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Introduction 

Comparability of measurements, or measurement invariance/equivalence, across study units is an 

important concern in a wide range of social scientific disciplines where cross-national 

comparisons involving many countries or groups are of substantive interest, including, among 

others, comparative politics (Przeworski and Teune 1966; Stegmueller 2011), comparative 

sociology (Davidov et al. 2014), cross-cultural psychology (Poortinga 1989; Little 1997), 

educational assessment (Wicherts and Dolan 2010), consumer research (Steenkamp and 

Baumgartner 1998) and organizational studies (Vandenberg and Lance 2000).  

Multi-group confirmatory factor analysis (MGCFA) is often used by researchers to test for 

measurement invariance, and standard structural equation modeling (SEM) goodness-of-fit 

measures, such as such as the Comparative Fit Index (henceforth CFI), the Tucker-Lewis Index 

(TLI), the Root Mean Squared Error of Approximation (RMSEA), or the Standardized Root 

Mean Square Residual (SRMR) are ordinarily used to decide whether comparability is a 

reasonable assumption in each particular case.  

Most applied invariance tests reported in the recent social sciences literature employ the decision 

criteria for these fit indices, which were developed drawing on the results of few simulation 

studies of the two-group setting (e.g. Cheung and Rensvold 2002; Chen 2007; Meade, Johnson, 

and Braddy 2008). Do these criteria apply equally well to much larger, heterogeneous, and 

complex samples, typical for modern international survey projects, such as the European Social 

Survey or the World Values Survey, which may include as much as 50 or even 100 countries as 

their participants?  

Though the issue of measurement invariance testing with many groups recently attracted some 

scholarly attention, we still know little with regard to how reliable the conventional procedures 

of invariance testing are in the complex context of large cross-national surveys. The efforts of 

most researchers in the field are aimed at development of novel methods for (a) unbiased 

estimation of substantive model parameters of interest (e.g., latent means or path coefficients) 

under varying amounts of non-invariance (e.g., van de Schoot et al. 2013; Kim et al. 2017; 

Muthén 2018) and (b) direct modelling of measurement non-invariance (e.g. Davidov et al. 

2012).  

The adequacy of existing guidelines for measurement invariance testing with respect to the 

situation when many groups are being compared has been studied to a much lesser extent. The 

only prominent exception is a recent series of simulation studies by Rutkowski and Svetina 



4 
 

(Rutkowski and Svetina 2014, 2017; Svetina and Rutkowski 2017). These authors explored, 

using the 10- and 20-group settings, how well popular SEM goodness-of-fit indices are able to 

detect measurement invariance in several scenarios typical for modern international surveys.  

Using Monte Carlo simulation experiments, this paper complements Rutkowski and Svetina’s 

findings and contributes to the literature on methodology of cross-national survey research by 

examining the performance of aforementioned goodness-of-fit indices with respect to a specific 

task of measurement invariance testing with categorical data and large samples (10-50 groups). 

Study factors include the number of groups, the level of non-invariance in the data, varying from 

full invariance to approximate invariance (van de Schoot et al. 2013) to large non-invariance, 

and the absence/presence of model misspecifications other than non-invariance. In sum, the 

study design yields a total of 81 conditions (3 × 9 × 3). All simulated data sets are analyzed using 

two popular SEM estimators, MLR and WLSMV.  

The results of the simulation study suggest that the CFI (whatever estimation method is used) 

and the SRMR (only when MLR estimation is used), are generally able to distinguish between 

the fully invariant data and the highly non-invariant data, yet may sometimes fail to discriminate 

between the fully invariant data and the “weakly”, or approximately non-invariant data. The TLI 

and the RMSEA on average perform poorly than the former two fit measures, especially when 

other misspecifications are present in the model, and therefore can serve only as auxiliary tools 

of invariance testing in cross-national contexts. 

Importantly, it is found that different study factors exhibit non-trivial, and often non-linear and 

multiplicative, effects on the sensitivity of all studied fit measures to lack of measurement 

invariance, thereby making it difficult to formulate universally applicable decision criteria for 

equivalence testing with many groups. Thus, although the paper concludes with a set of 

suggestions regarding specific cut-off points for different fit measures and invariance levels, 

these recommendations should be used with great caution. 

The paper proceeds as follows. The next section explains formally what measurement invariance 

is. The following section reviews what is known about how various goodness-of-fit indices react 

to lack of measurement invariance. The section that comes after it introduces the study design 

and discusses in which respects it differs from other similar studies (Rutkowski and Svetina 

2014, 2017; Kim et al. 2017). The section that follows next reports the results of simulation 

experiments. The concluding section discusses the main findings and limitations of the study and 

outlines a set of recommendations for applied researchers regarding measurement invariance 

testing in the settings with many groups.    
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What is measurement invariance? 

As Davidov et al. (2014, 58) define it, “Measurement invariance is a property of a measurement 

instrument (in the case of survey research: a questionnaire), implying that the instrument 

measures the same concept in the same way across various subgroups of respondents”. 

Measurement invariance is an important prerequisite for making comparisons involving latent 

constructs across culturally distinct units, since it ensures that the latent construct of interest has 

the same scale and the same baseline in all units, and therefore latent individual and mean scores 

are comparable across units. 

More formally, established measurement invariance ensures that individuals from different 

groups that have the same score on a latent scale will provide similar responses on observed 

indicators, and vice versa, that those who have different scores on a latent variable will give 

consistently different responses. Consider a standard MGCFA model for continuous data: 

𝑦𝑖𝑗𝑔 =  𝜐𝑗𝑔 +  𝜆𝑗𝑔𝜂𝑖𝑔 +  𝛿𝑖𝑗𝑔  (1) 

where 𝑦𝑖𝑗𝑔 represents the (continuous) response of the individual 𝑖 from the group 𝑔 on the 

item 𝑗, 𝜐𝑗𝑔is the intercept for the item 𝑗 in the group 𝑔, 𝜆𝑗𝑔is the factor loading for the item 𝑗 in 

the group 𝑔, 𝜂𝑖𝑔 is the individual score on the latent variable 𝜂 in the group 𝑔, and 𝛿𝑖𝑗𝑔 represents 

the residual for the individual 𝑖 and the item 𝑗 in the group 𝑔. 

Three ordered levels of invariance are most frequently used in MGCFA. Configural invariance is 

the first and lowest level. It requires only that the loading patterns are the same across groups 

(that is, the same indicators have non-zero loadings on the same constructs in all groups). In 

short, configural invariance ensures that a proposed model measures the same construct in all 

groups. Lack of configural invariance, in its turn, implies that respondents from different 

countries understand the same construct in different ways (in other words, they define the same 

construct using structurally different sets of its attributes, corresponding to different sets of 

questionnaire items). As a consequence, comparing either individual or aggregated scores on that 

construct across groups is conceptually nonsensical (as nonsensical is comparing apples to 

oranges; see Stegmueller 2011). It is worth noting that the presence of configural invariance 

itself does not allow for a meaningful comparison of latent means or construct-related 

correlations across groups, though it is a necessary prerequisite of such comparisons. 

The second level of invariance is called metric or weak invariance. It requires that factor 

loadings are equal across groups, that is 𝜆𝑗𝑔 =  𝜆𝑗𝑔′ , 𝑔 ≠  𝑔′ for all 𝑗 and 𝑔. Metric invariance 
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ensures the cross-group equality of the intervals of the scale on which the latent variable is 

measured. It implies that an increase of one unit on the measurement scale has the same meaning 

in all groups (Davidov et al. 2014, 63). Notice that the presence of metric invariance still does 

not permit a cross-group comparison of latent means though it is a sufficient condition for a 

cross-group comparison of covariances between the construct of interest and other variables (if 

those are too measured using invariant instruments).  

