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Can a social planner manipulate network dynamics
and solve coordination problems?

Zaruhi Hakobyan

Abstract

This paper aims to build an algorithm of network dynamics with decision-making un-

der incomplete information. Accordingly, it tries to identify if a social planner reduces the

in�uence of individual biases, such as con�rmation bias or assimilation bias on agents�ac-

tions, and solve a coordination problem. The research questions are the following: " Can

the social planner increase social welfare, by manipulating the set of possible invitations and

annoyances, without directly changing a network structure?", " What are the main drivers

of increasing social-planner utility functions?" "How do the results change if the social plan-

ner has incomplete information or wrong priors about the fundamental variable?" For this

research, a "Liberal Social Planner" was created; a process through which network members

get suggestions depending on its utility function. The results have potential applications

for the management of social media platforms by the owners of these platforms. Platforms

can develop robots that can help their users be more informed and more satis�ed. As we

live in a world of virtual connectedness, people seem to obtain more information from online

network peers than from experts

Keywords: network dynamics, internet, higher-order beliefs, learning, expert

opinions, biased assimilation, con�rmation bias

JEL classi�cation: D85, D83, D82, D72, C78



1. Introduction

Coordination problems in case of uncertainty about some fundamental parameter are every-

where. 1 Examples of such fundamental parameters include the outcome of a vote on a

political issue, scienti�c �ndings of, e.g., a medical issue such as a vaccine for an epidemic,

a price outcome, e.g. a stock-price in �nancial markets, etc. Decision-makers solving co-

ordination problems with others try to take into account other agents�beliefs about some

parameter.The main focus is on a network model where everyone has a fundamental para-

meter governing assimilation or con�rmation bias in their preferences (for example, left or

right-hand side political views, religion view vs scienti�c �ndings). To simplify the analy-

sis, these fundamental biases are considered as constant, and that all network agents know

these constant parameters of biased assimilation. However,the main focus is on developing a

mechanism that endogenizes the weight people put on these biases while making decisions,

and how this weight is a¤ected by e¤orts of people to align their actions with the actions

of others. More importantly, the question of whether a social planners can in�uence this

endogenous coordination, leading to better social outcomes is studied.

Much of the literature on network theory develops coordination games where agents try to

align their actions with these of their neighbors. Therefore, the network structure is crucial

for their action-alignment e¤orts and for their ability to elicit information about unknown

parameters.2 In this paper, I use a utility function similar to this in Morris and Shin (2002),

where agents care not only their friends�actions but also take into account other agents�

actions. A key feature of the Morris and Shin (2002) model is that it can o¤er an analysis

of the relationship between public/private information on unknown parameters and social

1 Such a coordination motive is well known as convention in economics literature developed by Shin and
Williamson (1996), and Young (1996).
2 See, for example Golub and Morris (2017), Myatt and Wallace (2019), Ballester et al. (2006) and Denti
(2017), among others.
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welfare.3

In order to capture the alignment mechanism, in this model, the �beauty-contest�struc-

ture of Morris and Shin (2002) is kept. The model is developed not only for understanding

the dynamics of endogenous biased assimilation regarding political issues, such as putting

e¤orts into organizing protests and voting behavior, but also for understanding herd be-

havior in �nancial markets that appears during speculative attacks. For understanding the

dynamics of such political and market phenomena, agents need not only second-guess the

actions of their network friends, but also the actions of network non-friends too. Hakobyan

and Koulovatianos (2020) develop a search-and-matching algorithm of network dynamics,

focusing on an explanation of how expert opinions have been downgraded over time, and

how network agents have been taking more polarized actions while forming more polarized

subnetworks. In this paper, I address how a social planner can solve such polarized and

populistic behavior in order to bring agents�actions closer to the true values of unknown

parameters.

A simulation model of network dynamics with incomplete information is build, where the

social planner tries to manipulate the sample of possible invitations and annoyances in order

bring agent actions closer to the model�s fundamentals. For example, if we consider herd

behavior in �nancial markets, we can notice that agents trying to follow other agents�actions,

can play another equilibrium strategy, where they just move away frommarket fundamentals,

leading the market to exhibiting price bubbles. In �nancial markets, bubbles occur during

times of aggressive speculative attacks. Morris and Shin (2002) show that increasing the

precision of public signal can harm social welfare if agents have private signals. In this

paper, as it was demonstrated such results can vanish if agents are connected in a particular

3 The idea of Morris and Shin (2002) has been applied to models studying how political issues in�uence
social welfare, and to the study of �nancial markets and business cycles. See, for example Angeletos and
Pavan (2007), Myatt and Wallace (2012, 2015, 2019).
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network structure. If the social planner manipulates the network dynamics in a particular

way, then social welfare can increase.

In the model of this paper two types of social planners is analyzed: (i) a social planner

with perfect information, and (ii) a social planner with incomplete information. The two

di¤erent scenarios is considered: (a) the case where, similarly to network agents, the social

planner receives private and public signals, and calculates expectations, and (b) the case

where the social planner has wrong expectations. In the latter scenario, the social planner�s

expectations about the state variable are equal to a constant, which is di¤erent from the

optimal state variable.

It is demonstrated that social planners can improve welfare, not by directly in�uenc-

ing/changing the network structure, or by giving to agents fake news in order to manipulate

agents�actions. In my model social planners give opportunities to non-connected agents, to

be introduced to each other and to meet. The decision of the evolution of the network struc-

ture rests entirely upon the agents. Therefore, in this paper the focus is to understand how

di¤erent �agent sampling�in a search-and-matching environment in�uences social welfare.

One of the key and novel features in this paper is that agents are heterogeneous, making the

setup more realistic.

The remainder of the paper is organized as follows. Section 2 presents the setup of the

model, the utility function of agents, the network structure, the signals and the information

structure. Section 3 focuses on presenting the linear equilibrium and the �xed-point strate-

gies under evolutionary myopia. Section 4 demonstrates the network formation process ,

while Section 5 shows some simulation experiments. Section 6 concludes.
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1.1 Related Literature

This paper links four strands of literature. (1)The �rst strand uses quadratic-utility functions

trying to understand how agents play coordination games under information asymmetry. The

closest paper in the literature using such a benchmark without network structure is Morris

and Shin (2002). Compared to Morris and Shin (2002) this paper has three di¤erences:

I introduce (i) a network structure, (ii) assimilation and con�rmation bias in the utility

functions, and (iii) evolutionary dynamics of network structure with endogenous weights on

signals. The literature combining global games and coordination games in the fashion of Mor-

ris and Shin (2002), with network structure are Golub and Morris (2017), Dewan and Myatt

(2012), Myatt and Wallace (2012), Bon�glioli and Gancia (2013), Llosa and Venkateswaran

(2012), Pavan (2007, 2014). Almost all papers with quadratic utility use symmetric agents

in their model. The closest paper using asymmetric agents is Myatt and Wallace (2019),

which use two types of asymmetry: (a) asymmetry in conformity (coordination motive),

and (b) di¤erent weights for friends (with whom agents coordinate). Myatt and Wallace

(2018) use only coordination asymmetry. Compared to Myatt and Wallace (2018, 2019) in

this paper agents have these two types of asymmetry. However, in this paper agents try to

coordinate their actions with people they are not connected too, and agents have asymme-

try in assimilation bias. The di¤erence between this paper and Myatt and Wallace (2018,

2019) is also that this paper has an evolutionary dynamic of network structureIn addition,

there is a di¤erence in the information structure. In this paper, agents share information

using their network connections, while Myatt and Wallace (2018, 2019) do not consider such

types of information transmission; they describe �accuracy�of the information source, and

agents decide how much attention to put in which signal, paying the cost for a signal. In

Leister (2017) agents are asymmetric in general, but they get one private signal. In this
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paper I develop mostly the idea which was used in social media platforms in the sense that

information is cheap, and agents share information more cheaply. The only requirement

in my model for cheap information transmission, is being friends with those transmitting

information in the network. This paper is also an extended version of Hakobyan and Koulo-

vatianos (2020), trying to give an answer which arose in their model, which is how to deal

with the reinforcement of populism due to evolving and gradually strengthened polarization

and homophily.

(2) The literature focusing on understanding games on networks, coordination on net-

works, key players, homophily and degree centrality. Examples of this literature are Jackson

(2008), Currarini et al. (2009), Kossinets and Watts (2009), Golub and Jackson(2012a,b),

Bramoulle et al. (2012), Jackson and Lopez-Pintado (2013), Centola (2013), Lobel and

Sadler (2015), Currarini and Mengel (2016), and Halberstam and Knight (2016). In this

model, I show that the network structure, speci�cally indegree, and outdegree centrality,

are tightly linked with social welfare. I demonstrate that a social planner can manipulate

indegree and outdegree links indirectly, and thus increase social welfare.

(3) The literature on strategic disclosure or information manipulation, fake news. My

model is di¤erent from standard sender/receiver games such as Crawford and Sobel (1982),

Kartik(2009), and Edmond (2013). In this paper, I demonstrate the advantages that new

social media platforms give to agents. Crawford and Sobel (1982) characterize two types of

equilibrium in sender/receiver games with con�ict of interest: (i) Separating, which is not a

part of a Nash equilibrium and, (ii) Babbling equilibrium, which is a part of an equilibrium,

but in this case, there is no information transmission. In my paper agents have a con�ict

of interest, so directly sending them perfect information wouldn�t give any results. For

this reason, I develop a mechanism that tries to solve the coordination problem without
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directly sending information. The literature developed on information manipulation, such

as Edmond (2013), Edmond and Lu (2017) use biased signals, trying to manipulate agents�

behavior. In our model the social planner does not use any biased or unbiased signals.

Therefore, di¤erently from the literature on information manipulation, our manipulation

of network dynamic is not direct. In many countries, there is a law against information

manipulation.4 In this case, even if a social planner has good intentions, whishing to bring

agents�actions closer to fundamentals, this is infeasible, according to the law. Our model

gives a solution for such problems by creating wrong priors, because it in�uences agents�

decisions indirectly. While there is no direct link to the fake news literature, this paper can

solve the consequences of polarization in networks, bringing agents�actions closer to the

model�s fundamentals. Therefore, researchers who are interested in hte fake news literature

can �nd our framework useful for developing further work.

(4) The literature on social policy. Researchers who are interested in social-planner and

social-welfare maximization can �nd this framework useful for developing further work. The

most relevant reference in this literature is Dyckman (1966), Cavallo (2008), and Bernheim

(1989).

2. Model

There is a directed network of N <1 agents. I denote this network by G := fV;Eg, where

V is the set of agents/nodes, and E is the set of edges in this network. In period t the

network is represented by an adjacency matrix Mt with entries in f0; 1g. The graph to be

used is directed and unweighted, i.e., M ij
t 6= M ji

t . Edges between agent i and j represent

the private information transmission,where the link between i to j means that agent i gets

4 One country with such a law is France https://www.gouvernement.fr/en/against-information-manipulation
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agent j private signal.5 The diagonal elements of matrixMt are 0, which means that there

is no self-loops in this model.

In each period, agents make two decisions, (i) to guess a fundamental variable �t 2 R by

using all available information (the state variable �t is unknown regarding to a political issues,

or to a scienti�c �nding, such as a vaccine or global warming), and (ii) to align their actions

closer to other agents actions (the known �beauty contest�motive, de�ned by Keynes, 1936).

The fundamental varible �t is i.i.d., so agents need to guess new fundamentals in each period

t 2 f0; 1; :::g, and there is no learning in the model.

