
 

 

 

 

 

 

 

 

 

Valeria V. Lakshina 

 

 

 

DO PORTFOLIO INVESTORS 

NEED TO CONSIDER 

THE ASYMMETRY OF RETURNS 

ON THE RUSSIAN STOCK 

MARKET? 

 

 
BASIC RESEARCH PROGRAM 

WORKING PAPERS 

 

 
SERIES: FINANCIAL ECONOMICS 

WP BRP 75/FE/2019 
 

 

 

 

 

 

 

 

 

 

 

This Working Paper is an output of a research project implemented at the National Research University Higher 

School of Economics (HSE). Any opinions or claims contained in this Working Paper do not necessarily reflect the 

views of HSE.  

 



Valeria V. Lakshina 1

DO PORTFOLIO INVESTORS NEED TO CONSIDER
THE ASYMMETRY OF RETURNS

ON THE RUSSIAN STOCK MARKET?2

Abstract

This paper uses the parsimonious method of embedding skewness in asset allocation
based on the Taylor expansion of the investor utility function up to the third term and
maximizing it by portfolio weights. This approach also enables us to consider investor
risk aversion. Time-dependent multivariate asset moments are obtained via the GO-
GARCH volatility model with a normal-inverse Gaussian distribution for the error
term. We explore the performance of the usual 2 moment utility and its 3 moment
counterpart for a portfolio consisted of twenty assets traded on the Russian stock
market. The results demonstrate that the 3 moment utility significantly outperforms
the 2 moment utility by SD, MAD and CVaR for low levels of absolute risk aversion
and by portfolio returns and investor utility level during the whole forecast period.
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1 Introduction
The traditional approach to portfolio optimization was developed in the seminal paper of
Harry Markowitz (Markowitz, 1952), where it is implied that the investor utility function has
an infinite risk aversion coefficient. Hence the maximization of his/her utility is equivalent
to the minimization of the portfolio variance subject to some fixed return. It is natural to
suggest, however, that the investor risk aversion coefficient is less than infinity and investor
utility increases if the distribution of portfolio returns is positively skewed (Arrow, 1971;
Eisdorfer, 2010).

Recent literature provides a great variety of methods to introduce skewness in asset
allocation: minimizing portfolio variance subject to a fixed mean and skewness (Athayde
and Flôres, 2004), solving the multi-objective problem using fuzzy variables for asset returns
(Li et al., 2010), a mean-absolute deviation-skewness model with linearized second and third
terms (Konno et al., 1993), using shortage functions (Briec et al., 2007; Kerstens et al.,
2011), and neural networks (Yu et al., 2008). Kim et al. (2014) deals with higher moments
without their direct implementation into the goal function. The proper specification of the
model facilitates an automatic increase of skewness and a decrease of kurtosis. Another
example of such an approach is (Zuluaga and Cox, 2010). It’s also possible to find the
optimal portfolio by maximizing the positive skewness coefficient. This method is realized
in (Mencia and Sentana, 2009), where asset returns are assumed to be distributed as a
location scale mixture of normals. Remarkably, this method gives the optimal weights in a
closed form.

In this article we use the utility-based approach to account for skewness in distribution of
returns. The utility function is approximated by a Taylor series near the average investor’s
wealth. Varying the number of terms in the Taylor expansion one can include any number of
return distribution higher order moments in the utility (see (Jondeau and Rockinger, 2006;
Harvey et al., 2010)). We chose an exponential utility, which has constant absolute risk
aversion, and represents an investor who dislikes risk. Exponential utility is used frequently
in the portfolio optimization literature. For instance, in (Birge and Chavez-Bedoya, 2016)
this utility together with a generalized hyperbolic distribution is used to obtain a closed-
form solution for the asset allocation problem. Other examples of closed-form solutions
with exponential utility include (Çanakoğlu and Özekici, 2009), where the asset returns are
independent, and (Bodnar et al., 2015), where the asset returns follow a vector autoregressive
process of order one. Using exponential utility Palczewski et al. (2015) study the influence
of transaction costs on the optimal portfolio choice.

We compare two asset allocation procedures — with and without asymmetry. The former
corresponds to the case when the utility function Taylor expansion consists of three terms
(3 moment utility); the latter — two terms (2 moment utility)3.

