocks of θ periods (where block k starts at period tk), the extremal

opinions will be at most
∏τ
k=1(1 − αtk,θ − βtk,θ) fraction of the distance

between extremal opinions in the initial period. We complete the proof

by showing that this maximal fraction goes to 0 as the number of blocks

increases as long as the sum of (αtk,θ + βtk,θ) over k converges to infinity.

Checking our condition could be somewhat impractical because one has

to look for a sequence {tk} with a certain characteristics. However, be-

cause we provide only a sufficient condition, one may want to impose the

restriction that the blocks of θ periods must be consecutive. Specifically, if

limτ→∞
∑τ
k=0(αkθ,θ + βkθ,θ) =∞ then consensus is reached. Although this

new sufficient condition is more practical than the original, it is narrower in

scope.

Our sufficient condition means that unless some agents rely on the min-

imal opinion while others on the maximal opinion at an increasingly “faster

rate,” consensus is reached in irreducible, aperiodic networks. It is easy to see
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that our condition is significantly more general than that of Lorenz (2005).

He considers updating functions in the form of (4) and requires conditions on

each weight wtij(x) to guarantee consensus. Our condition is only in terms

of the weights assigned to the extremal opinions. In fact, as long as one of

these is bounded below or is converging to 0 slowly then our condition is

satisfied. Consequently, our condition subsumes the condition from Lorenz

(2005).

It is also easy to see that consensus occurs in the long term if αt,θ+βt,θ =

1 for some t. In non-complete networks, this condition requires that either

everyone updates her opinion to the maximal one in each period between t

and t + θ or everyone to the minimal one. In complete networks, the con-

dition could mean one more scenario in which everyone weighs the maximal

and minimal opinions in the same way. Finally, we note here that our suffi-

cient condition is satisfied when at least one of the following conditions are

satisfied:
∑∞
k=1 α

tk,θ = +∞ or
∑∞
k=1 β

tk,θ = +∞.

A simple corollary follows from Theorem 1.

Corollary 1. Suppose the network is complete, i.e., C(i) = A for all i ∈ A.

Then convergence to consensus occurs if limt→∞
∑t
k=1(αk + βk) = +∞.

The corollary follows from the fact that complete networks have θ = 1.

This weaker condition is essentially the condition of DeMarzo et. al. (2003),

though applicable to a larger set of updating functions. We will return to

this issue in Section 4.2.

4 Discussion

4.1 Sufficient Condition in Specific Models

We now consider how our condition translates to specific updating functions

we considered in the previous section. The next example is a generalization

of a weighted average.
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Example 1 (Lp-updating function). If every agent has the same updating

function in (1), then the weights do not depend on the current opinion. Thus,

let wti ≡ minj∈C(i) w
t
ij, w

t ≡ mini∈A w
t
i, and wt,θ ≡

∏t+θ−1
τ=t wτ for all

t ≥ 0. In this case, our sufficient condition is satisfied if there exists {tk}
with tk+1 − tk ≥ θ and

∑
k w

tk,θ = ∞. To see this, observe that when

p = 1 we have that αt = βt = wt. Thus,
∑
k w

tk,θ = ∞ is equivalent to∑
k(αtk,θ + βtk,θ) = ∞. Let p ∈ (0, 1). Then we know that by Jensen’s

inequality, ∑
j∈C(i)

wtijx
p
j ≤

 ∑
j∈C(i)

wtijxj

p

.

Subsequently,

Ti(t, x) =

 ∑
j∈C(i)

wtijx
p
j

1/p

≤
∑
j∈C(i)

wtijxj ≤ wt min
j∈C(i)

xj+(1−wt) max
j∈C(i)

xj .

Thus,
∑
k w

tk,θ = ∞ implies that
∑
k β

tk,θ = ∞. A similar proof works for

the p > 1 or p < 0 cases.

