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Abstract

We revisit the link between the risk of sovereign default and default costs. Contrary to

prior literature, we show that higher costs of default may result in higher default probabili-

ties, lower bond prices, and fiscal limits that are not pinned down by economic fundamentals.

Government debt sustainability depends on private investment behavior, which is affected

by expectations about defaults and capital returns. We argue that this feedback loop gives

rise to multiple equilibria. In ‘bad’ equilibria, investors expect default and low capital re-

turns; their low capital investment tightens the governments’ fiscal constraints and reduces

the probability of debt repayment, validating investor pessimism. In ‘good’ equilibria, opti-

mistic investors choose higher capital investment; this results in higher future fiscal surpluses,

raises the probability of debt repayment and validates investor optimism.
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1 Introduction

It has long been understood that sovereign defaults must be associated with some sort of losses

that governments perceive—otherwise governments would not be able to borrow. Defaults on

government debt may lead to political sanctions, damage the policymakers’ chances of reelec-

tion, and restrict governments’ ability to borrow further from the international capital markets.1

But aside from these consequences, sovereign defaults also appear to have an immediate neg-

ative effect on economic activity within the country that results in losses of output (see e.g.

Sturzenegger 2004, De Paoli et al. 2006). Contemporary models of sovereign default incorporate

such economic costs when specifying the government’s strategic decision to default on foreign

debt.2 In these setups, higher economic costs of default inevitably lead to lower probabilities

of default, as benevolent governments choose to repay their debts more often. This reasoning

suggests that high economic punishment from sovereign default perceived ex ante should allow

for cheaper sovereign borrowing and enhance financial stability within the country.

In this paper we revisit the link between the costs of default and the default risk. Contrary

to the preceding literature, we show that higher costs of default may in fact be associated

with higher default probabilities and lower bond prices. These results arise because the costs

that follow a default on government debt are perceived not only by the government, but also by

private agents who invest in domestic capital. When defaults are possible, high potential default

costs reduce expected capital returns and induce a capital outflow, depressing the economy and

making debt repayment less feasible.

We obtain these results in the context of general equilibrium in a small open economy with

capital. The government borrows on the international capital market and uses tax revenues to

service its debt. The government repays the debt whenever repayment is feasible, and defaults

otherwise. The governments’ fiscal surplus is procyclical, in any given period it depends on

the capital stock of the economy.3 A default on government debt triggers a productivity loss

(default cost) that shrinks the returns on domestic capital.

Crucially, investment in domestic capital is carried out by autonomous private agents that do

not coordinate with each other. This setup gives rise to a feedback loop between the expectations

of private agents and the future fiscal surpluses, which generates multiple equilibria. In a

‘bad’ equilibrium agents perceive default probability to be high. Anticipating capital returns

dampened by the costs of default, they curb investment into domestic capital. This, in turn,

reduces future output and depresses future fiscal surpluses. Tighter fiscal constraints in the

future validate the expectation of a likely default, completing the vicious circle. By contrast, in

a ‘good’ equilibrium agents perceive the chances of debt repayment to be high; they therefore

also expect relatively high returns on capital. These expectations boost capital investment

1See e.g. Borensztein & Panizza (2009).
2See e.g. Aguiar & Gopinath (2006), Arellano (2008), Asonuma & Trebesch (2016), Hatchondo et al. (2016)

and others. In Mendoza & Yue (2012) these losses arise endogenously, as a result of firms loosing access to foreign
credit and being forced to alter the structure of working capital.

3There is evidence of fiscal policy procyclicality in developing countries (e.g. Frankel et al. 2013), and, more
recently, in advanced economies (see Poghosyan & Tosun 2019).
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today and result in relatively high output and fiscal surplus in the future; this makes the

probability of the government hitting the fiscal constraint relatively low, which then validates

investor optimism. We show that the duality described above effectively means that the fiscal

limit that the government faces is not pinned down by the fundamentals of the economy. We

also show that this particular type of multiplicity only arises when default costs are positive.

Our work is closely related to the literature on defaults in the context of multiple equilibria.

Calvo (1988) points out that a given amount of governments’ financing needs can be met with

either a combination of high bond price and low quantity of new debt (in the ‘good’ equilibrium),

or a low bond price together with high volume of new debt obligations (in the ‘bad’ equilibrium).