Finally, the third level of measurement invariance – scalar or strong invariance—assumes that 

not only loadings, but also the indicator intercepts are equal across groups, that is 𝜆𝑗𝑔 =

 𝜆𝑗𝑔′and 𝜈𝑗𝑔 =  𝜈𝑗𝑔′, 𝑔 ≠ 𝑔′for all 𝑗 and 𝑔 (Steenkamp and Baumgartner 1998). Scalar invariance 

ensures additionally that the origins of the latent scales are the same in all groups or, to put it 

another way, that group differences in latent means consistently manifest themselves in group 

differences in the means of the observed items (Steenkamp and Baumgartner 1998, 80). While 

other types of invariance can be assumed and tested [e.g. invariance of residual 

variances 𝜎𝑗𝑔(𝛿𝑖𝑗𝑔) across groups], it is generally considered that establishing joint metric-scalar 

invariance is sufficient to guarantee the reliability of latent means comparison across groups. 

Measurement invariance with categorical data 

It is a common situation in comparative social surveys when categorical items are used to 

measure latent constructs. In the factor model for ordered categorical data, the observed scores 

𝑦𝑖𝑗𝑔 are assumed to be determined by unobserved scores on the latent response variables 𝑦 ∗𝑖𝑗𝑔 

(Millsap and Yun-Tein 2004, 481-2). These latent response variables are continuous in scale, 

unlike the observed measures 𝑦𝑖𝑗𝑔. The observed measures can be viewed as discretized versions 

of the latent response variables, given that scores on the observed measures are determined 

through 

𝑦𝑖𝑗𝑔 = 𝑐 if  𝜏𝑐−1,𝑗𝑔 < 𝑦 ∗𝑖𝑗𝑔< 𝜏𝑐𝑗𝑔  (2) 

where c = 1, 2, . . . , 𝐶 denote response categories of the item 𝑗, and 𝜏𝑐𝑗𝑔 are latent threshold 

parameters for the item 𝑗 in the group 𝑔. Note that 𝜏0𝑗𝑔 =  − ∞ and 𝜏𝐶𝑗𝑔 =  ∞. The confirmatory 

factor model in this case is specified for the latent response variables 𝑦 ∗𝑖𝑗𝑔 using the following 

equation: 

𝑦 ∗𝑖𝑗𝑔=  𝜐𝑗𝑔 +  𝜆𝑗𝑔𝜂𝑖𝑔 +  𝜀𝑖𝑗𝑔 (3) 
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The three levels of invariance defined for the continuous case generally apply to the categorical 

case as well, with the single exception that the strong invariance assumption requires the cross-

group equality of item thresholds, 𝜏𝑐𝑗𝑔 = 𝜏𝑐𝑗𝑔′, not item intercepts. 

Sensitivity of SEM fit indices to measurement non-invariance: 

Previous results 

Two main approaches for assessing whether measurement invariance holds in the data have been 

advanced in the literature. Both approaches utilize the fact that a model assuming a stronger form 

of invariance is nested within a model assuming a weaker form of invariance. The first approach 

relies on a series of consecutive chi-square difference tests to determine do additional equality 

constraints required by the assumptions of metric and scalar invariance affect model fit 

negatively. Statistically significant chi-square differences suggest that a model imposing less 

equality constraints fits data better than a presumably invariant model, thus indicating lack of 

invariance.  

Another approach is to use various alternative global fit indices, such as the CFI, the TLI, the 

RMSEA, or SRMR, to assess the relative/incremental goodness-of-fit of models assuming 

different levels of invariance (i.e. metric vs. configural and then scalar vs. metric), by looking at 

the differences in the absolute values of alternative fit indices between two competing model. If 

these differences do not exceed some pre-specified thresholds (see below), one can conclude that 

a more constrained (i.e. invariant at a given level) model fits no worse than a less restricted 

model and therefore can be preferred to the latter as a more parsimonious one.  

Notice, however, that within both approaches configural invariance is tested by evaluating the 

overall/absolute/global fit of the model (that is, by looking at the absolute values of either (a) the 

chi-squared statistics or (b) the four alternative fit indices mentioned above). Also notice that it is 

sometimes recommended that the metric and the scalar model should be well-fitting also in terms 

of absolute fit, not only relative fit (e.g., Milfont and Fischer 2010).  

The chi-square test is criticized by various authors (Cheung and Rensvold 2002; Davidov et al. 

2014; Yuan and Chan 2016) because it tends to overestimate the discrepancy in goodness-of-fit 

between nested models in large samples, which are common in comparative survey research. For 

example, Rutkowski and Svetina (2014; 2017) find in their simulations that, with a large number 

of clusters (10 to 20), the chi-square test detects a lack of metric and scalar, and sometimes even 

configural, invariance in conditions where data are generated as fully invariant. So nowadays the 
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chi-square test is generally used as a complement to the alternative fit indices in measurement 

invariance checks, not as the primary decision criterion, as it was historically
3
. 

Regarding the overall model fit, the following criteria are typically used in cross-cultural survey 

research within the second approach. To claim that the given model is a good fit to the data, in 

absolute terms, one need to observe the CFI value and the TLI value both larger than 0.95 (or at 

least 0.90), the RMSEA value smaller than 0.05 (or at least 0.08), and the SRMR value smaller 

than 0.08 (Browne and Cudeck 1992; Hu and Bentler 1999).  

As to relative fit, the most widely used guidelines are those proposed by Chen (2007). According 

to Chen’s recommendations, if the within-group sample size is larger than 300 in each group and 

does not vary significantly across groups (which is typical for modern cross-national surveys), 

metric non-invariance is indicated by a change in the CFI value larger than −.01, when 

supplemented by a change in the RMSEA value larger than .015 and a change in the SRMR 

value larger than .03 compared with the configural equivalence model. With regard to scalar 

invariance, non-invariance is evidenced by a change in the CFI value larger than −.01 when 

supplemented by a change in the RMSEA value larger than .015 and a change in the SRMR 

value larger than .03 compared with the metric invariance model. Chen’s cutoffs were obtained 

for the two-group setting.  

Rutkowski and Svetina (2014) proposed updated cutoff criteria for the evaluation of the overall 

and relative goodness-of-fit of MGCFA models with categorical indicators (analyzed using 

maximum likelihood estimation), particularly suitable for settings where the number of second-

level units is relatively large (10 or 20). In terms of the absolute fit measures, their results are as 

follows. For the CFI and TLI, they suggest that the standard cutoff of 0.95 performs well, but 

assuming a more stringent threshold of 0.97 may also be reasonable. For the RMSEA they 

recommend a cutoff of around 0.10 when there are at least 10 groups. Finally, they find that the 

SRMR is generally not a reliable indicator of the overall goodness-of-fit in large samples. In 

terms of the relative fit indices, Rutkowski and Svetina propose that metric non-invariance is 

indicated by a change in CFI larger than −.02, when supplemented by a change in the RMSEA 

larger than .03 compared with the configural equivalence model. With regard to scalar 

invariance, they conclude that non-invariance of intercepts is evidenced by a change in CFI 

larger than .02 when supplemented by a change in RMSEA larger than .01 compared with the 

metric invariance model. 

                                                           
3 For a criticism of the use of relative goodness-of-fit measures in the context of invariance testing, please see Fan and Sivo 

(2009). 
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When the weighted least squares estimator is used to analyze categorical data with MGCFA, 

they suggest (Rutkowski and Svetina 2017) that the RMSEA value close to or lower than 0.55 is 

indicative of acceptable overall model fit. They also note that a liberal cutoff of 0.08, 

recommended by some authors, should not be used as an allowable threshold. As to the CFI and 

TLI, their conclusion is that neither of these measures should be used to assess the overall fit of 

categorical MGCFA models when the number of groups is relatively large. With regard to the 

incremental fit measures, they propose that non-invariance of loadings is indicated by a change 

in CFI larger than −.004, when supplemented by a change in RMSEA larger than .05 compared 

with the configural equivalence model. In its turn, non-invariance of thresholds can be claimed 

when a change in CFI is larger than −.004 and a change in RMSEA is larger than .01 compared 

with the metric equivalence model.  