Theorem 1 is not necessarily useful for Bayesian models, as Bayesian up-

dating functions are often difficult to characterize and there exists a large

literature characterizing Bayesian consensus under common knowledge and

common priors. However, Molavi et. al. (2018) provides a model of quasi-

Bayesian updating in which Theorem 1 can be useful. The following example

illustrates that if x0 ∈ [0, 1)a or x0 ∈ (0, 1]a (but not the union)4 and As-

sumption 1 holds then Theorem 1 applies.

Example 2 (Quasi-Bayesian Updating). If every agent’s updating function

is the form of (3), then the weights do not depend on the current opin-

ion. In this case, we will show that, unless the initial opinions satisfy both

4Cromwell’s rule states that subjective beliefs should always be in (0, 1). This is a
standard assumption in applying Bayes’s rule.
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mini∈A x
0
i = 0 and maxi∈A x

0
i = 1, consensus is reached. Clearly, if either

mini∈A x
0
i = 0 or maxi∈A x

0
i = 1 (but not both) then opinions converge to 0

or 1, respectively (for irreducible, aperiodic networks). Thus, let us concen-

trate on opinions where 0 < mini∈A x
0
i < maxi∈A x

0
i < 1.

As in the previous example let us define wt and wt,θ for all t ≥ 0. In this

case, our sufficient condition is satisfied if there exists {tk} with tk+1−tk ≥ θ
and

∑
k w

tk,θ =∞.

To prove this, let Zti =
xti

(1−xti)
and zti = lnZti . The updating function can

be rewritten as Zt+1
i = Πj∈C(i)(Z

t
j)
wtij and therefore:

zt+1
i =

∑
j∈C(i)

wtijz
t
i

Notice that this has the same structure as time-varying DeGroot (1974),

which is a special case of (1). The only difference is that zti ∈ (−∞,+∞),

which is not a compact set. However, our proof for Theorem 1 is valid

when [mini∈A z
0
i ,maxi∈A z

0
i ] is a compact set, which occurs when mini∈A x

0
i ,

maxi∈A x
0
i ∈ (0, 1). Thus, consensus is reached as long as there exists {tk}

with tk+1 − tk ≥ θ and
∑
k w

tk,θ =∞ as we have shown in Example 1.

4.2 Necessity

A natural question is whether the sufficient condition is also necessary. Un-

fortunately, the answer to this question is negative. Below we present an

example of a complete network which reaches consensus despite violating

the sufficient condition we have identified.

Example 3 (Complete Network Consensus). There are only two agents 1

and 2 who behave as in the time-dependent DeGroot model. The weight one

places on the other’s opinion is a function of time and how different the
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opinions of the two agents are. Specifically, for i = 1, 2, j 6= i and x,

wtij(x) =

{
3
4 if |xi − xj | ≤ 0.5

1− 1
4

1
2t if |xi − xj | > 0.5

and

wtii(x) = 1− wtij(x).

Observe here that αt = βt = 1
4

1
2t . Hence,

∑
t(α

t + βt) < ∞. Observe here

that thanks to DeGroot (1974), consensus will emerge if the agents’ opinions

become closer than 0.5. This happens by period 1 no matter how different

the opinions were in period 0. Thus, consensus always emerges.

The example demonstrates that our sufficient condition is not necessary

for reaching consensus. One may argue that the sufficient condition can be

adjusted to cover the example above which has a very specific structure. In-

deed, after one period, all the initial opinions enter the interval on which our

sufficient condition holds. One approach to identify the necessary conditions

may involve (i) identifying intervals of opinions where our sufficient condi-

tion is satisfied and (ii) determining if the opinions outside the interval enter

it after some periods. However, both seem to be highly arbitrary. Thus,

such an approach does not appear to be fruitful for identifying the necessary

conditions for reaching consensus in general models such as ours.