When the government cannot commit to a particular bond issuance, this duality gives rise to

multiple equilibria and creates a potential for a slow moving debt crisis examined by Lorenzoni

& Werning (2019). Cole & Kehoe (2000) emphasize that when the government cannot commit

to debt repayment, pessimistic investors anticipating default may refuse to buy newly issued

bonds, thereby preventing the government from rolling over the debt. This framework has been

further extended and quantitatively assessed by Aguiar et al. (2017), Conesa & Kehoe (2017)

and Bocola & Dovis (2019). Aguiar & Amador (2018) emphasize the presence of a dynamic

multiplicity caused by self-fulfilling beliefs about future sovereign borrowing and bond prices

that arise under limited commitment with respect to fiscal policy.

In this paper we develop a distinct mechanism for equilibrium multiplicity and point out that

multiple equilibria may arises even when the government can fully commit to specific fiscal policy

rule as well as choose a particular bond issuance. In our framework, equilibrium multiplicity

is driven by the lack of coordination between individual capital investors which prevails even

when the government commits to debt repayment whenever it is feasible. Our framework can

be extended to allow for other types of multiplicity. We therefore view the mechanism presented

here as complementary to other results developed in the literature. Our argument is particularly

relevant for economies that are close to their fiscal limits and are expected to face sizable losses

in the event of default.

In this paper we assert that higher costs of default may lead to lower equilibrium bond

prices. This is at odds with the literature that models default as a strategic choice made by the

government (e.g. Eaton & Gersovitz 1981, Aguiar & Gopinath 2006, Arellano 2008, Yue 2010).

Unlike this literature, we focus on the government’s capacity (rather than willingness) to repay

the debt. A similar approach is taken by Uribe (2006), Bi (2012), Ghosh et al. (2013), Sokolova

(2015), Bi et al. (2018), Reis (2017), Battistini et al. (2019), and others; fiscal constraints are

also emphasized by works within the scope of the fiscal theory of the price level (see Leeper

1991). Similar to the literature featuring fiscal constraints, our model yields an equilibrium fiscal

limit, i.e. the maximum debt level that can be backed by future fiscal surpluses—however, we

show that this limit may not be pinned down by the economic fundamentals because of the

feedback loop between the capital investment decisions driven by investors’ expectations about

the future and the future fiscal surpluses.

Recent empirical evidence shows the importance of fiscal limits for both developed and
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developing countries—the limits that may prevent governments from running surpluses and

keeping debts sustainable even when costs of default are substantial and incentives to repay are

strong. Trabandt & Uhlig (2011) argue that over the preceding 20 years developed economies

have drawn closer to the peaks of their Laffer curves, suggesting limited scope for raising fiscal

surpluses via increases in tax rates. Cochrane (2011) asserts that even if an economy is supposed

to operate well below the Laffer curve peak, a small rise in the tax rate may cause a prominent

slowdown of economic growth thereby reducing future taxable income. But even when the Laffer

curve limitations play no significant role, it is still difficult to implement austere fiscal policy in

democratic environments without a prominent delay (see Alesina & Drazen 1991). Thus, even

when governments want to repay their debts, they may not be able to do so. Our environment

allows us to examine debt sustainability when governments are constrained by such limitations.

The results obtained in this paper stem from the assumption that defaults reduce produc-

tivity of capital investments. Recent empirical literature appears to support this notion: Hebert

& Schreger (2017) show that increases in perceived sovereign default probability in Argentina

have prominent negative effect on the value of domestic firms, with a particularly strong effect

for exporters and foreign-owned companies; Chari et al. (2017) point out a similar negative re-

lationship between government default risk and firm equity returns for Puerto Rico. There is a

number of channels through which these adverse effects of default could arise. On the one hand,

defaults appear to harm firms’ activity on international markets by depressing bilateral trade

(Rose 2005, Martinez & Sandleris 2011), reducing foreign credit to the private sector (Arteta &

Hale 2008, Zymek 2012) and FDI flows (Fuentes & Saravia 2010). On the other hand, defaults

have strong adverse effects on financial intermediation within the country.4 Gennaioli et al.