I divide agents into two groups: (a) agent i�s neighbors/friends (j 2 f1; 2; :::;Nig), and

(b) non-neighbors (k 2 f1; 2; :::;N�ig). In addition there are two types of agents denoted by

�+�and ���, depending on the direction of their structural biases bi, i.e., whether the bias

is above or below the value of �.6 Speci�cally, the payo¤ function for agent i with positive

bias �+�is given by,

u+i (at; �t) = � (1� ri) (ai;t � (�t + bi))
2�ri

24 qi
#Ni

X
j2Ni

(aj;t � ai;t)2 +
(1� qi )
#N�i

X
k2N�i

(ak;t � ai;t)2
35 ;

(1)

while the payo¤ function of a agent i with negative bias ���looks like

u�i (at; �t) = � (1� ri) (ai;t � (�t � bi))
2�ri

24 qi
#Ni

X
j2Ni

(aj;t � ai;t)2 +
(1� qi )
#N�i

X
k2N�i

(ak;t � ai;t)2
35 ;

(2)

5 For example, social network structure as a Twitter. Agent i can follow agent j, gets his private signal, but
if agent j is not following back to agent i, he cann�t get agent i�s private signal.
6 Intuitively, this structural bias in preferred actions re�ects political, religious, and other similar biases,
falling in the categories of biased assimilation and con�rmation bias (see Lord et al., 1979, and Nickerson,
1998).
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where ai;t = [a1;t; :::; aN;t]. In equation (1) and (2) parameter ri 2 (0; 1)captures the second-

guessing motive. Each agent tries to have their action closer to �t � bi, where bi 2 (0; 1) is

the individual bias.

The second part of the utility function is normalized for controlling network e¤ects on

calculations. Parameter qi 2 (0; 1) di¤erentiates the weight that agent i put on friends versus

non-friends. Parameters, ri, qi and bi are iid across individuals, generalized in period 0,

and are common knowledge to all agents.

2.1 Signals and Information Structure

Agents face uncertainty about state variable, �t, in each period t 2 f0; 1; :::g. Every period

generates a new task, which agents try to best-guess. Agents get public and private signals

in each period, with the learning duration being con�ned to one period. The information

set available to player i 2 f1; :::; Ng in each period is Ii;t =
 
yt; xi;t;

P
j

xj;t

!
, where yt is a

public signal with,

yt = �t + �t , with �t � N
�
0; �2�

�
, t = 0; 1::, (3)

and xi;t is a private signal to agent i only, with,

xi;t = �t + "i;t , with "i;t � N
�
0; �2"

�
, t = 0; 1; :, (4)

and the precision of the public and the private signals are � = 1=�2� and � = 1=�
2
". Impor-

tantly, �t, "i;t are i.i.d. over time. �t is independent from "i;t for all i 2 f1; :::; Ng, and

"i;t is independent from "j;t for all i 6= j. Contrary to the Morris and Shin (2002), I assume

that if agents are connected in network then they can see the private information of their

neighbors.

The main goal is to understand network evolution. For this reason, I develop an algo-

rithm and run simulations for understanding network evolution. The algorithm needs that a

8



modeler generate the information set Ii;t =
 
yt; xi;t;

P
j

xj;t

!
for every period and the mod-

eler needs a �true�parameter, ��t , unknown to agents in the model. Using di¤erent values

for f��tg
T
t=0 does not change the optimal strategy chosen by agents, as learning is only one

period, and the modeler can choose the same ��t for every period.

3. Linear Equilibrium, �xed-point strategies and evolutionary my-
opia.

The model focuses on an incomplete-information benchmark, where the evolving state vari-

able is the network structure, Mt. Each agent i needs to second-guess the actions of all

other agents, which means that each player needs to second-guess the beliefs of other players.

The information asymmetry among agents are low compare with Golub and Morris(2017),

Hakobyan and Koulovatianos (2020), . If agent i is connected with agent j, this means that

the information set which is available to agent i intersects with the information set of agent

j: Ii;t \Ij;t =
(
xi;t; xj;t;

P
l2
ij

sl

)
, where

P
l2
ij

sl�represents agents i�s and agent j�s common-

friend signals. At the same time, agent i tries to second-guess non-friend (k 2 N�i) beliefs

about the state variable �t. Agent i understands that the intersection of his information

set with non-friends can be non-empty, because of common friends Ii;t \ Ik;t =
( P
e2
ik

se

)
,

where
P
e2
ik

se represents agents i�s and agent k�s common-friend signals.

The structure ofMt is common knowledge for all agents. This common knowledge is one

of the key assumption in this paper.

Nevertheless, there is limited foresight about the network structure�s evolution. In period

t, agents only perceive a myopic, narrow-sighted local evolution of their peer connections.

This happens at the stage of evaluating the modeler�s sampling of invitations for friendship

or annoyances received in each period, that I explain below in the section network forma-
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tion process. I call this nearsightedness of the local evolution of Mt for one period only,

evolutionary myopia7 .

At �rst, let�s �nd the �xed-point strategies(the myopic best reply function) for every

period, which depend on higher-order belief. The myopic best-reply function is similar as

Myatt and Wallace (2019), Golub and Morris (2017)8 , the only exception is that in our

model agents also care about their assimilation bias, and non-friends action . I denote the

optimal action taken by players by a+�i and a��i . Each agent makes their decision based on

the information set Ii;t available to her. I will skip the notation of the information set and

denote agent i�s mathematical expectation by Ei(�) instead of E(�jIi).

Agent i maximizes the expected utility function (1) by her own action. First-order

conditions imply the following solution for agent i�s action:

a+�i;t = (1� ri)E (�t + bi) + ri

24 qi
#Ni

X
j2Ni

E (aj;t) +
(1� qi )
#N�i

X
k2N�i

E (ak;t)

35 ; (5)

a��i;t = (1� ri)E (�t � bi) + ri

24 qi
#Ni

X
j2Ni

E (aj;t) +
(1� qi )
#N�i

X
k2N�i

E (ak;t)

35 : (6)

Therefore, an agent�s optimal decision depends on the expectation of the state variable,

Ei (�t), the expectation of the actions of friends, Ei

 P
j2Ni

aj;t

!
, and of non-friends, Ei

 P
k2N�i

ak;t

!
.

Moreover, based on both private and public information, the expectation of �t is given by

(probability density function is de�ned for the case of the �at (absolutely non-informative:

7 The evolutionary myopia is a reasonable assumption in directed networks.For example, Twitter is one of the
directed network structure, and each agent made a decision which links to create not taking account of other
agents action. At the end of the period, where all agents made their decision. The network structure Mt

becomes common knowledge for everyone. If we consider undirected network structure, such as Facebook,
creating a link needs to be accepted from both sides, so agent i need to understand if creating a link is
valuable for agent k, or not.
8 For more reference about myopic best-response functions and average based updating of information, see
Calvó-Armengol et. al (2009), Bramoullé et al., DeGroot (1974) , Young (1996), Fudenberg et al. (1998)
and others. For referense best-response function and bayesian learning, see Acemoglu et al. (2011), Mueller-
Frank, M. (2013).
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p(�) / 1 ) prior of �, see Appendix for proof),

Ei (�t) =
�y + �ixi +

P
j �jxj

�+ �i +
P

j �j
(7)

The linear equilibrium for each agent�s action in period t is de�ned as a weighted sum

of all signals in agent i�s information set and of the weight on the structural bias, bi. I call

each weight associated with the j-th signal in this sum a �j-th signal weight�. The presence

of network signal transmission results in non-equal weights between private signals. Our

educated guess is that the weight of signal j in agent i�s action wij depends on agent i�s and

agent j�s network degrees and on the precisions of signals �.

Given a network structure, I group agents into clusters depending on their closeness

centrality measure and precision. Normalized closeness centrality CCi for the node i is

de�ned as the inverse of the average of the lengths of the shortest paths between the node i

and all other nodes in the graph G:

CCi;t =

 P
j2V nfig dist(i; j)

N � 1

!�1
; (8)

where dist(i; j) � the number of the edges in the shortest path between nodes i and j in

the network G.

De�nition 1 (Clusters) We will say that there exists cluster Cq;t of agents i 2 V; q 2
f1; 2; :::; Qig(q is the number of clusters in the network) if and only if these conditions are
satis�ed: (i) all members of the cluster Cq;t are characterized by the same closeness central-
ity;(ii) all members of the cluster Cq;t are characterized by the same private signal precision;
(iii) any agent who does not belong to the cluster Cq;t has closeness centrality di¤erent from
the closeness centrality of this cluster�s members, or di¤erent precision of private signal:

Cq;t = fi 2 Cq;t : 8j 2 Cq;t : CCi;t = CCj;t; 8k 62 Cq;t : CCi;t 6= CCk;tg (9)

An agent who has di¤erent closeness centrality and di¤erent precision from others will

belong to his own cluster. In this case, we simply separate this agent from the set of agents

with di¤erent centrality measures.
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The following proposition de�nes the linear equilibrium characteristics.

Proposition 2 (Linear equilibrium characteristics) Given a network G, there exists a
linear equilibrium in period t, in which agent i�s action can be represented in the following
way:

a+i;t =
X
q

!i;t;q (Mt)xi;t;q + wi;t (Mt) bi +

"
1�

X
q

!i;t;q (Mt)� wi;t (Mt)

#
yt (10)

a�i;t =
X
q

!i;t;q (Mt)xi;t;q + wi;t (Mt) (�bi) +
"
1�

X
q

!i;t;q (Mt)� wi;t (Mt)

#
yt (11)

where 0 �
P

q2NCi !iq � 1 and !iq � 0 8i = 1::N ; where q = 1::Qi, all clusters which appear
in agent i�s networks.Formulation of the weight for private signals is depicted in the �gure
below.

xi;q;t =
P
s2INCi;q;t xs

jINCiqj
;

NCi = fINCi;q;tgq:3j2fCqg\fNig
INCi;q;t = fs : xs 2 fNig \ fCqgg

Figure 1. Illustration of cluster de�nition

Here INCi;q;t � individual neighbour cluster, or the set of agents that are simultaneously
in the cluster q and in the agent i�s neighbors set. The notation s 2 INCi;q;t stands for the
index number of the agent s from this set. NCi;t� neighbour cluster, or the set of individual
neighbour clusters that are not empty for agent i. The notation q 2 NCi;t stands for cluster
q from the set INCi;t .

For demonstrating how the de�nition and proposition of �xed-point strategies works let�s

look at the following example.

Example 3 Let�s consider a simple example with 6 agents, that are connected in the net-
work, depicted in Figure 2 .
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Figure 2. Example with 6 agents

In this network there are two di¤erent clusters. The �rst one consists of agents C1 =
f3; 4g who are characterized by closeness centrality CC3 = CC4 = 5=7. The second cluster
consists of agents C2 = f1; 2; 5; 6g with closeness centrality CC1 = CC2 = CC5 = CC6 =
1=2. I demonstrate the di¤erence between clusters using di¤erent weight simbols on private
signals � for cluster C1 and ! for cluster C2:

a1;1 = !1
(x1 + x2)

2
+ !2x3 + w1b1 + (1� !1 � !2 � w1)y

a2;1 = !1
(x1 + x2)

2
+ !2x3 + w2b2 + (1� !1 � !2 � w2)y

a3;1 = �1
(x1 + x2)

2
+ �2

(x3 + x4)

2
+ w3b3 + (1� �2 � �1 � w3)y

a4;1 = �1
(x5 + x6)

2
+ �2

(x3 + x4)

2
+ w4b4 + (1� �2 � �1 � w4)y

a5;1 = !1
(x5 + x6)

2
+ !2x4 + w5b5 + (1� !1 � !2 � w5)y

a6;1 = !1
(x5 + x6)

2
+ !2x4 + w6b6 + (1� !1 � !2 � w6)y

Hence, in this example, the weights are the same within each cluster and di¤er between
clusters. In this example we consider that �1 = �3 = �2 = �4 and b1 = b2 = b3 = b4. This
example is demonstrates what happens in the �rst period9 . In Appendix I generalize the
solution of �nding linear equilibrium weights for Qi = N di¤erent clusters.

The linear equilibrium action should be optimal for all agents in the network. It means

that the action, characterized by (10) and agent i�s optimal actions (1) should be the same.

This gives us a system of linear equations. This system provides us with a solution for

equilibrium weights as a function of the parameters. Once the weights are found, optimal

actions should be calculated using the following algorithm.