4.3 Counter-Example and Non-Convergence

Based on the previous subsection, one needs to explore if our sufficient con-

dition can be weakened. We look for possible directions based on DeMarzo

et. al. (2003) which identify both necessary sufficient conditions for reaching

consensus in a specific setting. They consider the updating functions in the

form of (2) and show that consensus is reached if
∑+∞
t=1 λ

t = +∞. Our con-

dition would require the existence of a sequence {tk} with tk+1 − tk ≥ θ

and
∑+∞
k=1 λ

tk,θ = ∞ where λt,θ ≡
∏t+θ−1
τ=t λτ . Thus, our condition is

15



more restrictive than that of DeMarzo et. al. (2003). The two condi-

tions however are equivalent in complete networks. This observation raises

the following question: can our condition be replaced in Theorem 1 by∑+∞
t=1 (αt+βt) =∞? Our answer is negative: the following counter-example

demonstrates this.

Example 4. There are four agents and agent 1 listens to agents 1 and 2,

agent 2 to agents 1, 2 and 3, agent 3 to agents 2, 3 and 4, and agent 4 to

agents 3 and 4. The updating functions are as follows (for ε < 1
4):

Ti(t, x) =

{
(1− δti) minj∈C(i) xj + δti maxj∈C(i) xj if i = 1, 2

δti minj∈C(i) xj + (1− δti) maxj∈C(i) xj if i = 3, 4

where

δt1 = δt4 =

{
ε

2(2t−2−(2t−1)ε) if t is even

0.5 if t is odd

and

δt2 = δt3 =


ε

2t−2−(2t−1)ε if t is even.
2t−2−(2t−1)ε

2t−1−(2t+1−1)ε if t is odd

Let us consider the sequence {T 0,t(0, 0.5, 0.5, 1)}. One can calculate that

T 0,t(0, 0.5, 0.5, 1) =


(

2t−1
2t−1 ε, 2ε, 1− 2ε, 1− 2t−1

2t−1 ε
)

if t is odd(
2t−1
2t−1 ε,

1
2 ,

1
2 , 1−

2t−1
2t−1 ε

)
if t is even.

One can easily see that the first and last agent’s opinion converges to 2ε and

1−2ε, respectively. However, the opinions of agents 2 and 3 do not converge.

Observe here that αt = βt = mini=1,··· ,4{δti}. Furthermore,
∑
t α

t =∑
t β

t =∞ because the even numbered αts and βts converge to 0 while the odd

numbered ones to 0.5. However, as we already mentioned above, the agents

do not converge to a consensus. Our sufficient condition is not satisfied here.

To see this, observe that θ = 3 in this example. Thus, any three consecutive

periods will have at least one odd period and αt and βt decrease by 4th between
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any two consecutive odd periods. Subsequently, whatever 3 period blocks we

choose, both αt,θ and βt,θ decrease at least by half between two blocks, which

is a too fast of a decrease.

To understand the mathematical structure of the example, consider a se-

quence of numbers {ak}k=1,2,3,... comprising of two subsequences:

{a2k−1}k=1,2,3,... and {a2k}k=1,2,3,.... If it possible to choose these subse-

quences such that
∑+∞
k=1 a2k−1 = +∞ and

∑+∞
k=1 a2k < +∞, and still have∑+∞

k=1 a2k−1a2k < +∞, then one can violate the sufficient condition of Theo-

rem 1 while keeping the weaker condition similar to DeMarzo et. al. (2003).

In the example above {αk}k=1,2,3,... and {βk}k=1,2,3,... satisfy an analogous

condition.

To understand how the example works, notice that agents behave very

differently depending on whether it is an odd period or and even period.

Let us focus on agents 1 and 2 because their behavior is symmetric to other

two’s. Intuitively, agent 2 is bouncing between 0.5 and a point close to agent

1’s opinion. When agent 2 is close to agent 1, then agent 1 puts a lot of

weight on agent 2’s prior. However, when agent 2 is at 0.5 then agent 1

almost ignores agent 2. In fact, agent 1 becomes more and more isolated

over time in odd period only. Similarly, agent 2 puts a lot of weight on agent

1 when they are far apart but pays more attention to agent 3 when they are

close. In this way, agent 2 and 3 act as counter-weight to one another.