The utility-based approach also enables us to take into account the degree of investor risk
3Portfolio optimization considering moments of higher than the third order are discussed in (Beardsley

et al., 2012; Akbar and Nguyen, 2016).
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aversion. These methods of implementing skewness in the portfolio optimization problem
do not usually consider investor risk aversion. The related literature, where risk aversion is
discussed, usually discards higher order dynamics. For instance, in (Cui et al., 2015) the
portfolio optimization problem with risk aversion is solved only within the framework of
mean-variance analysis.

We optimize a portfolio consisting of twenty stocks traded on the Moscow Exchange
(MOEX) with different levels of risk aversion and calculate three risk measures for each case.
The risk measures include Conditional Value-at-Risk (CVaR), standard deviation (SD) and
mean absolute deviation (MAD). We also consider investor utility level and portfolio returns.
The comparison of two portfolios reveals that the 3 moment utility portfolio allows greater
utility, lower risk and substantially higher returns.

The rest of the article is organized as follows. Section 2 is devoted to the portfolio
optimization with asymmetry and risk aversion; it describes the objective utility function
and moment estimation methods. Section 3 discusses the empirical results and Section 4
concludes.

2 Methodology

2.1 Portfolio optimization with asymmetry and
risk aversion

We use the elementary utility function with constant absolute risk aversion, (1).

U(W ) = − exp(−λW ), (1)

where U(·) is the utility function, W is the investor’s wealth, and λ is the absolute risk
aversion coefficient.

Following (Ghalanos, 2012) we use the Taylor series expansion for expected utility to
represent it in form of (2).

E [U(W )] =
∞∑
k=0

U (k)

k!
E
[(
W −W

)k]
, (2)

where U (k) denotes the k-th derivative of U . Since we need the first three moments to capture
the asymmetry of returns, we retain the first three terms from (2) to get the expansion of
utility function, (3).

E [U(W )] = U(W ) + U (1)(W )E[W −W ] +
1

2
U (2)(W )E[W −W ]2

+
1

3!
U (3)(W )E[W −W ]3 +O(W 4)

≈ U(W ) +
1

2
U (2)(W )E[W −W ]2 +

1

3!
U (3)(W )E[W −W ]3.

(3)
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Applying the Taylor expansion directly to exponential utility (1), we get (4).

E [U(W )] ≈ − exp(−λmp)

[
1 +

λ2

2
σ2
p −

λ3

3!
s3p

]
, (4)

where mp — portfolio return, σ2
p — portfolio variance and s3p — unnormalized portfolio

skewness.
Later, in Section 2.2, we introduce portfolio moments, which depend on time. Conse-

quently, we obtain (5).

E [Ut(W )] ≈ − exp(−λmp,t)

[
1 +

λ2

2
σ2
p,t −

λ3

3!
s3p,t

]
, (5)

with
mp = w′xt, (6a)

σ2
p = w′Σtw, (6b)

s3p = w′St(w ⊗ w), (6c)

where w are the portfolio weights, obtained from the maximization of (5), xt are the
portfolio asset returns at time t, (7), Σt is the estimated conditional second moment of
return distribution, i.e. volatility, (10), St is the estimated conditional third moment of
return distribution (see Section 2.2 for more details about moments estimation), ⊗ is the
Kronecker product. The 2 moment utility function differs from (5) by the absence of the
third term in brackets.

For the exponential utility (1) the convergence conditions of the Taylor series to expected
utility do not put any substantial restrictions on wealth W (Lhabitant, 1998).

2.2 Moment estimation

To estimate portfolio moments mp, σ2
p and s3p we use generalized orthogonal autoregressive

conditional heteroskedasticity model, or GO-GARCH (Van der Weide, 2002) with normal-
inverse Gaussian (NIG) distribution (O. E. Barndorff-Nielsen, 1997) for the error term. The
model is described below.

