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1 Introduction

How important is the goal of learning? Does it matter who brings evidence

to the court or contributes to science? When can people with diverse interests

agree on what to research? The dependence of the optimal learning strategy on

the goal of learning (payoff matrix) is the central question of this paper.

When we talk about learning, we need to define two things: how we learn

(tools or means) and why we learn (goal or end). In general, the tools are a com-

bination of two extremes: gradual learning and breakthrough learning. Gradual

learning describes the process of reading a book or making small, incremental

innovations. This paper focuses exclusively on breakthrough learning. I assume

there are two hypotheses an agent can investigate. Each hypothesis is either true

or false. The agent can find conclusive proof that a given hypothesis is correct,

but he cannot falsify that hypothesis. If a hypothesis is true, the agent makes a

discovery of its proof at a random time (hence, the name “breakthrough” learn-

ing). Whenever he decides to invest in learning, the agent chooses how to split

his attention between two hypotheses. The more attention he pays to a given

hypothesis, the sooner he finds the proof if this hypothesis is true.

The goal of learning is to take an action with a higher payoff, such as to

decide on an economic policy, an investment project, a marketing strategy, or

a technological design. The agent chooses when to stop learning and take an

action. The payoff from each action depends on the correctness of each of the

two hypotheses.

For example, a city council has to decide on the fate of some area. This area

has a unique environment and at the same time it is a potential recreation area



for people. Objectively, there are many options for this area, such as whether

to develop it for housing, public events, or a national park, to restrict the use of

this area by various tax regulations, or leave it as it is and do nothing. Different

council members might have different views on the best course of action (plus,

simply formulating the options often requires a lot of resources). Assume that

had it been known that the environment is not unique and / or any construc-

tion is dangerous in this area, all members would have agreed on what to do.

Intuitively, additional information might help to resolve the disagreement. If

the council discovers another place of similar ecological conditions, ecologists

would not insist on protecting this area anymore. If experts prove that the con-

struction is dangerous in the area, construction companies would back off. The

question is, whether the council will be able to agree on the type of information

to invest in, to search for a similar environment or to study the construction

safety.1

The short answer is, yes, under some quite general conditions, they will

agree. A formal argument lies in the characterization of the optimal strategy

which I describe below.

Once one hypothesis is proven, the agent faces an optimal stopping problem

1This example is based on two real cases. The first one happened in June 2018 in Essen, Ger-
many. A popular musician Ed Sheeran had run into trouble when organizing an open air concert:
Sheeran’s music might disturb the protected birds called skylarks. While the matter was discussed,
a hundred unexploded bombs were found at the venue, and the concert had to be moved to a
different venue. See more at https://www.telegraph.co.uk/news/2018/06/13/ed-sheerans-open-
air-german-concert-may-thwarted-trees/. I thank Natalia Zabelina for this reference.

The second case happened in Southern California where a bird called California Gnat-
catcher like a coastal area, but so do humans. By the time the bird was recognized as
an endangered species in 1993, its habitat had been taken over almost completely by hous-
ing tracts. See more at https://www.audubon.org/field-guide/bird/california-gnatcatcher and
https://www.biologicaldiversity.org/species/birds/coastal_California_gnatcatcher/index.html.
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with only one hypothesis to investigate. Since the solution to the optimal stop-

ping problem is already known, the only remaining question is, in the absence

of any proof, what behavior is optimal? One possibility is when it is optimal to

focus on one hypothesis only and ignore the other one, until either the proof is

found or the search is abandoned and the decision is made. Suppose this is not

true and it is optimal to investigate both hypotheses (either at the same time

or sequentially, it does not matter) before any proof is found or the search is

stopped. The main result of the paper (Theorem 1) states that in this case the

optimal behavior is to test the hypothesis with the highest index, where hypoth-

esis 1 index is

probability of (1, 0) + probability of (1,1)× payoff in (1,1) from action a1

and hypothesis 2 index is

probability of (0,1) + probability of (1, 1)× payoff in (1,1) from action a2,

where action ai is optimal to take when hypothesis i is proven, state (1,0)

[(0,1)] corresponds to the situation when hypothesis 1 is true [false] and hy-

pothesis 2 is false [true], and both hypotheses are correct under the state (1, 1).

Intuitively, hypothesis i should be tested when this hypothesis is true and the

other one is false. This corresponds to the terms “probability of (1,0)” and “prob-

ability of (0,1)”. When both hypotheses are false, it does not matter which one

is investigated. Hence there is no term with “probability of (0,0)”. Finally, when

both hypotheses are true, it is better to focus on the one that, when proven, im-

plies the action that leads to a higher payoff. That explains the terms “probability

of (1,1) × payoff in (1,1) from action ai”, i = 1, 2.
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To summarize, the optimal strategy consists of two phases. During the first

phase, the index policy described above is used. During the second phase, it is

optimal to focus on one hypothesis only and ignore the other one, until either

the proof is found or the search is abandoned and the decision is made.

Returning to the example, the council will agree on the type of information

to invest in whenever all members value both types of information (possibly dif-

ferently) — so that it is optimal to investigate both hypotheses before any proof

is found or the search is stopped (the condition for the first phase). That happens

when learning about each hypothesis is cheap, or equivalently, when potential

payoffs are high (Theorem 2). Due to the assumption that members’ payoffs are

the same conditional on any discovery, everybody will use the same indices and

therefore agree on the hypothesis to investigate despite having possibly opposed

interests in the absence of discoveries.

From the descriptive perspective, the two-phase strategy seems to be used

in criminal or air crash investigations. When the stakes are high, such as in the

airline industry, the focus of investigation is always on the most likely cause of an

accident (in line with the index policy described above in the special case when

at most one hypothesis is true, so that it is optimal to investigate the most likely

hypothesis), no matter whether it is a pilot error (in which case no major changes

to the industry are required) or a mechanical failure (which does have major

consequences). Closer to home, researchers seem to follow the same pattern in

their work. In his Nobel Prize interview, Robert Aumann said: “People but too

often want to emphasize the practical importance, practical applications. And
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that is not what science is about. Science is simply following your curiosity. And

if you are doing interesting things, then eventually it will find its applications.”2

Other applications are discussed in Section 5.

Related literature

Literature that studies the dynamics of information collection started with

the simplest case when only one information source is available. Since in that

case the only question is when to stop learning and take an action, this is called

the optimal stopping problem (Wald (1947), Peskir and Shiryaev (2006)).

When there are two or more information sources, the problem becomes much

harder. Rational inattention literature (Sims (2003)) provides a tractable ap-

proach by assuming away any restrictions on the type of collected informa-

tion. This assumption allows a researcher to “skip” the dynamics and work with

a posterior-dependent function (such as Shannon entropy) that measures the

cost of collected information. Recently, Steiner et al. (2017) and Zhong (2017)

present dynamic rational inattention models, where at each moment of time,

the agent faces an unrestricted choice of information type.

When the number and nature of information sources is restricted, the prob-

lem is called the optimal sequential information acquisition problem (Chaloner

and Verdinelli (1995)). The difficulty of the problem and the need to solve

it in computer science3 and econometrics4 drew attention to myopic strategies

2Full interview can be found at https://www.nobelprize.org/mediaplayer/?id=1133.
3A classical result from computer science literature is asymptotic optimality of myopic strategies

(see Chernoff (1959), Naghshvar and Javidi (2013)).
4Chapman et al. (2018) demonstrate how myopically optimized sequential experimentation im-

proves an estimate of loss aversion.
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(strategies that maximize the next period payoff neglecting dynamic considera-

tions, myopic strategies are easy to calculate) and their relationship with optimal

strategies. Assuming that only one state component is payoff-relevant, Liang

et al. (2017) show that a generalized myopic strategy is optimal (Theorem 1)

and the myopic strategy is eventually optimal (Theorem 3). In their follow-up

paper Liang and Mu (2017) show that the myopic strategy might lead to “learn-

ing traps” (persistent inefficiency in information gathering). In my model, the

myopic strategy is optimal in phase 2, in line with Theorem 3 from Liang et al.

(2017). However, the phase 1 rule is inconsistent with myopic behavior because

it largely follows belief-based incentives rather than payoff-based incentives (see

discussion on page 20).

Ke et al. (2016), Fudenberg et al. (2018), Ke and Villas-Boas (2019), Liang

et al. (2019) derived the optimal strategy when there are two or more informa-

tion sources modeled as Brownian motions. Each source provides information

about one state component through state-dependent drift. Ke et al. (2016) as-

sume independent components. Fudenberg et al. (2018) and Ke and Villas-Boas

(2019) focused on two information sources, while Liang et al. (2019) allow for

multiple sources with general correlation structure. This approach corresponds

to gradual learning.

This paper belongs to the stream of literature that models information sources

as Poisson processes with state-dependent intensities, which corresponds to break-

through learning. Since a breakthrough (or “success”) often leads to an immedi-

ate decision, there is a close relationship with literature that interprets the suc-

cess as monetary payoff. Multi-armed bandit literature focuses on maximizing

the total number of successes (see Section 5.3), search problems aim to mini-
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mize the time needed to achieve the first success (Chatterjee and Evans (2004),

Klein and Rady (2011), Francetich et al. (2018)). Presman and Sonin (1990)

provide a good review of this literature.

Two papers that are closest to mine are Che and Mierendorff (2019) and

Nikandrova and Pancs (2018). Che and Mierendorff (2019) consider the case

with two states, (1,0) and (0,1), so their benchmark model is a special case

of mine (see Section 3.1). However, they go further and generalize to positive

discounting, non-conclusive Poisson signals and non-linear return to attention.5

Nikandrova and Pancs (2018) consider four states, — (0,0), (1,0), (0,1), and

(1,1), — but they assume its components are independent (that corresponds

to ξ = 0 in my model, see (2) for definition of ξ).6 Most importantly, both

Nikandrova and Pancs (2018) and Che and Mierendorff (2019) focus on a given

decision problem by making very restrictive assumptions on the payoff matrix.

Therefore, they provide a full characterization of the solution, including what

action to take at the stopping time in the absence of discoveries. In contrast, my

focus is on the general form of the optimal strategy and I do not give the full

characterization of the solution in the strict sense.

2 Model

An agent must choose among a finite set of actions, A . His payoff from

these actions depends on what the true state of the world is. Before taking an

action, the agent can learn about the state.

5Damiano et al. (2019) studied a similar setup but with an additional source of learning. In their
model the agent can also choose to experiment with a risky arm that can be either good (state (1,0))
or bad (state (0,1)).

6Austen-Smith and Martinelli (2018) are studying multiple sources discrete time version of
Nikandrova and Pancs (2018) allowing for exogenous deadline.
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Timing. Time t ≥ 0 is continuous. At each moment, the agent chooses either

to stop collecting information by taking an action or to wait and gather more

information. Once the action is chosen, the game is over.

Learning. The state of the world is a vector with two binary components,

(θ1,θ2) ∈ {0,1}2. Each state component θi has an information source attached

to it. If at time t the agent decides to learn about the state, he allocates a unit

of attention between two information sources. The amount of attention paid

to source i at time t is denoted by x i(t) ∈ [0,1], with x1(t) + x2(t) = 1. The

attention process x i = {x i(t) | t ≥ 0}, together with the state component θi ,

define the time-dependent intensity θi x i(t) for a Poisson process Ni = {Ni(t) |

t ≥ 0}, Ni(0) = 0, observed by the agent. Note that a jump in Ni(t) reveals

θi = 1, and the probability of the jump is proportional to x i(t).7 Naturally,

the attention allocation plan x = (x1, x2) has to be measurable with respect

to information available at time t. In sum, while learning, the agent observes

two information sources, {N1(t) | t ≥ 0} and {N2(t) | t ≥ 0}, and the more

attention he pays to a source, the more informative it is about the corresponding

component of the state.

Payoff. Denote by uθ1θ2
(a) the payoff the agent gets if he takes action a ∈A

and the true state is (θ1,θ2):

(0,0) (0,1) (1,0) (1,1)

a1 u00(a1) u01(a1) u10(a1) u11(a1)
a2 u00(a2) u01(a2) u10(a2) u11(a2)
. . . . . . . . . . . . . . .

7Non-linear effect of attention on information precision is studied in Moscarini and Smith (2001)
for the optimal stopping problem with Brownian motion. Abandoning linearity is not a technically
trivial exercise and therefore it is outside of the scope of this paper. See Section 6.4 in Che and
Mierendorff (2019) for that extension in the special case θ1 + θ2 = 1.
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I will refer to this matrix as the payoff matrix. Since the goal of learning is to

take an action with the highest payoff at the true state, the payoff matrix is the

set of parameters that characterize the goal of learning.

