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A HYBRID LEMMATISER FOR OLD CHURCH SLAVONIC 

 
 

The article considers a lemmatiser that is developed specifically for Old Church Slavonic (OCS). 

The introduction underlines the problem of the lack of lemmatisers that might deal with different 

datasets of the OCS. The review gives a short description of previous attempts and current trends in 

lemmatisation. The lemmatiser is hybrid-based and uses the advantages of linguistic rules for spe-

cific cases (fragmentary tokens, punctuation, or digits), a dictionary for the most common tokens, 

and a sequence-to-sequence (seq2seq) neural network with an attention mechanism for the rest of 

material. The model achieves an 85% overall accuracy score, which is lower than one of the previ-

ous models for the Universal Dependencies(UD) dataset. However, when specific tokens are taken 

into consideration, the model outperforms the previous ones with the help of its rule-based part. 

Possible further directions of the research include the use of more sophisticated architectures, such 

as BART. 
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Introduction 

Lemmatisation is the transformation of a word into its lemma or base form. It is similar to stem-

ming, but stemming is more naive as an algorithm, generally only defining the first x common let-

ters of the set of word forms, while lemmatisation provides the common word form for a given set 

of word forms. For instance, there is no possible way to stem Old Church Slavonic (OCS) мене ‘I-

GEN’ from азъ ‘I-NOM’, however, the lemma for both of this forms is азъ ‘I’. 

Lemmatisation is widely used in linguistics. It helps to make dictionaries out of corpora, and is a 

natural way of making dictionaries in general. It is also a stage in corpus design, the results of 

which are helpful when working with the finished corpus. Lemmatisation is helpful in entity recog-

nition and text summarising. It may be used as an additional way of tagging corpora [Hardie et al., 

2014] [Schryver and Nabierye, 2018] [Camps et al., 2020]. Lemmatised corpora are easier to search 

through and analyse. 

Automatic lemmatisation as a complex NLP task may be defined differently, depending on the par-

ticular approach that a researcher uses. The first definition is based on the older approach presented 

in works that treat lemmatisation as a three-step hybrid task [Mills, 1998] [Chrupała, 2006] [Plisson 

et al., 2008], [Gesmundo and Samardžić, 2012] [Radziszewski, 2013]. First, a researcher should de-

scribe all the lemmatisation rules applying to the words of a particular language. Second, a specific 

tool is trained for a multi-class classification task. This task matches a lemmatisation model and a 

given word given. The tool that performs this task might differ from gradient boosting algorithms, 

such as XGBoost [Tianqi and Carlos, 2016], or statistical methods, for instance, Hidden Markov 

Model (HMMs) [Jiampojarman et al., 2008]. Third, when the rule is determined, it is applied to the 

word, and the lemma is acquired. Thus, automatic lemmatisation with this approach may be defined 

as a learning task of determining of a lemmatising rule on the basis of a given word, and using it to 

acquire the lemma of the given word. 

The second definition relies on the newer approach that appeared during the last decade in which 

lemmatisation is made in one step [Kanerva et al., 2020]. A tool takes a given word and auxiliary 

information, such as the POS tag, or morphological data, or left context, and produces a lemma. 

This is usually achieved via decoding input information, transforming the acquired tensor, and en-

coding it into the output information. The choice of tools is more limited when one chooses this ap-

proach. Encoder-decoder models are usually made with advanced neural networks [Ljubešić and 

Dobrovoljc, 2019]. The preferred architecture is usually a sequence-to-sequence (seq2seq) model, 

which takes a word and optional auxiliary information as input, and outputs a lemma [Bergmanis 

and Goldwater, 2018]. In this sense, automatic lemmatisation may be defined as a neural transfor-

mation of a sequence that consists of a word and linguistic data about this word into a sequence that 

consists of a lemma. 

This article investigates how seq2seq neural networks, enhanced by an attention mechanism, are 

able to deal with lemmatisation and how necessary it is to enhance a model, consisting only of a 

neural network, with a set of specifically designed linguistic rules. 

The system that is the subject of this article is a hybrid lemmatiser for the corpus of the Old Church 

Slavonic (OCS). A hybrid system here means one built from three different modules, and each 

module is designed to deal with a certain class of tokens to be lemmatised. Rules define the process 

of lemmatisation specifically for fragments, digits, and punctuation marks. Dictionaries are used to 

deal with previously encountered words. A neural network processes the rest of the words. 

The neural network is based on seq2seq architecture with an attention mechanism [Sutskever et al., 

2014] [Cho et al., 2014]. This architecture is based on the encoder-decoder pair of models, with the 
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encoder taking a sequence of language and transforming it into a vector, and the decoder forming 

sequences from learned vectors. Sequences are generated symbol by symbol, and thus the left and 

right context are important. The attention mechanism, an additional neural network, helps to better 

extract information from the context. The neural network was implemented with the Keras API (Keras). 