It should be noted that Example 4 produces a type of convergence but

not a consensus. Agents 2 and 3 each converge to a set of opinions that

are cycled through, and these sets intersect with the limiting sets of other

agents. Because agents 2 and 3 are the more centrist agents, this prevents

the agents with extreme opinions from converging. This observation raises

a question: can our sufficient condition be weakened to guarantee consensus

if we assume convergence? The following theorem says that if opinions con-

verge and
∑+∞
t=1 α

t+βt = +∞ then there exist two individuals who converge

to agreement on an extreme opinion. Define x∗i as agent i’s limiting opin-
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ion, x∗ as the minimum limiting opinion, and x̄∗ as the maximum limiting

opinion.

Theorem 2. Let 〈A,C〉 be an irreducible network. If the opinion of each

agent i ∈ A converges to a singleton x∗i , and
∑∞
t=1(αt + βt) = +∞ then

there exists j, k ∈ A such that x∗j = x∗k and x∗j , x
∗
k ∈ {x∗, x̄∗}.

The proof works because there is a gap between limiting points for ev-

ery period after some t̄ and extreme individuals are their own extreme prior.

While the condition does not rule out disagreement altogether, it does estab-

lish that there cannot be complete disagreement (ie. x∗i 6= x∗j for all i, j ∈ A).

In conclusion, Theorem 2 allows us to rule out certain types of disagreement

by weakening our original condition and assuming convergence.

4.4 Discontinuity

An important feature of Theorem 1 is that continuity of T is not required to

guarantee consensus. Given that there are many applications that involve

discontinuous updating functions, we explore the conditions under which

discontinuity derails consensus. Mueller-Frank (2013) establishes conditions

that, together with continuity, guarantee consensus. In particular, the up-

dating function can be time variant but must be of only finite types, and

must satisfy the following assumption.

Assumption 2. T satisfies Assumption 1 and

Ti(t, x) ∈ ( min
j∈C(i)

xj , max
j∈C(i)

xj)

for all i and x such that xi 6= x̄i.

Assumption 2 is a stronger version of Assumption 1, which requires be-

liefs be strictly between the extreme beliefs among one’s neighbours. The

following example assumes that the updating function is time invariant and

satisfies Assumption 2. However, it is discontinuous which leads to disagree-

ment.
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Example 5. Let there be two agents, A = {1, 2}, each of which has the

following updating functions:

T1(x) =

{
δ1

1
4 + (1− δ1)x1 if x1 <

1
4 and x2 >

3
4

0.5x1 + 0.5x2 otherwise

T2(x) =

{
δ2

3
4 + (1− δ2)x2 if x1 <

1
4 and x2 >

3
4

0.5x1 + 0.5x2 otherwise

Notice that, with the exception of continuity, the assumptions of Mueller-

Frank (2013) hold. However, if (δ1, δ2) ∈ (0, 1)2 and the initial opinions

x0 = (x0
1, x

0
2) satisfy x0

1 <
1
4 and x0

2 >
3
4 then opinions converge to a non-

consensus point
(

1
4 ,

3
4

)
.

Example 5 demonstrates that a “small” amount of discontinuity can

lead to non-consensus for a large class of initial opinions. Furthermore,

it is clear that even though the updating function has a specific structure

there are many updating functions (i.e., values of (δ1, δ2)) that can lead to

non-consensus. Can a “smaller” amount of discontinuity prevent consen-

sus? The minimal amount of discontinuity required to get non-consensus is

for two agents’ updating functions to be discontinuous. This follows from

our condition
∑+∞
k=1 α

k,θ + βk,θ = +∞: one agent’s discontinuity can lead∑+∞
k=1 α

k,θ < +∞ or
∑+∞
k=1 β

k,θ < +∞ but not both.

4.5 Conclusion

A general sufficient condition was established to guarantee convergence to

consensus in a social network, and this condition was related to the properties

of the network. It was demonstrated that the condition applies to many

models currently used in the literature, and it collapses to a weaker condition

if the network topology is restricted to a complete network. Furthermore,

certain types of disagreement can be ruled out when the set of updating

functions is restricted to those that converge.
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Discontinuous updating is analyzed and it was shown that, when our con-

dition is violated, consensus is not robust to small amounts of discontinuity.