9 Notice that we normalize the weights. Normalizing is possible because the objective functions are ordinal
utility functions.
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Algorithm 4 (Finding optimal actions) (i)Substitute all other agents�actions (10) into
the term

P
j2Ni

Ei (aj;t),
P

k2N�i
Ei (ak;t). If the agent has no information about the signal j, then

Eixj = Ei�;
(ii)Rearrange the terms to get a coe¢ cient preceding the Ei (�t) term. Then substitute

the mathematical expectation as a function of agent i�s signals (7).
(iii)Rearrange the terms to get a coe¢ cient preceding each agent i�s signal. These co-

e¢ cients should be equal to the corresponding weights in the linear equilibrium (10). The
solution to the resulting system of linear equations is the vector of equilibrium weights.
(iv) Find the optimal action.

Substituting the optimal action strategies in the objective function of each player gives

the value functions (indirect utility functions),

V +i (Mt) = E
�
u+i
�
a+�i;t ; �t

�
j Ii;t

�
, i = 1; :::; N+ , (12)

and

V �i (Mt) = E
�
u�i
�
a��i;t ; �t

�
j Ii;t

�
, i = 1; :::; N� . (13)

The value function will in�uence the evolution of the network structure. I demonstrate

this in�uence in the next section.

4. Network formation process

The state variable in each period is the network structure. The network dynamics are

governed by two main processes: (1) The Social Planner uses di¤erent sampling processes

in order to create possible invitations(a link which can be created) to non-friends for each

agent and annoyances(a link which can be broken) from friends of each agent. (2) Subject to

the sampling process of possible invitations/annoyances chosen by the social planner, agent

i uses his own value-function criterion in order to decide upon whom to add from the sample

of non-friends (k 2 N�i) and whom to exclude among friends j 2 Ni.10

10I describe this process below in subsection �second stage decision making process: creating/deleting a
link�.
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In process (1) above, the Social Planner selects di¤erent processes in order to manipulate

network dynamics. Given, however, that process (2) gives freedom to people to choose their

network friends, it is a liberal social-planner manipulation11 .

4.1 First stage of decision making: Sampling process

My main goal is to examine how a social planner who cares only about bringing optimal

actions of agents closer to fundamentals, can solve coordination problems among agents by

varying the sampling process of invitations and annoyances sent to non-friends and friends

of each agent. I will call this selection of sampling processes by the Social Planner �Social

planner manipulation of network dynamics�. I will compare this sampling process to two

other sampling algorithms, the uniformly random sampling and the biased sampling. The

next subsections will provide a more detailed explanation of these algorithms.

4.1.1 Social planner manipulation of network dynamics

In the role of a modeler, I introduce a social planner, who doesn�t care about individuals�

biases. The social planner cares how to bring agents�actions closer to the state variable �t.

The utility function of a social planner is given by,

W = �

P
i2N

(ai;t � �t)2

N
for all i = 1; 2; :::; N (14)

The utility function of social planner looks like as Morris and Shin (2002) utility, but

contrary to their case, in my model agents optimal actions contain bias. The social planner

understands that optimal actions of agents are in�uenced by their biases, and he tries to

minimize the e¤ect of these biases by manipulating the set of possible invitations and annoy-

ances. In Hakobyan and Koulovatianos (2020) authors show that biases, such as assimilation

11In the role of a social-planner can be social-media platforms owners/government.
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bias or con�rmation bias, can increase polarization and populistic behavior, as time passes.

In this paper, I show that the social planner can solve the problem of polarization in network

dynamics, using his power to manipulate the sampling process of possible invitations and

annoyances. I consider two social-planner types: (a) a social planner with perfect infor-

mation about the state variable �t in each period, and (b) a social planner with incomplete

information about �t. For the second case, I will assume that, like common agents, the social

planner gets public and private information or has some prior about �t, which is constant,

but generally �spt 6= ��t .

The social planner directly manipulates network dynamics. In the �rst period, he takes

the adjacency matrix Mt and calculates the social welfare W . After �xing the welfare

level, he calculates all possible changes in the network structure that are driven by agents�

decisions, and suggests a vector of possible invitations together with a vector of possible

annoyances, which increase his utility function.

Algorithm 5 (Social-planner manipulation of network dynamics) (1) The social plan-

ner takes the adjancency matrix Mt, calculates social welfare W and �xes it. (2) The social
planner takes each row of the adjancency matrix, Mt, and calculates social welfare taking
into account all possible changes of the adjancency matrix driven by potential agent link con-
nections. (3) The social planner chooses one agent from a sample of k with whom agent i
could create a link, making social welfare to increase as a result of establishing this link. (4)
The social planner chooses some agent j with whom agent i can delete a link, making social
welfare to increase as a result of deleting this link.

A matrix of possible invitations and annoyances (PIA matrix) is created. The size of the

PIAmatrix isN�2, where the �rst column shows possible invitations and the second column

shows the possible annoyances. After the creation the PIA matrix, the game proceeds to

the second stage of decision making, where agents decide which link to create and which link

to delete, depending on their value functions.
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4.1.2 Uniformly Random Sampling

In each period the social planner randomly creates a vector of possible invitations and

annoyances, using the following algorithm.

Algorithm 6 (1) The social planner takes the adjancency matrix Mt and randomly chooses

one agent from a set of k (individuals in the i-th row of Mt = 0) with whom agent i can
create a link, and saves the index of agent k in the sample of possible invitations. (2) The
social planner randomly takes, from a set of j (individuals in the i-th row of Mt = 1), one
agent with whom agent i can delete a link.

4.1.3 Biased Sampling

There is a vast literature examining whether the network structure is random or not.12 Here

the social planner uses a biased sampling algorithm. In this model agents get invitations

from friends of friends. Such algorithms are used in real-world social-network platforms.13

Algorithm 7 (1) The social planner calculates the number of common links agent i has with

each of his non-friends, suggesting the agent k, with whom agent i has the most common
friends (e.g., meeting friends of friends). (2) For determining the set of annoyances, the
social planner uses the opposite. He calculates, among friends, the agents with whom agent
i has the fewest common friends, creating a set of agents who cause an annoyance to agent
i.14

4.2 Second stage of decision making: creating/deleting the links

Agent i makes the decision of creating a new link or of deleting an old friend, conditional on

the set of invitations and annoyances that has been created by the social planner. Player i
12See, for example, Jackson et al. (2007), Snijders, et al. (2010), Bhattacharya et al. (2017), Golub and
Livne (2011), among others.
13This biased sample is very common in such networks like Facebook or Vkontakte. For example Facebook
suggests a potential friends list (from a group of non-friends who have common characteristics to these of
agent i). These characteristics can include friends of friends, or sometimes people who belong to the same
groups of interests (in my model this corresponds to agents with the same fundamental bias, �b).
14Suggestions of breaking links is not crucial in this model. In social media platforms as Facebook, Vkontakte
agents can ignore friends messages, or unfollow friends news, but platform will continue show them as friends.
In our model I consider such behavior as breaking a link, because the link between agents show the information
transmission process.
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receives one invitation and experiences one annoyance, i.e., he examines 22 cases. These cases

consist of f0; 1g choices. Choice �0�stands for either not creating a new link or excluding

an old friend based on a caused annoyance. On the contrary, choice �1�stands for either

creating a new link or keeping an old friend, despite a caused annoyance. The algorithm

creates a 22 versions of the original matrixMt, with each agent calculating his value function

for all possible cases, choosing the Mt version that gives him the maximum value-function

level. The generalized version of calculating the value function for N di¤erent clusters is

introduced in the Appendix (7.4). This paper is focused on directed graphs, so the game

evolves as Mt+1 = fMt, where fMt is the updated version of the adjancency matrix. Notice

that fMt is not symmetric.15

5. Simulation experiments

Due to the complexity of equilibrium conditions, and the network formation process, I per-

form 100 Monte-Carlo simulation experiments in order to analyze the network dynamics,

provide answers to the following questions:

- Is the manipulating power of the social planner, capable of solving the co-

ordination problem among agents, bringing their actions closer to fundamental

variables, and thus increasing social welfare?

- Can the social planner increase social welfare, just by manipulating the set of

possible invitations and annoyances, without directly changing a network struc-

ture?

- What are the main drivers of increasing social-planner utility functions?

15An interesting extension is to add one more step for capturing a feedback e¤ect, where agents i and j can
update information only if both of them decide to add each other to their subnetwork of friends.
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- How do the results change if the social planner has incomplete information or

wrong priors about the fundamental variable?

For simulation experiments I use the following parameters: the �beauty-contest�para-

meter r = 0:7 (the results are similiar with r � U [0; 1]) for all agents, the weight on the

action of friends is set to q � U [0; 1].16 The precision of the public signal is � = 1=�� = 30,

while the precision of the private signals is randomly distributed following a uniform distrib-

ution, parametrized as, �i � U [10; 45]. We di¤erentiate agents into two groups: agents with

positive biases and agents with negative biases, bi � U [0; 1] . There are N = 20 agents, and

we split them into two groups N+
1 = 10 and N

�
2 = 10.

For performing comparative dynamics among di¤erent algorithms and for studyung their

in�uence on social welfare, I �x the adjancency matrix in period 0. I randomly generate a

non-symmetric original matrix Mt in period t = 0 and �x it in order to understand how

di¤erent sampling processes implemented by the social planner in�uence network dynamics.

I perform comparative dynamics in two main cases: (1) A social planner with perfect

knowledge of the true state variable �t, and (2) a social planner with incomplete informa-

tion/knowledge about state variable �t.

5.1 Social planner with perfect knowledge about state variable �t

In this subsection I assume that the social planner has perfect knowledge about the funda-

mental variable f��tg
T
t=0 in every period. As mentioned in Section 3, there is no learning

between periods. In my simulations, I choose the same fundamental variable, ��t = 0, in

every period, and, in this Section, I assume that the social planner knows that ��t = 0, in

every period. The welfare function of the social planner, given by (14) can be transformed

16Svensson, (2006) argues that the main Morris and Shin (2002) result is present only if the second-guessing
motive is relatively high r 2 (0:5; 1).
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into a matrix form, after doing some algebra. The social planner�s welfare function in a

matrix form is,

W = � 1T
�
�!2b� � �b2� + �!2b� � E

�
(�2)� 2 � �!2b� � �b � E

�
(�) +W 2

private�

�
1�

�

�
+
W 2
y

�

�
(15)

where 1 is a vector of ones, the size of this vector is N � 1.17 �!b is the weight for bias

which was describe by equation (18)18 .� is a vector of private signal precision (size of this

vector is N � 1). E�
(�2) is described in Appendix. Symbol � represents element-by-element

multiplication.

In the case of perfect knowledge of the state variable (��t = 0), following equation (15),

one can see, that the social planner�s welfare depends on the weight that every agent puts

to the bias, and on weights in the Kronecker products of private and public signals with the

precision of signals. Therefore, the social planner manipulates network dynamics in order to

decrease these components in his utility function.

For understanding the network evolution of well-known social platforms, and compare

them with social planner manipulation, I run simulation experiments. I begin with our

comparative dynamics, with a benchmark parameters, and examine how network evolution

depends on social-planner�s manipulation. Figure 2a depicts these network dynamics. As

it can be seen in Figure 2a, in the last periods the key agents share their information with

others more actively, and the numbers of indegree links increase. I prove analyticaly and by

using simulation example the importance of indegree and outdegree links below.

17Notice that the expression in the brackets is an N � 1 matrix, and multiplying it with the transponse of
vector ones (1T ) will give us a scalar.
18Please notice, that the optimal-action weight on the bias depends on network structure.
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Figure 3a. Social planner manipulation of network dynamics

The number of nodes directed towards agent i (indegree nodes) shows the number of

agents who receive agent i �s signal. As we can see in the last periods, the graph looks

like a combination of a star network and a ring network. Comparing the three cases of

network evolution that we can see, there are similarities in the node degrees between the

network dynamics also in the cases of social planner manipulation (Figure 2a) and the biased

sampling by the social planner (Figure 2b). On the contrary, social planner manipulation

(Figure 2a) and random sampling (Figure 2c) there are no similarities: as time passes the

outdegree links of key players increase, instead of the indegree links increasing. Therefore, a

combination of indegree and outdegree links seem in�uence social welfare the most.19 Below

we take a closer look on how social welfare depends on the evolution of networks in these

19For these particular network dynamics look at the social welfare dynamics in the Appendix. In main body
I present results of 100 Monte-Carlo simulations.
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cases.