The representation of the similar system workflow is demonstrated in the figure 1. 

 
Fig. 1. One of the possible implementations of seq2seq architecture. 

 

The original purpose of this network was to perform machine translation. However, with the emer-

gence of Universal Dependency (UD) lemmatisers [Straka et al., 2017] [Bergmanis and Goldwater, 

2018] [Kanerva et al., 2018], it was proved that it could also be used for lemmatisation [Metheniti et 

al., 2020], e.g. in the case of Lematus [Bergmanis and Goldwater, 2018]. 

There are two proposed solutions for enhancing the efficiency of the seq2seq-based models. The 

first one uses more morphological information from the dataset provided and the left context. This 

may be useful when testing part of the UD dataset, but in the OCS corpus the only previous tagging 

is POS. Thus, the whole purpose of preparing the lemmatiser for the corpus is defeated. The second 

way to improve the results is utilising more sophisticated models used for machine translation 

[Lewis et al., 2020]. This is the next step of the research. 

The rest of the work is organised as follows. Previous attempts to build a lemmatiser are reviewed. 

The model architecture and possible alternates are presented. The datasets, the UD and OCS corpo-

ra, are characterised. The experimental settings are provided, the results are given, compared to the 

previous models, and discussed. The outline for the further development of the system concludes 

the research. 

 

Previous Work 

Lemmatisation has been of interest in NLP for the last few decades [Hann, 1974]. Since then, tools 

for lemmatisation have been divided into universal lemmatisers [Straka et al., 2017] [Bergmanis 

and Goldwater, 2018] [Kanerva et al., 2020] and specific lemmatisers designed to execute a particu-

lar task, for instance, for a particular language [Džeroski and Erjavec, 2001] [Groenewald, 2007] 

[Tamburini, 2013] or for a particular POS [Prinsloo, 2012] [Gouws and Prinsloo, 2012] [Ntham-

beleni and Musehane, 2014], or a group of words within a POS [Fernández, 2020], or a class of 
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words with a very specific behaviour, such as words within fixed expressions [Farkas et al., 2008] 

[Mulhall, 2008] [Kosch, 2016]. One approach unites both lemmatiser and tagger in a single model 

[Spyns, 1996] [Aduriz et al., 1998]. Some lemmatisers, developed for a single language, may be 

fine-tuned to be used for the other ones [Groenewald, 2009]. 

Automatic lemmatisation was initially based mostly on the linguistic rule-based method [Evans, 

2006] [Jursic, 2010]. Later, there was a shift to basic machine learning models that rely on statistics 

[Mzamo et al., 2015]. These days, the most successful models are universal [Straka et al., 2017] 

[Bergmanis and Goldwater, 2018] [Kanerva et al., 2018]. Usually the corpus used for the training, 

validation and testing of this model is UD [Straka et al., 2017], and they are the part of the common 

UD pipeline [Straka et al., 2016]. 

Interest in lemmatisation for OCS has grown during the last five years. The models tend to use the 

seq2seq architecture with an attention mechanism [Sutskever et al., 2014] [Cho et al., 2014]. The 

results have been satisfying since the first published works [Podtergera, 2016]. However, for a par-

ticular part of the OCS canon, Codex Marianus, which is the part of the UD, these results have been 

bested by universal lemmatisers which have gradually achieved an overall accuracy score of 95–

97% [Straka et al., 2017] [Bergmanis and Goldwater, 2018] [Kanerva et al., 2020]. These models 

are mostly UD-based, and the UD dataset for OCS lacks the methods to deal with punctuation 

marks, fragments and digits. A possible solution is to use a hybrid model, such as the one that is 

used for Old Eastern Slavonic and Middle Russian [Berdičevskis, 2016]. 

 

Datasets 

Two datasets are used for the task. The first one is the UD OCS dataset [Zeman et al., 2020], on 

which the model was trained, validated, and preliminarily tested. The UD OCS dataset contains POS 

tagged tokens of Codex Marianus, one of the largest and most widely accepted as a part of the OCS canon 

texts. The second dataset is the raw text of the Kiev Folia [Kiev Folia]. This is significantly smaller, 

does not have the prepared lemma options, but is considered to be one of the core texts of the OCS 

canon. Its dissimilarity to the UD OCS dataset and plans to make it the first text of a projected OCS 

corpus are what make this text suitable for the out-of-domain testing of the model. The results of 

processing the latter with the model are going to be implemented into the upcoming OCS corpus 

after manual correction. 