(2018) study a sample of 20,000 banks in 191 countries for the period 1998-2012 and conclude

that, on average, banks hold about 9% of their assets in government bonds, and that during

sovereign default the contraction of lending is especially severe for banks with high domestic

bond holdings. Popov & Horen (2015) show that in 2010 during the European debt crisis,

banks holding substantial amounts of government bonds perceived to be risky reduced syndi-

cated lending by 21.3% relative to banks with low levels of exposure; such credit crunches have

been shown to have a particularly severe effect on small businesses, prompting them to curtail

investments and employment (Iyer et al. 2014, Dwenger et al. 2020). Andrade & Chhaochharia

(2018) find that the stocks of firms vulnerable to disruptions of financial intermediation are

priced as if the market anticipates a 12% reduction in these firms’ value following a sovereign

default.

We conclude that high perceived costs of sovereign default make governments that operate

close to their respective fiscal limits vulnerable to self-fulfilling crises of investor confidence.

In such an environment, a decrease in perceived default costs can enhance debt sustainability.

The perceived default costs related to a reduction in firms’ international activity could perhaps

be influenced by the stance of the IMF in its role as an arbiter in debt renegotiations, as

4This credit channel is explored in some recent literature modeling sovereign default (e.g. Gennaioli et al.
2014, Bocola 2016, Arellano et al. 2017).
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well as by the conduct of the government officials.5 Perceived costs related to the anticipation

of the domestic credit crunch could potentially be mitigated if the central bank commits to

accommodative policies in the event of a fiscal crisis. The famous ‘whatever it takes’ statement

by Mario Draghi together with the Outright Monetary Transactions program for conditional

purchases of risky sovereign bonds can be viewed as an example of such an intervention. Reis

(2017) argues that sovereign default costs can be reduced through Quantitative Easing (QE)

that could alter the composition of banks’ balance sheets away from risky government bond

holdings, which in turn would likely result in a less severe credit crunch in the event of default.

In our model, committing to such measures ex ante can reduce the perceived default costs and

loosen the fiscal constraints the government is likely to face in the future.

The paper is organized as follows. In Section 2 we describe the model setup. In Section 3 we

demonstrate our core result in a two-period perfect foresight equilibrium context. In Section 4

we study its dynamic implications; in subsection 4.1 we derive fiscal limits for an infinite-

horizon version of the model and show that there are multiple limits consistent with sequential

equilibrium; in subsection 4.2 we construct multiple fiscal limits for a recursive equilibrium

structure featuring sunspots. In Section 5 we examine equilibrium multiplicity under uncertainty

over fundamentals of the economy. Section 6 concludes.

2 The model

We consider a model of a small open economy featuring competitive domestic firms, the govern-

ment that follows a fiscal rule, domestic households and foreign households that are risk-neutral.

Households invest in capital and trade in assets with foreign creditors. Firms employ capital to

produce goods; capital productivity that firms are facing depends on whether or not the country

is currently in default, as default triggers a productivity loss. The government trades in bonds

with risk-neutral foreign investors, generates revenues by taxing capital and labor income and

makes transfer payments to the households.

Whether or not the government repays its debt depends on the current fiscal surpluses as well

as on the revenue from the auction of bonds that the government can generate. The bond pricing

schedule faced by the government depends on what economic agents expect the fiscal surpluses

to be in the future. Fixed losses to productivity triggered by default give rise to equilibrium

multiplicity: when ‘optimistic’ private agents perceive the chances of full repayment to be high,

they invest heavily in capital which results in higher future revenues from tax collection that

validate the original ‘optimistic’ expectations. Alternatively, investor pessimism leads to capital

flight, lower future GDP, lower revenues from tax collection and a lower debt repayment rate

that validate investors’ pessimism.

5There is evidence suggesting that output losses during default are more severe for governments that behave
coercively toward foreign creditors, see Trebesch & Zabel (2017)
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2.1 The Government

Each period the government taxes capital income rKt kt and labor income wtlt, collecting tax

revenue τKrKt kt + τwwtlt. The government also pays households trt in transfers. We assume

the tax rates τK and τw to be constant and positive, and the transfers trt to be exogenously

determined. In Section 3 and Section 4 the transfers follow a deterministic path; Section 5

introduces uncertainty over future transfer payments, e.g. arising prior to an election.6

In any given period, the fiscal surplus equals

St ≡ τKrKt kt + τwwtlt − trt. (1)