Study design  

Simulation conditions 

The design of the present simulation study attempts to reproduce real-life conditions that are 

often encountered by researchers dealing with large-scale international survey data, such as the 

European Social Survey (ESS), the European Value Study (EVS), the World Values Survey 

(WVS), or various Barometer studies (e.g. the Arab Barometer or the Eurobarometer). Study 

factors include the number of groups (also referred to as the second/group level sample size; 

three possible values), the level of non-invariance in the data (also referred to as invariance 

condition; nine possible values), and the absence/presence of model misspecifications other than 

non-invariance (three possible values). In sum, the study design yields a total of 81 conditions: 3 

× 9 × 3.   

It is worth briefly discussing in which respects the set of study factors used in the present 

simulation experiment differs from that used by Rutkowski and Svetina (2014, 2017) and 

Svetina and Rutkowski (2017). In their simulations, these authors manipulated such factors as 

the scale length, the number of non-invariant items, the number of factors in the model, the 

proportion of non-invariant items, and the source of non-invariance. Their articles provide a very 

important piece of evidence regarding the performance of conventional SEM fit measures in 

invariance tests conducted with the data from large cross-national surveys but the further 

examination of the topic is obviously necessary. First of all, Rutkowski and Svetina considered 

only scenarios with no more than 20 groups, while many modern international surveys involve 

much more participating countries. 
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Furthermore, when modelling non-invariance they assumed that some items were fully invariant 

and some were fully non-invariant (the exact proportion of non-invariant items varied across 

conditions). In addition, they defined non-invariant parameters just by adding or subtracting 

some fixed number, always the same for each non-invariant group, from a baseline (invariant) 

parameter value. This data-generating process is unlikely to be encountered in real-world 

applications. A bit more probable scenario is the one in which each parameter takes different 

values in every group, but for some parameters the cross-group differences, summarized as 

standard deviation or variance of the distribution of group-specific deviations from the sample 

average parameter value, are relatively small (this feature is known as approximate invariance), 

while for other parameters these differences are relatively large (that is, they are fully non-

invariant).  

Importantly, some recent results suggest that substantive parameters of interest in MGCFA and 

MGSEM models can be reliably estimated even when full metric or scalar (or both) invariance is 

absent but approximate metric/scalar invariance holds for all or at least some parameters (van de 

Schoot et al. 2013; Muthén 2018; Pokropek, Davidov and Schmidt 2019). The concept of 

approximate invariance has been developed in the Bayesian context and, as of now, the 

respective assumption cannot be formally tested using frequentist tools. It is nevertheless 

important to understand how sensitive standard SEM fit indices are to minor deviations from full 

invariance which do no lead to biased substantive conclusions. 

Finally, Rutkowski and Svetina focused mostly on the effects of various aspects of model 

complexity (e.g., the number of items per factor or the number of factors), but effectively 

ignored the potential impact of local model misspecifications, assuming that their models are 

correctly specified in all other respects than non-invariance. The latter feature of their study 

design is again quite unlikely to be representative of typical cross-national survey data. 

The model under study is presented in a simplified form at Figure 1. It assumes a single latent 

construct which is measured using four observed categorical indicators, with each indicator 

having four ordered response categories. In other words, each indicator represents a four-

category scale which is very widely used in sociological and political science surveys to measure 

attitudes, values, and opinions. Such data are often analyzed using the robust version of the 

maximum likelihood estimator (henceforth, MLR), an approach which some scholars consider to 

be theoretically incorrect (e.g. Lubke and Muthén 2004). Another popular estimator choice in 

this context is the weighted least square mean and variance adjusted estimator (henceforth, 

WLSMV), which is considered as the best option for categorical SEM in the methodological 
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literature. In this paper I study how different fit measures perform with measurement invariance 

tests using both approaches. 

Figure 1 about here 

Number of groups: This factor can take three different values: (1) 10 – (2) 30 – (3) 50. These 

values were selected in order to represent group-level sample sizes that are typical in modern 

comparative survey research. For example, 10 countries or so participate in such cross-national 

surveys as the Arab barometer or the Latinobarometro; nearly 30 countries participated in latest 

rounds of the ESS or the ISSP (International Social Survey Programme); finally, 50 and even 

more countries participated in latest rounds of the WVS. Rutkowski and Svetina (2014, 2017) 

considered only settings with a moderate second-level sample size (10 and 20 groups). Kim et al. 

(2017) considered larger second-level sample sizes (25 and 50 groups) but their focus was on 

comparing the performance of different methods of invariance testing, not different fit measures 

in the context of a single method, as in the present study.  

Degree of invariance: This factor can take nine different values: (1) Full: full invariance – (2) 

Scalar 1: full metric invariance + approximate scalar invariance (small variation in item 

thresholds across groups)  – (3) Scalar 2: full metric invariance + scalar non-invariance (large 

variation in item thresholds across groups) – (4) Metric 1: approximate metric invariance + 

approximate scalar non-invariance – (5) Metric 2: moderate metric non-invariance + 

approximate scalar non-invariance – (6) Metric 3: large amount of metric non-invariance + 

approximate scalar non-invariance – (7) Metric 4: approximate metric invariance + scalar non-

invariance – (8) Metric 5: moderate metric non-invariance + scalar non-invariance – (6) Metric 

6: large amount of metric non-invariance + scalar non-invariance.  

Notice that configural invariance is assumed to hold in all conditions. For loading and threshold 

values corresponding to different levels of (non-)invariance please see the subsection Parameter 

values below.  

Other model misspecifications: This factor can take three different values: (1) no residual 

covariances in the data-generating model – (2) one non-zero residual covariance (size varies 

across groups) added to the data-generating model – (3) two non-zero residual covariances (sizes 

vary across groups) added to the data-generating model.  

Previous studies of the performance of SEM fit indices with respect to invariance testing with 

many groups did not consider this factor. Still, given the overall complexity of cross-cultural 

data, it is a highly realistic scenario that a MGCFA model being tested for invariance may 
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simultaneously be non-trivially misspecified in other respects, e.g. include non-zero residual 

covariances or cross-loadings. Furthermore, such misspecifications are likely to vary in size 

across compared groups. The presence of these misspecifications generally affects the absolute 

model fit negatively, which may potentially result in incorrect rejection of the invariance 

(particularly, configural invariance) assumption. The effect of other model misspecifications on 

the relative model fit is unclear, but definitely worth studying. Disentangling the impact of non-

invariance and other fit-deteriorating factors on fit measure values is thus an important concern 

in the context of measurement invariance tests. 

Parameter values 

Factor loadings: Four different factor loading sets, corresponding to various levels of metric 

(non-)invariance, are used in simulations below.  

(a) The first set corresponds to the strict/full metric invariance condition, i.e. in this set, all 

loadings are assumed to be invariant across groups. Loading sizes in this set 

are {0.75, 0.75, 0.6, 0.6} for the first, second, third, and fourth indicator respectively.  

(b) The second set corresponds to the approximate metric invariance condition. In the first group, 

factor loadings for four items are set to the values used in the first set, that 

is{0.75, 0.75, 0.6, 0.6}. For other groups, group-specific loadings are generated as draws from the 

truncated normal distribution. For the first two items, the following mean, standard deviation, 

lower and upper bounds are used: 𝑇𝑁(0.75, 0.05, 0.6, 0.9)4. The respective values for the third 

and fourth item are 𝑇𝑁(0.6, 0.05, 0.45, 0.75). 

(c) The third set of factor loadings corresponds to the condition with a moderate amount of 

metric non-invariance: Three items are generated as approximately invariant and one item is 

generated as fully non-invariant. In the first group, factor loadings for four items are set to the 

values used in the first set. For other groups, group-specific loadings for the first and second item 

are generated as draws from the truncated normal distribution. For the first and second item, the 

following mean, standard deviation, lower and upper bounds are used: 𝑇𝑁(0.75, 0.05, 0.6, 0.9). 

For the third item the following values are used: 𝑇𝑁(0.6, 0.05, 0.45, 0.75). Finally, for the fourth 

                                                           
4 Pokropek, Davidov, and Schmidt (2019) find that the cross-group variance in loading/intercept sizes as large as 0.001-0.005 

does not lead to critical biases in the latent means estimates. The standard deviation value that is used in this study to represent 

the scenarios of “approximate” loading/threshold invariance corresponds to a cross-group variance of 0.0025, which may be 

considered as a reasonable trade-off between the situation which is almost indistinguishable from full invariance, on one hand, 

and the situation in which the amount of non-invariance becomes non-ignorable, on the other hand,.  
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item group-specific loadings are generated as draws from the uniform 

distribution 𝑈(√0.1;  0.75)5. 