Information collection is costly. For simplicity, assume the flow cost of each

information source is 1 (see Appendix C for asymmetric costs). Then the total

payoff the agent gets is

uθ1θ2
(a)−τ,

where τ≥ 0 is the time when the agent takes action a ∈A . Note that I assume

no discounting.8

A strategy of the agent is a triple (x ,τ,α), where α is a function that tells

what action the agent takes given the information he has by the stopping time

τ.

Denote by pθ1θ2
the agent’s belief that the state is (θ1,θ2). An optimal strat-

egy maximizes the expected payoff

sup
(x ,τ,α)

IEp

�

uθ1θ2
(α)−τ

�

(1)

8Solving the model with (exponential) discounting is technically challenging (Nikandrova and
Pancs (2018) had to resort to numerical analysis in the special case of my model, see Section 5 of
their paper). Having said that, I am not claiming that my results are robust to introducing discount-
ing. On the contrary, I conjecture that the main result, — a source index depends only on the payoff
in one state, — will not hold for a discounting case. To see that, let us suppose for simplicity that
θ1 = 1 and θ2 = 1 are mutually exclusive, so that the probability of state (1,1) is zero. Then the
index policy prescribes to pay attention to the most promising direction, that is, to pay attention to
source 1 if θ1 = 1 is more likely than θ2 = 1, and vice versa. Suppose the payoff matrix is such that
knowing θ1 is more important for the agent than knowing θ2. Conditional on discovering the state,
an infinitely patient agent would search for the truth in the most efficient way: he chooses the most
promising direction. However, when the agent is impatient, he would want to learn a more impor-
tant state sooner rather than later and therefore choose source 1 even if the probability of (0,1) is
slightly higher than the probability of (1,0). A formal argument appeals to Che and Mierendorff
(2019) analysis of the special case with two states, (1,0) and (0,1), where they characterize the
solution for the discounting case as well (see formula (A.13) in Che and Mierendorff (2019)).
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3 An Optimal Strategy

The optimization problem (1) has the Markov property, with the belief vector

p = (p00, p01, p10, p11) playing the role of a state variable with dimensionality 3.

When full attention is paid to source 1, the belief p10+p11 about the state θ1 = 1

decreases, while the conditional beliefs

IP [θ2 = 1 | θ1 = 1] =
p11

p10 + p11
, IP [θ2 = 1 | θ1 = 0] =

p01

p00 + p01

stay the same. This process is illustrated in Figure 1.

Figure 1: Belief movement in the absence of jumps when full attention is paid
to one source.

The class of optimal strategies is best described through "regimes." A regime

itself is a Markovian strategy which is a function of the current state p.

Regime i, i ∈ {1, 2} The agent uses only source i and ignores the other source.

More precisely, this regime is the solution to the optimal stopping problem when

only source i is available.

Regime (0, a1, a2), a1, a2 ∈A . The agent is indifferent between both sources

12



(any attention rule can be used) whenever

p10+p11u11(a1)< p11

�

max
a∈A

u11(a)− 1
�

, p01+p11u11(a2)< p11

�

max
a∈A

u11(a)− 1
�

.

Otherwise, the agent must use source 1 if

p10 + p11u11(a1)> p01 + p11u11(a2),

source 2 if

p10 + p11u11(a1)< p01 + p11u11(a2),

and split his attention according to x1 =
p10

p10+p01
, x2 =

p01
p10+p01

on the line

p10 + p11u11(a1) = p01 + p11u11(a2).

Figures 2 and 3 illustrate the regime through belief movements p(t) in the

absence of jumps. Suppose the agent starts with p10(0)+p11(0)u11(a1)> p01(0)+

p11(0)u11(a2). Then he uses source 1 until p10(t) + p11(t)u11(a1) = p01(t) +

p11(t)u11(a2) (or he leaves the regime earlier). Then he splits his attention ac-

cording to x1(t) =
p10(t)

p10(t)+p01(t)
, x2(t) =

p01(t)
p10(t)+p01(t)

, so that to stay on the line

p10(t)− p01(t)− const× p11(t) = 0.9,10 This pattern continues until the agent

leaves the regime.

Theorem 1 formalizes the main result of the paper. It describes a class of

strategies to which any optimal strategy belongs.

9By Bayes’ rule, dp11 = −p11(p00+p01 x1+p10 x2)d t, dp10 = p10((p11+p01)x2−(p00+p01)x1)d t,
dp01 = p01((p11 + p10)x1 − (p00 + p10)x2)d t. Then d(p10 − p01 − const× p11) = (p10 x2 − p01 x1)d t
taking into account x1 + x2 = 1, p00 + p01 + p10 + p11 = 1 and p10 − p01 − const× p11 = 0.

10The line p10 + p11u11(a1) = p01 + p11u11(a2) along which the agent splits attention between
the sources is called a turnpike in Presman and Sonin (1990): in a neighborhood of a turnpike the
system always comes to it and subsequently moves along it (p. 29).
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Figure 2: Regime (0, a1, a2) for p11 > 0. Here u11(a∗) =max
a∈A

u11(a).

Figure 3: Regime (0, a1, a2) for p11 = 0.

Theorem 1. Any optimal strategy consists of two phases: it follows the phase 1

rule up until a certain moment in time t∗ or until a jump occurs (whichever happens

first), then switches to phase 2.

Phase 1: For any current belief p, regime (0, a1(p), a2(p)) is used. Action ai(p)
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is defined as the action that is optimal to take if source i produces a jump at the

moment when the agent’s current belief is p.11

Phase 2: If the agent enters the phase after source 1 (2) produced a jump,

regime 2 (1) is used. Otherwise, regime i is used.

Theorem 1 does not give the full characterization of the set of optimal strate-

gies, leaving some variables undefined. First of all, one such variable is the

switching time t∗ ≥ 0 between the phases. Another variable is i ∈ {1, 2}, which

characterizes the regime used during phase 2 after the switch at moment t∗.

Moreover, regimes 1 and 2 themselves are defined in an indirect way as the so-

lution to the optimal stopping problem. The precise algorithm how to find the

set of optimal strategies in a given decision problem is given in Appendix A.

Theorem 1 deals with the general payoff matrix. In applications, the number

of options and their relationship with the state are often subject to very restric-

tive application-dependent assumptions. When these assumptions are given,

Theorem 1 could be used as a tool to find the full characterization of the set of

optimal strategies. Below I consider two examples taken from Che and Mieren-

dorff (2019) and Nikandrova and Pancs (2018).

3.1 Example 1: Che and Mierendorff (2019)

There are only two states, (1,0) and (0,1), meaning that p00 = p11 = 0,

p10 + p01 = 1. The agent must choose between two actions, A = {a1, a2}.

11More precisely, actions a1 and a2 are defined as follows. If source 1 produces a jump, it becomes
useless and the agent faces the optimal stopping problem with source 2. The solution to the optimal
stopping problem is characterized by the belief threshold p

11
and action a1 such that the agent uses

source 2 until p11 becomes as low as p
11

, at which moment he takes action a1, or a jump occurs, at
which moment he takes action a∗ that is optimal in state (1,1). Action a2 is defined in a symmetric
way.
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Taking action a1 [a2] is optimal when the state is (1,0) [(0,1)]:

u10(a1)> u10(a2), u01(a2)> u01(a1).

The phase 1 rule corresponds to the regime (0, a1, a2). Indeed, if source 1

produces a jump at any current belief, state (1,0) is revealed and therefore it is

optimal to take action a1.

Figure 3 illustrates the regime (0, a1, a2) when p11 = 0. The assumption

p00 = 0 simplifies the picture even further — see Figure 4.

Figure 4: Regime (0, a1, a2) for p11 = p00 = 0.

Two observations simplify the application of Theorem 1. First, it is optimal

to stop whenever a jump is observed. Thus, if the agent enters phase 2 after ob-

serving a jump, he immediately stops and takes an action. Second, the Markov

property guarantees that either phase 1 has zero length (t∗ = 0), or it has an

infinite length (t∗ = +∞), or the agent does not change how he splits his atten-

tion between the sources as he moves from phase 1 (t < t∗) to phase 2 (t > t∗).

Indeed, suppose p10(t∗) < p01(t∗). Then the phase 1 rule implies using only

source 2. If the agent switches to source 1 at moment t∗, his belief starts mov-

ing in the opposite direction. By the Markov property, an optimal strategy is a

function of beliefs, which implies two different attention plans are optimal for

the same belief. Contradiction. Note that when the agent does not change his

16



allocation of attention when entering phase 2, there is an ambiguity to how the

moment t∗ should be defined. Without loss of generality, let t∗ be the earliest

moment. Then in this example phase 1 has either zero length (t∗ = 0), or an

infinite length (t∗ = +∞).

According to Theorem 1, any optimal strategy takes one of three forms (their

names are taken from Che and Mierendorff (2019)):

a) no learning: the agent does not use any source and takes an action right

away (both phases have zero length);

b) own-biased learning: the agent pays full attention to only one source and

ignores the other one (phase 1 has zero length, phase 2 has a positive

length);

c) opposite-biased learning: the agent pays full attention to source 1 when

p10 > p01, he pays full attention to source 2 when p10 < p01, and he splits

his attention in half between the sources when p10 = p01 until the state is

revealed (phase 1 has an infinite length).

3.2 Example 2: Nikandrova and Pancs (2018)

The state components θ1 and θ2 are independent, meaning that p11 = (p10+

p11)(p01+p11). The agent must choose between two actions,A = {a1, a2}, with

payoffs uθ1θ2
(ai) = θi .

The phase 1 rule corresponds to the regime (0, a1, a2). Indeed, if source i

produces a jump at any current belief, state θi = 1 is revealed and therefore

action ai leads to the highest possible payoff 1. Since u11(a1) = u11(a2), the

phase 1 rule is to use the source that corresponds to the most likely state.
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According to Theorem 1, any optimal strategy takes one of three forms:

a) the agent does not use any source and takes an action right away;

b) the agent pays full attention to only one source and ignores the other one;

c) there exists a moment t∗ > 0 such that before that moment and before

the state is revealed,

(a) if p10 > p01, then the agent pays full attention to source 1,

(b) if p10 < p01, then the agent pays full attention to source 2,

(c) if p10 = p01, then the agent splits his attention in half between the

sources,

and the agent pays full attention to only one source after the moment t∗

until it is optimal to stop learning and make the decision.

Note that the same conclusion remains true even if the state components are

not independent (though the threshold t∗ and the optimal stopping time that

Nikandrova and Pancs (2018) have found will be qualitatively different).

3.3 Discussion

The phase 1 rule features an index policy: use source i with the highest

IP (θi = 1) + IP (θ1 = θ2 = 1)u11(ai).12,13 This rule is intuitive: choose source i

12When both p10+ p11u11(a1) and p01+ p11u11(a2) are less than p11

�

max
a∈A

u11(a)− 1
�

, the agent

is indifferent between the sources. For simplicity of exposition, I succumb to a slight abuse by
sometimes referring to the optimal policy as an index policy within phase 1.

13I apologize for using the term “index” (due to lack of my imagination to come up with a better
alternative) to those readers who are familiar with Gittins indices, or dynamic allocation indices
(Gittins et al. (2011)). Gittins proved that an index policy, — a policy where at any moment the arm
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that reveals the state θi with higher probability (IP (θi = 1)), with some adjust-

ment. Digging deeper, the rule combines four possibilities. First, when the true

state is θ1 = θ2 = 0, both sources are useless, so that possibility leaves the agent

indifferent between them:

p00 : 1 vs 1.

Second, when the true state is θ1 = 1, θ2 = 0, only source 1 can produce a jump,

so the agent prefers source 1:

p10 : 1 vs 0.

Third, when the true state is θ1 = 0, θ2 = 1, only source 2 can produce a jump,

so the agent prefers source 2:

p01 : 0 vs 1.

Finally, when the true state is θ1 = θ2 = 1, the agent prefers the source that

gives him the higher payoff in case of a jump:

p11 : u11(a1) vs u11(a2).

Weighting these possibilities with their probability, I get

p10 + p11u11(a1)
︸ ︷︷ ︸

source 1 index

vs p01 + p11u11(a2)
︸ ︷︷ ︸

source 2 index

.

with the highest Gittins index should be chosen, — is optimal for the multi-armed bandit problem.
While the expression for the index is different in my model, an index policy is still optimal, though
only conditional on being in phase 1. Moreover, another key property of the Gittins index that my
index does not inherit is its independence of the characteristics of the other arms (in particular, their
running time through p11). What my index does inherit from the Gittins index is that they both are
strictly increasing in the probability the arm generates success (see Banks and Sundaram (1992) for
a generalization of this property for the Gittens index).
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Another way to interpret the optimality of two-phase strategy is to think of

two types of incentives it should balance. By focusing on the goal to reveal the

state, the agent follows belief -based incentives: the best source is the one that

reveals the state with higher probability according the agent’s beliefs. For ex-

ample, if p10 > p01, then source 1 is better according to belief-based incentives.