In particular, if there exists one discontinuous point on the updating func-

tions of at least two agents then long-run disagreement can arise for some

set of initial beliefs of positive measure.

Given that social networks exhibit the “small world” property (ie. small

diameters), our results suggest that widespread disagreement implies that

there are some people do not respond to others’ beliefs. This raises a ques-

tion: how can one produce (stable) disagreement in a highly connected net-

work with agents who listen to one another? We leave the answer to this

question for future research.
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Appendix

Proof of Proposition 2. Fix any i, j ∈ A. By definition, j ∈ Cdij(i) and

j /∈ Ck(i) for any k < dij . Kemeny et. al (1966) show that any

k ≥ c∗i (c∗i − 1) is in Vi(A,C) or equivalently, i ∈ Ck(i). Then j ∈ Cdij+k(i)

for all k ≥ c∗i (c∗i − 1) because Cdij+k(i) = ∪`∈Ck(`)C
dij (`). Because this is

true for all i and j, we obtain

θ ≤ max
i∈A

(max
j∈A

dij + c∗i (c
∗
i − 1)).

To prove Lemma 1 we first introduce some notation and definitions. Let

T : [0, 1]n → [0, 1]n T : [0, 1]n → [0, 1]n be a function such that

T i(t, x) = (1− αt) min
j∈C(i)

xj + αt max
j∈C(i)

xj

for all i and x. We define T t+τ,t(x) in the same way as we defined T t+τ,t(x).

The following lemma plays a key role in the proof of Lemma 1.

Lemma 2. (a) For all natural number τ ≥ 1 and t ≥ 0, T t+τ,t(x) is

monotonic.

(b) For all natural number k ≥ 1 and x, T t,k(x) ≥ T t,k(x).

(c) Let 〈A,C〉 be irreducible and aperiodic. Then for any x and j ∈ A,

min
j∈A

T t,θj (x) ≥ (1− αt,θ) min
j∈A

xj + αt,θ max
j∈A

xj .

Proof. (a) Because

T i(t, x) = αt max
j∈C(i)

xj + (1− αt) min
j∈C(i)

xj ,

we have T (x) ≥ T (x∗) whenever x ≥ x∗. Furthermore, the monotonicity of
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T (τ, x) for all τ and the definition of T t+τ,t(·) imply that T t+τ,t(·) is

monotonic.

(b) By the definition of T (t, x), we have that T (τ, y) ≥ T (τ, y) for all

non-negative natural number τ and y. Subsequently, T (t, x) ≥ T (t, x) and

T (t+ 1, T (t, x)) ≥ T (t+ 1, T (t, x)) for all t. By combining these with the

monotonicity of T (t, ·), we obtain that

T t,2(x) = T (t+ 1, T (t, x)) ≥ T (t+ 1, T (t, x)) ≥ T (t+ 1, T (t, x)) = T t,2(x).

One can extend the argument above and obtain that

T t,k(x) ≥ T t,k(x)

for each natural number k ≥ 1.

(c) Recall that θ satisfies the following condition: j ∈ Cθ(i) for all i, j ∈ A.

We now show that for any x,

min
j∈A

T t,θj (x) ≥ (1− αt,θ) min
j∈A

xj + αt,θ max
j
xj .

Let ī be an agent for whom xī = maxj∈A xj . We know that each i ∈ A
listens to ī in θ steps, i.e., ī ∈ Cθ(i). Let y be an opinion such that

yi = minj∈A xj for all i 6= ī and yī = xī = maxj∈A xj . Clearly, x ≥ y. Thus,

by the monotonicity of T t,τ (·),

T t,τ (x) ≥ T t,τ (y)

for all τ . We now concentrate on T (t, y). If i does not listen to ī (i.e., if

ī /∈ C(i)), then T i(t, y) = minj∈A xj . On the other hand, if i listens to only

ī (i.e., {̄i} = C(i)), then T i(t, y) = yī = maxj∈A xj . If i listens to some
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other agents in addition to ī (i.e., {̄i} ⊂ C(i)), then

T i(t, y) = (1− αt) min
j∈C(i)

yj + αt max
j∈C(i)

yj

= (1− αt) min
j∈A

xj + αt max
j∈A

xj .