(d) The fourth set of factor loadings corresponds to the condition with a relatively large amount 

of metric non-invariance: only two items are generated as approximately invariant, and the 

remaining two items are generated as fully non-invariant. In the first group, factor loadings for 

four items are set to the values used in the first set. For other groups, group-specific loadings for 

the first and third item are generated as draws from the truncated normal distribution. For the 

first item, the following mean, standard deviation, lower and upper bounds are 

used: 𝑇𝑁(0.75, 0.05, 0.6, 0.9). For the third item the following values are 

used: 𝑇𝑁(0.6, 0.05, 0.45, 0.75). For the second and fourth item group-specific loadings are 

generated as draws from the uniform distribution, 𝑈(√0.1;  0.9) and  𝑈(√0.1;  0.75) 

respectively. 

Item thresholds: Three different item threshold sets, corresponding to various levels of scalar 

(non-) invariance, are used in simulations below.  

(a) The first set corresponds to the full scalar invariance condition. In this set, all item thresholds 

are assumed to be invariant across groups. Item thresholds in this set are {−0.8, 0, 0.8} for the 

first and second item and  {−0.6, 0, 0.6} for the third and fourth item. 

(b) The second set corresponds to the approximate scalar invariance condition. In the first group, 

thresholds for four items are set to the values used in the first set. For other groups, group-

specific thresholds for each item are generated as draws from the truncated normal distribution 

with the following mean, standard deviation, lower and upper bounds:𝑇𝑁(𝜏𝑗𝑐,𝐶𝑜𝑛𝑑 1,

0.05,  𝜏𝑗𝑐,𝐶𝑜𝑛𝑑 1 − 0.2, 𝜏𝑗𝑐,𝐶𝑜𝑛𝑑 1 + 0.2), where 𝜏𝑗𝑐,𝐶𝑜𝑛𝑑 1 is the threshold value for the 𝑗-th item 

and the 𝑐-th response category in the first set.   

(c) The third set corresponds to the condition with a large amount of scalar non-invariance. In the 

first group, thresholds for four items are set to the values used in the first set. For other groups, 

group-specific thresholds for each item are generated as draws from the truncated normal 

distribution with the following mean, standard deviation, lower and upper bounds:𝑇𝑁(𝜏𝑗𝑐,𝐶𝑜𝑛𝑑 1,

0.2,  𝜏𝑗𝑐,𝐶𝑜𝑛𝑑 1 − 0.35, 𝜏𝑗𝑐,𝐶𝑜𝑛𝑑 1 + 0.35), where 𝜏𝑗𝑐,𝐶𝑜𝑛𝑑 1 is the threshold value for the 𝑗-th item 

and the 𝑐-th response category in the first set.   

                                                           
5
 In this, and other non-invariant conditions, the lower bound for non-invariant loadings is set to √0.1  ≈ 0.32 since this value is 

often referred to as a minimum reasonable factor loading size (e.g. Brown 2015). 
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Total and residual item variances: In the first group, all total item variances are set to 1, for all 

other groups item variances are generated from 𝑈(0.8;  1.2). Then residual variances were 

calculated for each item by simply subtracting the respective squared factor loadings (invariant 

set) from the respective item variances for each item and group. Notice that, although residual 

variances sizes vary across groups, they do not change across simulation conditions, that is, for 

each item, its residual variance in a given group remains constant in all 

invariance/misspecification conditions and does not depend on its loading size in a given 

condition – only on its loading size and total variance in the fully invariant condition. 

Latent means and variances: In the first group, the mean of the latent construct is set to zero and 

the variance of the latent construct is set to one. For the other groups, latent means are sampled 

form 𝑁(0;  1) and latent variances are sampled form 𝑈(0.6;  1.4)6.  

Notice that, although all model parameters vary to some extent across groups, they do not change 

across simulation conditions 

Data generation and analysis 

For each condition, I generate 500 data sets. Within-group sample sizes are 1000 for the first 

30% of groups, 1500 for the next 40% of groups, and 2000 for the remaining 30% of groups. 

Such within-group sample sizes are typical for most modern cross-national surveys, e.g. ESS or 

EVS/WVS. In each group 10% of observations have missing values on at least one indicator. 

Missing values are generated using the Missing Completely at Random (MCAR) mechanism. All 

model parameters (except those in the full invariance conditions) are sampled using a self-

written R program, and then data for each replication are generated using the R package simsem. 

To each data set, I fit the configural invariance model, the metric invariance model, and the 

scalar invariance model. For estimation, I use the software package Mplus 7.11 (Muthén and 

Muthén 2015), calling it from the statistical computing environment R 3.4.1 using the package 

MPlusAutomation (Hallquist and Wiley 2018). Model identification is achieved using MPLUS 

defaults for both continuous and categorical CFA models
7
. A full information maximum 

likelihood (FIML) approach was used to handle missing values with the MLR estimator and a 

pairwise present approach was used to handle missing values with the WLSMV estimator. 

                                                           
6 These values were chosen empirically to avoid convergence problems when running a data-simulating R script. 
7 Notice that the identification approach for categorical CFA models with different levels of invariance implemented in the 

MPLUS program generally follows the model specifications proposed by Millsap and Yun-Tein (2004). Wu and Estabrook 

(2016) recently showed that this identification approach may be suboptimal. I discuss the results of the analysis of the simulated 

data using WLSMV estimation and Wu and Estabrook’s identification approach in another paper, currently under preparation. 

These results, however, do not differ much from what is reported here. 
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Goodness-of-fit measures under examination 

This study focuses on four standard SEM goodness-of-fit measures: RMSEA, CFI, TLI, and 

SRMR. These four measures are by default reported by most SEM software packages (e.g. 

MPLUS or Lavaan) and represent by far the most often used tools of goodness-of-fit assessment 

in SEM, except maybe the chi-squared statistics. The latter however is not considered here, 

because previous studies (see references above), both in the two-group and many-group settings 

show that it is oversensitive to even minor violations of various types of measurement invariance 

and therefore is not especially useful for the purpose of equivalence assessment. For sake of 

brevity, I do not provide formal definitions of these fit indices but they can be found in popular 

SEM textbooks, such as Brown (2015, Chapter 3) or Kline (2015, Chapter 8)  

Notice that MPLUS 7.11 cannot compute the SRMR when categorical indicators are used and 

thresholds are included in the model. Therefore, it is not considered in the second part of this 

study, where the simulated data are analyzed using the WLSMV estimator. I nevertheless studied 

how the categorical counterpart of SRMR, which is known as the Weighted Root Mean Square 

Residual, or simply WRMR, responds to lack of measurement invariance, but found that this 

measure performed very poorly in terms of both absolute and relative fit (see Figures A1 and A2 

in Appendix). The respective results are therefore not included, in order to shorten the 

presentation of main findings.   

Results 

I first present the results of the MLR analysis and then the results of the WLSMV analysis. For 

each estimation method, the following discussion is focused on two main questions. First, how 

well each particular fit index performs with regard to differentiating between invariant and non-

invariant models in terms of absolute fit. Second, how well the same task is performed by each 

fit measure under study, when the differences in the overall goodness-of-fit between models with 

nested levels of invariance (relative fit) are considered instead of the absolute values. In order to 

preserve space and make the presentation of results more efficient and understandable to the 

reader, all findings are presented in a graphical form. On each figure below, dots represent the 

average values of the respective fit statistics across the 500
8
 replications within each respective 

condition and invariance level, and error bars show the corresponding 95% confidence intervals.  

 

                                                           
8 With the WLSMV estimator, in some conditions the actual number of replications used in the analysis is smaller due to non-

convergence, see discussion below. 
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MLR analysis 

Convergence checks: Convergence was assessed using MPLUS defaults (max. number of 

iterations = 1000; convergence criterion = 0.0005). All models converged successfully in all 

conditions. 