By focusing on the goal to learn about the most payoff-relevant state, the agent

follows payoff -based incentives. For example, if u1θ2
(a) = u0θ2

(a) for all a ∈A

and θ2 ∈ {0, 1}, then source 2 is better according to payoff-based incentives.

Loosely speaking, the phase 1 rule puts more weight on belief-based incentives,

saying that the agent should focus only on what happens when a jump occurs.

In contrast, the phase 2 rule brings all considerations on the table, so that the

last source should be chosen with all of them in mind. Such priority ordering —

first focus more on finding the truth by following belief-based incentives, then

more on the goal of learning by following payoff-based incentives — follows

intuitively from the dynamics itself: when the agent is about to abandon the

search without finding any conclusive evidence, the goal of learning matters the

most.14,15

An interesting thing to note here is that when the agent splits attention be-

tween the sources, he pays more attention to the source with smaller payoff

14Belief vs payoff-based incentives trade-off loosely corresponds to accuracy vs speed trade-off
in Che and Mierendorff (2019): when high accuracy is needed, belief-based incentives prevail;
when delay is intolerable, payoff-based incentives play an important role. The connection between
accuracy and phase 1 is formalized in Theorem 2.

15There is an interesting intuitive connection with Forand (2015) who studied a three-armed
bandit model with maintenance costs. He showed that a project that is less likely to succeed could
be optimally chosen for development. That happens when this project is about to be irreversibly
abandoned. Similarly, a source with a lower index could be chosen during phase 2 which starts
when the learning process is about to be irreversibly abandoned.
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in case of a jump: x1 − x2 =
p10−p01
p10+p01

= p11(u11(a2)−u11(a1))
p10+p01

. If I put it that way,

that sounds counterintuitive. The “missing” part in this logic is the fact that the

indifference happens when the indices are equal. That means the source with

smaller payoff in case of a jump is the source with higher probability of produc-

ing a jump. Thus, the agent faces a trade-off: pay more attention to the source

with higher payoff in case of a jump (payoff-based incentives) or to the source

with higher probability of producing a jump (belief-based incentives). Since the

agent should choose the latter, this reinforces my message: the agent puts more

weight on belief-based incentives during phase 1.

I conclude the discussion by singling out one special case of my model when

there are only three states: (0,0), (1,0), and (0,1). This case is similar to the

settings studied in Klein and Rady (2011) (Section 5) and in Klein (2013) within

the bandit framework and generalizes Che and Mierendorff (2019). In that case

the phase 1 rule is simplified to using the source with the highest probability of

generating a signal:

p10
︸︷︷︸

source 1 index

vs p01
︸︷︷︸

source 2 index

.

This special case is interesting because the phase 1 rule does not depend on the

payoff matrix at all here. As long as the agent is in phase 1 — the condition

for being in phase 1 does depend on the payoff matrix, incidentally, because t∗

depends on the payoff matrix — his optimal allocation of attention does not

depend on the payoff matrix, he simply wants to find the truth. Note that this

special case is about having two competing hypotheses (like two causes of an

accident), plus “everything else” that cannot be discovered by the information
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sources — a situation that is not so uncommon in real life (see Klein and Rady

(2011) for examples).16

4 Proof of Theorem 1

4.1 Change of variables

The belief vector p plays the role of a state variable with dimentionality 3.

It turns out that it is possible to decrease the dimensionality of the state space

to 2 by introducing a change of variables.

Assume that the initial belief p belongs to17

P = {(p00, p01, p10, p11) | p00 > 0, p01 > 0, p10 > 0, p11 ≥ 0, p00+p01+p10+p11 = 1}.

For any p ∈ P , denote ρ(p) = (q1(p), q2(p),ξ(p)), where

q1 =
p00

p10
, q2 =

p00

p01
, ξ=

p11 − (p10 + p11)(p01 + p11)
p10p01

. (2)

Then function ρ : P 7→ (0,+∞)2 × [−1,+∞) is one-to-one:

p00 =
q1q2

1+ ξ+ q1 + q2 + q1q2
, p01 =

q1

1+ ξ+ q1 + q2 + q1q2
,

p10 =
q2

1+ ξ+ q1 + q2 + q1q2
, p11 =

1+ ξ
1+ ξ+ q1 + q2 + q1q2

(3)

16With three states, state (0,0) can be interpreted as “none of the above”, in the spirit of being
aware of one’s unawareness (as in Karni and Vierø (2017)), or in the spirit of “unknowable” state
(as in Dumav and Stinchcombe (2013)).

17I omit the proof for other cases. If p11 = p10 = 0 or p11 = p01 = 0, then one component of the
state is known to be 0 and it is an optimal stopping problem. If p00 = p10 = 0 or p00 = p01 = 0,
then one component of the state is known to be 1 and it is again an optimal stopping problem. Case
p11 = p00 = 0 is solved in Che and Mierendorff (2019). Case p01 = p10 = 0 effectively features only
one source and therefore leads to an optimal stopping problem. When p00 ≥ 0 and p10p01p11 > 0,
one can set q1 =

p01
p11

, q2 =
p10
p11

, ξ = p11−(p10+p11)(p01+p11)
p10 p01

. When p10 = 0 and p01p00p11 > 0, one

can work with q1 =
p01
p11

and q2 =
p00
p01

. Similarly for p01 = 0. Note that in all three cases the state
variable q = (q1, q2) moves as dq1 = q1 x1d t, dq2 = q2 x2d t in the absence of jumps.
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Lemma 1 shows how ρ(p(t)) changes over time.

Lemma 1. In the absence of jumps, the belief vector p stays in P and dξ = 0,

dq1 = q1 x1d t, dq2 = q2 x2d t.

Remarkably, the variable ξ stays constant. That allows one to decrease the

dimensionality of the state space by taking q = (q1, q2) as a state variable. More-

over, if the agent pays attention only to source i, only variable qi changes.

Once θ1 = 1 is revealed, the dimentionality of the belief space shrinks to

1. A jump in N1(t) changes p ∈ P to p̃ with p̃00 = p̃01 = 0, p̃10 =
p10

p10+p11
,

p̃11 =
p11

p10+p11
. Based on (3), p̃10 =

p10
p10+p11

= q2
1+ξ+q2

and p̃11 =
p11

p10+p11
= 1+ξ

1+ξ+q2
.

Note that substitution of q1 = 0 to the expressions for p00, p01, p10 and p11 in

(3) gives the same expressions as for p̃00, p̃01, p̃10 and p̃11. This observation

triggers the assumption that the jump in N1(t) corresponds to the change from

(q1, q2) to (0, q2). Similarly, a jump in N2(t) corresponds to the change from

(q1, q2) to (q1, 0). This assumption allows me to keep using q as a state variable

even after a jump, with the following transition rules: (1) ξ never changes and

is defined by prior beliefs p(0) ∈ P according to (2); (2) q1(0) and q2(0) are

defined by prior beliefs p(0) ∈ P according to (2); (3) in the absence of a jump

from Ni(t), qi(t) is changing according to dqi = qi x id t; (4) a jump from Ni(t)

sets qi(t) = 0; (5) at any moment, the belief vector can be recovered using (3).18

18Note that 1+ ξ+ q1 + q2 + q1q2 = 0 happens only if ξ = −1, q1 = q2 = 0. But if ξ = −1, then
p11 = 0, which excludes the event that both sources produce jumps. Thus, q1 + q2 > 0 whenever
ξ= −1 and therefore 1+ ξ+ q1 + q2 + q1q2 > 0 at any moment.
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4.2 Optimal strategy on the boundaries

Once a jump is observed, the state q jumps to one of the boundaries, —

(0, q2) for a jump in source 1 and (q1, 0) for a jump in source 2, — and the

agent faces the decision problem with only one information source, source 2 for

boundary (0, q2) and source 1 for boundary (q1, 0). This is a classical optimal

stopping problem with the following solution.

Let us start with (q1(0), 0). If q1(0) = 0, then it is optimal to take action a∗

right away, where a∗ that maximizes u11(a) over a ∈A :

a∗ ∈A : u11(a
∗) =max

a∈A
u11(a).

Suppose q1(0) > 0. Recall that in the absence of a jump from source 1, q1(t)

is increasing. Fix any stopping threshold q̄1 ≥ q1(0). The agent uses source 1

as long as 0 < q1(t) < q̄1. He stops when he observes a jump in N1(t) or when

q1(t) reaches q̄1, whichever happens first. Once a jump is observed, the state

moves to q1(t) = 0, the agent stops and takes action a∗. Once q1(t) = q̄, the

agent stops learning and takes some action a ∈A .

Lemma 2. The expected payoff from the strategy described above is

U(q1(0), 0, a) +
(q̄1 − q1(0))R(a)
q̄1(1+ ξ+ q1(0))

−
q1(0)

1+ ξ+ q1(0)
log

�

q̄1

q1(0)

�

, (4)

where

U(q1, q2, a) =
q1q2u00(a) + q1u01(a) + q2u10(a) + (1+ ξ)u11(a)

1+ ξ+ q1 + q2 + q1q2

is the expected payoff from action a ∈A given the state (beliefs) (q1, q2), and

R(a) = (1+ ξ) (u11(a
∗)− u11(a)− 1) .
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Maximization of (4) with respect to q̄1 ≥ q1(0) leads to the unique optimal

threshold q̄1 = max{R(a), q1(0)}. At this threshold, the expected payoff (4)

becomes

q1(0)
1+ ξ+ q1(0)

�

f2(a, q1(0)) + log(q1(0)) +
(1+ ξ) (u11(a∗)− 1)

q1(0)

�

, (5)

where

f2(a, q) =

¨

u01(a)− log R(a)− 1, R(a)≥ q,

u01(a)−
R(a)

q − log(q), R(a)< q.

Maximization of (5) with respect to a ∈A leads to a2(q1(0)), which is defined

as a ∈A that maximizes f2(a, q1(0)). Note that in consensus with the dynamic

programming principle, as long as 0< q1(t)≤ R(a2(q1(t))), the optimal thresh-

old q̄1 = R(a2(q1(t))) does not change with time t.

Similarly, for the boundary (0, q2), it is optimal to use source 2 as long as 0<

q2 < R(a1(q2)), stop and take action a∗ at q2 = 0, and stop and take action a1(q2)

at any q2 ≥ R(a1(q2)). Action a1(q) is defined as an action that maximizes19

f1(a, q) =

¨

u10(a)− log R(a)− 1, R(a)≥ q,

u10(a)−
R(a)

q − log(q), R(a)< q.

4.3 The Hamilton-Jacobi-Bellman equation

Let V (q1, q2) be the expected payoff from an optimal strategy given q1(0) =

q1, q2(0) = q2. Following the literature on dynamic programming, let us call

this function the value function.

Let us fix an optimal strategy. The agent should not be ex ante strictly better

off by paying full attention to source 1 during an infinitely small interval t ∈

19Note that lim
q→0

a1(q) = lim
q→0

a2(q) = a∗. Define a1(0) = a2(0) = a∗.
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[0, d t] and then using the optimal strategy, than using the optimal strategy from

the moment t = 0. If the agent pays full attention to source 1 during interval

t ∈ [0, d t], he spends −d t and observes a jump with probability (p10+ p11)d t =
(1+ξ+q2)d t

1+ξ+q1+q2+q1q2
:

V (q1, q2)≥ −d t+
(1+ ξ+ q2)V (0, q2)

1+ ξ+ q1 + q2 + q1q2
d t+

�

1−
1+ ξ+ q2

1+ ξ+ q1 + q2 + q1q2
d t
�

V (q1+q1d t, q2).

The Taylor expansion V (q1 + q1d t, q2) = V (q1, q2) +
∂ V (q1,q2)
∂ q1

q1d t gives

V (q1, q2)≥ V (q1, q2) +L1(q1, q2; V )d t,

where

L1(q1, q2; V ) = q1
∂ V (q1, q2)
∂ q1

+
(1+ ξ+ q2)(V (0, q2)− V (q1, q2))

1+ ξ+ q1 + q2 + q1q2
− 1.

Similarly, the agent should not be ex ante strictly better off by using only source

2:

V (q1, q2)≥ V (q1, q2) +L2(q1, q2; V )d t,

where

L2(q1, q2; V ) = q2
∂ V (q1, q2)
∂ q2

+
(1+ ξ+ q1)(V (q1, 0)− V (q1, q2))

1+ ξ+ q1 + q2 + q1q2
− 1,

or stop and take the optimal action:

V (q1, q2)≥ U(q1, q2),

where

U(q1, q2) =max
a∈A

U(q1, q2, a).