Figure 3b. Evolution of network dynamics� bias sampling

Figure 3c. Network evolution with randomly invitations and annoyances
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Comparative dynamics and social welfare As mentioned above, the original adjan-

cency matrixM0 is the same for all sampling algorithms. But from t = 1 the set of possible

invitations and annoyances di¤er, depending on the di¤erent algorithms. Figure 3 illustrates

how welfare dynamics di¤er across cases. The time horizon is set to T = 50. As we can

see in the benchmark case, where r = 0:7, q = U [0; 1] for all agents the di¤erence in friends

of friends between the social planner manipulation case and that case of biased sampling is

not big. Yet, the di¤erence between random sampling and the two other sampling process

is substantially big.

Figure 4. Comperative statics: Social Welfare: 100 Monte-Carlo Simulations.
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The key explanation of this distance lies on how many indegree and outdegree links

agents have. As we can see from Figure 4 in some periods there is a sudden drop in social

welfare. There can be several reason of such drop, (1) �tragedy of the commons� problem.

The algorithm of social planner maximize changes in adjancency matrix by row, which

in�uence on the second stage decision making process. One of the solutions of such drops

can be changing the social planner manipulation strategy, by adding a step in the algorithm,

where the social planner tries to compare pairwise stability of changing rows, and decide

which row to change and which row to keep as it is in period t.20 (2) �Not enough Monte-

Carlo simulations.�One of the solution of such drops increase the numbers of Monte-Carlo

simulations. In 100 Monte-Carlo simulations only one simulation demonstrate such drop in

social welfare, and e¤ect of this simulations in�uence on other 99 Monte-Carlo simulations.

Increasing the number of Monte-Carlo simulations can smooth such drops.21

The key result of Figure 4 is increasing curve for social planner manipulation strategy,

and one of explanation is connection between node degree and social welfare. I analyze the

connection between node degree and social welfare looking at a one-period (static) game.

5.1.1 Analyzing the connection between node degree and social

welfare

In order to keep the analysis simple, I examine the static game, with the following network

topology: I consider a central agent with a ring network, demonstrated in Figure 4.

20I will add this step in a future version of the draft.
21In future work I will further extend the results for 500-1000 Monte-Carlo simulations and robustness checks
of results.
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Figure 5. Star network with combination of ring network.

The �rst graph shows the undirected graphs, so everyone can see the signal of each other.

The second graph, shows that the central agent receives signals frm other agents, not sharing

his information (COutdegree > CIndegree). The third graphs shows that the central agent shares

his private signal, but doesn�t get signals from others (COutdegree < CIndegree).22 For the sake

of simpli�cation, I consider a graph with two clusters only (see the de�nition of clusters in

Section 3). Let�s assume that the precision of the private signal is the same for all agents

�i = �, and in this static game there is no biasbi = 0. This simpli�cation will give us the

opportunity to demonstrate that the Morris and Shin (2002) results do not go through in

particular network structures.

Lemma 8 Let G is described as in Figure 4. Suppose �i = �, r 2 (0:65; 1) ,bi = 0: The
optimal weights w�s ,w

�
r ,w

�
c is described by formula (20) ,(23) and (21) . Using this optimal

weights, the social welfare is described by the equation (24) ,(25) and (26). And the following
holds:
1. For every � = � and � < �, the @Wc

@�
> 0 if agent i put weight to central agents signal

and � = � and � > �, the @Wc

@�
> 0 if agent i put weight to public signal.

2. For every � = � and � < �, the @Ws

@�
> 0 if agent i put weight to central agents signal

and � = � and � > �, the @Ws

@�
> 0 if agent i put weight to public signal.

3. For every � = � and � S �, the @Wr

@�
< 0 .

In Figure 6a. I will illustrate the e¤ect of the public and private signals precision on the
welfare. More formal proof is available on online Appendix.

22An analytical solution can be found in Appendix .
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I call these networks �central agent�, �central receiver� and �central sender� respec-

tively. The e¤ect of the public and private signals precision on the welfare in these network

structures is illustrated in Figure 6a.

Figure 6a. Social Welfare, comparing information sharing in central agent contest.

It can be seen that in the case of one central receiver the behavior of welfare is similar

to this in the ring network. However, for each value of �, the welfare for the former network

is higher than the welfare for the latter one. It can be caused by the presence of the agent,

who is better informed compared to other agents. Since this central agent does not send

any signal, her e¤ect on the other agents�actions is minor (only through the presence of the

unobserved signal in the transparency term (E (
P
ak)).

However, in the case of the central-sender type of network, the Morris and Shin (2002)

result vanishes. Even for high values of r, the welfare function is monotonically increasing

with respect to �. Therefore, crucial result in this paper is that each agent�s private signal

sent in network can be viewed as a substitute to the public signal sent by the authority.
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Here I considered the extreme case: each agent in the network receives the same signal from

the central agent. It means that agents are able to choose between two signals, that has

the same characteristics as long as their precision parameters are the same. The e¤ect of

switching between signals is illustrated by Figure 6b.

Figure 6b. Share of signals in non-central agents actions.

Figure 6b shows that, the higher the public signal precision, the higher its share in the

non-central agent�s action. Moreover, share of all other signals is approximately equal to

zero. This means that non-central agents simple switch between two signals: the public one

and the central agent�s one.

Since they have freedom of choice, agents can choose the most precise signal available.

This fact leads to the absence of the Morris and Shin (2002) result (the noisy signal is simply

ignored). Therefore, the central agent�s and central sender�s strategy can solve the problem

raised in the paper by Morris and Shin (2002).
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Therefore, coming back to our social-planner manipulation of networks dynamics agents

with high precision of private signals end up with high indegree links, and agents which have

low precision of private signal end up with high outdegree centrality and this e¤ect increases

social welfare.

Figure 7. Social welfare dynamics for the case described in Figure 3a,3b,3c

The connections between node-degree, private and public signal precision can be demon-

strated in the Table 1. Please note that the weight of signal j in agent i�s action wij depends

on agent i�s and agent j�s the precisions of signals and degrees in the network. So the Table

1 answer partially to the question.
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Table 1. Node degree data, precision of private signal. The precision of public signal is

� = 30.

In Table 1. Gam_indegree and Gam_outdegree describe the original matrixM0. SPin-

degree and SPoutdegree colums describe the node degree after 50 periods in the case of social

planner manipulation of network dynamics (Figure 3a). bindegree and bourdegree columns

show the results in Fugure 3b, and r_indegree and r_outdegree columns are the illustration

of Figure 3c.

5.2 Social planner with incomplete information about state vari-
able �t

In the real world it is di¤ucult to �nd a social planner who exactly knows all fundamental

variables, in every period. Therefore, I examine the case of an imperfectly informed social

planner. In this section I examine two social-planner types: (1) A social planner with

incomplete information, and (2) a social planner with wrong expectations E (�t) = e�t 6= ��t .
The second case can be useful if we consider public policy issues in the autocratic regimes.
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Where agents/citizens have precise signals about the fundamental variables, but the regime

has wrong expectations and tries to manipulate agents actions closer to their expectation.

Social planner with incomplete information

In this case the social planner has incomplete information about the state variable �t, and

receives private and public signals like all other agents in the model. Therefore the social

planner calculates E (�tjIsp), with Isp denoting the information set of the social planner,

consisting of a private and a public signal. The social planner�s public signal is the same

public signal as that of all other agents. For the benchmark case I consider that the social

planner�s private signal has higher precision, than the precision of the public signal and

precision of the privete signals of all other agents. Under imperfect information, E (�tjIsp) 6=

0, and social welfare also depends on the expectations of the social planner.

W = � 1T
�
�!2b� � �b2� + �!2b� � E

�
�2t jIsp

�
� �!2b� � �b � E (�tjIsp) +W 2

private�

�
1�

�

�
+
W 2
y

�

�
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Figure 8a. Social welfare: Incomplete information benchmark

As we can see from Figure 8a, this setting of imperfect information leads to worse results

than in the case of biased sampling. This happens because the social planner cannot make

the indegree links of key players to increase. A demonstration through simulated evolution

dynamics that the indegree links are higher in the biased sampling setting than in the

examined case here, can be found in Appendix . The key conclusion that can be reached

in the incomplete information benchmark is that following any social planner manipulation

of network dynamics can be useful only in short horizons. Therefore, I decrease the time

periods and I examine the short-horizon case.
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Figure 8b. Social welfare: short-time periods

As it can be seen, in the incomplete information case, social-planner manipulation works

better for short horizons. This means that the social planner does not need to manipulate the

sampling process in all periods. This result can be further examined through Monte-Carlo

simulations.

Social planner with wrong expectations

In this case of imperfect knowledge on the side of the social planner, I examine that

the planner has wrong expectations about the state variable, i.e., E (�t) = e�t 6= ��t . Under
wrong expectations, the social planner has some prior beliefs about the state variable of the

type �t = e�t = const. For example, if the true value is ��t , the social planner believes that
��;spt = e�t 6= ��t . Can we see increasing social welfare in this setup in every period?
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Figure 9. Social welfare. Wrong expectations of social planner.

As we can see, under the incomplete-information benchmark, it is better if the social

planner has wrong constant expectations compared to receiving private and public signals.

This happens because the noise term and the precision of signals that in�uence expectations

about the state variable, E (�t), change every period. Therefore, it is better if E (�t) is equal

to wrong constant in social-planner�s mind, compared to the case that the social planner

gets more precise signals then all other agents.
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6. Conclusion

Polarization has increased during the last decades. There is a large literature in political

economics, trying to understand how to solve problems polarization in networks, by spotting

the key players who distort information, trying bring agents� action closer to pragmatic

variables.

I examined whether a social planner, such as the manager of a social-media internet

platform, can manipulate network dynamics so as to bring agents�actions closer to pragmatic

viewpoints, thus increasing social welfare. Speci�cally, I examined if social planners can

in�uence network dynamics by recommending people as network friends to online-platform

users, and by pointing annoying behaviors by existing social-media friends. Importanty, I let

network users to decide alone whom to make a new friend and whom to abolish as network

friend. I also examined how my analysis changes if the social planner also has incomplete

information or wrong priors concerning fundamental variables.

I built a dynamic network formation model, where each agent has strong incentives

to coordinate their action with the actions of other agents and also to �nd out the truth

about fundamental variables. Using simulations, I demonstrated that if the social planner

is perfectly informed about fundamentals, then his policy will be to suggest agents create

more indegree links, if their private signal precision is high compare with public signal, and

agents, who have low private signal precision, create more outdegree links. This strategy is

crucial for increasing social welfare. Using a static game example, I provided a formal proof

of why social welfare goes up when nodes with indegree centrality increase.

One of the main explanations of this result is the following: if central agents share their

information with others, their signals have the same characteristics as public information,

and agents can decide on switching from one signal to another if the precision of the public
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signal increases. This characteristic of my analysis improves a feature of the standard Morris

and Shin (2002) model who �nd that increasing the precision of public information can

decrease social welfare. Speci�cally, in my model, I demonstrated that social planners try to

organize the network structure as a combination of star networks. It is this structure that

can increase social welfare.

Interesting is also the case where the social planner has imperfect imperfect knowledge

about fundamentals. I demonstrated, that in both cases, this where the social planner has

noisy information, and this where the social planner is sure about the wrong fundamental

value, social-planner manipulation can increase social welfare. But the most interesting result

is that with a social planner being sure about the wrong expectation, welfare improvement

is higher than having noisy information about fundamentals, even if the public and private

signals the social planner receives have lower noise than those of the agents. One of the key

explanations can be that if the social planner �xes an expectation of the fundamental value,

then it can be easier for him to organize the network dynamics. In the case of noisy signals,

the changing signals of agents combined with the noisy signals of the social planner, bring

some mess to the social planner�s strategy.