Let y1 be an opinion such that y1
i = minj∈A xj if ī /∈ C(i) and

y1
i = (1− αt) minj∈A xj + αt maxj∈A xj if ī ∈ C(i). Observe that

T (t, y) ≥ y1 for all i. Thus, by the monotonicity of T t,τ (·) for all τ ,

T t,2(x) ≥ T t,2(y) ≥ T (t+ 1, y1). We now turn our attention to T (t+ 1, y1).

If i does not listen to ī in two steps (i.e., if ī /∈ C2(i)), then

T i(t+ 1, y1) = minj∈A xj . On the other hand, if i listens to ī in two steps

(i.e., ī ∈ C2(i)), then

T i(t+ 1, y1) = (1− αt+1) min
j∈C(i)

y1
j + αt+1 max

j∈C(i)
y1
j =

≥ (1− αt+1) min
j∈A

xj + αt+1((1− αt) min
j∈A

xj + αt max
j∈A

xj)

= (1− αt,2) min
j∈A

xj + αt,2 max
j∈A

xj

Let y2 be an opinion such that y2
i = minj∈A xj if ī /∈ C2(i) and

y2
i = (1− αt,2) minj∈A xj + αt,2 maxj∈A xj if ī ∈ C2(i). Observe that

T (t+ 1, y1) ≥ y2. Thus, by the monotonicity of T t,τ (·) for all τ ,

T t,3(x) ≥ T t,3(y) ≥ T t+1,2(y1) ≥ T (t+ 2, y2). We now turn our attention

to T (t+ 2, y2). If i does not listen to ī in three steps (i.e., if ī /∈ C3(i)),

then T i(t+ 2, y2) = minj∈A xj . On the other hand, if i listens to ī in three

steps (i.e., ī ∈ C3(i)), then

T i(t+ 2, y2) = min
j∈C(i)

y2
j + αt+2

(
max
j∈C(i)

y2
j − min

j∈C(i)
y2
j

)
≥ (1− αt,3) min

j∈A
xj + αt,3 max

j∈A
xj .
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By following the same procedure iteratively, let us define yθ−1
i . Observe

that T (t+ θ − 2, yθ−2) ≥ yθ−1. Thus, by the monotonicity of T t,τ for all τ ,

T t,θ(x) ≥ T t,θ(y) ≥ T t+1,θ−1(y1) ≥ · · · ≥ T t+θ−1,1(yθ−1) = T (θ − 1, yθ−1).

We now turn our attention to T (θ − 1, yθ−1). We know that each i listens

to ī in θ periods. Thus,

T i(θ − 1, yθ−1) = min
j∈C(i)

yθ−1
j + αθ−1

(
max
j∈C(i)

yθ−1
j − min

j∈C(i)
yθ−1
j

)
≥ (1− αt,θ) min

j∈A
xj + αt,θ max

j∈A
xj

This means that mini∈A T
t,θ
i (x) ≥ (1− αt,θ) minj∈A xj + αt,θ maxj∈A xj .

By combining this with (b) of this lemma, we obtain (c).

Proof of Lemma 1. Parts b and c of Lemma 2 yield that

min
i∈A

T t,θi (x) ≥ (1− αt,θ) min
j∈A

xj + αt,θ max
j∈A

xj .

Similarly, one can show that

max
i∈A

T t,θi (x) ≤ βt,θ min
j∈A

xj + (1− βt,θ) max
j∈A

xj .

Consequently,

max
i∈A

T t,θi (x)−min
i∈A

T t,θi (x) ≤ (1− αt,θ − βt,θ)(max
j∈A

xj −min
j∈A

xj).

Proof of Theorem 1. Fix any x. Set x0 = x and xt = T 0,t(x) for all t ≥ 1.