That leads us to the sufficient conditions for optimality:
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Lemma 3. Function V : [0,+∞)2 7→ (−∞,+∞) is the value function if

1. it is continuous,

2. it is continuously differentiable everywhere on [0,+∞)2 except for a set of

Lebesgue measure 0,

3. it is the expected payoff from some strategy with the initial beliefs that cor-

respond to the argument of this function,

4. and in all points of differentiability it satisfies the Hamilton-Jacobi-Bellman

equation:

max {L1(q1, q2; V ), L2(q1, q2; V ), U(q1, q2)− V (q1, q2)}= 0. (6)

Note that the above derivations also show Li(q1, q2; V ) = 0 whenever V is

the expected payoff from a strategy that prescribes using only source i at the

beginning.

4.4 Description of an optimal strategy

In this section I reformulate Theorem 1 using the change of variables intro-

duced in Section 4.1.

Regime (0, a1, a2), a1, a2 ∈A . The agent is indifferent between both sources

(any attention rule can be used) whenever

q1 < R(a2), q2 < R(a1).

Otherwise, the agent must use source 1 if

q1 + R(a1)< q2 + R(q2),
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source 2 if

q1 + R(a1)> q2 + R(q2),

and split his attention according to x1 =
q2

q1+q2
, x2 =

q1
q1+q2

on the line

q1 + R(a1) = q2 + R(q2).

By Lemma 1, the attention rule x1 =
q2

q1+q2
, x2 =

q1
q1+q2

leaves the agent on the

line q1−q2 = const (this fact has already been proven for the original belief space

in footnote 9). Figure 5 illustrates the movement of q(t) in regime (0, a1, a2)

(this is an analog of Figure 2).

Figure 5: Regime (0, a1, a2) in (q1, q2) space.

Theorem 1. Any optimal strategy consists of two phases: it follows the phase 1

rule up until a certain moment in time t∗ or until a jump occurs (whichever happens

first), then switches to phase 2.

Phase 1: For any current state (q1, q2), regime (0, a1(q2), a2(q1)) is used.

Phase 2: If the agent enters the phase after source 1 (2) produced a jump,

regime 2 (1) is used. Otherwise, regime i is used.
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4.5 Verification

Let (q1, q2) be the initial state. Denote by W (q1, q2, t∗, i) the expected payoff

from a strategy described in Theorem 1. Maximization over t∗ ≥ 0 and i ∈ {1,2}

gives a candidate for an optimal strategy. Let V (q1, q2) be its expected payoff:

V (q1, q2) =W (q1, q2, t∗, i) =max
( t̃∗,ĩ)

W (q1, q2, t̃∗, ĩ).

A maximizer (t∗, i) is not necessarily unique. This nonuniqueness is twofold:

different maximizers might correspond to different strategies or to the same

strategy. When it is the latter, assume t∗ ≥ 0 is the largest moment in time when

switching from phase 1 to phase 2 is optimal.

This strategy is optimal if V is the value function. The only two condi-

tions in Lemma 3 that require some work to prove is L1(q1, q2; V ) ≤ 0 and

L2(q1, q2; V )≤ 0.

Suppose the alleged optimal strategy prescribes the agent to stop and take

action a right away, so that V (q1, q2) ≡ U(q1, q2, a) in some neighborhood of

the initial state.20 By definition, this strategy is weakly better than the strategy

that prescribes the agent to pay full attention to a single source for an infinitely

small interval of time and then stop and take action a if no jump occurs, and to

20Considering the neighborhood is without loss of generality. Indeed, the indifference curves
where the alleged optimal strategy prescribes indifference between two or more courses of actions,
have measure zero in the state space (q1, q2) and therefore could be ignored during the proof.
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follow the optimal strategy in case of the jump:

U(q1, q2, a)
︸ ︷︷ ︸

=V (q1,q2)

≥ −d t +
(1+ ξ+ q2)V (0, q2)

1+ ξ+ q1 + q2 + q1q2
d t

+
�

1−
1+ ξ+ q2

1+ ξ+ q1 + q2 + q1q2
d t
�

U(q1 + q1d t, q2, a)
︸ ︷︷ ︸

=V (q1+q1d t,q2)

.

The Taylor expansion V (q1+q1d t, q2) = V (q1, q2)+
∂ V (q1,q2)
∂ q1

q1d t givesL1(q1, q2; V )≤

0. The symmetric argument proves L2(q1, q2; V )≤ 0.

Suppose the alleged optimal strategy prescribes to learn but has only phase

2, that is, t∗ = 0 (again in some neighborhood of the initial state). Without

loss of generality, assume it is optimal to use source 1, that is, i = 1. Then

L1(q1, q2; V ) = 0 (see a note after Lemma 3). Since t∗ is the largest moment

in time when switching from phase 1 to phase 2 is optimal, the phase 1 rule

implies paying positive attention x2 > 0 to source 2 at point (q1, q2). Deviating

to the phase 1 rule is not locally optimal:

V (q1, q2)≥ −d t +
(1+ ξ+ q2)V (0, q2)

1+ ξ+ q1 + q2 + q1q2
x1d t +

(1+ ξ+ q1)V (q1, 0)
1+ ξ+ q1 + q2 + q1q2

x2d t

+
�

1−
(1+ ξ+ q2)x1

1+ ξ+ q1 + q2 + q1q2
d t −

(1+ ξ+ q1)x2

1+ ξ+ q1 + q2 + q1q2
d t
�

V (q1+q1 x1d t, q2+q2 x2d t).

The Taylor expansion V (q1+q1 x1d t, q2+q2 x2d t) = V (q1, q2)+
∂ V (q1,q2)
∂ q1

q1 x1d t+
∂ V (q1,q2)
∂ q2

q2 x2d t gives

V (q1, q2)≥ V (q1, q2) + x1L1(q1, q2; V )
︸ ︷︷ ︸

=0

d t + x2
︸︷︷︸

>0

L2(q1, q2; V )d t.

That implies L2(q1, q2; V )≤ 0.

Finally, suppose t∗ > 0. What makes things tricky here is that there might

be multiple regime changes during phase 1: a1(q2(t)) and a2(q1(t)) are not
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necessarily constant. Moreover, switching between different attention rules is

possible within the same regime. Two observations save me from consider-

ing all possible cases separately. First, by Bellman’s principle of optimality, if

(t∗, i) maximizes W (q1(0), q2(0), t̃∗, ĩ) and no jump is observed by t ≤ t∗, then

(t∗− t, i) maximizes W (q1(t), q2(t), t̃∗, ĩ) (here, I use the notation (q1(t), q2(t))

for the deterministic belief path under the condition that no jump has been ob-

served by the moment t). Second, at point t = t∗, the agent is indifferent be-

tween the phase 1 and the phase 2 rules, which means L1(q1(t∗), q2(t∗); V ) =

L2(q1(t∗), q2(t∗); V ) = 0. Based on these two observations, I argue that it is

sufficient to prove L1(q1(0), q2(0); V ) ≤ 0 and L2(q1(0), q2(0); V ) ≤ 0 under

the assumption that L1(q1(t), q2(t); V ) ≤ 0 and L2(q1(t), q2(t); V ) ≤ 0 where

0 < t ≤ t∗ is the moment of either the regime change or the attention rule

change.

Lemma 4 says that as long as it is optimal to use source 1 on the boundary

(q1, 0), source 2 cannot be better than source 1.

Lemma 4. If q1 < q̄1 ≤ R(a2(q1)) and source 1 is used until q̄1 for all q̃2 ∈ (q2 −

∆, q2 +∆) for some ∆> 0, then L2(q1, q2; V )≤ 0 as long as L2(q̄1, q2; V )≤ 0.

By symmetry, the same is true for source 2, so that Lemma 4 covers three

cases:

1) q1 < R(a2(q1)), q2 < R(a1(q2)) where any attention rule could be used,

2) q1 < R(a2(q1)), q2 ≥ R(a1(q2)) where source 1 is used,

3) q1 ≥ R(a2(q1)), q2 < R(a1(q2)) where source 2 is used.
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Figure 6: Illustration for Lemma 4.

The last case, when q1 ≥ R(a2(q1)) and q2 ≥ R(a1(q2)), is covered by Lemmas 5

and 6.

Lemma 5. If R(a2(q1)) ≤ q1 < q̄1, R(a1(q2)) ≤ q2, a2(q̃1) = a2(q1) for all q1 ≤

q̃1 ≤ q̄1, and source 1 is used until q̄1 for all q̃2 ∈ (q2 − ∆, q2 + ∆) for some

∆ > 0, then L2(q1, q2; V ) ≤ 0 as long as L2(q̄1, q2; V ) ≤ 0 and q̄1 + R(a1(q2)) ≤

q2 + R(a2(q1)).

Lemma 6. If R(a2(q1)) ≤ q1, q1 + R(a1(q2)) < q2 + R(a2(q1)), and source 1 is

used until q̌1 = q2+R(a2(q1))−R(a1(q2)), then the attention is split according to

x1 =
q̃2

q̃1+q̃2
, x2 =

q̃1
q̃1+q̃2

to stay on the line q̃1 + R(a1(q2)) = q̃2 + R(a2(q1)) until

(q̄1, q̄2), a1(q̃2) = a1(q2) for all q2 ≤ q̃2 ≤ q̄2, a2(q̃1) = a2(q1) for all q1 ≤ q̃1 ≤ q̄1,

then L2(q1, q2; V )≤ 0.

Finally, suppose there is a strategy that is optimal but does not belong to the

class described in Theorem 1. Naturally, the expected payoff from that strategy

V is the same as from the two-phase optimal strategy. Let t∗ > 0 be the small-
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Figure 7: Illustration for Lemma 5.

Figure 8: Illustration for Lemma 6.

est moment in time such that one of the sources are permanently abandoned

after that moment (it is positive since that strategy does not belong to the de-

scribed class). Following the proofs for Lemmas 4, 5, and 6, one can verify that

L2(q1, q2; V )< 0 (L1(q1, q2; V )< 0) whenever the phase 1 rule unambiguously

prescribes exclusive use of source 1 (2). That means using the other source

would be locally suboptimal, given the expected payoff V . Contradiction.
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5 Applications

5.1 Disagreement

Continuing with the example from the introduction, assume the city council

has four options for the area: announce the area as a public beach (a1), create

a reservation (a2), develop the area for housing (a3), or build a national park

(a4). There are two groups in the council, one representing ecologists and the

other one representing construction companies. If the environment is not unique

(θ1 = 1) and the construction is safe (θ2 = 0), then the ecologists have no

interest in the matter and the median voter strongly opposes giving up the area

to expensive housing. Thus, both groups have aligned interests with the general

public who wants the public beach:

group 1 : u(1)10 (a1) = α, u(1)10 (a2) = 0, u(1)10 (a3) = 0, u(1)10 (a4) = 0;

group 2 : u(2)10 (a1) = α, u(2)10 (a2) = 0, u(2)10 (a3) = 0, u(2)10 (a4) = 0.

In the reverse scenario, — when the construction is dangerous (θ2 = 1) and

the environment is unique (θ1 = 0), — only the reservation is a good option:

group 1 : u(1)01 (a1) = 0, u(1)01 (a2) = α, u(1)01 (a3) = 0, u(1)01 (a4) = 0;

group 2 : u(2)01 (a1) = 0, u(2)01 (a2) = α, u(2)01 (a3) = 0, u(2)01 (a4) = 0.

If the environment is not unique (θ1 = 1) and the construction is dangerous

(θ2 = 1), then all options are equally bad:

group 1 : u(1)11 (a1) = 0, u(1)11 (a2) = 0, u(1)11 (a3) = 0, u(1)11 (a4) = 0;

group 2 : u(2)11 (a1) = 0, u(2)11 (a2) = 0, u(2)11 (a3) = 0, u(2)11 (a4) = 0.
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Finally, when the area is both critical for the ecology and safe for the con-

struction (θ1 = θ2 = 0), the groups have misaligned interests. Both the ecolo-

gists and the construction companies lobby their causes and they are ready to

reward their group in the council in case of a favorable outcome. That means

the group that represents the ecologists prefers either the reservation or the na-

tional park (group 2), while the other group prefers to give the area for the

public beach or housing (group 1):

group 1 : u(1)00 (a1) = γ, u(1)00 (a2) = 0, u(1)00 (a3) = α, u(1)00 (a4) = 0;

group 2 : u(2)00 (a1) = 0, u(2)00 (a2) = γ, u(1)00 (a3) = 0, u(1)00 (a4) = α.

I assume α > 0, γ≥ 0.