Let xt be an n × 1 vector of n assets’ logarithmic returns at time t, (7), where t varies
from 1 to T .

xt = (x1t, ..., xnt)
′. (7)

The observed returns xt can be represented as the sum of their mathematical expectation
E (xt|Ft−1) conditional on all available at moment t−1 information Ft−1 and n-dimensional
random process yt, (8).

xt = E(xt|Ft−1) + yt. (8)
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The random process yt has a multivariate normal (MN) or NIG conditional distribution
for the 2 moment or the 3 moment utility respectively, (9).

yt|Ft−1 ∼ MN(0,Σt), (9a)

yt|Ft−1 ∼ NIG(0,Σt, β, τ). (9b)

Matrix Σt = E(yty
′
t|Ft−1) is the conditional covariance matrix of yt, or volatility matrix.

We model innovations yt as a NIG random process. Parameters β and τ correspond to
asymmetry and tail dependence respectively. In the GO-GARCH model volatility matrix is
parametrized as in (10).

Σt = XVtX
′, (10)

where X is a matrix, based on the singular value decomposition of unconditional variance �
returns (for more details see (Van der Weide, 2002)), Vt is the diagonal matrix with non-zero
elements vt equal to the univariate volatilities of the portfolio assets. Univariate volatility can
be defined by any GARCH-type process, for example standard GARCH(p,q) of Bollerslev
(1986). In our paper we use the following notation, (11).

vt = c0 +

p∑
i=1

κiy
2
t−i +

q∑
j=1

µjv
2
t−j. (11)

The choice of the model is justified by the feasibility of the two-step estimation procedure.
At the first step the X matrix from (10) is obtained from the data, at the second step the
univariate volatilities together with the other distribution parameters are estimated via the
likelihood function, see details in (Hyvärinen and Oja, 2000).

Optimal weights are calculated by maximizing the utility function (4), using the algo-
rithm from NLopt library (for more details refer to (Ypma, 2014)) and parma package (Gha-
lanos and Pfaff, 2016) in the R software platform. The analytical gradient of (4) is provided
to improve the accuracy and computing speed.

3 Empirical results
We estimate portfolio moments using the GO-GARCH(1,1) model with NIG errors and
obtain the optimal portfolios by maximizing utility (4). The results are compared with the
no-asymmetry 2 moment portfolio consisting of the same assets. The portfolio moments for
the latter portfolio are assessed by means of GO-GARCH(2,2). The number of lags for the
GO-GARCH model is chosen according to the Hannan–Quinn information criterion (Hannan
and Quinn, 1979).

We use data from Yahoo Finance (2019). The sample includes twenty randomly chosen
stocks from MOEX and lasts from March 2010 until March 2019, including nine years of
weekly data or 560 observations after the elimination of missing values. The list of stocks
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considered and the descriptive statistics are presented in Appendix, Tables A1–A2. The
out-of-sample period is 100 observations and is approximately 18% of the sample.

The parameter estimates of the Vt matrix from (10)–(11) in the GO-GARCH model are
in Appendix, Table A3. The first three parameters are intercept, ARCH effect and GARCH
effect respectively. The last two parameters, β and τ , refer to the skewness and shape
parameters of the NIG distribution (see (9b)).

The first five columns in Table A3 shows GO-GARCH parameter estimates for the 2
moment utility and the last five for the 3 moment one. For each asset either the ARCH
effect κ or GARCH effect µ is significant at 5%. In the 3 moment utility case for GAZA,
IRAO and TANL both effects are significant. The shape parameter τ is significant at the
same level for each asset except GAZA. This asset is distributed according to the variance-
gamma distribution as a special case of NIG distribution (O. Barndorff-Nielsen and Blaesild,
1981). The skewness parameter β is significant at 5% in half of the cases. IRKT, AMEZ,
IRAO and ODVA reveal negative skewness coefficient (for NVTK β is insignificant), the
other assets have a positive one.

Next, we pass the obtained moment estimates to the investor utility function (5) and
carry out the portfolio optimization procedure. We allow short positions and employ full
investment constraint during the optimization procedure. We also investigate the influence
of risk aversion λ by varying its values from 0.1 to 10. The choice of λ is based on similar
research (see references in Section 1) and covers the range investigated in those articles. The
smallest λ corresponds to the riskiest behavior.