To the best of my knowledge, this is the �rst paper where social planner tries to ma-

nipulate network in a dynamic setting, not by directly in�uencing agents�action, but by

just trying to introduce agents to each other in a way that social welfare will increase. An

appealing feature of the examined model is that it rationalizes decisions under incomplete

information. Agents in the model make decisions to create new links or to delete some of

the old links, depending on their value functions. The calculation of value functions is chal-

lenging, because of the complexity of the model. Our model can be still demanding even

with a case of N = 50, but it can o¤er new venues for improvement.
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Finally, future work can focus on extending the biased-sampling setup, focusing on some

real-world challenges that social-network platforms suggest. We can use this method of

creating and deleting links using the biases bi, and endogenizing the strength of peer-induced

assimilation bias.
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7. Appendix

7.1 Expectations of the state of the world

Agent i�s information set consists of her own private signal xi;t, the set of her neighbors�

private signals fxj;tgj2Ni and public signal yt. Since all signals are random variables, centered

at the �, to predict the state of the world conditional on it�s information set, agent i should

consider the following probability density function23 :

p (�tjIi;t) = p
�
�tjxi;t; fxj;tgj2Ni ; yt

�
/ p(xi; fxj;tgj2Ni yj�)p(�) /

/ exp

"
�1
2

 
�i(�t � xi;t)2 +

X
j2Ni

�j;t(�t � xj;t)2 + �(�t � yt)2
!#

Using standard derivations frequently used in the Bayesian statistics literature (see, for

instance, Koop (2007)). So we get the following result:

�j(xi;t;fxj;tgj2Ni ;yt) � N
 
�y + �ixi +

P
j �jxj

�+ �i +
P

j �j
;

1

�+ �i +
P

j �j

!
For calculating value functions, we need to calculate E(�2jIi). Following the Hakobyan

and Koulovatianos (2020) we will �nd the following:

E(�2jIi) =
 
�y + �ixi +

P
j �jxj

�+ �i +
P

j �j

!2
+

1

�+ �i +
P

j �j
(16)

7.2 More detail examples: 6-Agent case

Let�s consider the network structure which include 6 agents. The graph G is unweighted and

undirected, so M ij
t = M

ji
t as demonstrated in the Figure 2.

23With absolutely non-informative prior where p(�) / 1.
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Figure 2. Example with 6 agents

In the Section 3.1 we de�ne the information set as Ii;t =
 
yt; xi;t;

P
j

xj;t

!
. Let�s begin

from the �rst period t = 1, the information set will be the following I1;1 = (y1, x1;1, x2;1, x3;1);

I2;1 = (y1, x1;1, x2;1, x3;1); I3;1 = (y1, x1;1, x2;1, x3;1, x4;1); I4;1 = (y1, x3;1, x4;1, x5;1, x6;1);

I5;1 = (y1, x4;1, x5;1, x6;1) and I6;1 = (y1, x4;1, x5;1, x6;1). In Section 4 I introduce the algo-

rithm of �nding the equilibrium. The linear strategy which I de�ne in equation (10) looks

like the follows:

a1;1 = !111x1;1 + !
1
12x2;1 + !

1
13x3;1 + w

1
b1b1 +

�
1�

�
!111 + !

1
12 + !

1
13 + w

1
b1

��
y1

a2;1 = !121x1;1 + !
1
22x2;1 + !

1
23x3;1 + w

1
b2b2 +

�
1�

�
!121 + !

1
22 + !

1
23 + w

1
b2

��
y1

a3;1 = !131x1;1 + !
1
32x2;1 + !

1
33x3;1 + !

1
34x4;1 + w

1
b3b3 +

�
1�

�
!131 + !

1
32 + !

1
33 + !

1
34 + w

1
b3

��
y1

a4;1 = !143x3;1 + !
1
44x4;1 + !

1
45x5;1 + !

1
46x6;1 + w

1
b4b4 +

�
1�

�
!143 + !

1
44 + !

1
45 + !

1
46 + w

1
b4

��
y1

a5;1 = !154x4;1 + !
1
55x5;1 + !

1
56x6;1 + w

1
b5b5 +

�
1�

�
!154x+ !

1
55 + !

1
56 + w

1
b5

��
y1

a6;1 = !164x4;1 + !
1
65x5;1 + !

1
66x6;1 + w

1
b6b6 +

�
1�

�
!164x+ !

1
65 + !

1
66 + w

1
b6

��
y1

We normalized the weights, so !11 + !12 + !13 +wb1 +wy1 = 1 and we will solve system

of linear equations for !11;!12;!13;wb1 : Weight which agent 1 put on public signal we will

�nd in the following way wy1 = 1� (!11 + !12 + !13 + wb1). If the agent has no information

about the signal j, then Eixj = Ei�. Let�s consider the optimal action from 1st agent side,

which looks like the following equation:
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a1 = (1� r1)E1 (�1) + (1� r1) b1 + r1
q1
#N1

[!21x1 + !22x2 + !23x3 + wb2b2 + (1� !21 � !22 � !23 � wb2) y]

+r1
q1
#N1

[!31x1 + !32x2 + !33x3 + !34E1 (�1) + wb3b3 + (1� !31 � !32 � !33 � !34 � wb3) y] +

+r1
(1� q1)
#N�1

[!43x3 + !44E1 (�1) + !45E1 (�1) + !46E1 (�1) + wb4b4 + (1� !43 � !44 � !45 � !46 � wb4) y] +

+r1
(1� q1)
#N�1

[!54E1 (�1) + !55E1 (�1) + !56E1 (�1) + wb5b5 + (1� !54 � !55 � !56 � wb5) y] +

+r1
(1� q1)
#N�1

[!64E1 (�1) + !65E1 (�1) + !66E1 (�1) + wb6b6 + (1� !64 � !65 � !66 � wb6) y]

In the second step, we need to rearrange the terms, and get the coe¢ cient preceding the
E1 (�1).

a1 = E1 (�1)

�
(1� r1) + r1

�
q1
#N1

!34 +
(1� q1)
#N�1

[!44 + !45 + !46 + !54 + !55 + !56 + !64 + !65 + !66]

��
+

(1� r1) b1 + r1
q1
#N1

[!21 + !31]x1 + r1
q1
#N1

[!22 + !32]x2 + r1

�
q1
#N1

[!23 + !33] +
(1� q1)
#N�1

!43

�
x3 +

+r1
q1
#N1

(wb2b2 + wb3b3) + r1
(1� q1)
#N�1

(wb4b4 + wb5b5 + wb6b6) +

+r1

�
q1
#N1

[w2;y + w3;y] +
(1� q1)
#N�1

[w4;y + w5;y + w6;y]

�
y

Let�s use the algebra from Appendix A1 to calculate the Ei (�1).

E1 (�1) = E2 (�1) =
�1x1 + �2x2 + �3x3 + �y1

�1 + �2 + �3 + �
; E3 (�1) =

�1x1 + �2x2 + �3x3 + �4x4 + �y1
�1 + �2 + �3 + �4 + �

;

E4 (�1) =
�3x3 + �4x4 + �5x5 + �6x6 + �y1

�3 + �4 + �5 + �6 + �
; E4 (�1) = E5 (�1) =

�4x4 + �5x5 + �6x6 + �y1
�4 + �5 + �6 + �

;

Now we can �nd the weights which agent 1 put in y, x1, x2, x3 and b1.

Weight for x1

!11 =
�1

�1 + �2 + �3 + �

�
(1� r1) + r1

�
q1
#N1

!34 +
(1� q1)
#N�1

[!44 + !45 + !46 + !54 + !55 + !56 + !64 + !65 + !66]

��
+

+r1
q1
#N1

[!21 + !31]
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Weight for x2

!12 =
�2

�1 + �2 + �3 + �

�
(1� r1) + r1

�
q1
#N1

!34 +
(1� q1)
#N�1

[!44 + !45 + !46 + !54 + !55 + !56 + !64 + !65 + !66]

��
+

+r1
q1
#N1

[!22 + !32]

Weight for x3

!13 =
�3

�1 + �2 + �3 + �

�
(1� r1) + r1

�
q1
#N1

!34 +
(1� q1)
#N�1

[!44 + !45 + !46 + !54 + !55 + !56 + !64 + !65 + !66]

��
+

+r1

�
q1
#N1

[!23 + !33] +
(1� q1)
#N�1

!43

�

Weight for b1

wb1b1 = (1� r1) b1 + r1
q1
#N1

(wb2b2 + wb3b3) + r1
(1� q1)
#N�1

(wb4b4 + wb5b5 + wb6b6)()

() wb1 = (1� r1) +
r1
b1

q1
#N1

(wb2b2 + wb3b3) +
r1
b1

(1� q1)
#N�1

(wb4b4 + wb5b5 + wb6b6)

We can do the same Algebra from 2nd agent side.

!21 =
�1

�1 + �2 + �3 + �

�
(1� r2) + r2

�
q2
#N2

!34 +
(1� q2)
#N�2

[!44 + !45 + !46 + !54 + !55 + !56 + !64 + !65 + !66]

��
+

+r2
q2
#N2

[!11 + !31]

!22 =
�2

�1 + �2 + �3 + �

�
(1� r2) + r2

�
q2
#N2

!34 +
(1� q2)
#N�2

[!44 + !45 + !46 + !54 + !55 + !56 + !64 + !65 + !66]

��
+

+r2
q2
#N2

[!12 + !32]

!23 =
�3

�1 + �2 + �3 + �

�
(1� r2) + r2

�
q2
#N2

!34 +
(1� q2)
#N�2

[!44 + !45 + !46 + !54 + !55 + !56 + !64 + !65 + !66]

��
+

+r2

�
q2
#N2

[!13 + !33] +
(1� q2)
#N�2

!43

�
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wb2 = (1� r2) +
r2
b2

q2
#N2

(wb1b1 + wb3b3) +
r2
b2

(1� q2)
#N�2

(wb4b4 + wb5b5 + wb6b6)

Using the same strategy we will �nd the optimal action for 3rd agent.

a3 = E (�)

�
(1� r3) + r3

�
q3
#N3

[!45 + !46] +
(1� q3)
#N�3

[!55 + !56 + !65 + !66]

��
+ (1� r3) b3 +

+r3
q3
#N3

[!11 + !21]x1 + r3
q3
#N3

[!12 + !22]x2 + r3
q3
#N3

[!13 + !23 + !43]x3 +

+r3

�
q3
#N3

!44 +
(1� q3)
#N�3

[!54 + !64]

�
x4 + r3

q3
#N3

(wb1b1 + wb2b2 + wb4b4) +

+r3
(1� q3)
#N�3

(wb5b5 + wb6b6) + r3

�
q3
#N3

[w1;y + w2;y + w4;y] +
(1� q3)
#N�3

[w5;y + w6;y]

�
y

!31 =
�1

�1 + �2 + �3 + �4 + �

�
(1� r3) + r3

�
q3
#N3

[!45 + !46] +
(1� q3)
#N�3

[!55 + !56 + !65 + !66]

��
+

+r3
q3
#N3

[!11 + !21]

!32 =
�2

�1 + �2 + �3 + �4 + �

�
(1� r3) + r3

�
q3
#N3

[!45 + !46] +
(1� q3)
#N�3

[!55 + !56 + !65 + !66]

��
+

+r3
q3
#N3

[!12 + !22]

!33 =
�3

�1 + �2 + �3 + �4 + �

�
(1� r3) + r3

�
q3
#N3

[!45 + !46] +
(1� q3)
#N�3

[!55 + !56 + !65 + !66]

��
+

+r3
q3
#N3

[!13 + !23 + !43]

!34 =
�4

�1 + �2 + �3 + �4 + �

�
(1� r3) + r3

�
q3
#N3

[!45 + !46] +
(1� q3)
#N�3

[!55 + !56 + !65 + !66]