When γ= 0, the following statement is trivially true: it is easier to agree on

the type of information to invest in than on the optimal action to take. Mathe-

matically, the optimization problems for the groups are identical, up to renaming

actions a3 and a4. Thus, the solutions must be identical as well: both groups

must agree on whether to learn or not and if yes, which source to use.

While being obvious for the case γ= 0, this statement becomes questionable

(and sometimes false) for γ > 0. Intuitively, both groups’ solutions should not

be too different when γ is close to 0. Theorem 1 implies that even if γ > 0, the

groups would agree on the source as long as they agree that both sources could

potentially be used. Formally, that happens when both solutions include phase

1 (t∗ > 0).

For the sake of example, assume α= 5 and γ= 1. Suppose a priori all states

are possible, that is, pi j > 0, i, j = 0, 1. By Lemma 1, ξ = p11−(p10+p11)(p01+p11)
p10 p01

remains constant throughout learning, until a jump occurs. Suppose ξ = 0 for
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the prior. Figure 9 shows the optimal action (a1, a2, a3, or a4) for each group

and the disagreement area, the area where the optimal action is different for

the groups.

Figure 9: The best action given the beliefs. Group 1 is on the left, group 2 is on
the right. Parameters: α= 5, γ= 1, ξ= 0.

Now let us see what happens with the disagreement area when the informa-

tion sources are available. Figure 10 shows the optimal strategy for each group.

Comparing all four pictures in Figures 9 and 10 we see that in the upper right

corner of p01
p11
× p10

p11
graph both groups choose the same information source despite

disagreeing on the optimal action in the absence of the information sources (see

Figure 11 on the left). Intuitively, when there is enough uncertainty about both

θ1 and θ2, both information sources are important for each group since different

actions are optimal in (1,0) (action a1), (0,1) (action a2), and (0,0) (action a3

or a4 depending on the group). Once the groups agree that both sources are

important, they both start with phase 1 and therefore agree on the source to

use.

Theorem 2 provides the sufficient conditions for t∗ > 0 for an arbitrary pay-
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Figure 10: The optimal strategy. Group 1 is on the left, group 2 is on the right.
Parameters: α= 5, γ= 1, ξ= 0.

Figure 11: Black and light gray areas: both groups disagree on the optimal
action in the absence of the information sources. Black and dark gray areas:
both groups disagree on what to do when the information sources are available.
Parameters: α = 5, γ = 1, ξ = 0 (on the left); α = 50, γ = 100, ξ = 0 (on the
right).

off matrix and a set of actions.

Theorem 2. Suppose p01p10 > 0. Consider a sequence of payoff matrices {u(n)
θ1θ2
(a)}a∈A ,

n= 1, 2, . . .. Denote by a(n)1 the best action in state θ1 = 1, θ2 = 0, and by a(n)2 the
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best action in state θ1 = 0, θ2 = 1. Suppose a(n)1 6= a(n)2 . As long as

lim
n→+∞

¦

u(n)10

�

a(n)1

�

− u(n)10 (a)
©

= +∞ ∀ a ∈A \
¦

a(n)1

©

, (7)

lim
n→+∞

¦

u(n)01

�

a(n)2

�

− u(n)01 (a)
©

= +∞ ∀ a ∈A \
¦

a(n)2

©

, (8)

lim sup
n→+∞

n

max
a∗∈A

u(n)11 (a
∗)− u(n)11

�

a(n)i

�
o

< +∞, i = 1,2, (9)

starting from some N ≤ n phase 1 has positive length (t∗ > 0).

Conditions (7) and (8) say that the knowledge of the optimal action in states

(1,0) and (0,1) has an infinite value as n→ +∞. In the example they become

α→ +∞. Condition (9) guarantees that once a positive signal from one source

is observed, the benefit from the other source is finite. In the example this

condition holds automatically for all α and γ.

According to Theorem 2, the groups would agree on the source even if γ is

much larger than α (and therefore actions a3 and a4 are irrelevant), as long as

α is sufficiently high (see Figure 11 on the right).

5.2 Delegation

A policy maker often has to delegate information collection to an external

expert (or to a group of experts). Since a seminal paper by Crawford and Sobel

(1982), the literature on optimal delegation does not restrict the set of messages

for the expert. This flexibility effectively means that the expert simply tells the

policy maker what action to take. I restrict the set of messages for the expert

to be the set of states (or more precisely, to the set of search results from each

information source). This restriction allows the policy maker not to disclose the

set of actions to the expert — a desirable feature of a contract for military or
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security-related actions. Restricting the expert to report the state also prevents

him from revealing the details of the search (in particular, how much time has

passed before source i was abandoned with no evidence in favor of θi = 1 found)

— a realistic situation when the policy maker does not have time or sufficient

expertise to read all details in the expert’s report.

Creating incentives to conduct the right type of search is trivial when the

state is uni-dimensional: with appropriate monetary or non-monetary incen-

tives, the expert devotes exactly the desired amount of attention to the search

in a given direction. However, the multidimentional state with different infor-

mation sources corresponding to different state components, might create ineffi-

ciency in the direction of search. For example, a secret service agent must report

to a command center whether a threat is found from group 1 or / and group 2.

The command center sets the priorities for these groups, so the agent could ad-

just his effort in response to these priorities. Yet, this adjustment might not be

optimal in a dynamic model when the priorities do not change over time and

therefore do not change with the current beliefs. Applying Theorems 1 and 2, I

show that just setting the priorities right might be enough to incentive the agent

to allocate his effort in a desired way. Intuitively, the priorities play the role of

indices for the sources, and as long as the index strategy is optimal, priorities

form sufficient statistics for the optimal strategy.

Let θi = 1 correspond to the presence of a threat from group i, i = 1,2. Let

{uθ1θ2
(a)}a∈A be the payoff matrix of the command center with an arbitrary set

of actions. The secret service agent reports (z1, z2) ∈ {0, 1}2 to the center, where

zi = 0 means “there is no threat found from group i” and zi = 1 means “group

i is proved to pose a threat”. So, the agent’s set of actions is {ζ0 = (0, 0), ζ1 =
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(1,0), ζ2 = (0,1), ζ3 = (1, 1)}. Assume pi j > 0, i, j = 0, 1. The center sets the

priorities (α1,α2,α3) to the agent, so that the agent’s payoff matrix is

(0,0) (1,0) (0,1) (1,1)

ζ0 0 0 0 0
ζ1 −γ α1 −γ α1

ζ2 −γ −γ α2 α2

ζ3 −γ −γ −γ α3

where αi ≥ 0 is the reward from truthfully reporting a threat from group 1, 2

or both, and γ > 0 is the reputation loss from falsifying the report. I assume γ

is higher enough compare to αi so that the agent would never choose to falsify

the report.

What can the center achieve with various priorities (α1,α2,α3)?

Consider the first best when the center collects information itself. By Theo-

rem 1, her optimal strategy has two-phase form. If t∗ = 0, then only one type

of threat should be investigated (at most one source i is used). Setting αi ap-

propriately, the center achieves the first best.21

Suppose t∗ > 0. The first best behavior up until some moment is to use an

index policy with

p10 + p11u11(a1)

as the source 1 index and

p01 + p11u11(a2)

as the source 2 index. By setting

α1 = u11(a1) +α, α2 = u11(a2) +α, α3 = 0,

21Suppose the first best is such that t∗ = 0, i = 1 and the optimal action at the stop-
ping time conditional on no jumps observed is a. The center could set α2 = 0, α1 = α3 =

max

�

u11(a∗)−u11(a)+
p10
p11

�

F1

�

a1 ,
p10
p11

�

−u10(a)
�

1+
p10
p11

− 1,0

�

(see Lemma 9 in Appendix A).
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with α high enough, the center achieves this first best behavior: action ζi is

optimal when source i produces a jump, which implies an index policy with

p10 + p11α1

as the source 1 index and

p01 + p11α2

as the source 2 index. By Theorem 2, there exists α large enough so that the

agent’s optimal strategy starts with the above index policy.

That was good news. Bad news is that in general the center cannot in-

centivize the optimal behavior all the time. Once the phase 1 ends or (a1, a2)

change, the agent might deviate from the first best. This is not surprising since

the center is restricted to set only 3 parameters in the payoff matrix of the agent.

Yet, I want to emphasize that the optimal attention splitting between two sources

could always be achieved during some positive interval of time by manipulating

only (α1,α2,α3).

A special case is when θ1 = 1 and θ2 = 1 are mutually exclusive, that is,

p11 = 0. In that case the phase 1 rule is always the same for any payoff matrix:

use source 1 when p10 > p01 and use source 2 when p10 < p01. In that case the

first best behavior during phase 1 is always achieved with α1 = α2 = α large

enough.

5.3 Multi-armed bandits

Separating the goal of learning gives a different perspective on some appli-

cations that got a lot of attention in the multi-armed bandit literature (see Berry
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and Fristedt (1985) and Gittins et al. (2011) for review).22 First introduced by

Robbins (1952), the multi-armed bandit problems capture the trade-off between

getting new knowledge from the environment (exploration) and using obtained

knowledge (exploitation) when the means of exploration and exploitation are

the same. In contrast, I separate the means of exploration (associated with a set

of states of the world and information sources) and the means of exploitation

(associated with a set of actions and the payoff matrix). That approach leads to

a model with a different set of primitives to begin with, which allows to capture

some aspects that cannot be easily incorporated into the multi-armed bandit

setup.

For example, one of the practical problems motivating research on bandits

is the design of clinical trials where the best way to treat a disease is studied

by trials and errors.23 In practice, the stage of clinical trials is preceded by the

laboratory research that aims to select a set of treatments for the trials. The

bandit problem takes treatments as given. Ideally, we should study both stages,

the research stage and the clinical trails stage, within the same model. Indeed,

the more you learn about the disease and the better you select the treatments

during the research stage, the more successful clinical trials will be. This paper

takes one step in this direction by focusing on the research stage exclusively.

I show that as long as the stakes are high (in the sense that is formalized in

22The connection with the multi-armed bandit literature goes beyond mere similarity of appli-
cations. Mathematically, my model can be formulated as a special case of a general multi-armed
bandit problem where information sources play the role of arms. However, this case falls outside
of the set of the multi-armed bandit problems that could be solved using so called the Gittins index
technique primary because the arms are not independent (see the discussion in Preface to the English
Edition in Presman and Sonin (1990) book that deals with dependent arms).

23Gittins and Jones (1979) state that the multi-armed bandit problem’s “chief practical motivation
comes from clinical trials.”
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Theorem 2), — which is usually the case for medical research, — the right choice

of the research direction for the pretrial stage depends only on the optimal set

of treatments and the payoffs from them in case of a successful finding.24

To economics, bandit problems came with the market pricing application

(Rothschild (1974)), experimental consumption, and the research and develop-

ment (R&D) problem (Roberts and Weitzman (1981), Choi (1991), Keller et al.

(2005)).25 Most papers with the R&D application use the Poisson arms because

it allows one to stay within the bandit framework and at the same time capture

the pure learning nature of R&D (see, for example, Klein and Rady (2011) and

Klein (2013)). Each arm (research direction) can lead to a discovery at a ran-

dom time but the intensity with which discoveries occur is unknown (it is called

the state of an arm). Following the mainstream in the bandit literature, they

have to assume that the payoff from one arm in a fixed state does not depend

on the states of the other arms (at the same time, the arms’ states can be corre-

lated). Working outside of this literature, I do not have to make that assumption

and show that it dramatically affects the solution. For example, suppose a firm

has to choose between two products to invest in. Before making the choice, it

can research each product, which can be either in high demand (θi = 1) or in

low demand (θi = 0). In the absence of any competing firm, the payoff from

product i is 0 if it is in low demand and vi > 0 otherwise:

24With application to clinical trials, Henry and Ottaviani (2019) model the research stage (they
call it the clinical trials stage but from the bandit problem perspective it is the research stage because
the state-dependent payoffs come only at the end) with the optimal stopping problem. Damiano et
al. (2019) incorporate both research and clinical trials in a model with one risky arm and one safe
arm (these two arms correspond to two treatments in the clinical trials), one “positive” information
source (that can deliver a breakthrough only if the risky arm is good), and one “negative” information
source (that can deliver a breakthrough only if the risky arm is bad).

25See Bergemann and Valimaki (2008) for review.
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(0,0) (1,0) (0,1) (1,1)

invest in product 1 0 v1 0 v1

invest in product 2 0 0 v2 v2

This situation can be studied within two-armed exponential bandit setting. In

contrast, the following situation cannot be studied within the traditional bandit

framework. Suppose now the market is competitive so that if a product is in

high demand (θi = 1) there is always a firm that invests in it. Assume that at

most one firm can invest in a product (it becomes protected by patent rights).