Hereinafter we focus on the out-of-sample period, which seems more relevant to practical
applications. Average optimal weights for twenty assets are presented in Appendix, Fig. A1.
Most weights demonstrate monotonic dynamics. There are nine stocks, whose weights are
increasing with the growth of risk aversion, and eleven stocks, whose weights are decreasing
under the same conditions. Stocks whose weights decrease demonstrate higher skewness and
kurtosis, than the other assets in the sample. The former include MGNZ, ZVEZ and IRKT
(see Table A2 for skewness and kurtosis coefficients). Investor preferences differ between the
2 moment and the 3 moment cases primarily when λ is low, i.e. if investor loves risk.

3.1 Out-of-sample risk measure comparison

For each portfolio we calculate three risk measures: SD, MAD, and CVaR with a 5% prob-
ability.

Fig. 1 presents weekly SD, calculated for the 2 and 3 moment utilities. The SD obtained
from the 3 moment utility, outperforms its 2 moment counterpart for low values of risk
aversion. With the growth of risk aversion, the SD for the 3 moment utility also grows,
outpacing the SD from the 2 moment utility. The other two risk measures demonstrate
similar behavior. The conditional boxplots for all risk measures under investigation can
be found in Appendix, Fig. A2–A4. Each boxplot displays the distribution of weekly risk
measures, evaluated in the out-of-sample period. Figures give evidence that the medians
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Figure 1: SD, obtained from maximization of 2 and 3 moment utility

λ 0.1 0.5 1 2 5 10
2 moment 6.80 6.57 5.77 4.49 2.65 1.47
3 moment 8.16 7.56 6.93 5.88 3.74 2.24

Table 1: Cumulative portfolio returns obtained from maximization of 2 and 3 moment utility

of SD and MAD are lower for the 3 moment utility for λ ⩽ 1 and CVaR for λ ⩽ 0.5. If
risk aversion increases, the distribution of risk measures for the 3 moment utility goes up,
demonstrating higher risk, than the 2 moment utility. The risk measures obtained from the 3
moment utility are more volatile, compared to their 2 moment counterparts and the pattern
described above is apparent mainly for the central tendency of risk measures distributions.

We also present some performance measures for the portfolios: portfolio return and
investor utility at every moment of time. Weekly returns of two portfolios based on the 2
and 3 moment utilities are plotted in Fig. 2. The returns from the 3 moment utility portfolio
clearly outperform the 2 moment ones, despite being more volatile. In order to compare
the general performance during the whole out-of-sample period we calculate the cumulative
portfolio returns, Table 1. According to Table 1, the 3 moment portfolio provides higher
returns during the period under consideration and its performance remains stable with the
growth of risk aversion, λ.

Investor utility is slightly higher for the 3 moment case, and the difference increases if
investor prefers to avoid risk, Table 2.

To summarize, we employ the utility approach to build two portfolios, consisting of twenty
assets, which are traded on MOEX. The multivariate distribution of returns is estimated by
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Figure 2: Portfolio returns obtained from maximization of 2 and 3 moment utility

λ 0.1 0.5 1 2 5 10

Mean 2 moment −0.9936 −0.9747 −0.9613 −0.9481 −0.9387 −0.9473
3 moment −0.9923 −0.9692 −0.9502 −0.9288 −0.9102 −0.9146

1st quartile 2 moment −0.9936 −0.9749 −0.9618 −0.9492 −0.9413 −0.9515
3 moment −0.9931 −0.9735 −0.9579 −0.9404 −0.9331 −0.9457

Median 2 moment −0.9936 −0.9747 −0.9610 −0.9478 −0.9381 −0.9469
3 moment −0.9926 −0.9703 −0.9524 −0.9337 −0.9194 −0.9309

3rd quartile 2 moment −0.9936 −0.9744 −0.9608 −0.9470 −0.9356 −0.9415
3 moment −0.9916 −0.9657 −0.9447 −0.9187 −0.8978 −0.9039

Table 2: Statistical characteristics of investor’s utility for 2 and 3 moment cases
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means of the GO-GARCH model with MN and NIG distributions for errors. The risk levels
of the portfolios are compared by SD, MAD and CVaR with a 5% probability. The results
demonstrate the substantial outperformance of the 3 moment utility, according to the risk
measures mentioned, for low levels of risk aversion, providing evidence for the fact that
taking into account the asymmetry of returns allows risk to be reduced in situations when
the investor does not avoid risk-taking. Such a strategy provides higher portfolio returns
and investor utility.