The UD OCS dataset consists of 57,563 tokens [Haug and Jøhndal, 2008]. It is taken from the PRO-

IEL project [Haug and Jøhndal, 2008]. Additional information in the dataset consists of POS tag, 

morphological tagging, and the particular place of the word in the text, with the possibility of ex-

tracting left and right contexts from the dataset. The text used is Codex Marianus, one of the largest 

Gospels written in OCS. The dataset is split into three parts. The largest one, train, consists of 

37,432 tokens. The second and the third, dev and test, consist of approximately equal amount of to-

kens, 10,100 and 10,031 respectively. Test is more lexically diversified than dev or train. Thus, dev 

is added to train during the model training. The resulting splits are train_dev with a token count of 

47,532, and test with 10,031. Train_dev is used for training and validating, while test is used for 

evaluation. The combination of model parameters which proved to be the most efficient on test are 

then is used for the lemmatisation of the corpus. 

Kiev Folia is taken from the TITUS collection [Kiev Folia]. The version is based on the latest edi-

tion of Kiev Folia [Schaeken, 1987]. The TITUS version of the text is presented in electronic form 

via ASCII. It is impossible to use this version directly because of the seq2seq architecture of the 
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model. The model is trained on Cyrillic text of Codex Marianus, presented in the UD OCS dataset. For the 

model to see correlations between the sequences of particular symbols, Kiev Folia should be convert-

ed into Cyrillic script, because when facing Latin symbols, the model generates arbitrary sequences, 

and thus the whole process of training would become useless. Thus, it is important to prepare the 

dataset of Kiev Folia for processing, which means the transliteration from the ASCII script to Cyril-

lic. The version that is used for the corpus was the Cyrillic version of the TITUS text, which was 

made with specific transliteration rules for conversion from ASCII to Cyrillic [Afanasev, 2020]. 

After that it was enriched with POS tagging, based on the HMM model [Uludoğan, 2018]. The re-

sulting dataset consists of 1,342 tokens. Each word is treated as a separate token, as in the UD OCS 

dataset. However, Kiev Folia contains two more classes of tokens. The first is punctuation marks, 

the second is digits (in the alphabetical number system, such as ∽Б∽ ‘2’). OCS corpus texts may 

also contain fragmentary tokens, marked with sign ‘=’, however, in Kiev Folia these are not present. 

Tokens are taken from the corpus, lemmatised by the model, and then returned to the corpus, con-

taining the predicted lemmas for all the words given as input. Kiev Folia is not split into parts, it is 

processed as a whole because the model is not trained or validated on this text, it only predicts the 

lemmas for its words. 

 

Method 

The model connects rule-based and dictionary-based modules to recurrent neural network (RNN), 

creating a hybrid system that is able to cover most of the cases that are met in the datasets described 

earlier. 

The system may use naive stemming, additional information (the POS tag of the word analysed), 

the dictionary created in the training process, and n-gram predictions. In addition, some rules regu-

lating the defining of a word’s attribution to the specific POS are implemented. The system is 

trained and tested on Codex Marianus, an OCS text that is the part of the UD [Zeman et al., 2020]. 

The architecture that achieved the best results is then tested once again on the material of the Kiev 

Folia dataset [Kiev Folia]. The code and the models, the results of which are presented in the arti-

cle, are open source published [Project Repository]. 

The input to the model is a file that contains linguistic data, with a combination of settings that de-

fine the workflow of the model. A user must define the file as there is no default option. A user may 

define the mode in which the model is going to work (training mode for the model to learn, accura-

cy mode to validate it on the test data, and prediction mode to add data to the previously untagged 

dataset) The default mode is training. A user may provide a data configuration in a number of ways. 

A word may be split into n-grams, with n given by a user (by default the word is not split). The 

same may be performed for a lemma, if the specific instruction is provided (lemmas are not split by 

default). For instance, if n equals 2, the word корабь ‘ship-ACC’ is to be split into 2-grams ко, ор, 

ра, аб and бь. If the user selects lemma split, the lemma корабль ‘ship’ is split into 2-grams ко, ор, 

ра, аб, бл, ль. The 2-gram ь# is added to the word 2-gram set, to equalise the number of 2-gram 

training pairs. 

A quasi-stemming may be done when the word and its lemma are stripped of every letter but the 

last letter of their stem and inflection, with the latter being used for training. By default, quasi-

stemming is not performed, the same happens when word is formally equal to lemma (for instance 

рабъ ‘slave-ACC’ – рабъ ‘slave’). For instance, the result of this action for the pair вашихъ ‘yours-

GEN’ – вашь ‘yours’ is the pair шихъ – шь. 
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Each of these steps may be accompanied by adding POS information to the word. Thus, the pair 

врача ‘doctor-GEN’ – врачь ‘doctor’ becomes врачаNOUN – врачь. 