The government trades in one-period bonds with foreign risk-neutral creditors to cover its

operational deficit:

qtBt+1 = Bt − St, (2)

where Bt is debt issued in period t − 1 and qt is the bond price for debt issued in period t. 7

When issuing new bonds the government faces a bond pricing schedule Qt(B); the government

selects Bt+1 and a corresponding qt = Qt(Bt+1) to satisfy (2). If there is more than one debt

level at which (2) can be satisfied, the government selects the smallest bond issuance. We

therefore assume that the government can commit to issuing a specific level of debt.8

The repayment of debt Bt is feasible if there exists a Bt+1 for which the budget constraint

is satisfied. We assume that the government repays the debt whenever possible, that is, when

Bt ≤ max
Bt+1

{Qt(Bt+1)Bt+1} + St. Conversely, if the maximum amount of revenues that could

be raised from auctioning bonds is not enough to cover the gap between the pre-existing debt

and the current fiscal surplus, the government is forced to default. In the event of default the

government permanently looses access to the international financial market and transfers a share

γ of its discounted sum of future fiscal surpluses to the foreign creditors as partial payment.

The debt recovery rate in period t is therefore

χt =


1, if Bt ≤ max

Bt+1

{Qt(Bt+1)Bt+1}+ St;

γ ·
∑∞
i=0 St+i/(1+r)

i

Bt
, if Bt > max

Bt+1

{Qt(Bt+1)Bt+1}+ St.
(3)

where 0 ≤ γ ≤ 1. The risk-neutral foreign creditors purchase government debt at the bond price

6We use this simple structure for fiscal policy for ease of exposition; our results can be generalized to the
case in which tax rates and transfer payments depend on the level of debt—as long as there exists an upper
bound on tax rates and a lower bound on transfer payments. While this more robust fiscal policy would affect
quantitative implications of the model, the qualitative implications will remain unchanged, as it is the behavior
of the government finances at the boundary that would determine the fiscal limits.

7In this paper we abstract from questions related to the effects of debt maturity structure and long-term
debt. These questions are explored in, e.g. Hatchondo & Martinez (2009), Hatchondo et al. (2016) and Aguiar
& Amador (2018).

8Relaxing this assumption in our model would yield more multiplicity in equilibrium outcomes. See Lorenzoni
& Werning (2019) for a detailed discussion of this assumption in the context of multiple equilibria.
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that matches expected returns on a government bond with returns on risk-free investment:

qt =
Et[χt+1]

1 + r
. (4)

where r is the risk-free world interest rate.

2.2 Households

We model two groups of households: domestic and foreign, and assume that capital investment

is carried out by the risk-neutral foreign households. Foreigners are assumed to have unlimited

access to the international capital market. By contrast, domestic households do not have access

to financial instruments that could hedge them from the domestic income risk.9 We discuss the

significance of these assumptions in Online Appendix B.

Domestic households. A representative domestic household inelastically supplies a unit of

labor (lt = 1) to domestic firms and receives labor income. The household also receives transfers

trt from the government and pays the labor income tax. Its budget constraint is

ct ≤ (1− τw)wt + trt. (5)

The expected lifetime utility of the domestic household is given by Et[
∑∞

i=0 β
iu(ct+i)], where β

is the subjective discount factor of the domestic households.

Foreign Households. A representative foreign household is risk-neutral; each period it receives

an endowment ỹt and trades with other risk-neutral foreign investors in risk-free assets, s̃t, at

the risk-free world interest rate r. Foreign households invest in domestic capital kt and receive

interest income rKt kt on which they pay taxes to the domestic government. They also trade in

the domestic governments’ bonds. The households’ flow budget constraint is

c̃t + kt+1 + s̃t+1 + qtBt+1 ≤
[
1− δ + rKt (1− τK)

]
kt + (1 + r)s̃t + ỹt + χtBt (6)

where δ is the depreciation rate, and τK is the tax rate on capital.10 Foreign households choose

c̃t, kt+1, Bt+1 and s̃t+1 to maximize their expected welfare, Et[
∑∞

i=0 β̃
ic̃t+i], where β̃ is the

subjective discount factor of the foreign households. The first-order conditions yield:

1 = β̃[1− δ + Et[r
K
t+1](1− τK)], (7)

1 = β̃[1 + r], (8)

qt =
Et[χt+1]

1 + r
. (9)

9The assumption that it is only the foreigners who invest in domestic capital is not strictly necessary for the
results obtained in this paper, and neither is the assumption about domestic households not having access to the
international capital markets, see details in Online Appendix B. The argument developed in this paper is most
appropriate for countries where either the foreign creditors have access to the domestic capital markets, or the
domestic capital investors can avoid being taxed on their interest earnings received from abroad.