Then the payoff matrix could look like this:

(0,0) (1,0) (0,1) (1,1)

invest in product 1 0 v1 0 v1 − d1

invest in product 2 0 0 v2 v2 − d2

where di > 0 accounts for competition between the products (for example, if a

firm invests in product 1 which is in high demand then it gets v1 − d1 if there is

another competing product that is in high demand). Now the payoff from arm

i depends not only on this arm state (θi) but also on the other arm state (θ3−i).

This difference implies different index policies for phase 1. For the monopoly

market source 1 index is p10 + p11v1 and source 2 index is p01 + p11v2. For the

competitive market source 1 index is p10 + p11(v1 − d1) and source 2 index is

p01 + p11(v2 − d2).

6 Conclusion

I presented the general form of an optimal strategy for a signal-agent deci-

sion problem with an arbitrary payoff matrix and two information sources. Each

source corresponds to a binary state meaning that it can provide conclusive ev-

idence only if the state is 1. The main feature of an optimal strategy is that as
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long as both sources could potentially be used (that is, phase 1 has a positive

length), the optimal allocation of attention at a given moment does not depend

on the payoff in state (0,0). Moreover, once the optimal actions in case of both

types of discoveries are fixed (a1 and a2), the optimal allocation of attention at

a given moment does not depend on the payoff in states (1,0) and (0,1) as well.

Such independence means that agents with quite different goals (preferences,

interests) might easily agree on the type of information to invest in or on the

direction of a discussion (providing these agents have common prior).

Enriching and changing the information environment of the decision prob-

lem leads to many promising directions for future research. One natural ex-

tension is to include more information sources (results from Austen-Smith and

Martinelli (2018) allows speculation about what would happen in that case).

Other types of learning include gradual learning — when a source is modeled

as Brownian motion with state-dependent drift (Ke and Villas-Boas (2019) stud-

ied this case with the payoff matrix restrictions similar to Nikandrova and Pancs

(2018)) — mixed-type learning — when a source is modeled as the Poisson

process generating non-conclusive evidence (see Sections 5 and 6 in Che and

Mierendorff (2017a)) — and breakthrough learning with state-independent in-

tensity — when a source is modeled as the Poisson process generating conclusive

evidence for both 0 and 1 (see Section E in Che and Mierendorff (2017b)).

In the introduction I mentioned that formulating the options and figuring

out the payoff matrix might not be an easy task by itself. Introducing additional

information sources that allow one to search for additional options and / or to

learn the payoffs from the existing ones (the latter type of information sources is

studied in Fudenberg et al. (2018) within the optimal stopping problem frame-
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work and in Ke et al. (2016) within the bandit-like framework) might be a better

way to capture the difference between learning about fundamentals (the state)

and decision options (the payoff matrix).

The nature of strategic interactions between players in multi-agent extension

of my model is another question I am leaving for future research. Actively stud-

ied within the bandit framework, this question has largely remained unexplored

for environments with many information sources.
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A Cookbook
Here is the cookbook to characterize the class of optimal strategies in a given decision problem.

Let p = (p00, p01, p10, p11) be the belief vector.

1. Let a∗ ∈ A be one of the best actions in state (1,1). Define a1

�

p10
p11

�

and a2

�

p01
p11

�

as fol-
lows. When the state is fully known, take the best action: a1(0) = a2(0) = a∗, a1(+∞) ∈
argmax

a∈A
u10(a), a2(+∞) ∈ argmax

a∈A
u01(a). For 0< x < +∞, define

a1(x) ∈ argmax
a∈A

F1 (a, x)≡ u10(a)− f
�

u11(a∗)− u11(a)− 1
x

�

,

a2(x) ∈ argmax
a∈A

F2 (a, x)≡ u01(a)− f
�

u11(a∗)− u11(a)− 1
x

�

,

where f (y) =

�

log(y), y > 1 (learning)
y − 1, y ≤ 1 (stop)

.

2. Draw the phase 1 rule on p10
p11
× p01

p11
plane (see Figure 2). On the boundaries, mark a1

�

p10
p11

�

and a2

�

p01
p11

�

. For each square with a1

�

p10
p11

�

= const and a2

�

p01
p11

�

= const, separate four
regions (skipping the regions that fall outside the square):

(a) u11(a∗)− u11(a1)− 1> p10
p11

, u11(a∗)− u11(a2)− 1> p01
p11

⇒ the agent is indifferent between both sources

(b) u11(a∗)− u11(a1)− 1< p10
p11

, u11(a∗)− u11(a2)− 1> p01
p11

⇒ source 1 should be used

(c) u11(a∗)− u11(a1)− 1> p10
p11

, u11(a∗)− u11(a2)− 1< p01
p11

⇒ source 2 should be used

(d) u11(a∗)− u11(a1)− 1< p10
p11

, u11(a∗)− u11(a2)− 1< p01
p11

⇒ source 1 should be used for p10
p11
+ u11(a1) >

p01
p11
+ u11(a2) and source 2 for p10

p11
+

u11(a1)<
p01
p11
+ u11(a2)

Complete phase 1 description by drawing the phase 1 rule on

• p01×p10 plane for the case p11 = 0: source 1 should be used for p10 > p01 and source
2 source be used for p10 < p01 (see Figure 3);

• p00
p10
× p10

p11
plane for case p01 = 0: on the boundary p00

p10
= 0 mark a1

�

p10
p11

�

, and for

each region a1

�

p10
p11

�

= const source 1 should be used for p10
p11
> u11(a∗)−u11(a1) and

source 2 should be used otherwise (see Figure 12);

• p01
p11
× p00

p01
plane for case p10 = 0: on the boundary p00

p01
= 0 mark a2

�

p01
p11

�

, and for

each region a2

�

p01
p11

�

= const source 1 should be used for p01
p11
< u11(a∗)−u11(a2) and

source 2 should be used otherwise (see Figure 12).

3. Calculate the expected payoff for regime (0, a1, a2) using Lemmas 7 and 8:
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Figure 12: Regime (0, a1, a2) for p01 = 0 and for p10 = 0.

Lemma 7. The expected payoff from using source 1 until p̄ is

V (p) =
p00 + p01

p̄00 + p̄01
V (p̄)− (p00 + p01) log

�

(p̄00 + p̄01)(p10 + p11)
(p00 + p01)(p̄10 + p̄11)

�

+
�

1−
(p00 + p01)(p̄10 + p̄11)
(p̄00 + p̄01)(p10 + p11)

��

p11(u11(a
∗)− 2) + p10

�

F1

�

a1,
p10

p11

�

− 2
��

.

The expected payoff from using source 2 until p̄ is

V (p) =
p00 + p10

p̄00 + p̄10
V (p̄)− (p00 + p10) log

�

(p̄00 + p̄10)(p01 + p11)
(p00 + p10)(p̄01 + p̄11)

�

+
�

1−
(p00 + p10)(p̄01 + p̄11)
(p̄00 + p̄10)(p01 + p11)

��

p11(u11(a
∗)− 2) + p01

�

F2

�

a2,
p01

p11

�

− 2
��

.

Lemma 8. Suppose p01 > 0, p10 > 0. The expected payoff from splitting attention x1 =
p10

p10+p01
, x2 =

p01
p10+p01

along the line p10 + p11u11(a1) = p01 + p11u11(a2) until p̄ is

V (p) =
p01p10 p̄11

p̄01 p̄10p11
V (p̄)− p00 log

�

p̄01 p̄10p2
11

p01p10 p̄2
11

�

−
p10p01

p10 − p01
log

�

p10 p̄01

p̄10p01

�

−
�

p10 + p01

p11
−

p̄10 + p̄01

p̄11

�

p̄11

2

�

p10 + p11

p̄01

�

p10u10(a1)
p10 + p11

+
p11u11(a1)
p10 + p11

−
1
2

�

+
p01 + p11

p̄10

�

p01u01(a2)
p01 + p11

+
p11u11(a2)
p01 + p11

−
1
2

�

−
(1− p̄00)(p10 + p01)

2p̄10 p̄01

�

−
�

p10 + p01

p11
−

p̄10 + p̄01

p̄11

�2 p̄2
11p11

8p̄10 p̄01
(u11(a1) + u11(a2)) (10)
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if p11u11(a1) 6= p11u11(a2). If p11u11(a1) = p11u11(a2) and p00 + p11 > 0, then

V (p) =
1− p00 − p11

1− p̄00 − p̄11
υV (p̄) + 2p00 log(υ)

+
1− p00 − p11

2
(1−υ) (u10(a1) + u01(a2)− 4) + p11

�

1−υ2
�

�

u11(a1) + u11(a2)
2

− 1
�

,

(11)

where26

υ=

(

(1−p00−p11)p̄11
(1−p̄00−p̄11)p11

, p11 > 0,
(1−p̄00−p̄11)p00
(1−p00−p11)p̄00

, p00 > 0.

If p00 = p11 = 0, then

V (p) =
u10(a1) + u01(a2)

2
− 1.

4. For each initial belief p, four variables complete the description of the optimal strategy: the
time t∗ ≥ 0 of switching to phase 2, the source i used during phase 2, the action a taken at
the stopping time conditional on no jumps observed, and the stopping threshold p at which
phase 2 ends. The last step is to find the optimal values for these variables (for each belief p!)
with the help of Bellman’s principle of optimality (see discussion on page 31) and Lemmas
9 and 10.

Lemma 9. If the agent could use only source i and had to take action a at the stopping time
conditional on no jumps observed, then he would use source i until his belief about θi = 1
becomes as low as π and his expected payoff is

V (p) = p00u00(a) + p01u01(a) + p10u10(a) + p11u11(a) +
π−π
π
− (1−π) log

�

π(1−π)
π(1−π)

�

,

where π=

�

p11 + p10, i = 1
p11 + p01, i = 2

and the optimal threshold is π=

� 1
r∗ , r∗ > 1

π ,
π, otherwise

, where

r∗ =

(

p11(u11(a∗)−u11(a))
p10+p11

+ p10
p10+p11

�

F1

�

a1, p10
p11

�

− u10(a)
�

− 1, i = 1
p11(u11(a∗)−u11(a))

p01+p11
+ p01

p01+p11

�

F2

�

a2, p01
p11

�

− u01(a)
�

− 1, i = 2

Lemma 10. If it is optimal for the agent to switch to phase 2 at time t∗ > 0, then

1= p11

�

(1−π)π
π(1−π)

(u11(a
∗)− u11(a)− 1) +

π−π
π(1−π)

min
�

u11(a
∗)− u11(ai),

π

p11

�

�

+

(

p01

�

F2

�

a2, p01
p11

�

− u01(a)− 1+ log
�

π(1−π)
π(1−π)

��

i = 1,

p10

�

F1

�

a1, p10
p11

�

− u10(a)− 1+ log
�

π(1−π)
π(1−π)

��

, i = 2,
(12)

where I write p for p(t∗), i ∈ {1, 2} for the source the agent uses during phase 2, a for the action
he takes at the stopping time conditional on no jumps observed. Notations π, π and r∗ have
the same meaning as in Lemma 9.

26If p00p11 > 0, then (1−p00−p11)p̄11
(1−p̄00−p̄11)p11

= (1−p̄00−p̄11)p00
(1−p00−p11)p̄00

.
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B Proofs
B.1 Lemma 1

Bayes’ rule gives pθ1θ2
(t) =

pθ1θ2 (0)e
−

t
∫

0
(θ1 x1(t)+θ2 x2(t))d t

p11(0)e−t+p10(0)e
−

t
∫

0
x1(t)d t

+p01(0)e
−

t
∫

0
x2(t)d t

+p00(0)

, which implies q1(t) =

p00(0)

p10(0)e
−

t
∫

0
x1(t)d t

and then dq1(t)
d t = q1(t)x1(t). Differential equations for q2 and ξ are derived in the

same way.

B.2 Lemma 2

Let Υ (q1(0), q̄1,θ1) be the expected payoff given the initial belief state q1(0), stopping threshold
q̄1 ≥ q1(0) and state of the world θ1.