A user may also adjust some settings for the neural network of the model, such as the number of 

epochs (40 by default), batch size (128 by default), hidden dimension number (256 by default), op-

timiser (RMSprop by default [Hinton et al., 2012]), loss function (categorical cross entropy by de-

fault), activation function (softmax by default [Goodfellow et al., 2016]), and the patience of early 

stopping callback function [Prechelt, 1998] (no early stopping, patience is equal to the number of 

epochs by default). 

While in prediction or accuracy mode, a user may set how the neural network of the model forms its 

prediction, if it is trained on n-grams. It may take the first letter of each predicted n-gram before the 

latter one, which is taken as a whole (back option), or take as a whole the first n-gram, and later 

take the final letter of each of the following n-grams (forward option by default). For instance, pre-

dictions жи, им, ла are going to give a better result for lemma жила ‘vein’ with the back option 

(forming a correct sequence жила instead of an incorrect one жима), while predictions жи, ил, ма 

are going to give a better result for the same lemma with the forward option (жила as compared to 

жима). 

A user may also set name of the model (seq2seq by default) and directory (where file with the mod-

el is located by default) while in the training mode, and should repeat these steps for the prediction 

and accuracy mode runs of the model. 

In the training mode, the model takes a .conllu file in UD format and processes it according to the 

user requirements, forming a dataset and creating a dictionary file in the directory provided by user: 

lemmatized_NAME.txt, where NAME is the given model name. The dataset is then processed once 

again into an array of word-lemma training pairs. On the basis of the latter, the file train_NAME.txt 

is created. The parameters of the neural network part of the model are then set and the model is 

trained on this material. The weights are saved in the file NAME.h5. 

The neural network is a seq2seq model with an attention mechanism, first presented for the task of 

machine translation [Sutskever et al., 2014] [Cho et al., 2014]. Both the encoder and decoder parts 

of the model consist of a long short-term (LSTM) layer [Hochreiter and Schmidhuber, 1997]. 

The workflow of the prediction and accuracy modes is similar at its core, although it is different in 

detail. The dataset for the prediction mode is formed from a .json file, and its data should be re-

turned with information on the lemmas. The result for the accuracy mode is information on the 

evaluation of the model results, and an errors_NAME.csv file containing data on outliers and espe-

cially poor results of the system workflow according to the metrics. 

Otherwise, when the dataset is processed, the model reinstantiates the word-lemma dictionaries via 

the previously formed files, and the neural network parameters via loading weights. 

After the neural network is reinstantiated, the process of prediction or evaluation starts. 

First, the rule-based part is used. If the POS of a given word is FRAG (fragment), the lemma is 

===. If the POS is PUNCT (punctuation mark) or DIGIT (digit), the convention is that the word is 

its own lemma. The rules are implemented and used for the Kiev Folia dataset. 

In the following step, the dictionary part is used. If the word is in the dictionary file, then its lemma 

is automatically set from the dictionary. 

If the rules do not apply, and there is no dictionary entry, the neural network makes a prediction. 

Every prediction is evaluated (according to the metrics discussed below) and then the average pre-

diction accuracy for each metric is calculated, with the outliers identified and saved into a separate 

dataset. 
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Experiment Settings 

The training parameters of the model were varied for the experiments. The default configuration for 

the model is 40 epochs, a batch size of 128, 256 hidden dimensions, no early stopping, RMSprop 

optimiser, categorical cross entropy loss function, softmax activation function. POS is not joined to 

the word, lemmas are not split, stemming is not done, and words are not split into n-grams. The de-

fault model forms the final prediction by going forward. While training, the number of epochs is set 

to 60. 

The baseline for the model is formed via simple substitution of the lemma by the word itself. Thus, 

each time the model sees the word, it immediately makes its own lemma. It was decided to make 

the baseline this way as earlier models tended to solve this task on a very restricted dataset type, the 

UD treebanks, and using them as a baseline was going to be incorrect. 

The evaluation of model is done in two different ways. The Kiev Folia dataset has not been lemma-

tised previously, thus, its evaluation is made approximately and manually, paying attention mostly 

to the work of the rule-based part of the model. The efficiency of the model on the UD dataset is 

evaluated automatically. The process of evaluation consists of two steps. 

First, the information on prediction accuracy for each word is acquired. For the accuracy score, Ja-

ro-Winkler [Jaro, 1989] [Winkler, 1990] and Damerau-Levenshtein [Damerau, 1964] [Levenshtein, 

1966] distances are used. The precise accuracy score was used for comparison with the other mod-

els that are used for evaluating the lemmatisation results. However, when evaluating the results of 

the seq2seq model, which generates output letter by letter, one might get very poor results, which in 

fact consist of many mistakes by one letter. Thus, the accuracy score is not applicable in every case, 

although it is still widely used due to its implementation simplicity [Milintsevich, Sirts, 2020] 

[Akhmetov et al., 2020]. The other option is to use string similarity metrics, such as the Levenshtein 

distance [Damerau, 1964] [Levenshtein, 1966]. The latter metrics help to better understand how 

precise the system is. Some works implement it as the main approach to analyse model efficiency 

[Kanerva et al., 2020] [Metheniti et al., 2020] [Zalmout and Habash, 2020]. However, none of these 

implemented the Damerau-Levenshtein distance and Jaro-Winkler distance, as is done in this work. 