Absolute fit - CFI: As shown at Figure 3, when the configural model is fitted to the simulated 

data, CFI has a perfect or nearly perfect value of 1.000 in all invariance conditions if there are no 

other types of misspecification in the true model. When misspecifications are present, the CFI 

value deteriorates, but only slightly: across all conditions with misspecifications, there are only 

two where the average CFI value of the configural model is lower than 0.978 (Two 

misspecifications - Metric 2 - 10 Groups and Two misspecifications - Metric 5 - 10 Groups). 

Noticeably, when the data-generating model includes two misspecified residual covariances, this 

fit index’s sensitivity to misspecifications decreases with sample size: on average, across 50-

group conditions it has a higher value, than across 30-group conditions. This is not the case for 

one-misspecification conditions, where the CFI value decreases when the second-level sample 

size becomes larger, which is to be expected.  

Figure 3 about here 

As the level of assumed invariance increases from configural to metric and from metric to scalar 

invariance, the CFI predictably yields lower values. However, in conditions where the data-

generating model is invariant or approximately invariant (e.g. Full, Scalar 1, Metric 1), the 

respective drop in the CFI is not especially large, except the 10-group two-misspecifications 

domain, where, for example, the scalar model fitted to the fully invariant data has the CFI value 

of only 0.95. In general, the CFI correctly detects metric non-invariant models, reacting to 

increasing amount of loading non-invariance negatively, There is one prominent exception from 

this rule: in all three 10-group conditions the CFI for the metric model in the two worst metric 

non-invariant conditions, Metric 3 and Metric 6, is by 0.01-0.03 higher than in conditions with 

the same level of scalar non-invariance but lower amounts of loadings non-invariance (Metric 1 - 

2 and 4 - 5 respectively). 

As to the case when the scalar model is fitted to the data, the CFI is able to detect correctly 

deviances from the assumption of intercept invariance in all studied conditions. In all conditions 

where Thresholds Set 2 were used for simulations, the CFI value is lower than 0.939 and in most 

such conditions it is even lower than a liberal cutoff value of 0.9. However, the CFI’s ability to 

identify scalar non-invariance seems to degrade slightly in the 30-group and 50-group 
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conditions, compare to the 10-group conditions. Finally, it is worth noting that the CFI has the 

worst values in conditions that assume a significant amount of between-group variance in both 

loadings and intercepts (Metric 3-6). This finding suggests that when these two types of non-

invariance are simultaneously present in data, they may affect the CFI’s performance in a 

multiplicative way.  

Figure 4 about here 

Absolute fit - TLI: In conditions where there are no misspecifications other than non-invariance, 

the TLI behaves well and similarly to the CFI. For the configural model, it has a perfect value of 

1.00 or very close to it in all no-misspecification conditions (see Figure 4). As to the metric and 

scalar invariance testing, it is generally able to discriminate between invariant or approximately 

invariant models and non-invariant models (though, along with the CFI, it fails in 10-group 

Metric 3 and Metric 6 conditions). However, the TLI’s performance becomes miserable when 

this measure is applied to misspecified models. Both in one- and two-misspecification conditions 

the CFI fails to identify metric non-invariance, except few most non-invariant conditions. 

Moreover, when the data-generating model is fully or approximately invariant, it tends to 

indicate that the configural model fits even worse than the metric and scalar models. For 

example, in the 30-group full-invariance one-misspecification condition the configural model has 

the TLI value of only 0.938, while the metric model for the same condition has the TLI equal to 

0.968 and the scalar model has the TLI equal to 0.976. In the one- and two-misspecification 

settings, the average TLI value for the configural model does not exceed 0.974 in any condition, 

and often is below 0.950. The TLI, however, is reactive to a simultaneous lack of metric and 

scalar non-invariance (which is indicated by the TLI values for the scalar model lower than 

0.95), though, again alike the CFI, its responsiveness decreases with the group-level sample size. 

Absolute fit - RMSEA: When the configural model is fitted to no-misspecification conditions, its 

average RMSEA value is in the range 0.005-0.010 and is in general not affected by (a) the 

amount of metric and scalar non-invariance present in the respective data set and (b) the second-

level sample size (see Figure 5). When metric invariance is tested, the RMSEA still performs 

well, though it, for the metric model, may react not only to metric, but also to scalar non-

invariance, but to a smaller extent. In general, if there are no misspecified residual covariances, 

the RMSEA value for the metric model higher than 0.025 suggests a considerable level of cross-

group variability in sizes of factor loadings. As to scalar non-invariance, it is indicated by the 

RMSEA values larger than 0.07, when it comes alone (condition Scalar 2), and 0.08, when it is 

accompanied by loading non-invariance (conditions Metric 4-6).  



18 
 

Figure 5 about here 

In conditions with one or two misspecified covariances, however, using the RMSEA to 

determine the absolute goodness-of-fit of invariance model under test seems problematic. The 

configural model has the RMSEA near or above the standard threshold of 0.05 in all conditions 

with misspecifications. The same is true for the metric and scalar models. Even if the true model 

is fully invariant but includes misspecifications not related to the invariance assumption, the 

RMSEA for either the loading-invariant or intercept-invariant model has a value of at least 0.038 

(scalar model; condition 10 Groups - One Misspecification - Full) and is typically higher than 

0.05. Moreover, as with the CFI, in invariant conditions with misspecifications, the RMSEA of 

the metric or scalar model may sometimes exceed that of the configural model, sometimes by a 

rate as high as 0.037 (configural vs. scalar model; condition 50 Groups - One Misspecification - 

Full).  

Another problem with the RMSEA is that it faces difficulties with identifying loading non-

invariance when the number of groups is small (10) and there are other misspecifications. When 

the group-level sample size increases to 30 or 50 units, the RMSEA correctly rank models with 

consecutively increasing levels of metric non-invariance, but more liberal absolute fit cutoffs 

should be imposed in this case, compare to the no-misspecification case: at least 0.06 when there 

is only one misspecified residual covariance, and 0.05 when there are two misspecified residual 

covariances. It nonetheless must be noted that even in the presence of other model 

misspecifications, the RMSEA is still responsive to a lack of scalar invariance, and the same 

cutoffs can be applied as in the no-misspecification setting: 0.07 if loadings are fully or 

approximately invariant and 0.08 if scalar non-invariance is complemented by metric non-

invariance.   

Absolute fit - SRMR: When configural invariance is tested, the SRMR is less sensitive to the 

presence of other model misspecifications than the TLI and the RMSEA but to some extent more 

sensitive than the CFI (see Figure 6). If there are no such misspecifications, the average SRMR 

value for the configural model across all invariance and group-level sample size conditions is 

0.008 (with very little variation around it). If such misspecifications are present, the average 

SRMR value for the configural model is in the range 0.014-0.024, closer to the lower bound of 

that interval in 10-group conditions and closer to the upper bound in 30- and 50-group conditions 

when there is one misspecified residual covariance and the other way around when there are two 

misspecified residual covariances.    

Figure 6 about here 
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With regard to metric invariance, the SRMR correctly retains loading-invariant models in 30- 

and 50-group conditions, irrespectively of the number of misspecified residual covariances, with 

SRMR values larger than 0.045 indicating non-trivial variation in loading sizes across groups. 

The same cannot be said about the 10-group setting, where the SRMR, as all measures 

considered above, fails in the two conditions with the largest amount of loading non-invariance 

(Metric 3 and 6), estimating the absolute fit of the respective metric models to be at the very 

same level as that of the metric model for the fully invariant condition.    

Finally, as for all previously considered fit indices, a multiplicative effect of metric and scalar 

non-invariance on the SRMR value is observed: when data are generated with a significant 

amount of loading non-invariance, the scalar model for conditions with a moderate level of 

scalar non-invariance (Metric 1-3) fits as poor of even poorer as the scalar model for the 

condition with considerable scalar non-invariance, but metric invariant (Scalar 2). However, for 

a given level of metric (non-) equivalence, the SRMR can correctly order models with different 

degrees of scalar non-invariance. Overall, SRMR values larger than 0.05 indicate a relatively 

large intercept (or joint loading-intercept) cross-group heterogeneity.   