��
+

+r3

�
q3
#N3

!44 +
(1� q3)
#N�3

[!54 + !64]

�
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wb3 = (1� r3) +
r3
b3

q3
#N3

(wb1b1 + wb2b2 + wb4b4) +
r3
b3

(1� q3)
#N�3

(wb5b5 + wb6b6)

Consider the optimal strategy from agent 4 side.

a4 = E (�)

�
(1� r4) + r4

�
q4
#N4

[!31 + !32] +
(1� q4)
#N�4

[!11 + !12 + !21 + !22]

��
+ (1� r4) b4 +

+r4
q4
#N4

[!55 + !65]x5 + r4
q4
#N4

[!56 + !66]x6 + r4
q4
#N4

[!34 + !54 + !64]x4 +

+r4

�
q4
#N4

!33 +
(1� q4)
#N�4

[!13 + !23]

�
x3 + r4

q4
#N4

(wb3b3 + wb5b5 + wb6b6) +

+r4
(1� q4)
#N�4

(wb1b1 + wb2b2) + r4

�
q4
#N4

[w3;y + w5;y + w6;y] +
(1� q4)
#N�4

[w1;y + w2;y]

�
y

!43 =
�3

�3 + �4 + �5 + �6 + �

�
(1� r4) + r4

�
q4
#N4

[!31 + !32] +
(1� q4)
#N�4

[!11 + !12 + !21 + !22]

��
+

+r4

�
q4
#N4

!33 +
(1� q4)
#N�4

[!13 + !23]

�

!44 =
�4

�3 + �4 + �5 + �6 + �

�
(1� r4) + r4

�
q4
#N4

[!31 + !32] +
(1� q4)
#N�4

[!11 + !12 + !21 + !22]

��
+

+r4
q4
#N4

[!34 + !54 + !64]

!45 =
�5

�3 + �4 + �5 + �6 + �

�
(1� r4) + r4

�
q4
#N4

[!31 + !32] +
(1� q4)
#N�4

[!11 + !12 + !21 + !22]

��
+

+r4
q4
#N4

[!55 + !65]

!46 =
�6

�3 + �4 + �5 + �6 + �

�
(1� r4) + r4

�
q4
#N4

[!31 + !32] +
(1� q4)
#N�4

[!11 + !12 + !21 + !22]

��
+

+r4
q4
#N4

[!56 + !66]
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wb4 = (1� r4) +
r4
b4

q4
#N4

(wb3b3 + wb5b5 + wb6b6) +
r4
b4

(1� q4)
#N�4

(wb1b1 + wb2b2)

The strategy from the 5th agent side

a5 = E (�)

�
(1� r5) + r5

�
q5
#N5

!43 +
(1� q5)
#N�5

[!11 + !12 + !13 + !21 + !22 + !23 + !31 + !32 + !33]

��
+

(1� r5) b5 + r5
q5
#N5

[!45 + !65]x5 + r5
q5
#N5

[!46 + !66]x6 + r5

�
q5
#N5

[!44 + !64] +
(1� q5)
#N�5

!34

�
x4 +

+r5
q5
#N5

(wb4b4 + wb6b6) + r5
(1� q5)
#N�5

(wb1b1 + wb2b2 + wb3b3) +

+r5

�
q5
#N5

[w4;y + w6;y] +
(1� q5)
#N�5

[w1;y + w2;y + w3;y]

�
y

!54 =
�4

�4 + �5 + �6 + �

�
(1� r5) + r5

�
q5
#N5

!43 +
(1� q5)
#N�5

[!11 + !12 + !13 + !21 + !22 + !23 + !31 + !32 + !33]

��
+

+r5

�
q5
#N5

[!44 + !64] +
(1� q5)
#N�5

!34

�

!55 =
�5

�4 + �5 + �6 + �

�
(1� r5) + r5

�
q5
#N5

!43 +
(1� q5)
#N�5

[!11 + !12 + !13 + !21 + !22 + !23 + !31 + !32 + !33]

��
+

+r5
q5
#N5

[!45 + !65]

!56 =
�6

�4 + �5 + �6 + �

�
(1� r5) + r5

�
q5
#N5

!43 +
(1� q5)
#N�5

[!11 + !12 + !13 + !21 + !22 + !23 + !31 + !32 + !33]

��
+

+r5
q5
#N5

[!46 + !66]

wb5 = (1� r5) +
r5
b5

q5
#N5

(wb4b4 + wb6b6) +
r5
b5

(1� q5)
#N�5

(wb1b1 + wb2b2 + wb3b3)

From the 6th agent side
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a6 = E (�)

�
(1� r6) + r6

�
q6
#N6

!43 +
(1� q6)
#N�6

[!11 + !12 + !13 + !21 + !22 + !23 + !31 + !32 + !33]

��
+

(1� r6) b6 + r6
q6
#N6

[!45 + !55]x5 + r6
q6
#N6

[!46 + !56]x6 + r6

�
q6

#N6
[!44 + !54] +

(1� q6)
#N�6

!34

�
x4 +

+r6
q6
#N6

(wb4b4 + wb5b5) + r6
(1� q6)
#N�6

(wb1b1 + wb2b2 + wb3b3) +

+r6

�
q6
#N6

[w4;y + w5;y] +
(1� q6)
#N�6

[w1;y + w2;y + w3;y]

�
y

!64 =
�4

�4 + �5 + �6 + �

�
(1� r6) + r6

�
q6
#N6

!43 +
(1� q6)
#N�6

[!11 + !12 + !13 + !21 + !22 + !23 + !31 + !32 + !33]

��
+

+r6

�
q6

#N6
[!44 + !54] +

(1� q6)
#N�6

!34

�

!65 =
�5

�4 + �5 + �6 + �

�
(1� r6) + r6

�
q6
#N6

!43 +
(1� q6)
#N�6

[!11 + !12 + !13 + !21 + !22 + !23 + !31 + !32 + !33]

��
+

+r6
q6
#N6

[!45 + !55]

!66 =
�6

�4 + �5 + �6 + �

�
(1� r6) + r6

�
q6
#N6

!43 +
(1� q6)
#N�6

[!11 + !12 + !13 + !21 + !22 + !23 + !31 + !32 + !33]

��
+

+r6
q6
#N6

[!46 + !56]

wb6 = (1� r6) +
r6
b6

q6
#N6

(wb4b4 + wb5b5) +
r6
b6

(1� q6)
#N�6

(wb1b1 + wb2b2 + wb3b3)

7.3 Generalizing The Solution in Matrix Form
The matrix A represents the adjacency matrix plus identity matrix (shows all connections
including self-loops) A = Mt + eye (N). Let�s demonstrate the matrix A for the example
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which I introduce in Figure 2. Matrix A looks like,

A =

26666664
1 1 1 0 0 0
1 1 1 0 0 0
1 1 1 1 0 0
0 0 1 1 1 1
0 0 0 1 1 1
0 0 0 1 1 1

37777775 ;

The expression which is multiplied by Ei (�t) includes the following 2 parts: (1� ri) and

the weights of the signals, which agent i doesn�t observe.24

The weight of this signals can be not only the signals of agents who are not in agent i�s

network, but the same time the weight which agent i�s neighbors put to their friends, which

are not in agent i�s friends.25
For �nding the weight before Ei (�t) I will introduce the matrix Bi. As we need to �nd

the signals which are not in agent i�s network, we need to exclude the agent i�s friends from
the adjacency matrix.I take the row of matrix A, build a new matrix (N �N) and repeated
that row N times, for all agents N = f1; 2:::6g. For example for 6 agents case, the matrix
B looks like the following.

B1 = B2 =

26666664
1 1 1 0 0 0
1 1 1 0 0 0
1 1 1 0 0 0
1 1 1 0 0 0
1 1 1 0 0 0
1 1 1 0 0 0

37777775 ; B3 =
26666664
1 1 1 1 0 0
1 1 1 1 0 0
1 1 1 1 0 0
1 1 1 1 0 0
1 1 1 1 0 0
1 1 1 1 0 0

37777775 ;

B4 =

26666664
0 0 1 1 1 1
0 0 1 1 1 1
0 0 1 1 1 1
0 0 1 1 1 1
0 0 1 1 1 1
0 0 1 1 1 1

37777775 ; B5 = B6 =
26666664
0 0 0 1 1 1
0 0 0 1 1 1
0 0 0 1 1 1
0 0 0 1 1 1
0 0 0 1 1 1
0 0 0 1 1 1

37777775 ;

The next step will be introducing the matrix Ci, which will show all connections exclud-
ing agent i�s connections.. So Ci = A � Bi. If there is negative elements in the matrix
Ci (Cij < 0), we will replace to 0. For algoritm we will use Ci (Ci < 0) = 0. Which will �nd

24As we show in example (??), from the �rst agent side its look like the following E1 (�1) [ (1� r1) +
r1

q1
#N1

!34 +
(1�q1)
#N�1

[!44 + !45 + !46 + !54 + !55 + !56 + !64 + !65 + !66].
25For example, if we look from the �rst agent side the weight !34 is the weight which agent 3 puts to his
friend 4, which is not in agent�s i�s network.
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all negative elements and change it to 0.

C1 =

26666664
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 1 0 0
0 0 �1 1 1 1
0 0 0 1 1 1
0 0 0 1 1 1

37777775 so after replacing negative values C1 = C2 =

26666664
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 1 0 0
0 0 0 1 1 1
0 0 0 1 1 1
0 0 0 1 1 1

37777775 ;

C3 =

26666664
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 1 1
0 0 0 0 1 1
0 0 0 0 1 1

37777775 ; C4 =
26666664
1 1 0 0 0 0
1 1 0 0 0 0
1 1 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

37777775 ;C5 = C6 =
26666664
1 1 1 0 0 0
1 1 1 0 0 0
1 1 1 0 0 0
0 0 1 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

37777775 ;

Agent i di¤er friends from non-friends by putting di¤erent weights to them. As you can see

in the equation (1) the weight which agent i put to his friend is qi
#Ni

, non-friends weight is

equal to (1�qi)
#N�i

. We will take every row from matrix A. Let�s call it as Li = A(:; i)T , and

replace the "1�s" to qi
#Ni

, and "0�s" to (1�qi)
#N�i

. So in this way we will �nd the matrix which

shows the weights from each agent side, we will call it as Di = Li � A.26

D1 =

2666666664

q1
#N1

q1
#N1

q1
#N1

0 0 0
q1
#N1

q1
#N1

q1
#N1

0 0 0
q1
#N1

q1
#N1

q1
#N1

q1
#N1

0 0

0 0 (1�q1)
#N�1

(1�q1)
#N�1

(1�q1)
#N�1

(1�q1)
#N�1

0 0 0 (1�q1)
#N�1

(1�q1)
#N�1

(1�q1)
#N�1

0 0 0 (1�q1)
#N�1

(1�q1)
#N�1

(1�q1)
#N�1

3777777775
; D2 =

2666666664

q2
#N2

q2
#N2

q2
#N2

0 0 0
q2
#N2

q2
#N2

q2
#N2

0 0 0
q2
#N2

q2
#N2

q2
#N2

q2
#N2

0 0

0 0 (1�q2)
#N�2

(1�q2)
#N�2

(1�q2)
#N�2

(1�q2)
#N�2

0 0 0 (1�q2)
#N�2

(1�q2)
#N�2

(1�q2)
#N�2

0 0 0 (1�q2)
#N�2

(1�q2)
#N�2

(1�q2)
#N�2

3777777775
;