4 Conclusion
The necessity of taking into account the skewness of returns has been investigated in much
research and has a long history, see (Fogler et al., 1977; Kane, 1982). In our work we
use the parsimonious method of embedding skewness in asset allocation based on the Taylor
expansion of the investor utility function up to the third term and maximizing it by portfolio
weights. This approach also enables us to consider investor risk aversion. Time-dependent
multivariate asset moments are obtained via the GO-GARCH volatility model with NIG
distribution for the error term.

We explore the performance of the usual 2 moment utility and its 3 moment counterpart
for a portfolio consisting of twenty assets traded on MOEX. We compare the portfolio risk
estimated by CVaR and SD, as well as mean portfolio returns and investor’s utility for an
out-of-sample period varying the risk aversion parameter from 0.1 to 10.

The results demonstrate that the 3 moment utility significantly outperforms the 2 mo-
ment utility by SD, MAD and CVaR for low levels of absolute risk aversion and by portfolio
return and investor utility during the whole forecast period.

The work can be continued by considering other types of multivariate models for returns,
including BEKK (Engle and Kroner, 1995), dynamic conditional correlations model (Engle,
2002), copula GARCH (Jaworski and Pitera, 2014) and others.
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Appendix

Table A1: Tickers and companies’ names

Ticker Company name
ZVEZ PJSC Zvezda
GAZA PJSC GAZ
CNTL Central Telegraph PJSC
LNTA Lenta Ltd
IRKT Irkut Corporation
LSNG PJSC Lenenergo
MGNZ PJSC Solikamsk magnesium works
NMTP PJSC Novorossiysk Commercial Sea Port
AMEZ PJSC Ashinskiy metallurgical works
IRAO PJSC Inter RAO UES
RUSP PJSC Ruspolymet
AQUA PJSC Russian Aquaculture
MVID PJSC M.Video
NKSH PJSC Nizhnekamskshina
ODVA PJSC Mediaholding
TANL Tantal PJSC
BSPB Bank Saint-Petersburg PJSC
NVTK PJSC NovatekK
URKA PJSC Uralkali
MFGS Slavneft-Megionneftegaz PJSC
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Table A2: Descriptive statistics for log returns

Min. 1stQ. Mean Median 3rdQ. Max. St.dev. Skewn. Kurt.
ZVEZ −0.431 −0.020 0.010 0.000 0.020 0.701 0.129 1.901 10.247
GAZA −0.336 −0.029 −0.003 −0.002 0.026 0.192 0.060 −0.577 5.083
CNTL −0.298 −0.035 −0.001 0.000 0.026 0.387 0.067 0.385 4.406
LNTA −0.114 −0.026 −0.006 −0.008 0.014 0.096 0.037 −0.257 0.876
IRKT −0.219 −0.017 0.004 0.002 0.026 0.619 0.059 2.864 27.597
LSNG −0.204 −0.028 −0.003 −0.003 0.021 0.395 0.054 1.047 8.247
MGNZ −0.292 −0.027 0.000 −0.000 0.023 0.586 0.076 1.822 15.928
NMTP −0.214 −0.022 0.004 −0.000 0.024 0.322 0.050 0.718 5.137
AMEZ −0.208 −0.029 −0.003 −0.005 0.020 0.375 0.048 1.235 10.229
IRAO −0.239 −0.027 0.003 0.000 0.029 0.250 0.055 0.437 3.110
RUSP −0.206 −0.031 −0.004 −0.002 0.019 0.312 0.056 0.550 4.976
AQUA −0.331 −0.045 −0.001 −0.004 0.027 0.524 0.085 1.298 6.776
MVID −0.215 −0.016 0.005 0.002 0.028 0.167 0.046 −0.429 2.917
NKSH −0.433 −0.032 0.002 0.000 0.028 0.442 0.075 0.959 10.100
ODVA −0.354 −0.038 −0.007 −0.009 0.016 0.422 0.072 1.031 7.869
TANL −0.385 −0.044 −0.003 −0.010 0.027 0.666 0.107 1.282 6.910
BSPB −0.216 −0.027 −0.000 −0.003 0.028 0.293 0.055 0.350 5.289
NVTK −0.149 −0.017 0.005 0.003 0.026 0.134 0.035 0.091 1.197
URKA −0.296 −0.019 −0.001 −0.001 0.020 0.157 0.043 −0.904 5.859
MFGS −0.143 −0.025 −0.000 0.000 0.019 0.303 0.044 1.243 6.429
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Table A3: The estimates of GO-GARCH parameters
(standard errors are in parenthesis, * denotes significance on 5% level)