The most significant errata of the system are detected using outliers [Grubbs, 1969] of the results of 

Jaro-Winkler and Damerau-Levenshtein distances for each particular prediction, which are then 

classified and analysed on the basis of the linguistic data. Each measurement is added to the respec-

tive metric results. 

Second, after the whole dataset is processed, raw and normalized means are calculated from the re-

sults. Outliers are detected and saved in a separate file to be analysed manually. The results are dis-

cussed in comparison with the existing lemmatisers of OCS [Podtergera, 2016] and UD [Straka et 

al., 2017] [Bergmanis and Goldwater, 2018] [Kanerva et al., 2018], with a baseline of making each 

word its own lemma. 

There were attempts to enhance the architecture of this model. The purpose of the first was to im-

plement the Damerau-Levenshtein distance as a loss function. Due to the nuances of Keras’s inter-

nal structure, however, it was proven to lack usefulness, because the loss function in Keras does not 

have a direct access to input, and there is not much sense in implementing the Damerau-

Levenshtein distance for tensors of numbers. Architectural restrictions also blocked the use of the 

Levenberg–Marquardt algorithm [Levenberg, 1944] [Marquardt, 1963]. 

The second attempt used mellowmax [Kavosh and Littman, 2017] as an activation function. This 

implementation failed as mellowmax is mainly used in reinforcement learning, which is not the case 

for the workflow presented in this paper. Mellowmax is used to increase the efficiency of a very 



 

9 

specific architecture, designed for very specific purposes, thus is unsuitable for the purposes of this 

paper. 

There were attempts to further modify the Levenshtein distance, and its advanced version, the 

Damerau-Levenshtein distance [Znamenskij. 2017] [Ganesh et al., 2020]. However, these have not 

yet acquired the same level of use as their earlier counterparts, and one needs to be cautious while 

implementing them for the evaluation of model’s results. 

 

  

Results and Analysis 

This section consists of three parts. First, the baseline for the model on the UD dataset is given, and 

a series of experiments (1 - 7) with different model parameters on the UD dataset is described. For 

the final experiment, the description and analysis of the outliers are provided. At the end of the sec-

tion, the results of the experiment on the Kiev Folia dataset are given. 

A preliminary evaluation is made on the material of the UD dataset. It contains a series of experi-

ments, the purpose of which is to define which parameters were the most effective, compared to the 

baseline results (Table 1). The baseline results were acquired via replacing the neural network mod-

ule of the model with a rule that states that the lemma of each word form is this word form. For in-

stance, the lemma for грѣси ‘sin-PL-NOM’ is грѣси ‘sin-PL-NOM’, and not грѣхъ ‘sin’. 

 

Tab. 1. The baseline evaluation results 

 

Metrics A L(R) L(N) D-L(R) D-L(N) J-W(R) J-W(N) 

Baseline 29.24% 3.86 3.73 1.77 1.74 0.77 0.86 

 

Notes: Results are to 2 decimal places. A = Accuracy score, L = Le-

venshtein distance, D-L = Damerau-Levenshtein distance, J-W = Ja-

ro-Winkler distance, R = raw, and N = normalized.  

 

The experiment 1 deals with quasi-stemming efficiency. The changes from the basic parameters are 

using 3-grams, an increased batch size of 256, early stopping with patience of 3, and splitting lem-

mas. Model 1 does quasi-stemming, model 2 does not. The results are presented in Table 2. Quasi-

stemming slightly reduces the efficiency of the model, and thus is to be discarded. The possible rea-

son for the reduced efficiency is that when the model performs quasi-stemming, it loses the ability 

to predict the stems of the lemmas from the stems of the respective words, it generates only inflec-

tions. However, it is important to underline that the models’ results differ only slightly, and drawing 

general conclusions would be premature. 
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Tab. 2. The evaluation results of models 1 and 2 

 

Metrics A L(R) L(N) D-L(R) D-L(N) J-W(R) J-W(N) 

1 53.94% 5.41 5.31 3.21 3.2 0.67 0.67 

2 53.96% 5.4 5.31 3.2 3.2 0.68 0.68 

 

Notes: The best results for each metrics are highlighted in bold.  

 

Experiment 2 establishes whether the addition of information on POS helps in the prediction of the 

correct lemma. The changes for the basic parameters remained the same as in experiment 1. Model 

3 adds POS to the word, and its results are compared to the results of model 2 from experiment 1. 