If q1(0) = q̄1, then Υ (q1(0), q̄1,θ1) = uθ11(a).
Fix any ∆ > 0 and suppose q1(0) ≤ q̄1e−∆. If no jump occurs during t ∈ [0,∆], then q1(∆) =

q1(0)e∆. If θ1 = 0, then no jump is possible:

Υ (q1(0), q̄1, 0) = Υ
�

q1(0)e
∆, q̄1, 0

�

−∆. (13)

If θ1 = 1, then the probability that no jump occurs during [0, t] is equal to e−t :

Υ (q1(0), q̄1, 1) = (1− e−∆)u11(a
∗) + e−∆Υ

�

q1(0)e
∆, q̄1, 1

�

−

∆
∫

0

te−t d t − e−∆∆. (14)

Expressions (13) and (14) allow me to express the derivative of Υ with respect to q1(0)< q̄1:

∂ Υ (q1(0), q̄1,θ1)
∂ q1(0)

= lim
∆→0

Υ
�

q1(0)e∆, q̄1,θ1
�

− Υ (q1(0), q̄1,θ1)

q1(0)e∆ − q1(0)

= lim
∆→0

Υ
�

q1(0)e∆, q̄1,θ1
�

− Υ (q1(0), q̄1,θ1)

q1(0)∆
=

¨ 1
q1(0)

, θ1 = 0
Υ (q1(0),q̄1 ,1)−u11(a∗)+1

q1(0)
, θ1 = 1

Solving this differential equation with the boundary condition Υ (q̄1, q̄1,θ1) = uθ11(a), I get

Υ (q1(0), q̄1, 0) = u01(a)−log
�

q̄1

q1(0)

�

, Υ (q1(0), q̄1, 1) = u11(a)+
q̄1 − q1(0)

q̄1
(u11(a

∗)− u11(a)− 1) .

Given (q1(0), 0), the belief vector recovered from (3) is p00 = 0, p01 =
q1(0)

1+ξ+q1(0)
, p10 = 0, p11 =

1+ξ
1+ξ+q1(0)

. Thus, the expected payoff is

q1(0)
1+ ξ+ q1(0)

Υ (q1(0), q̄1, 0) +
1+ ξ

1+ ξ+ q1(0)
Υ (q1(0), q̄1, 1)

= U(q1(0), 0, a) +
(q̄1 − q1(0))R(a)
q̄1(1+ ξ+ q1(0))

−
q1(0)

1+ ξ+ q1(0)
log

�

q̄1

q1(0)

�

.
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B.3 Lemma 3

Take any initial state q(0) ∈ [0,+∞)2 and any strategy (x ,τ,α). The state variable q(t) com-
plies

dqi(t) = qi(t)x i(t)d t − qi(t)dNi(t).
Suppose function V is continuously differentiable along the whole trajectory q(t), 0≤ t ≤ τ, except
maybe a countable set of points. Then Itô’s formula gives

V (q(τ)) = V (q(0)) +

τ
∫

0

�

∂ V (q1(t), q2(t))
∂ q1

q1(t)x1(t) +
∂ V (q1(t), q2(t))

∂ q2
q2(t)x2(t)

�

d t

+

τ
∫

0

(V (0, q2(t))− V (q1(t), q2(t))) dN1(t) +

τ
∫

0

(V (q1(t), 0)− V (q1(t), q2(t))) dN2(t) (15)

Taking conditional expectations, I get

IEq(0) [V (q(τ))] = V (q(0)) + IEq(0)





τ
∫

0

(L1(q1(t), q2(t); V ) + 1) x1(t)d t





+ IEq(0)





τ
∫

0

(L2(q1(t), q2(t); V ) + 1) x2(t)d t





using IEq(t) [dNi(t)] =
1+ξ+q3−i (t)

1+ξ+q1(t)+q2(t)+q1(t)q2(t)
x i(t)d t. By (6) and x1(t)+ x2(t) = 1, the last equal-

ity implies
V (q(0))≥ IEq(0) [U(q(τ))−τ]. (16)

However, function V might not be continuously differentiable for a whole interval [t1, t2] ⊆
[0,τ], which makes (15) invalid. Denote the set where V is not continuously differentiable as
R ⊂ [0,+∞)2. Following the ideas presented in Theorem 7.1, Chapter IV in Fleming and Rishel
(2012), I perturb the original strategy (x ,τ,α) as follows. Each time q(t) is going to follow along a
continuous part of the setR , the agent uses some attention rule for some period of time to get away
from all continuous parts of R . Since R is of measure 0, I can always find a decreasing sequence
{∆m}+∞m=1,∆m > 0, with lim

m→+∞
∆m = 0, and a sequence of perturbations, such that the total amount

of time the agent spends deviating from the original strategy is ∆m and (15) holds for each perturb
trajectory qm(t), 0≤ t ≤ τ+∆m. Then (16) holds as well:

V (q(0))≥ IEq(0) [U(q
m(τ+∆m))−τ−∆m]. (17)

Taking m→ +∞, I get (16) for the original strategy (the limit can be moved inside the integral by
Lebesgue’s Dominated Convergence Theorem, where max

a∈A ,
i, j∈{0,1}

|ui j(a)| plays the role of a dominating

function for U(qm(τ+∆m))).
So, (16) holds for any strategy (x ,τ,α). Combining it with the definition of U(q) as the expected

payoff from the best action, I get:

V (q(0))≥ sup
(x ,τ,α)

IEq(0)
�

uθ1θ2
(α)−τ

�

. (18)

The left hand side of (18) is equal to the value function at point q(0). By assumption, there exists
a strategy that gives the expected payoff V (q(0)). Thus, (18) holds as equality for all q(0). That
establishes the equivalence of V and the value function.
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B.4 Lemma 4

When source 1 is used, L1(q1, q2; V ) = 0 gives

V (q1, q2) =
q1(1+ ξ+ q̄1 + q2 + q̄1q2)
q̄1(1+ ξ+ q1 + q2 + q1q2)

V (q̄1, q2)

+
(q̄1 − q1)(1+ ξ+ q2)

q̄1(1+ ξ+ q1 + q2 + q1q2)
(V (0, q2)− 1)−

q1(1+ q2)
1+ ξ+ q1 + q2 + q1q2

log
q̄1

q1
. (19)

Since q̄1 ≤ R(a2(q1)), (5) becomes

V (q̃1, 0) =
q̃1 (u01(a2)− log R(a2)− 1+ log q̃1) + (1+ ξ)(u11(a∗)− 1)

1+ ξ+ q̃1
, q̃1 ∈ [q1, q̄1],

where a2 = a2(q1).
Put it all together to get

L2(q1, q2; V ) =
q1(1+ ξ+ q̄1 + q2 + q̄1q2)
q̄1(1+ ξ+ q1 + q2 + q1q2)

L2(q̄1, q2; V ) +
(q̄1 − q1)(1+ ξ+ q2)

q̄1(1+ ξ+ q1 + q2 + q1q2)
L2(0, q2; V ).

L2(q̄1, q2; V )≤ 0 by assumption, and L2(0, q2; V )≤ 0 because V (0, q2) satisfies (6).

B.5 Lemma 5

When source 1 is used, (19) holds.
Since R(a2(q1))≤ q1 < q̄1, a2(q̃1) = a2(q1)≡ a2 for all q1 ≤ q̃1 ≤ q̄1, (5) becomes

V (q̃1, 0) =
q̃1u01(a2) + (1+ ξ)u11(a2)

1+ ξ+ q̃1
, q̃1 ∈ [q1, q̄1]. (20)

Symmetrically, since R(a1(q2))≤ q2,

V (0, q2) =
q2u10(a1) + (1+ ξ)u11(a1)

1+ ξ+ q2
, where a1 = a1(q2). (21)

Put it all together to get

L2(q1, q2; V ) =
q1(1+ ξ+ q̄1 + q2 + q̄1q2)
q̄1(1+ ξ+ q1 + q2 + q1q2)

L2(q̄1, q2; V )

+
(q̄1 − q1)(q̄1 + R(a1)− q2 − R(a2))

q̄1(1+ ξ+ q1 + q2 + q1q2)
+

q̄1

�

q1
q̄1

�

q1
q̄1
− log q1

q̄1
− 1

�

−
�

1− q1
q̄1

�2�

1+ ξ+ q1 + q2 + q1q2
.

L2(q̄1, q2; V )≤ 0 and q̄1 +R(a1)− q2 −R(a2)≤ 0 by assumption. The last term is also non-positive
because function f (x) = x(x − log x − 1)− (1− x)2 is increasing on 0< x ≤ 1 to f (1) = 0.

B.6 Lemma 6

When the attention is split according to x1 =
q2

q1+q2
, x2 =

q1
q1+q2

, V solves q2
q1+q2

L1(q1, q2; V )+
q1

q1+q2
L2(q1, q2; V ) = 0, or equivalently

2q1q2

q1 + q2

∂ Υ (q1 + q2, q1 − q2)
∂ ζ

+
(1+ ξ+ q1)q1 (V (q1, 0)− Υ (q1 + q2, q1 − q2))

(q1 + q2)(1+ ξ+ q1 + q2 + q1q2)

+
(1+ ξ+ q2)q2 (V (0, q2)− Υ (q1 + q2, q1 − q2))

(q1 + q2)(1+ ξ+ q1 + q2 + q1q2)
= 1, (22)
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where Υ (ζ,η) = V
�

ζ+η
2 , ζ−η2

�

, ζ = q1 + q2, η = q1 − q2. Note that the state vector q(t) is moving

along the line q1 − q2 = const. When this constant is equal to η and this rule is used for ζ ≤ ζ̄,
differential equation (22) gives

Υ (ζ,η) =
(ζ2 −η2)(4ζ̄+ ζ̄2 −η2 + 4(1+ ξ))

(ζ̄2 −η2)(4ζ+ ζ2 −η2 + 4(1+ ξ))
Υ (ζ̄,η) +

2(ζ2 −η2)
4ζ+ ζ2 −η2 + 4(1+ ξ)

×

×

ζ̄
∫

ζ

(ζ̃−η)(2(1+ ξ) + ζ̃−η)V
�

0, ζ̃−η2

�

+ (ζ̃+η)(2(1+ ξ) + ζ̃+η)V
�

ζ̃+η
2 , 0

�

− ζ̃
�

4ζ̃+ ζ̃2 −η2 + 4(1+ ξ)
�

(ζ̃2 −η2)2
dζ̃

(23)

Expressions for V
�

0, ζ̃−η2

�

and V
�

ζ̃+η
2 , 0

�

are defined by (20) and (21).

V (q1, q2) is defined by (19), where q̌1 is used instead of q̄1, and Υ (q̌1 + q2, R(a2)− R(a1))
instead of V (q̄1, q2).

Put it all together to get

L2(q1, q2; V ) =
q̌1

�

q1
q̌1

�

q1
q̌1
− log q1

q̌1
− 1

�

−
�

1− q1
q̌1

�2�

1+ ξ+ q1 + q2 + q1q2
≤ 0.

B.7 Lemma 7

Denote by Υ (π,θi) the expected payoff from using source i until π̄, given the initial belief
π = IP (θi = 0) and true state θi . Bayes’ rule gives π(t) = π(0)

π(0)+(1−π(0))e−t in the absence of jumps.

Then the stopping threshold π̄ corresponds to the stopping time t̄ = log
�

π̄(1−π)
(1−π̄)π

�

. If θi = 0, then
no jump is possible:

Υ (π, 0) = Υ (π̄, 0)− log
�

π̄(1−π)
(1− π̄)π

�

.

If θi = 1, then the probability that no jump occurs during [0, t̄] is equal to e− t̄ = (1−π̄)π
π̄(1−π) :

Υ (π, 1) =
�

1−
(1− π̄)π
π̄(1−π)

�

Υ (0,1) +
(1− π̄)π
π̄(1−π)

Υ (π̄, 1)−

t̄
∫

0

te−t d t − t̄ e− t̄

=
�

1−
(1− π̄)π
π̄(1−π)

�

(Υ (0, 1)− 1) +
(1− π̄)π
π̄(1−π)

Υ (π̄, 1).

Then the expected payoff is

Υ (π) = πΥ (π, 0)+(1−π)Υ (π, 1) =
π

π̄
Υ (π̄)−π log

�

π̄(1−π)
(1− π̄)π

�

+
�

1−π−
π

π̄
(1− π̄)

�

(Υ (0,1)− 1) .

(24)
If i = 1, thenπ= p00+p01 and Υ (0, 1) = p11(u11(a∗)−1)

p10+p11
+ p10

p10+p11

�

u10(a1)− 1− f
�

u11(a∗)−u11(a1)−1
p10/p11

��

.

If i = 2, thenπ= p00+p10 and Υ (0, 1) = p11(u11(a∗)−1)
p01+p11

+ p01
p01+p11

�

u01(a2)− 1− f
�

u11(a∗)−u11(a2)−1
p01/p11

��

.
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B.8 Lemma 8

First, suppose p11 = 0 (see Figure 3). Then the rule is to split attention equally to stay on the
line p10 = p01 (and take action ai if a positive signal from source i is received). Note that in this
case p00 can be taken as a state variable: p10 = p01 =

1−p00
2

Denote Υ (p00,θ1,θ2) the expected payoff from following this strategy until p̄00, given the initial
belief p00 and true state (θ1,θ2). Bayes’ rule gives p00(t) =

p00(0)
(1−p00(0))e−t/2+p00(0)

in the absence of

jumps. Then the stopping time is t̄ = 2 log
�

p̄00(1−p00)
(1−p̄00)p00

�

.