D3 =

2666666664

q3
#N3

q3
#N3

q3
#N3

0 0 0
q3
#N3

q3
#N3

q3
#N3

0 0 0
q3
#N3

q3
#N3

q3
#N3

q3
#N3

0 0

0 0 q3
#N3

q3
#N3

q3
#N3

q3
#N3

0 0 0 (1�q3)
#N�3

(1�q3)
#N�3

(1�q3)
#N�3

0 0 0 (1�q3)
#N�3

(1�q3)
#N�3

(1�q3)
#N�3

3777777775
; D4 =

2666666664

(1�q4)
#N�4

(1�q4)
#N�4

(1�q4)
#N�4

0 0 0
(1�q4)
#N�4

(1�q4)
#N�4

(1�q4)
#N�4

0 0 0
q4
#N4

q4
#N4

q4
#N4

q4
#N4

0 0

0 0 q4
#N4

q4
#N4

q4
#N4

q4
#N4

0 0 0 q4
#N4

q4
#N4

q4
#N4

0 0 0 q4
#N4

q4
#N4

q4
#N4

3777777775
;

D5 =

2666666664

(1�q5)
#N�5

(1�q5)
#N�5

(1�q5)
#N�5

0 0 0
(1�q5)
#N�5

(1�q5)
#N�5

(1�q5)
#N�5

0 0 0
(1�q5)
#N�5

(1�q5)
#N�5

(1�q5)
#N�5

(1�q5)
#N�5

0 0

0 0 q5
#N5

q5
#N5

q5
#N5

q5
#N5

0 0 0 q5
#N5

q5
#N5

q5
#N5

0 0 0 q5
#N5

q5
#N5

q5
#N5

3777777775
; D6 =

2666666664

(1�q6)
#N�6

(1�q6)
#N�6

(1�q6)
#N�6

0 0 0
(1�q6)
#N�6

(1�q6)
#N�6

(1�q6)
#N�6

0 0 0
(1�q6)
#N�6

(1�q6)
#N�6

(1�q6)
#N�6

(1�q6)
#N�6

0 0

0 0 q6
#N6

q6
#N6

q6
#N6

q6
#N6

0 0 0 q6
#N6

q6
#N6

q6
#N6

0 0 0 q6
#N6

q6
#N6

q6
#N6

3777777775
;

26Please note that when we will consider network formation process, the only matrix which which will change
and in�uence to decision send an invitation or cause an annoyances, is matrix Di.
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After describing matrix Ci and Di, in our paper we need a Hadamard product of this
two matrices Ei = Di � Ci.

E1 =

2666666664

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 q1

#N1
0 0

0 0 0 (1�q1)
#N�1

(1�q1)
#N�1

(1�q1)
#N�1

0 0 0 (1�q1)
#N�1

(1�q1)
#N�1

(1�q1)
#N�1

0 0 0 (1�q1)
#N�1

(1�q1)
#N�1

(1�q1)
#N�1

3777777775
; E2 =

2666666664

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 q2

#N2
0 0

0 0 0 (1�q2)
#N�2

(1�q2)
#N�2

(1�q2)
#N�2

0 0 0 (1�q2)
#N�2

(1�q2)
#N�2

(1�q2)
#N�2

0 0 0 (1�q2)
#N�2

(1�q2)
#N�2

(1�q2)
#N�2

3777777775
;

E3 =

266666664

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 q3

#N3

q3
#N3

0 0 0 0 (1�q3)
#N�3

(1�q3)
#N�3

0 0 0 0 (1�q3)
#N�3

(1�q3)
#N�3

377777775
; E4 =

266666664

(1�q4)
#N�4

(1�q4)
#N�4

0 0 0 0
(1�q4)
#N�4

(1�q4)
#N�4

0 0 0 0
q4
#N4

q4
#N4

0 0 0 0

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

377777775
;

E5 =

2666666664

(1�q5)
#N�5

(1�q5)
#N�5

(1�q5)
#N�5

0 0 0
(1�q5)
#N�5

(1�q5)
#N�5

(1�q5)
#N�5

0 0 0
(1�q5)
#N�5

(1�q5)
#N�5

(1�q5)
#N�5

0 0 0

0 0 q5
#N5

0 0 0

0 0 0 0 0 0
0 0 0 0 0 0

3777777775
; E6 =

2666666664

(1�q6)
#N�6

(1�q6)
#N�6

(1�q6)
#N�6

0 0 0
(1�q6)
#N�6

(1�q6)
#N�6

(1�q6)
#N�6

0 0 0
(1�q6)
#N�6

(1�q6)
#N�6

(1�q6)
#N�6

0 0 0

0 0 q6
#N6

0 0 0

0 0 0 0 0 0
0 0 0 0 0 0

3777777775
;

So we solve the �rst part of optimal action, now we need to get how agent i�s signal
depends on signals which he gets. Let�s introduce the matrix Fi, For every agent i I take
the i-th row from the matrix A and build a new matrix Fi where other rows are 0s.

F1 =

26666664
1 1 1 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

37777775 ; F2 =

26666664
0 0 0 0 0 0
1 1 1 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

37777775 ; F3 =
26666664
0 0 0 0 0 0
0 0 0 0 0 0
1 1 1 1 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

37777775 ;

F4 =

26666664
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 1 1 1 1
0 0 0 0 0 0
0 0 0 0 0 0

37777775 ; F5 =
26666664
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 1 1 1
0 0 0 0 0 0

37777775 ; F6 =

26666664
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 1 1 1

37777775 ;

For �nding the last part of optimal action27 , I will Introduce the matrix Gi = A�Ci�Fi.

The matrix Gi shows the signals which agent i knows which other people gets.
27For example, if we look from the �rst agent side we need to �nd the following part. r1

q1
#N1

[!21 + !31]x1+

r1
q1
#N1

[!22 + !32]x2+

r1

h
q1
#N1

[!23 + !33] +
(1�q1)
#N�1

!43

i
x3. So we need to get the weights before agent private signal.
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G1 =

26666664
0 0 0 0 0 0
1 1 1 0 0 0
1 1 1 0 0 0
0 0 1 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

37777775 ; G2 =

26666664
1 1 1 0 0 0
0 0 0 0 0 0
1 1 1 0 0 0
0 0 1 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

37777775 ; G3 =
26666664
1 1 1 0 0 0
1 1 1 0 0 0
0 0 0 0 0 0
0 0 1 1 0 0
0 0 0 1 0 0
0 0 0 1 0 0

37777775 ;

G4 =

26666664
0 0 1 0 0 0
0 0 1 0 0 0
0 0 1 1 0 0
0 0 0 0 0 0
0 0 0 1 1 1
0 0 0 1 1 1

37777775 ; G5 =
26666664
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 1 0 0
0 0 0 1 1 1
0 0 0 0 0 0
0 0 0 1 1 1

37777775 ; G6 =

26666664
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 1 0 0
0 0 0 1 1 1
0 0 0 1 1 1
0 0 0 0 0 0

37777775 ;

The private information which agent i gets, can be part of linear strategy not only his

friends, but from neighbors of his friends, so we need to multiply by elements the matrix Gi

and Di. The matrix Hi = Di �Gi.

H1 =

266666664

0 0 0 0 0 0
q1
#N1

q1
#N1

q1
#N1

0 0 0
q1
#N1

q1
#N1

q1
#N1

0 0 0

0 0 (1�q1)
#N�1

0 0 0

0 0 0 0 0 0
0 0 0 0 0 0

377777775
; H2 =

266666664

q2
#N2

q2
#N2

q2
#N2

0 0 0

0 0 0 0 0 0
q2
#N2

q2
#N2

q2
#N2

0 0 0

0 0 (1�q2)
#N�2

0 0 0

0 0 0 0 0 0
0 0 0 0 0 0

377777775
;

H3 =

266666664

q3
#N3

q3
#N3

q3
#N3

0 0 0
q3
#N3

q3
#N3

q3
#N3

0 0 0

0 0 0 0 0 0
0 0 q3

#N3

q3
#N3

0 0

0 0 0 (1�q3)
#N�3

0 0

0 0 0 (1�q3)
#N�3

0 0

377777775
; H4 =

266666664

0 0 (1�q4)
#N�4

0 0 0

0 0 (1�q4)
#N�4

0 0 0

0 0 q4
#N4

q4
#N4

0 0

0 0 0 0 0 0
0 0 0 q4

#N4

q4
#N4

q4
#N4

0 0 0 q4
#N4

q4
#N4

q4
#N4

377777775
;

H5 =

266666664

0 0 0 0 0 0
0 0 0 0 0 0

0 0 0 (1�q5)
#N�5

0 0

0 0 0 q5
#N5

q5
#N5

q5
#N5

0 0 0 0 0 0
0 0 0 q5

#N5

q5
#N5

q5
#N5

377777775
; H6 =

266666664

0 0 0 0 0 0
0 0 0 0 0 0

0 0 0 (1�q6)
#N�6

0 0

0 0 0 q6
#N6

q6
#N6

q6
#N6

0 0 0 q6
#N6

q6
#N6

q6
#N6

0 0 0 0 0 0

377777775
;

Before getting the weights, lets analyze the expectation side. As we explain in the
previous section the Et (�t) depends on the private and public signals which every agents
have.

E1 (�1) = E2 (�1) =
�1x1 + �2x2 + �3x3 + �y1

�1 + �2 + �3 + �
; E3 (�1) =

�1x1 + �2x2 + �3x3 + �4x4 + �y1
�1 + �2 + �3 + �4 + �

;

E4 (�1) =
�3x3 + �4x4 + �5x5 + �6x6 + �y1

�3 + �4 + �5 + �6 + �
; E4 (�1) = E5 (�1) =

�4x4 + �5x5 + �6x6 + �y1
�4 + �5 + �6 + �

;
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I will write the algorithm for �nding the optimal weights before private signals and biases.

The optimal weight of public signal can be �nd using the optimal weight of private signals

and biases. Now let consider the precision side. Let introduce � which is a vector of all

private signal precision. We will use command repmat which will repeat this vector. For

example in our example N = 6; we will � = repmat(�;N; 1), which repeat the row � six

time.

� =

26666664
�1 �2 �3 �4 �5 �6
�1 �2 �3 �4 �5 �6
�1 �2 �3 �4 �5 �6
�1 �2 �3 �4 �5 �6
�1 �2 �3 �4 �5 �6
�1 �2 �3 �4 �5 �6

37777775

For getting the precision which is known from all agents side, let�s multiply every element

of the matrix � with matrix A. �new = � � A.

�new =

26666664
�1 �2 �3 0 0 0
�1 �2 �3 0 0 0
�1 �2 �3 �4 0 0
0 0 �3 �4 �5 �6
0 0 0 �4 �5 �6
0 0 0 �4 �5 �6

37777775 ;

Now we need to sum the row of �new and plus �, which is precision of public signal.

The precision of public signal is common knowledge.

norm = sum (�new ; 2) + � �

26666664
1
1
1
1
1
1

37777775() norm =

26666664
�1 + �2 + �3 + �
�1 + �2 + �3 + �

�1 + �2 + �3 + �4 + �
�3 + �4 + �5 + �6 + �
�4 + �5 + �6 + �
�4 + �5 + �6 + �

37777775 ;

Using the command repmat(norm; 1; N) gives us the matrix Rnorm which repeat the

column of the matrix norm N times.
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Rnorm =

26666664
�1 + �2 + �3 + � : : : : �1 + �2 + �3 + �
�1 + �2 + �3 + � : : : : �1 + �2 + �3 + �

�1 + �2 + �3 + �4 + � : : : : �1 + �2 + �3 + �4 + �
�3 + �4 + �5 + �6 + � : : : : �3 + �4 + �5 + �6 + �
�4 + �5 + �6 + � : : : : �4 + �5 + �6 + �
�4 + �5 + �6 + � : : : : �4 + �5 + �6 + �

37777775 ;

After de�ning the Rnorm , we can �nd a new precision matrix P = �new � �Rnorm.

P =

26666666664

�1
�1+�2+�3+�

�2
�1+�2+�3+�

�3
�1+�2+�3+�

0 0 0
�1

�1+�2+�3+�
�2

�1+�2+�3+�
�3

�1+�2+�3+�
0 0 0

�1
�1+�2+�3+�4+�

�2
�1+�2+�3+�4+�

�3
�1+�2+�3+�4+�

�4
�1+�2+�3+�4+�

0 0

0 0 �3
�3+�4+�5+�6+�

�4
�3+�4+�5+�6+�

�5
�3+�4+�5+�6+�

�6
�3+�4+�5+�6+�

0 0 0 �4
�4+�5+�6+�

�5
�4+�5+�6+�

�6
�4+�5+�6+�

0 0 0 �4
�4+�5+�6+�

�5
�4+�5+�6+�

�6
�4+�5+�6+�

37777777775
;

So after de�ning all matrices which we need to �nd the optimal weights, we will describe

a large matrix Z which will combine Z1,Z2,Z3. At �rst, Let rearrange and put together the

expression before Ei(�).So let�s introduce each elements of Z.