Relative fit:  As the results shown at Figure 7 suggest, when the assumption of metric invariance 

is tested, the CFI and the SRMR perform on average better than the TLI and the RMSEA. In the 

no-misspecification setting all fit measures demonstrate a comparable level of sensitivity to a 

lack of loading invariance, but in conditions with one or two misspecified residual covariances 

the latter fit indices often, and especially in invariant or approximately invariant conditions, 

indicate that the metric model fits better than the configural model. The most problematic in this 

respect is the 10-group setup. For example, only in one (Metric 5) out of nine 10-groups one-

misspecification conditions (Figure 7, top central panel), the TLI and the RMSEA suggest that 

the configural model is superior to the metric model. In all other conditions, even those where 

the amount of loading non-invariance is huge (Metric 3 and 6), these measures fail to reject the 

metric invariance assumption. This deficiency is to some extent less pronounced in 30- and 50-

group conditions, but even in those settings the TLI and the RMSEA respond only to the most 

severe violations of the assumption of equal loading size. 

The CFI and the SRMR also face some difficulties in identifying severely metric non-invariant 

models in the 10-group setting, but otherwise they perform relatively well. It nonetheless must 

be noted that with a small number of groups, the differences between the values of these two 

measures for the configural and the metric model may sometimes suggest rejection of the metric 

invariance assumption when the data-generation model assumes strictly invariant loadings but 
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highly non-invariant intercepts (condition Scalar 2). Overall, the metric invariance hypothesis is 

supported by CFI differences between the configural and the metric model no larger than – 0.004 

in the no-misspecification setting, – 0.006 in the one-misspecification setting, and – 0.008 in the 

two-misspecification setting. The SRMR, in terms of the relative fit, is not particularly sensitive 

to the presence of other model misspecifications. In almost all sample size and misspecification 

conditions, SRMR differences not larger than 0.02 provide evidence in favor of the metric 

invariance assumption. 

Figures 7 and 8 about here 

The relative fit results for scalar invariance tests (shown at Figure 8) indicate slightly better 

performance of all fit measures, compare to the metric equivalence assessment case. For the CFI, 

in no- or one-misspecification conditions, differences in this measure between the metric and the 

scalar model smaller than – 0.01 are indicative of full or at least approximate intercept 

equivalence. In the two-misspecification setup, simulations suggest a more liberal cutoff that 

falls in the range [– 0.015; – 0.025], depending on the group-level sample size (with stricter 

values corresponding to larger sample sizes). ΔCFI values larger than – 0.06 typically indicate 

the presence of significant amount of scalar non-invariance. They nevertheless may also arise in 

situations when approximate scalar invariance holds but approximate metric invariance does not 

(e.g. conditions Metric 2 and Metric 3), though CFI differences of [– 0.03; – 0.05] are more 

typical in the latter scenario. 

The results for the TLI are generally similar to those for the CFI, though using this fit index in 

intercept invariance tests poses more problems in situations characterized by approximate scalar 

invariance accompanied by considerable metric non-invariance. TLI differences between the 

metric and the scalar lower than [– 0.005; – 0.010] suggest that either strict or approximate scalar 

invariance holds. The TLI actually fails to discriminate between these two types of invariance, 

since this fit index yields essentially the same metric-scalar differences in the respective 

simulation conditions (Full and Scalar 1). 

As to the RMSEA, the difference in the value of this fit index between the metric and scalar 

model is lower than 0.002 in all but one simulation conditions assuming strict scalar invariance 

(the only exception is 10 Groups - One Misspecification - Full, where it takes a value of 0.005). 

When strict or almost strict metric invariance is established, the RMSEA differences as high as 

[0.010; 0.015] may indicate a non-critical level of intercept non-invariance. The SRMR is similar 

to the TLI in that it does not discriminate between the fully scalar invariant data and 

approximately scalar invariant data. Both situations are indicated by the SRMR differences 
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between the metric and the scalar model close to or smaller than 0.010 (except the 10-group one-

misspecification setting). Values larger than 0.020 can be safely interpreted as evidence of a non-

trivial amount of non-invariance in the data. Finally, it is worth attention that the sensitivity of all 

fit indices to the lack of strong invariance decreases with sample size, which suggests that more 

conservative cutoffs should be adopted when the number of groups is significantly larger than 

ten.  

WLSMV analysis 

Convergence checks: Convergence was assessed using MPLUS defaults (max. number of 

iterations = 1000; convergence criterion = 0.0005). In contrast to the MLR estimator, non-

convergence is a common problem when WLSMV estimation is used, especially when the 

configural model is fitted to the data. Configural models experienced problems with convergence 

in 40 out of 81 conditions (49.4%). In 23 conditions (28.9%), the non-convergence rate (NCR) 

was greater than 10%, and in 13 conditions it was greater than 20%. The most problematic 

conditions were the following: 50 Groups - One Misspecification – Full (NCR = 62.6%), 50 

Groups - One Misspecification – Full (NCR = 66.6%), and 50 Groups - One Misspecification – 

Full (NCR = 60.4%). These conditions were checked manually, and the source of non-

convergence was the non positive-definite latent variance matrix in Group 39 (perhaps the reason 

for that was an extremely high population value of the latent variance in that group). Another 

frequent source of non-convergence was the presence of empty response categories for some 

items. For metric and scalar models, non-convergence rates were smaller but still substantial. 

Nonetheless, since even in the worst case the results from more than 150 replications are 

available and also due to time-saving considerations, I decided to proceed without re-estimation 

of the problematic conditions with different population values set for problematic parameters. 

Absolute fit - CFI: Similar to the results for the MLR estimator, in all no-misspecification 

conditions the CFI suggests that the configural model has a perfect fit (CFI ≈ 1.00). In conditions 

with misspecifications, the CFI value becomes smaller, but not that much: it is not lower than 

0.991 in any such condition (Figure 9). When the assumption of metric invariance is tested, in 

general CFI values smaller than 0.990 are indicative of a sizeable variation in loading sizes 

across groups, though in conditions where both approximate metric invariance and approximate 

scalar invariance hold (Metric 1) the CFI can sometimes take values larger than the 

aforementioned threshold.  

Figure 9 about here 
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Yet, it is worth mentioning that when the number of second-level units is small, the absolute fit 

of the metric model, according to the CFI, may deteriorate not only due to loading non-

invariance but also due to intercept non-invariance. For example, in the condition 10 Groups - 

One Misspecification - Scalar 2 (no metric non-invariance, high level of scalar non-invariance), 

the CFI of the metric model is 0.978 while in the condition 10 Groups - One Misspecification - 

Metric 1, which assumes a lower level of variation in threshold sizes but higher level of variation 

in loading sizes across groups, it is as high as 0.997. As to strong invariance, the CFI of the 

threshold-invariant model lower than 0.985 (0.990 in the no-misspecification setting) indicates 

than only approximate strong invariance holds, and the CFI of the threshold-invariant model 

lower than 0.97 suggests the presence of significant cross-group threshold heterogeneity.  

Figure 10 about here 

Absolute fit - TLI: As the results presented at Figure 10 show, the TLI performs well with 

configural invariance testing in the absence of misspecified model parameters, having a value of 

1.00 or very close to it in all such conditions. In the one- and two-misspecification setups, the 

TLI of the configural model does not exceed 0.990 and is sometimes as low as 0.972. As to 

metric invariance testing, full or at least approximate metric invariance is supported by the CFI 

values larger than 0.990 in the no-misspecification setting, 0.985 in the one-misspecification 

setting, and 0.980 in the one-misspecification setting. As well as the CFI, when factor loadings 

are assumed to be equal in all groups, the TLI seems to be overreacting to the lack of strong 

invariance: It suggests rejecting the hypothesis of loading invariance in the Scalar 2 condition in 

all misspecification and number of groups settings, in spite of the fact that loadings are fully 

invariant in this condition. In contrast, this measure demonstrates good properties when it is used 

for threshold invariance testing. The TLI value for the threshold-invariant model lower than 

0.975 can be safely interpreted as an indication of non-ignorable scalar non-invariance, and this 

cutoff applies to all group-level sample size and misspecification conditions considered in the 

study.   