Υ (p00, 0, 0) = Υ (p̄00, 0, 0)− t̄,

Υ (p00, 1, 0) =

t̄
∫

0

(u10(a1)− t)
e−t/2

2
d t+(Υ (p̄00, 1, 0)− t̄) e− t̄/2 = Υ (p̄00, 1, 0)e− t̄/2+

�

1− e− t̄/2
�

(u10(a1)− 2) ,

Υ (p00, 0, 1) = Υ (p̄00, 0, 1)e− t̄/2 +
�

1− e− t̄/2
�

(u01(a2)− 2) .
Then the expected payoff is

Υ (p00) = p00Υ (p00, 0, 0) +
1− p00

2
(Υ (p00, 1, 0) + Υ (p00, 0, 1))

=
p00

p̄00
Υ (p̄00) + 2p00 log

�

(1− p̄00)p00

p̄00(1− p00)

�

+
1− p00

2

�

1−
(1− p̄00)p00

p̄00(1− p00)

�

(u10(a1) + u01(a2)− 4)

When p00 = 0, point p is steady state and t̄ = +∞. Thus,

Υ (0) =
u10(a1) + u01(a2)

2
− 1.

Now suppose p11 > 0 (see Figure 2). Then π= p10+p01
p11

can be taken as a state variable:

(

p10 + p11u11(a1) = p01 + p11u11(a2)
p11 − (p10 + p11)(p01 + p11) = ξp10p01
p10 + p01 = πp11

⇔











p10 =
2(π−u11(a1)+u11(a2))

(2+π)2+π2ξ−(1+ξ)(u11(a1)−u11(a2))2

p01 =
2(π+u11(a1)−u11(a2))

(2+π)2+π2ξ−(1+ξ)(u11(a1)−u11(a2))2

p11 =
4

(2+π)2+π2ξ−(1+ξ)(u11(a1)−u11(a2))2

(25)
Source 1 gets attention x1 =

p10
p10+p01

= 1
2 −

u11(a1)−u11(a2)
2π , source 2 gets attention x2 =

p01
p10+p01

=
1
2 +

u11(a1)−u11(a2)
2π .

As usual, introduce the notation Υ (π,θ1,θ2) for the expected payoff. Bayes’ rule gives

T1(t)≡

t
∫

0

x1(τ)dτ= log
�

p01(t)p11(0)
p01(0)p11(t)

�

(25)
= log

�

π(t) + u11(a1)− u11(a2)
π(0) + u11(a1)− u11(a2)

�

,

T2(t)≡

t
∫

0

x2(τ)dτ= log
�

p10(t)p11(0)
p10(0)p11(t)

�

(25)
= log

�

π(t)− u11(a1) + u11(a2)
π(0)− u11(a1) + u11(a2)

�

⇒ t = T1(t) + T2(t) = log

�

π2(t)− (u11(a1)− u11(a2))
2

π2(0)− (u11(a1)− u11(a2))
2

�

= 2T1(t) + log

�

π(0) +
�

1− 2e−T1(t)
�

(u11(a1)− u11(a2))

π(0)− u11(a1) + u11(a2)

�

,
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where Ti(t) is the total amount of attention paid to source i up until moment t.

Υ (π, 0, 0) = Υ (π̄, 0, 0)− t̄,

Υ (π, 1, 0) =

t̄
∫

0

(u10(a1)− t) x1(t)e
−T1(t)d t + (Υ (π̄, 1, 0)− t̄) e−T1( t̄)

=

T1( t̄)
∫

0

�

u10(a1)− 2t1 − log

�

π+
�

1− 2e−t1
�

(u11(a1)− u11(a2))

π− u11(a1) + u11(a2)

��

e−t1 d t1+(Υ (π̄, 1, 0)− t̄) e−T1( t̄)

=

¨

Υ (π̄, 1, 0)e−T1( t̄) + π+u11(a1)−u11(a2)
2(u11(a1)−u11(a2))

(T1( t̄)− T2( t̄)) +
(π̄−π)(u10(a1)−1)
π̄+u11(a1)−u11(a2)

, u11(a1) 6= u11(a2)

Υ (π̄, 1, 0)ππ̄ +
�

1− π
π̄

�

(u10(a1)− 2), u11(a1) = u11(a2)

Υ (π, 0, 1) =

¨

Υ (π̄, 0, 1)e−T2( t̄) + π−u11(a1)+u11(a2)
2(u11(a1)−u11(a2))

(T1( t̄)− T2( t̄)) +
(π̄−π)(u01(a2)−1)
π̄−u11(a1)+u11(a2)

, u11(a1) 6= u11(a2)

Υ (π̄, 0, 1)ππ̄ +
�

1− π
π̄

�

(u01(a2)− 2), u11(a1) = u11(a2)

Υ (π, 1, 1) =

t̄
∫

0

(u11(a1)x1(t) + u11(a2)x2(t)− t) e−t d t + (Υ (π̄, 1, 1)− t̄) e− t̄

=
1
2

t̄
∫

0

�

u11(a1) + u11(a2)−
e−

t
2 (u11(a1)− u11(a2))

2

p

π2 − (1− e−t )(u11(a1)− u11(a2))2
− 2t

�

e−t d t+(Υ (π̄, 1, 1)− t̄) e− t̄

=







Υ (π̄, 1, 1)e− t̄ − π2−(u11(a1)−u11(a2))
2

4(u11(a1)−u11(a2))
(T1( t̄)− T2( t̄))−

(π̄−π)(π̄π+(π̄+π)(2−u11(a1)−u11(a2))+(u11(a1)−u11(a2))2)
2(π̄2−(u11(a1)−u11(a2))

2) , u11(a1) 6= u11(a2)

Υ (π̄, 1, 1)
�

π
π̄

�2
+
�

1−
�

π
π̄

�2�� u11(a1)+u11(a2)
2 − 1

�

, u11(a1) = u11(a2)

Then the expected payoff is

Υ (π) =
(1+ ξ)

�

π2 − (u11(a1)− u11(a2))
2�Υ (π, 0, 0) + 2 (π− u11(a1) + u11(a2))Υ (π, 1, 0)

(2+π)2 +π2ξ− (1+ ξ)(u11(a1)− u11(a2))2

+
2 (π+ u11(a1)− u11(a2))Υ (π, 0, 1) + 4Υ (π, 1, 1)
(2+π)2 +π2ξ− (1+ ξ)(u11(a1)− u11(a2))2

,

which leads to expressions (10) and (11) after simplifications.27

B.9 Lemma 9

Substitute Υ (π̄) = π̄Υ0 + (1− π̄)Υ1 into (24) and maximize over π̄≥ π:

π̄=

¨

1− 1
Υ (0,1)−Υ1

, Υ (0,1)− Υ1 >
1

1−π
π, otherwise

27A keen reader notices that the same expression can be obtained by using 23. Here I offer an
alternative proof that is longer but more intuitive.
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For the optimal threshold π̄, the expected payoff

Υ (π) = πΥ0 + (1−π)Υ1 +
π̄−π
1− π̄

−π log
�

π̄(1−π)
(1− π̄)π

�

If i = 1, then Υ0 =
p00

p01+p00
u00(a)+

p01
p01+p00

u01(a), Υ1 =
p11

p10+p11
u11(a)+

p10
p10+p11

u10(a). If i = 2,

then Υ0 =
p00

p10+p00
u00(a) +

p10
p10+p00

u10(a), Υ1 =
p11

p01+p11
u11(a) +

p01
p01+p11

u01(a).

B.10 Lemma 10

By Bayes’ rule,

dp00 = p00(p11 + p10 x1 + p01 x2)d t,
dp01 = p01((p11 + p10)x1 − (p00 + p10)x2)d t,
dp10 = p10((p11 + p01)x2 − (p00 + p01)x1)d t,
dp11 = −p11(p00 + p01 x1 + p10 x2)d t.

(26)

Fix current belief p̃. Let V12(p) be the expected payoff from using source 1 until p, then per-
manently switching to source 2 until it is optimal to stop (since the goal is to explore the optimality
of p, the dependence on p̃ is omitted). By Lemmas 7 and 9, and Bayes’ rule (26) with x1 = 1 and
x2 = 0,

dV12(p) =
p̃00

p00

�

p11

�

(1−π)π
π(1−π)

(u11(a
∗)− u11(a)− 1) +

π−π
π(1−π)

min
�

u11(a
∗)− u11(a2),

π

p11

�

�

+ p10

�

F1

�

a1,
p10

p11

�

− u10(a)− 1+ log

�

π(1−π)
π(1−π)

��

− 1

�

d t. (27)

Note the redundancy of calculating dV for the case when it is optimal to use both sources before
switching to phase 2. Due to continuity of the optimal strategy in belief space, the switching point
lies at the intersection of line p10 + p11u11(a1) = p01 + p11u11(a2) and curve (12).

B.11 Theorem 2

For the proof below, I am writing h(n) = O(1)meaning that |h(n)| ≤ M for some M as n→ +∞.
Let us fix to a the action taken at the stopping time conditional on no jumps observed (if t∗ > 0

as n → +∞ for any fixed a, t∗ > 0 as n → +∞ for the optimal a). By contradiction, suppose
t∗ = 0. WLOG, suppose the source used in phase 2 is source 2. Then the payoff increase from using
source 1 for d t before permanently switching to source 2 is

dV (n)(p)≥ p10

�

max
ã∈A

F (n)1

�

ã,
p10

p11

�

− u(n)10 (a) + log max
§

max
ã∈A

F (n)2

�

ã,
p01

p11

�

− u(n)01 (a) +O(1),
1

p01

ª�

+O(1),

(see (27)). By (9),

max
ã∈A

F (n)1

�

ã,
p10

p11

�

−u(n)10 (a)≥ u(n)10

�

a(n)1

�

−u(n)10 (a)− f





max
a∗∈A

u(n)11 (a
∗)− u(n)11

�

a(n)1

�

− 1

p10
p11



= u(n)10

�

a(n)1

�

−u(n)10 (a)+O(1),

max
ã∈A

F (n)2

�

ã,
p01

p11

�

− u(n)01 (a)≥ u(n)01

�

a(n)2

�

− u(n)01 (a) +O(1).

Since a(n)1 6= a(n)2 , conditions (7) and (8) guarantee that dV (n)(p)→ +∞, meaning that it is optimal
to start with source 1, that is, t∗ > 0.
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C Asymmetric Costs
In this section I comment on the general case where

• the intensity of the process Ni is θiλi x i(t), with λi > 0

• the flow cost of source i is ci > 0

What changes is the definition of regime (0, a1, a2). The agent is indifferent between both
sources whenever q1 < R1(a2), q2 < R2(a1), where

Ri(a) = (1+ ξ)
�

λi (u11(a∗)− u11(a))
ci

− 1
�

.

Otherwise, the agent must use source 1 if c1(q1−R1(a2))
λ1

<
c2(q2−R2(a1))

λ2
, source 2 if c1(q1−R1(a2))

λ1
>

c2(q2−R2(a1))
λ2

, and split attention according to x1 =
c2q2

c1q1+c2q2
, x2 =

c1q1
c1q1+c2q2

. See Figure 13.

Figure 13: Illustration for Regime (0, a1, a2).

Moreover, action ai(q) is now defined as an action that maximizes fi(a, q) where

f1(a, q) =

¨

u10(a)−
c2
λ2
(log R2(a) + 1) , R2(a)≥ q,

u10(a)−
c2
λ2

�

R2(a)
q + log(q)

�

, R2(a)< q;
f2(a, q) =

¨

u01(a)−
c1
λ1
(log R1(a) + 1) , R1(a)≥ q,

u01(a)−
c1
λ1

�

R1(a)
q + log(q)

�

, R1(a)< q.

All this means that now the expression for the index is different:28

λ1

c1

�

p10 + p11 + p11
λ2u11(a1)

c2

�

︸ ︷︷ ︸

source 1 index

vs
λ2

c2

�

p01 + p11 + p11
λ1u11(a2)

c1

�

︸ ︷︷ ︸

source 2 index

.

First, if the agent gets a positive signal when the true state is (1,1), he might continue with the other
source. That explains the correction to the payoff u11(ai). Second, both indices are adjusted by the
efficiency ratio λi/ci , so that a more cost-efficient source has a higher index.

28Obviously, there are many ways to define an index here. Ideally, the definition should be con-
sistent with the one derived for many sources case. Since I do not know yet the solution for more
than 2 sources, I chose the definition based on whatever is easier to come up with intuition for.
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