The comparison is given in Table 3. Information on POS does not increase model efficiency. What 

is more, some metrics show a slight decrease, and therefore adding POS to the word is not included 

as a basic strategy. A possible conclusion from that decrease is that information on POS has a little 

to no effect on machine comprehension of how one sequence transforms to another. This might be 

resolved with adding more morphological information, however, due to the restrictions presented by 

the datasets, its use is not a possibility to be explored in the research described in this article. 

 

Tab. 3. The evaluation results of models 2 and 3 

 

Metrics A L(R) L(N) D-L(R) D-L(N) J-W(R) J-W(N) 

2 53.96% 5.4 5.31 3.2 3.2 0.68 0.68 

3 53.96% 5.4 5.32 3.21 3.21 0.66 0.66 

 

 

Experiment 3 deals with batch size regulation. It is important to check whether an increase from 

128 to 256, and from 256 to 512, or a decrease from 128 to 64, makes any significant difference. 

Models, 4 with default batch size of 128, 5 with batch size of 64, and 6 with batch size of 512, are 

compared to model 2 from the previous experiments. The comparison is given in Table 4. There is 

no strong correlation between batch size and model efficiency. The results for all the metrics seem 

to change almost randomly, with similar results for models 2 and 6, when taking into consideration 

Levenshtein and Damerau-Levenshtein distances, and constantly changing, when taking into con-

sideration Jaro-Winkler distance. As changing the batch size does not significantly change the speed 

of training, and because the best overall results for all the metrics (despite a slight decrease in over-

all accuracy score) were demonstrated by the model of 256 batch size, the latter is the best choice 

for the subsequent experiments. 
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Tab. 4. The evaluation results of models 2, 4, 5, and 6 

 

Metrics A L(R) L(N) D-L(R) D-L(N) J-W(R) J-W(N) 

2 53.96% 5.4 5.31 3.2 3.2 0.68 0.68 

4 53.97% 5.54 5.5 3.34 3.34 0.67 0.67 

5 53.97% 5.47 5.45 3.27 3.27 0.68 0.68 

6 53.97% 5.43 5.32 3.23 3.23 0.67 0.67 

 

 

Experiment 4 investigates early stopping, and its effect on the efficiency of model training. Model 7 

has no early stopping, and is compared to model 2, which has early stopping of 3. The comparison 

is given in Table 5. A larger number of epochs results in a slight increase in the overall accuracy. 

Despite that, all other metrics demonstrate a slight decrease when the model is trained during the 

larger number of epochs. Therefore, and taking into consideration that the time consumed is signifi-

cantly larger, if early stopping is not performed, it is better to save early stopping with patience of 3, 

in order to save time for further experiments, and to have better efficiency by most of the metrics. 

 

Tab. 5. The evaluation results of models 2, and 7 

Metrics A L(R) L(N) D-L(R) D-L(N) J-W(R) J-W(N) 

2 53.96% 5.4 5.31 3.2 3.2 0.68 0.68 

7 53.97% 5.43 5.32 3.23 3.23 0.67 0.67 

 

 

Experiment 5 looks at how splitting lemmas influences the overall efficiency of the model. Lemma 

splitting is done during the data preparation process. It is used when the model is trained on n-

grams. The lemma splitting parameter defines whether the n-gram in a word is matched to the n-

gram in a lemma during the training process, and whether a single lemma is predicted via a combi-

nation of n-grams or each n-gram in a word is matched to a lemma during the training process, and 

a set of lemmas is predicted for each n-gram during the prediction phase. 

For instance, during the 3-gram training with splitting lemmas the word вѣрѫ ‘faith-ACC-SG’ is 

split into 3-grams вѣр and ѣрѫ. When the lemma splitting parameter is active, lemma вѣрa ‘faith’ 

is split into 3-grams вѣр and ѣрa. The training pairs would be вѣр – вѣр and ѣрѫ – ѣрa. When 

the lemma splitting parameter is inactive, the training pairs would be вѣр –вѣрa and ѣрѫ – вѣрa. 

The prediction results are expected to be вѣрa and вѣрa#вѣрa, with # sign being the sign of split 

between two predicted lemmas for each of 3-grams. 



 

12 

Model 8 does not split lemmas, while model 2 does it in both the training and accuracy modes. The 

results of this comparison are given in Table 6. 

The conclusion is clear: it is significantly more effective to split lemmas in both the training and 

accuracy modes (i.e. model 2). The reason is that the efficiency of prediction in the n-gram by n-

gram mode is clearly a better option, than the efficiency of prediction in the n-gram to word mode, 

because in the former a model better and faster adapts to the requirements that it faces. Another rea-

son for the increase in efficiency is that the model is confused by needing to predict a single lemma 

from completely different n-grams. 