For introducing Z1 at �rst i will introduce N blocks of matrices.

Z1 =

26666664
Z11
Z21
Z :1
Z :1
ZN�11

ZN1

37777775 =
26666664
repmat

�
reshape

�
ET1 ; 1; N �N

�
; N; 1

�
repmat

�
reshape

�
ET2 ; 1; N �N

�
; N; 1

�
repmat

�
reshape

�
ET: ; 1; N �N

�
; N; 1

�
repmat

�
reshape

�
ET: ; 1; N �N

�
; N; 1

�
repmat

�
reshape

�
ETN�1; 1; N �N

�
; N; 1

�
repmat

�
reshape

�
ETN ; 1; N �N

�
; N; 1

�

37777775
So in matrix Z the Z1 represent a block of constant multiply to Ei (�t). We need to multiply

by elements this matrix with precision matrix. So we need to rearrange the precision matrix

and the matrix which represent the the weight on conformity(ri). The new precision matrix

looks like Pnew = reshape
�
P T ; N �N; 1

�
. The matrixRnew = reshape

�
repmat

�
RT ; 1; N

�T
; N �N; 1

�
,

where R =
�
r1 r2 r3 r4 r5 r6

�
.

Now we will introduce the block Z2, which consists of N blocks matrices.
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Z2 =

26666664
Z12
Z22
Z :2
Z :2
ZN�12

ZN2

37777775 =
26666664
repmat

�
reshape

�
HT
1 ; 1; N �N

�
; N; 1

�
repmat

�
reshape

�
HT
2 ; 1; N �N

�
; N; 1

�
repmat

�
reshape

�
HT
: ; 1; N �N

�
; N; 1

�
repmat

�
reshape

�
HT
: ; 1; N �N

�
; N; 1

�
repmat

�
reshape

�
HT
N�1; 1; N �N

�
; N; 1

�
repmat

�
reshape

�
HT
N ; 1; N �N

�
; N; 1

�

37777775
The third block Z3 is the identity matrix Z3 = repmat(eye(N); N;N), which represent the
private signal set, the �rst row represent x1, the second row represent the x2 and so on.

Z3 = repmat(eye(N); N;N);where eye(N) =

2666666664

1 0 0 0 0 0
: 1 : : : :
: : : : : :
: : : : : :
: : : : : :
: : : : 1 :
0 0 0 0 0 1

3777777775
So let introduce Matrix X ,which is in (N �N) � (N �N) matrix.

X=eye (N �N)�R:*Pnew:*Z1 �R:*Z2:*Z3

So the matrix of weights looks like the following

X *

26666666666666666664

!1;1
:

!1;N
!2;1
:

!2;N
:

!N�1;1
!N�1;N�1
!N;1
:

!N;N

37777777777777777775

= (I �R) :*Pnew

Therefore, the optimal weights matrix will be,

W�
x = (Xx)

�1 (1�R)Pnew (17)

Now let�s �nd the optimal weight for bias. At �rst I will introduce the row-vector of
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b =

�
b1 b2 : : : bN

�
. We will use a command bnew = repmat(�;N; 1).

b�new = bnew � A �

266664
0 1 : : : 1
1 0 : : : 1
: : : : : :
: : : : : :
1 : : : 1 0

377775 =
26666664
0 b2 b3 0 0 0
: 0 : : : :
: : : : : :
: : : : : :
0 0 0 bN�2 0 bN
0 0 0 bN�2 bN�1 0

37777775

b+� =

26666664
�1 : �1N1;m

1N1;k
: 1N1;e n d

: : : : : :
�1Nm;1 : �1Nm;m 1Nm;k

: 1Nm;end

1Nk;1
: 1Nk;m

�1Nk;k
: �1Nk;end

: : : : : :
1NN;1

: 1NN;m
�1NN ,k : �1NN;N

37777775

Xb =

26666664
1 0 : : : 0
0 1 0 : : :
: : : : : :
: : : : : :
: : : : 1 0
0 : : : : 1

37777775+
266666664

r1
b1

q1
#N1

r2
b2

q2
#N2

r:
b:

q:
#N:

r:
b:

q:
#N:

rN�1
bN�1

qN�1
#NN�1

rN
bN

qN
#NN

377777775
� (b�new � b+�) +

26666666664

r1
b1

(1�q1)
#N�1

r2
b2

(1�q2)
#N�2

r:
b:

(1�q:)
#N�:

r:
b:

(1�q:)
#N�:

rN�1
bN�1

(1�qN�1)
#N�(N�1)

rN
bN

(1�qN )
#N�N

37777777775
� (b�new � b+�)

The optimal weights Wb

W�
b = (Xb)

�1 �

2666666666664

(1� r1)

(1� r:)

(1� r:)

(1� r:)

(1� rN)

3777777777775
(18)

The expressions (17) and (18) will give us the optimal weights for private signal and bias,

and we can �nd the optimal weight for public signal.

Wy = 1�Wx �Wb (19)
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7.4 Calculating the value functions

The value functions are equal to E(ui(a�; �)). Using equation (10), we �nd the optimal

action a�i of each agent, and then we put the optimal action a
�
i into the expected utility

function and �nd the expected utility from everyone�s side.
I introduce some matrices that can in decreasing the size of equations.

�x

266664
x1
x2
:
:
xN

377775 ; �b =
0BBBB@
266664
b1
:
:
:
bN

377775 �
266664

1
1
1m
�1k
�1end
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266664
!1;y
!2;y
:
:

!N;y

377775 ; �!b =
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!1;b
!2;b
:
:

!N;b
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�1
�2
:
:
�N

377775 ;

266664
E1(�)
E2(�)
:
:

EN (�)

377775 =
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266664A �
266664
X1
:
:
:
XN

377775 : �
266664
�1
:
:
:
�N

377775+ (� � y) �
266664
1
:
:
:
1

377775
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A �

266664
�1
:
:
:
�N

377775+ � �
266664
1
:
:
:
1

377775

1CCCCCCCCCCCCCCA

E�(�2) =

266664
E1(�

2)

E2(�
2)

:
:

EN (�
2)

377775 =

0BBBBBBBBBBBBBB@

266664A �
266664
X1
:
:
:
XN

377775 : �
266664
�1
:
:
:
�N

377775+ (� � y) �
266664
1
:
:
:
1

377775
377775 � �

A �

266664
�1
:
:
:
�N

377775+ � �
266664
1
:
:
:
1

377775

1CCCCCCCCCCCCCCA

2

+

0BBBBBBBBBBBBBB@

266664
1
:
:
:
1

377775 � �

A �

266664
�1
:
:
:
�N

377775+ � �
266664
1
:
:
:
1

377775

1CCCCCCCCCCCCCCA

where matrix A represents the adjacency matrix plus identity matrix A =M t+eye(N).

The operation "�" denotes element-by-element multiplication, �� denotes element-by-element

division, and 2
� each element in the matrix are squared.

The calculations are summarized by,
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E(ui(a; �))
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�2 �
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diag(DN )T � (((GN �W) � �x) � ((CN �W) � 1))
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:
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:
:
:
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�
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:
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diag(DN )
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�
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2664
r1
:
:
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3775 �
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:
:
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3775 �
2664
diag(D1)
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�
(G1 �W) � �x+ (C1 �W) � E(�) +

�
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��
:
:

diag(DN )
T �
�
(GN �W) � �x+ (CN �W) � E(�) +
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��
3775�

�2 �

2664
r1
:
:
rN

3775 �
2664
diag(D1)

T �
PN

i=1 (M(:; i) �M � 1)
:
:

diag(DN )
T �
PN

i=1 (M(:; i) �M � 1)

3775 � E(�)2�
whereM = C1;new �Wprivate andM =Mjf(M1(:;i�1;i�2;:::i�N)=0g.So when we take the �rst row

from the matrixM, we replace 0�s in their place. The next step, when we take the second

row, we will keep the matrix which we get before(with the �rst row equal to 0�s) and we

change and put the second row = 0.

8. Proof of the static-game result

As we can see in Figures 3a, 3b, and 3c, the �nal period graphs looks like combination of

star networks with ring networks. Therefore, for simpli�cation, I compare �central agent�,

�central sender�and �central receiver� cases. Below I describe the optimal private signal

weight.

Star network joint with ring network. The central agent sends and gets the

private signals of others

ai = w1
xi + xi�1 + xi+1

3
+ w2xc + (1� w1 � w2)y
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ac = !1xc + !2

N�1X
i=1

xi
N � 1 + (1� !1 � !2)y

w�c =

2666666664

!1

!2

w1

w2

3777777775
=

2666666664

1 0 0 �r

0 1
N�1 � r

N�1 0
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�1 2666666664

(1� r)�c
N

(1� r)�c
N

(1� r)�i
4

(1� r)�i
4

3777777775
(20)

One centralized agent who gets signals from others without showing his own

signal We consider network structure where central agents gets signals from other agents

in the networks, but didn�t share his own signal.

Linear Strategy for central agents will look like the following way.

ac = !1xc + !2

P
xi

N � 1 + (1� !1 � !2)y

Linear strategy for other agents will look like the following way.

ai = w1
xi + xi+1 + xi�1

3
+ (1� �)y

w�r =

266664
!1

!2

w1

377775 =
266664

1 0 0

0 1 �r

��i
3

r
N�1 ��i

3
r(N�4)
(N�1)2 �

r
(N�1)2

1
3
� �i

3
r(N�4)
(N�1) �

2
3

r
N�1

377775
�1 266664

(1� r)�c
N

(1� r)�c(N�1)
N

(1� r)�i
3

377775
(21)
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Optimal weights can be provide by request. We use this matrices to analyze the social

welfare.

Central agent sends information without getting any signal Let�s look at the linear

strategy of agents.

ai = w1
xi + xi+1 + xi�1

3
+ w2xc + (1� !1 � !2)y

ac = !cxc + (1� �)y

! =
v

v + h
((1� r) + r!1) + r!2 (22)

So we can �nd the optimal weights !1, w1 and w2.

w�s =

266664
!1

w1

w2

377775 =
266664

1 �r �
�+�

�r

0 1
3
� �i

3
r(N�4)
(N�1) �

2
3

r
N�1 0

� r
N�1 ��i

4
r(N�4)
(N�1) 1� r(N�2)

(N�1)

377775
�1 266664

(1� r) �
�+�

(1� r)�i
4

(1� r)�i
4

377775 (23)

The optimal weights are available in online Appendix, using these optimal weights we

can calculate the welfare W �
c ,W

�
r and W

�
s

The optimal welfare for central agent case is described by the following equations. Please

notice, that in this example precision is equal for every agents and agents doesn�t distinguish

weights between friends and non-friends.

W �
c =

1

N

 
!2�1
�
+

!2�2
(N � 1) � +

(1� !�1 � !�2)
2

�

!
+
N � 1
N

 
w2�1
3�

+
w2�2
�
+
(1� w�1 � w�2)

2

�

!
(24)
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The welfare W �
r from central reciever side describes by the following equations.

W �
r =

1

N

 
!2�1
�
+

!2�2
(N � 1) � +

(1� !�1 � !�2)
2

�

!
+
N � 1
N

 
w2�1
3�

+
(1� w�1)

2

�

!
(25)

The welfare W �
r from central sender side describes by the following equations.

W �
s =

1

N

 
!2�1
�
+
(1� !�1)

2

�

!
+
N � 1
N

 
w2�1
3�

+
w2�2
�
+
(1� w�1 � w�2)

2

�

!
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