c0 κ1 κ2 µ1 µ2 c0 κ1 µ1 β τ

2 moment utility 3 moment utility

zvez
0.002 0.000 0.000 0.021∗ 0.978∗ 0.029 0.026 0.942∗ 0.098 0.629∗
(0.009) (0.006) (0.009) (0.006) (0.000) (0.023) (0.016) (0.031) (0.078) (0.177)

gaza
0.001 0.000 0.000 0.028∗ 0.971∗ 0.109∗ 0.130∗ 0.745∗ 0.267∗ 3.768

(0.010) (0.011) (0.011) (0.001) (0.000) (0.050) (0.046) (0.083) (0.118) (2.353)

cntl
0.002 0.000 0.000 0.027∗ 0.972∗ 0.001 0.000 0.999∗ 0.018 0.574∗
(0.006) (0.008) (0.006) (0.003) (0.000) (0.005) (0.005) (0.000) (0.076) (0.135)

lnta
0.030∗ 0.071∗ 0.000 0.000 0.900∗ 0.000 0.000 0.999∗ 0.156 2.148∗
(0.015) (0.010) (0.011) (0.090) (0.090) (0.001) (0.001) (0.000) (0.091) (0.761)

irkt
0.141 0.218∗ 0.035 0.000 0.641∗ 0.001 0.000 0.999∗ −0.187∗ 1.637∗
(0.088) (0.074) (0.051) (0.115) (0.129) (0.002) (0.003) (0.000) (0.088) (0.561)

lsng
0.198∗ 0.000 0.123∗ 0.000 0.692∗ 0.001 0.000 0.999∗ 0.274∗ 0.339∗
(0.081) (0.019) (0.048) (0.022) (0.088) (0.004) (0.004) (0.000) (0.070) (0.073)

mgnz
0.001 0.000 0.000 0.177∗ 0.822∗ 0.023 0.024 0.949∗ 0.102 1.337∗
(0.006) (0.019) (0.017) (0.001) (0.000) (0.016) (0.013) (0.024) (0.093) (0.445)

nmtp
0.661∗ 0.378∗ 0.000 0.000 0.000 0.012 0.000 0.989∗ 0.104 2.022∗
(0.277) (0.070) (0.195) (0.474) (0.053) (0.013) (0.013) (0.002) (0.094) (0.977)

amez
0.002 0.000 0.000 0.000 0.999∗ 0.435 0.115 0.415 −0.179∗ 0.964∗
(0.004) (0.002) (0.003) (0.003) (0.000) (0.251) (0.079) (0.310) (0.084) (0.301)

irao
0.016 0.043 0.000 0.404∗ 0.535∗ 0.008∗ 0.020∗ 0.969∗ −0.167∗ 0.241∗
(0.017) (0.059) (0.055) (0.061) (0.057) (0.004) (0.002) (0.013) (0.069) (0.065)
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rusp
0.001 0.000 0.000 0.003∗ 0.996∗ 0.015∗ 0.000 0.985∗ 0.084 1.034∗
(0.011) (0.007) (0.007) (0.001) (0.000) (0.002) (0.007) (0.006) (0.084) (0.323)

aqua
0.175 0.188∗ 0.000 0.313 0.342 0.001 0.001 0.998∗ 0.205∗ 0.601∗
(0.095) (0.093) (0.123) (0.370) (0.257) (0.005) (0.005) (0.003) (0.071) (0.108)

mvid
0.002 0.000 0.000 0.000 0.999∗ 0.052 0.038 0.903∗ −0.080 0.962∗
(0.010) (0.006) (0.007) (0.004) (0.001) (0.029) (0.022) (0.046) (0.088) (0.285)

nksh
0.007 0.000 0.000 0.185∗ 0.809∗ 0.002 0.000 0.999∗ 0.126 0.391∗
(0.017) (0.035) (0.034) (0.002) (0.000) (0.005) (0.005) (0.000) (0.075) (0.099)