Figure 11 about here 

Absolute fit - RMSEA: The RMSEA of the configural model is particularly sensitive to the 

presence of model misspecifications (see Figure 11). While in the no-misspecification setting it 

takes quite small values (0.004–0.006), in one- and two-misspecification conditions it is 

generally higher than the conventional threshold of 0.05 and sometimes even as high as 0.07. As 

with the CFI and TLI, the RMSEA of the metric invariance model is highly sensitive to severe 

violations of the scalar invariance assumption. When the amount of threshold variability in the 
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data is small to moderate and there are no misspecified residual covariances, RMSEA values 

smaller than 0.025 support the hypothesis of metric equivalence. In conditions with one or two 

misspecifications the cutoff for loading-invariant models raises to 0.05.  With regard to scalar 

invariance, RMSEA values close to or lower than 0.06 support the respective assumption (in 

conditions with two misspecifications, a somewhat more liberal threshold might be reasonable). 

Relative fit:  When the metric model is compared to the configural model, the CFI, on average, 

demonstrates better performance than the TLI and the RMSEA (Figure 12). In the presence of 

model misspecifications, the latter two measures face problems with identifying metric non-

invariant models, which feature is especially pronounced in the one-misspecification setting 

(though it must be noted that this deficiency becomes less problematic when the number of 

groups is large). Overall, CFI differences between the metric and the configural model smaller 

than – 0.005 may suggest that at least approximate metric invariance holds in the data. The 

respective cutoffs for the ΔTLI and the ΔRMSEA cannot be proposed since the results for these 

two measures are highly inconsistent across studied conditions in the context of metric 

invariance testing. Finally, as with the absolute fit evaluations, when the CFI, the TLI, and the 

RMSEA are used to assess the relative fit of the loading-invariant model, they are too much 

responsive to scalar non-invariance: the differences between the values of all three measures for 

the configural and for the metric model in the Scalar 2 condition (which assumes strict metric 

invariance) in all studied settings is larger than those in conditions Metric 1 to 3 (small to 

moderate to large amount of  metric non-invariance).  

Figures 12 and 13 about here 

In contrast to the loading invariance case, these three measures are largely effective at 

identifying scalar non-invariant models (Figure 13). Specifically, the average CFI difference 

between the loading-equivalent and the threshold-invariant model in conditions that assume strict 

threshold invariance is about [– 0.004; – 0.002]. CFI differences of – 0.04 and smaller (10-group 

conditions) or – 0.02 and smaller (30- and 50-group conditions) are typical for conditions that 

assume only approximate threshold invariance (Scalar 1 and Metric 1-3). For the TLI, 

differences above zero are required to support full strong invariance and differences smaller than 

– 0.01 are required to support approximate strong invariance. The latter value applies to all 

group-level sample size and misspecification conditions. Finally, for the RMSEA the respective 

cutoffs are zero or lower for strict invariance and 0.01 and lower for approximate invariance. 
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Discussion 

To preserve space and shorten the related discussion, the recommended absolute and relative fit 

cutoffs for the four fit measures considered in this study are presented in a tabular form. Table 1 

reports suggestions regarding overall fit evaluations of models assuming configural, metric, and 

scalar invariance. Table 2 reports recommendations regarding assessment of the relative 

goodness-of-fit of the metric and scalar models. Critical values proposed in these tables are 

based on the average values of the 2.5
th

 (for CFI and TLI) or 97.5
th

 (for RMSEA and SRMR) 

percentiles of the respective fit indices across conditions in which full invariance of a given level 

holds.
9
 

Tables 1 and 2 about here 

It must nevertheless be underscored that all these recommendations reflect only the average 

performance of the four considered fit indices across studied conditions. None of the cutoffs 

shown in Tables 1 and 2 apply equally well to all studied conditions. In many conditions these 

criteria clearly fail and therefore should not be used. 

First, the presence of other misspecifications, as expected, negatively affects both the absolute 

and the relative model fit for all fit indices and invariance levels. This effect is however not 

linear. For example, all considered fit indices have on average poorer absolute values in the one-

misspecification setting, rather than in the two-misspecification setting. In terms of the relative 

fit indices, the impact of the presence of non-zero residual covariances on the performance of the 

RMSEA and the TLI is particularly miserable, especially when metric invariance is tested. The 

ΔCFI and the ΔSRMR perform on average better in this respect. 

Second, the group-level sample size only slightly affects the absolute and incremental values of 

various fit indices. To a much larger extent, it affects their sampling variability: the 95% 

confidence intervals over simulated replications for all fit measures, either absolute or relative, 

are narrower in the 30-group and especially in the 50-group setting, compared to the 10-group 

setting. As a consequence, more liberal cut-off values may be reasonable with relatively small 

numbers of groups, like those proposed by Rutkowski and Svetina (2014, 2017).  

Third, loading and intercept non-invariances generally have a multiplicative effect on model fit, 

whatever fit index is used to assess it, thus often leading to rejection of either the metric 

invariance assumption or the scalar invariance assumption due to the influence of an irrelevant 

                                                           
9
 All 81 conditions for configural invariance; Full, Scalar 1, and Scalar 2 for metric invariance (in sum, 27 

conditions); Full for scalar invariance (in sum, 9 conditions). 
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type of non-invariance (loading non-invariance in the former case and intercept/threshold non-

invariance in the latter case). In addition, a particular ability of a given index to detect non-

invariance at a given level depends on what type of invariance is being tested. The TLI and the 

RMSEA are generally not able to detect metric non-invariance, except in the situations where its 

level is extreme or there are no local misspecifications in the model. 

Fourth, the studied fit indices allow for distinguishing between highly non-invariant data and 

approximately invariant data, but often fail to discriminate between approximately invariant data 

and fully invariant data (still, more liberal cut-off values should be used for correctly detecting 

approximate invariance, compare to full invariance tests). There is, however, not so much 

evidence about whether approximate invariance is a sufficient condition for meaningful 

comparisons of latent means or path coefficients in structural regression models (although see 

Pokropek, Davidov, and Schmidt 2019 and Muthén 2018).  

Fifth, though the differences in proposed cut-off values between different estimation methods are 

not dramatically large, for the WLSMV estimator the recommended relative fit thresholds are a 

little bit tougher than those for the MLR estimator.  

Overall, my findings only partly overlap with those by Rutkowski and Svetina. With respect to 

MLR estimation, I obtain more or less similar results to those reported by Rutkowski and Svetina 

(2014) for the CFI, both in terms of absolute and relative fit, and, to less extent, for the TLI (they 

used this fit index only as an absolute fit measure). For the other two fit measures the results are 

less coherent across studies. For example, they recommend that “that the SRMR is not used in 

isolation, if it is used at all” (Ibid., 52), while my analysis suggests that the SRMR is the second-

best measure of the absolute fit out of the four considered in this study, and it also performs well 

in terms of relative fit assessment (as with the TLI, they did not test the SRMR as a relative fit 

index). In its turn, for the RMSEA, they propose absolute and relative cut-off points somewhat 

similar to what could have been suggested using my results, but our conclusions regarding the 

overall usefulness of this fit index are rather different. While they consider the RSMEA to be a 

reliable measure of both absolute and relative model fit, my findings indicate that it may at best 

serve as an auxiliary tool when the scalar model is being compared to the metric model. 

As to WLSMV estimation, Rutkowski and Svetina (2017) claim that the CFI should not be used 

as an absolute fit measure, which again contradicts my results. In contrast, their conclusions 

about the performance of the RMSEA are much more optimistic than mine. On the other hand, 

they suggest cut-off values for the ΔCFI which are very close to those proposed in Table 2 

above. The findings of Svetina and Rutkowski (2017) are not directly comparable to those 
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reported here since in that paper the authors explored models with more than one latent 

construct.  