 

Tab. 6. The evaluation results of models 2, and 8 

 

Metrics A L(R) L(N) D-L(R) D-L(N) J-W(R) J-W(N) 

2 53.96% 5.4 5.31 3.2 3.2 0.68 0.68 

8 24.15% 6.96 6.73 5.97 5.97 0.38 0.38 

 

Experiment 6 decides whether it is more effective to have the forward form of the final prediction, 

rather than the back one. The differences between them are described above. Model 9 uses the back 

forming priority, while the model 2 uses the default forward forming priority. The results are shown 

in Table 7. The order in which the model forms the output has little to no negative effect. As with 

most of the previous experiments, the difference is not significant. Every metric but the overall ac-

curacy score shows that model 2 demonstrates better results than model 9, and for the overall accu-

racy score the difference negligible. The reason is that rate of mistakes remains high enough, and 

whether the model constructs the word from the beginning or the end, the possible positive effect is 

reduced to zero. At this stage it is safe to say that the forming priority can stay on the default for-

ward option. 

 

Tab. 7. The evaluation results of models 2, and 9 

 

Metrics A L(R) L(N) D-L(R) D-L(N) J-W(R) J-W(N) 

2 53.96% 5.4 5.31 3.2 3.2 0.68 0.68 

9 53.97% 5.46 5.36 3.26 3.25 0.67 0.67 

 

 

Experiment 7 investigates an increase of n in n-grams that are given to the model as input to under-

stand whether the synchronous split of the word and its lemma in the training phase provides a sig-
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nificant increase in the efficiency of the model. For the part of experiment 7, n is not defined, so the 

model does not split either words or their respective lemmas. The n used are 4, 5, and 8. The first 

two options are to see whether there is a correlation between an increase in n and an increase of 

model efficiency. n=8 is one of the biggest word lengths in the OCS UD dataset, so it is used to 

check, whether the tendency remains. The models are 2 (3-grams), 10 (4-grams), 11 (5-grams), 12 

(8-grams), and 13 (no n-gram split). The results are presented in Table 8. 

By most metrics model 13 demonstrates the best results. The only exceptions are the normalised 

average Damerau-Levenshtein distance, and the normalised average Jaro-Winkler distance. This is 

because with a large n in n-gram the resulting array becomes abnormally distributed with most of 

the metrics values tending to be 0 for Damerau-Levenshtein distance, and 1 for Jaro-Winkler dis-

tance. 

Such a dramatic increase in the model results may be because the dictionary part performs better, 

being formed from whole words not from n-grams. However, the dictionary part is in fact formed 

from whole words in each of the models that are under the consideration. A more probable reason is 

that model is better trained, when given the correlations between bigger (probably, more meaning-

ful) sequences of symbols. 

Thus, the model for final test against the baseline is 13. 

 

 

Tab. 8. The evaluation results of models 2, 10, 11, 12, and 13 

 

Metrics A L(R) L(N) D-L(R) D-L(N) J-W(R) J-W(N) 

2 53.96% 5.4 5.31 3.2 3.2 0.68 0.68 

10 58.67% 5.36 5.26 2.96 2.96 0.72 0.72 

11 63.86% 5.18 5.07 2.58 2.5 0.74 0.74 

12 78.81% 4.77 4.7 1.56 – 0.82 – 

13 85.67% 4.37 4.34 0.88 – 0.9 – 

 

The results of a comparison between the baseline model and 13 are presented in Table 9. Model 13 

beats the baseline by a significant margin in 3 out of 4 metrics: overall accuracy score, average 

Damerau-Levenshtein distance, and average Jaro-Winkler distance. The baseline demonstrated bet-

ter results in average Levenshtein distance, which may be explained by the nuances of the imple-

mentation of the Levenshtein distance measurement, or the metric itself, and its differences to, for 

instance, Damerau-Levenshtein distance. The probable reasons for Leveshtein distance metrics be-

ing significantly better for the baseline are that the baseline results are much more normally distrib-

uted, while results for the Damerau-Levenshtein and Jaro-Winkler distance metrics are hesitating 

between completely misleading lemmas and the target lemmas. 
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Tab. 9. The evaluation results of model 13, while compared to the baseline 

 

Metrics A L(R) L(N) D-L(R) D-L(N) J-W(R) J-W(N) 

13 85.67% 4.37 4.34 0.88 – 0.9 – 

Baseline 29.24% 3.86 3.73 1.77 1.74 0.77 0.86 

 

 

The outliers, acquired during the testing of model 13, are recorded into the separate dataset. The 

outliers are important, because they highlight the most significant system flaws, design issues, and 

failures, shown by different metrics. The outliers also give insights into the times when a model 

works abnormally well, which is impossible for the metric data. 