Now consider the sequence {xt}. Let xt = mini∈A x
t
i and x̄t = maxi∈A x

t
i.

To prove the theorem it suffices to show limt→∞{x̄t − xt} → 0. Because

Ti(τ, x) ∈ [minj∈A xj ,maxj∈A xj ] for all i and τ , {x̄t − xt} is a

non-increasing sequence. Thus, we only need to show that the distance
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between extremal opinions converges to 0 for some subsequence. Let {tk}
be a subsequence with tk+1 − tk ≥ θ for all k and

limτ→∞
∑τ
k=1(αtk + βtk) =∞. Because {x̄t − xt} is non-increasing and

{tk} satisfies tk+1 − tk ≥ θ for all k, Lemma 1 gives that for all τ ≥ 2,

x̄tτ − xtτ ≤ max
i∈A

T
tτ−1,θ
i (xtτ−1)−min

i∈A
T
tτ−1,θ
i (xtτ−1).

≤ (1− αtτ−1,θ − βtτ−1,θ) (x̄ττ−1 − xττ−1 .)

≤
τ−1∏
k=1

(1− αtk,θ − βtk,θ)
(
x̄0 − x0

)
.

Consequently, we complete the proof by showing that

limτ→∞
∏τ
k=1(1− αtk,θ − βtk,θ)→ 0 when limτ→∞

∑τ
k=1(αtk + βtk) =∞.

It is easy to see that for any τ ≥ 1,

τ∏
k=1

(1− αtk,θ − βtk,θ) ≤

1−

∑τ
k=1

(
αtk,θ + βtk,θ

)
τ

τ

.

In addition,

lim
τ→∞

1−

∑τ
k=1

(
αtk,θ + βtk,θ

)
τ

τ

≤ exp

(
−

l∑
k=1

(
αtk,θ + βtk,θ

))
∀l ∈ N.

Furthermore, because liml→∞
∑l
k=1

(
αtk,θ + βtk,θ

)
=∞, the previous

three inequalities give that

lim
τ→∞

τ∏
k=1

(1− αtk,θ − βtk,θ) = 0.

Proof of Theorem 2. Assume that agents converge to different limit points,

and only one agent converges to x∗ and one to x̄∗. We will derive a
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contradiction.

Because convergence occurs by assumption, after a certain time t > 0 then

each agent is in the neighbourhood of their own limit point. For a > 1 this

means x∗ 6= x̄∗.

Denote i as the agent with x∗i = x∗. By the assumption of irreducibility,

there exists a j ∈ C(i) such that x∗i < x∗j . We examine the behaviour of i’s

opinion after time t.

Case 1: xti > xti. Due to the constriction assumption, and the assumption

that xti is outside the neighbourhood of x∗i , a contradiction is established as

i’s posterior must lie outside the neighbourhood of their limit point x∗i .

Case 2: xti = xti and, without loss of generality, x̄ti is in the neighbourhood

of x∗j . First notice that, for some κ > 0:

xt+1
j − xt+1

i > κ

This is because the neighborhoods of the limiting points are

non-intersecting for large enough t, and are thus separated by a positive

distance. Therefore, we can find a z such that xti < z < xtj for all t > t and

z − xti > κ− ε > 0 for small enough ε > 0. Therefore:

κ− ε < z − xt+1
i = z − (1− αti(xt))xti − αti(xt)x̄ti
≤ z − (1− αti(xt))xti − αti(xt)xtj
< z − (1− αti(xt))xti − αti(xt)z

≤ (1− αt)(z − xti)

= Πt
k=t(1− αk)(z − xki )

By the same logic of Theorem 2, that the distance between z and xti
shrinks to zero in the limit as t→ +∞ when

∑+∞
t=t α

t = +∞. This

produces a contradiction because it is assumed that there is a gap κ− ε > 0

between i and j’s neighbourhoods.
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A similar proof can be done for the maximum individual, giving our result∑+∞
t=t α

t + βt = +∞.
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