All in all, it is worth mentioning that no one simulation study can embrace all possible scenarios 

that are encountered in cross-cultural research. The present study leaves several important 

variables out of its scope, such as the scale length, the presence of asymmetry in item thresholds, 

the number of latent constructs in the model, or the number of response categories of observed 

indicators. Though the effects of some missed factors were explored in other similar studies 

(Rutkowski and Svetina 2014, 2017; Svetina and Rutkowski 2017), there still may be non-trivial 

interactions between these factors and those studied in this paper (and those not yet covered by 

simulation research as well) in terms of their joint effects on model fit. 

Therefore, I want to conclude by offering several general recommendations that can guide 

practical researchers conducting measurement invariance analysis in the context of large cross-

cultural survey data. Ideally, in each application researchers should perform an ad hoc simulation 

study that attempts to mimic the most relevant features of the data at hand, in order to understand 

how specific characteristics of the particular study context affect the sensitivity of different fit 

measures to lack of measurement invariance. It can easily be done using the MPLUS software, R 

packages simsem and lsasim (Matta et al. 2018), or R scripts that can be found in the SI to the 

present study
10

. 

If conducting a simulation study is not feasible for some reasons, instead of following blindly the 

cutoffs proposed in this and other similar studies, applied researchers must judge smart and take 

into consideration both specific features of their data, extra-statistical information about 

sampling and data collection procedures provided by the team responsible for conduction of a 

given survey, and, last but not least, theoretical reasons. Another potentially helpful strategy is to 

complement invariance tests by the exploration of modification indices for the configural model, 

in order to understand how large is the amount of model misspecifications other than non-

equivalence in the model under investigation, and then decide which fit indices, given their 

respective levels of sensitivity to those misspecifications, should have larger weights in the final 

decision about whether measurement invariance is a plausible assumption or not.  

 

 

                                                           
10

 Replication materials are available from the author upon request. 
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Figures and Tables 

Table 1. Recommended Absolute Fit Cutoffs for Different Fit Measures and Invariance 

Levels 

 

Measure 

MLR analysis WLSMV analysis 

Configural Metric Scalar Configural Metric Scalar 

CFI > 0.985 > 0.98 > 0.97 > 0.985 > 0.98 > 0.97 

TLI NR NR NR NR NR > 0.975 

RMSEA NR NR NR NR NR NR 

SRMR < 0.02 < 0.04 < 0.045 NA NA NA 

Notes: Critical values proposed in these tables are based on the (approximate) average 

values of the 2.5
th

 (CFI and TLI) or 97.5
th

 (RMSEA and SRMR) percentiles of the 

respective fit indices averaged across all conditions in which full invariance of a given level 

holds. In some situations, more liberal cutoffs may be appropriate (see the Discussion 

section). NR = not recommended for use in a given setting. NA = not applicable. 

 

Table 2. Recommended Relative Fit Cutoffs for Different Fit Measures and Invariance 

Levels 

 

Measure 

MLR analysis WLSMV analysis 

Metric Scalar Metric Scalar 

CFI > – 0.01 > – 0.01 > – 0.005 > – 0.005 

TLI NR > – 0.005 NR  0.000 

RMSEA NR < 0.005 NR 0.000 

SRMR < 0.01 < 0.01 NA NA 

Notes: Critical values proposed in these tables are based on the (approximate) average 

values of the 2.5
th

 (for CFI and TLI) or 97.5
th

 (for RMSEA and SRMR) percentiles of the 

respective fit measure differences averaged across all conditions in which full invariance of 

a given level holds. In some situations, more liberal cutoffs may be appropriate (see the 

Discussion section). NR = not recommended for use in a given setting. NA = not applicable. 
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Figure 1 Model structure. 

Note: Latent construct is represented using a circle. Rectangles correspond to observed indicators and arrows 

correspond to factor loadings. Residual variances and latent variance are represented using dashed arcs. Item 

thresholds are not shown.  
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Figure 2 CFI values for configural, metric, and scalar models. MLR analysis 

Note: Black dashed vertical line corresponds to CFI = 1.00. Dark grey dashed vertical line corresponds to CFI = 

0.95. Dark grey dotted vertical line corresponds to CFI = 0.90. Dots show the average CFI values for each condition 

over 500 replications. Error bars show the 95% CIs. 
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Figure 3 TLI values for configural, metric, and scalar models. MLR analysis 

Note: Black dashed vertical line corresponds to TLI = 1.00. Dark grey dashed vertical line corresponds to TLI = 

0.95. Dark grey dotted vertical line corresponds to TLI = 0.90. Dots show the average TLI values for each condition 

over 500 replications. Error bars show the 95% CIs. 
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Figure 4 RMSEA values for configural, metric, and scalar models. MLR analysis 

Note: Black dashed vertical line corresponds to RMSEA = 0.00. Dark grey dashed vertical line corresponds to 

RMSEA = 0.05. Dark grey dotted vertical line corresponds to RMSEA = 0.08. Dots show the average RMSEA 

values for each condition over 500 replications. Error bars show the 95% CIs. 
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Figure 5 SRMR values for configural, metric, and scalar models. MLR analysis 

Note: Black dashed vertical line corresponds to SRMR = 0.00. Dark grey dashed vertical line corresponds to SRMR 

= 0.05. Dark grey dotted vertical line corresponds to SRMR = 0.08. Dots show the average SRMR values for each 

condition over 500 replications. Error bars show the 95% CIs. 
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Figure 6 CFI, TLI, RMSEA, and SRMR differences. Configural vs. metric model. MLR analysis 

Note: Black dashed vertical line corresponds to Δ (metric - configural) = 0.00. Dots show the average difference for 

each condition over 500 replications. Error bars show the 95% CIs. 
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Figure 7 CFI, TLI, RMSEA, and SRMR differences. Metric vs. scalar model. MLR analysis 

Note: Black dashed vertical line corresponds to Δ (scalar - metric)= 0.00. Dots show the average difference for each 

condition over 500 replications. Error bars show the 95% CIs. 
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Figure 8 CFI values for configural, metric, and scalar models. WLSMV analysis 

Note: Black dashed vertical line corresponds to CFI = 1.00. Dark grey dashed vertical line corresponds to CFI = 

0.95. Dark grey dotted vertical line corresponds to CFI = 0.90. Dots show the average CFI values for each condition 

over all converged replications (out of 500). Error bars show the 95% CIs. 
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Figure 9 TLI values for configural, metric, and scalar models. WLSMV analysis 

Note: Black dashed vertical line corresponds to TLI = 1.00. Dark grey dashed vertical line corresponds to TLI = 

0.95. Dark grey dotted vertical line corresponds to TLI = 0.90. Dots show the average TLI values for each condition 

over all converged replications (out of 500). Error bars show the 95% CIs. 
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Figure 10 RMSEA values for configural, metric, and scalar models. WLSMV analysis 

Note: Black dashed vertical line corresponds to RMSEA = 0.00. Dark grey dashed vertical line corresponds to 

RMSEA = 0.05. Dark grey dotted vertical line corresponds to RMSEA = 0.08. Dots show the average RMSEA 

values for each condition over all converged replications (out of 500). Error bars show the 95% CIs. 
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Figure 11 CFI, TLI, and RMSEA differences. Configural vs. metric model. WLSMV analysis 

Note: Black dashed vertical line corresponds to Δ (metric - configural) = 0.00. Dots show the average difference for 

each condition over all converged replications (out of 500). Error bars show the 95% CIs. 
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Figure 12 CFI, TLI, and RMSEA differences. Metric vs. scalar model. WLSMV analysis 

Note: Black dashed vertical line corresponds to Δ (scalar - metric)= 0.00. Dots show the average difference for each 

condition over all converged replications (out of 500). Error bars show the 95% CIs. 
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Appendix 

 

Figure A1 WRMR values for configural, metric, and scalar models. WLSMV analysis 

Note: Black dashed vertical line corresponds to WRMR = 0.00. Dots show the average WRMR values for each 

condition over all converged replications (out of 500). Error bars show the 95% CIs. 
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Figure 12 WRMR differences. WLSMV analysis 

Note: Black dashed vertical line corresponds to ΔWRMR = 0.00. Dots show the average difference for each 

condition over all converged replications (out of 500). Error bars show the 95% CIs. 
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