First, the analysis of outliers is done for the most common lemmas. These are the same for 

Damerau-Levenshtein distance and Jaro-Winkler distance: имѣти ‘to have’, глаголати ‘to speak’, 

клѧти ‘to curse’, приѩти ‘to come’, мънасъ ‘face’, исходити ‘to come out of’, чловѣчьскъ ‘hu-

man’, оумыти ‘wash’, рыба ‘fish’, въходити ‘to come in’. For Levenshtein distance they are 

completely different: съвѣдѣтельствовати ‘to tell about smth smb witnessed’, пророчьствова-

ти ‘to declare a prophecy’, законооучитель ‘the one who is the teacher of Law’, отъдесѧть-

ствовати ‘to tax’, сѵрофѵникиссаныни ‘smb from the Syriac territory who is of Phoenician 

background’, дальманоуфаньскъ ‘smb from the Dalmanufa territory’, четврьтовластьць ‘te-

trarch’, благословлѥнъ ‘the blessed one’. The difference is due to the fact that Levenshtein distance 

calculations demonstrate a higher level of normalisation in general, so outliers are rarer, and the 

least common ones for Damerau-Levenshtein and Jaro-Winkler distances are the most common 

ones for Levenshtein distance. 

The most common outliers are more similar, when comparing the three metrics. The most common 

are и ‘and’, новъ ‘new’ for each of the metrics. The Levenshtein distance calculations have only 

three more outliers: абоѥ (meaning is unclear), оудъ ‘body part’, къ ‘to’. The Damerau-Levenshtein 

and Jaro-Winkler distance calculations share the remaining eight, божии ‘God’s’, ѡ ‘about’, быти 

‘to be’, посълати ‘to send’, рѫбъ (meaning is unclear), тъ ‘that’, оу ‘of’, исоусъ ‘Jesus’. 

The model tends to make mistakes mostly by generating shorter outputs for longer inputs. This can 

be seen in that the average lemma is longer than average outlier (7.14, 7.14, 16 versus 4.02, 4.02, 

2.1 for Jaro-Winkler distance, Damerau-Levenshtein distance, and Levenshtein distance respective-

ly). In addition to this, the maximum lemma length is 18, while maximum outlier length is 12. 

The UD OCS dataset is not the only one that can be used to test the model and it should not be as it 

consists only of one text, Codex Marianus. Any deviation might influence the model’s efficiency 

when it meets tokens which are completely new for it, the kind that are simply not present in the 

UD OCS. These are fragments, punctuation marks, and digits. In addition to this, it is import to 

check whether a larger number of different words, with sometimes contrasting regular letter se-

quences (such as the reflexes of *tj and *dj, that are different between some of the OCS texts 

[Kamphuis, 2020]), influences the overall accuracy of the model. In other words, the model needed 

out-of-domain testing [Mathis et al., 2020]. 
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For that specific purpose, the Kiev Folia dataset was used. This dataset consists of the single text. 

Kiev Folia was chosen specifically because its key linguistic features are very different from the other texts 

of the OCS canon [Kamphuis, 2020]. Kiev Folia tokens include punctuation marks, fragments, and 

digits. 

To regulate these, the model was enhanced with two additional rules. One states that if the token 

was POS tagged as fragment, then its lemma is always three marks of lost graphemes ‘===’. The 

second states that if the token is POS tagged as a digit or a punctuation mark then the lemma for the 

token is the token itself. The examples of the model results are given in the table 10. 

 

Tab. 10. Examples of tokens, lemmatised by rule-enhanced model 13 

 

Token Lemma 

======абъ === 

:.: :.: 

 

 

Thus, the system, having been slightly modified, demonstrated that it is able to lemmatise tokens 

and work with the ones that it had been previously trained to work with. 

 

Conclusion 

In this paper a lemmatiser for OCS was presented. New evaluation metrics were implemented, and 

new methods of the enhance model training were proposed. 

The system seems to lack overall accuracy, compared to previous UD lemmatisers [Straka et al., 

2017] [Bergmanis and Goldwater, 2018] [Kanerva et al., 2018]. Overall, it was only about 85% ac-

curate. However, it is better adapted to the texts from the OCS corpus that is being formed. Using 

the Kiev Folia dataset, the model demonstrated the ability to lemmatise unknown words in general 

and fragmentary tokens, punctuation marks, and digits in particular. 

The analysis of the most serious errata of the system shows that it tends to generate lemmas that are 

shorter than the average lemma length of the dataset. This is probably due to the fact that shorter 

words are met far more often in the training phase. That leads to the conclusion that model is going 

to need additional training on the datasets that contain longer words, when the latter are available 

for OCS. Another option is to change the architecture of the neural network of the model from basic 

seq2seq with an attention mechanism to something more advanced, for instance, BART. 
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