odva
0.084∗ 0.168∗ 0.000 0.000 0.761∗ 0.001 0.000 0.999∗ −0.251∗ 0.457∗
(0.033) (0.033) (0.013) (0.085) (0.018) (0.004) (0.005) (0.000) (0.075) (0.112)

tanl
0.000 0.000 0.000 0.000 0.999∗ 0.071∗ 0.095∗ 0.839∗ 0.340∗ 0.844∗
(0.005) (0.003) (0.003) (0.001) (0.000) (0.036) (0.039) (0.055) (0.072) (0.259)

bspb
0.001 0.000 0.000 0.034∗ 0.965∗ 0.022 0.025 0.950∗ 0.179∗ 0.752∗
(0.010) (0.007) (0.007) (0.006) (0.000) (0.017) (0.014) (0.023) (0.076) (0.215)

nvtk
0.201 0.219∗ 0.000 0.270 0.286 0.001 0.000 0.999∗ −0.031 1.487∗
(0.186) (0.035) (0.350) (0.892) (0.380) (0.007) (0.007) (0.000) (0.084) (0.535)

urka
0.000 0.055 0.000 0.441∗ 0.503∗ 0.001 0.000 0.999∗ 0.178∗ 1.092∗
(0.000) (0.034) (0.035) (0.086) (0.083) (0.007) (0.007) (0.000) (0.080) (0.271)

mfgs
0.002 0.000 0.000 0.011 0.988∗ 0.017 0.027 0.954∗ 0.009 1.563∗
(0.025) (0.011) (0.008) (0.037) (0.003) (0.013) (0.015) (0.023) (0.089) (0.544)

LL = 13253.47 LL = 14098.87

16



0.00
0.25
0.50
0.75

0.0 2.5 5.0 7.5 10.0

ZVEZ

−0.75
−0.50
−0.25

0.0 2.5 5.0 7.5 10.0

GAZA

−0.75
−0.50
−0.25

0.00

0.0 2.5 5.0 7.5 10.0

CNTL

−0.8
−0.6
−0.4
−0.2

0.0 2.5 5.0 7.5 10.0

LNTA

0.25
0.50
0.75

0.0 2.5 5.0 7.5 10.0

IRKT

−0.75
−0.50
−0.25

0.0 2.5 5.0 7.5 10.0

LSNG

0.25
0.50
0.75

0.0 2.5 5.0 7.5 10.0

MGNZ

0.2
0.4
0.6
0.8

0.0 2.5 5.0 7.5 10.0

NMTP

−0.75
−0.50
−0.25

0.0 2.5 5.0 7.5 10.0

AMEZ

0.25
0.50
0.75

0.0 2.5 5.0 7.5 10.0

IRAO

−0.75
−0.50
−0.25

0.0 2.5 5.0 7.5 10.0

RUSP

−0.75
−0.50
−0.25

0.00

0.0 2.5 5.0 7.5 10.0

AQUA

0.3
0.4
0.5
0.6
0.7
0.8
0.9

0.0 2.5 5.0 7.5 10.0

MVID

0.25
0.50
0.75

0.0 2.5 5.0 7.5 10.0

NKSH

−0.75
−0.50
−0.25

0.0 2.5 5.0 7.5 10.0

ODVA

−0.75
−0.50
−0.25

0.0 2.5 5.0 7.5 10.0

TANL

−0.1
0.0
0.1

0.0 2.5 5.0 7.5 10.0

BSPB

0.75
0.80
0.85
0.90

0.0 2.5 5.0 7.5 10.0

NVTK

0.00
0.25
0.50
0.75

0.0 2.5 5.0 7.5 10.0

URKA

0.25
0.50
0.75

0.0 2.5 5.0 7.5 10.0

MFGS

Utility: 2 moment 3 moment

Figure A1: Average optimal weights obtained from maximization of 2 and 3 moment utility
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Figure A2: SD, obtained from maximization of 2 and 3 moment utility
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Figure A3: MAD, obtained from maximization of 2 and 3 moment utility
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Figure A4: CVaR, obtained from maximization of 2 and 3 moment utility
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