10Here, we assume that capital depreciation is not tax-deductible, but this assumption is immaterial for the
arguments developed in this paper, which would also hold under the alternative assumption.
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Equation (8) places a restriction on model parameters, implying that the subjective discount

factor of foreign households must equal 1
1+r . Moving forward we will assume this to be the case.

Combining (7) and (8) we find that the expected return on domestic capital corrected for

tax and depreciation, Et[r
K
t+1](1− τK)− δ, must match the foreign risk-free rate r:

Et[r
K
t+1](1− τK)− δ = r. (10)

2.3 Firms

The firms in the economy are infinitesimally small and competitive; each representative firm is

endowed with a production technology:

Yt = Atk
α
t l

1−α
t , (11)

where At is the overall level of productivity. Absent default, At is at the underlying productivity

level at. Default is associated with a permanent productivity loss of ψ·100 percent.11 The overall

productivity is thus given by

At =

at, if χi = 1, ∀i ≤ t;

at(1− ψ), else.
(12)

In equilibrium firms’ labor demand equals the inelastic labor supply lt = 1, and firms’ profit

maximization yields:

rKt = αAtk
α−1
t , (13)

wt = (1− α)Atk
α
t . (14)

2.4 Fiscal surplus and expectations

The fiscal surplus crucially depends on the amount of capital investment in the economy: in

period t capital stock kt determines households’ wage wt through (14) and the interest on capital

rKt through (13). Substituting profit maximization conditions into the definition of the fiscal

surplus given by (1) we can rewrite:

St = τAt[kt]
α − trt (15)

where τ ≡ [ατK+(1−α)τw]. Higher capital stock is associated with higher output, and since tax

revenues comprise a share τ of the GDP, higher accumulated capital in period t also translates

into higher fiscal surplus in t. Importantly, capital stock in period t is pre-determined by

11Our results crucially depend on there being a one-period loss to productivity; the simplifying assumption
we make her of the productivity loss being permanent has quantitative implications but does not change any
of the qualitative results. Default cost in the form of a productivity loss has previously been used in Cole &
Kehoe (2000), Da-Rocha et al. (2013), Conesa & Kehoe (2017) and others. Alonso-Ortiz et al. (2017) estimate
the productivity loss to be around 3.70− 5.88%.
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capital investment choices made by households in period t−1. This capital investment decision

primarily depends on expectations about future productivity formed in the preceding period:

kt =

[
αEt−1[At](1− τK)

r + δ

] 1
1−α

. (16)

Because productivity At may be depressed by a default penalty, the expected productivity

Et−1[At] crucially depends on whether or not households expect default on sovereign debt.

This is the channel through which self-fulfilling prophecies arise. Households that perceive

the probability of default to be low will simultaneously expect higher productivity in the future

and invest more in capital today through (16). Higher capital would lead to higher expected

fiscal surplus through (15) and higher probability of full repayment—validating the original

optimistic expectation. Such optimism would also translate into higher bond prices today due

to higher expected recovery rates. By contrast, when investors expect default to occur with high

probability, they anticipate productivity to be lower due to the default penalty ψ and thereby

invest less in domestic capital; this leads to lower future revenues from tax collection and higher

probability of default which validates investor pessimism and feeds into current bond prices.

3 Multiple equilibria with perfect foresight:

a two-period example

In this section we examine a deterministic version of the model discussed above, which features

an absorbing state: suppose there is a period T < ∞ such that in all periods following T pro-

ductivity and transfers are assumed to equal the levels achieved in period T . If the government

does not default in period T , then the debt can be rolled over indefinitely at the risk-free bond

price, i.e. there is no threat of ‘bad’ self-fulfilling equilibria after period T . In this section we

consider the dynamics between periods T − 1 and T and show that the model gives rise to

multiple equilibria with perfect foresight.

In period T − 1 the government makes a decision about issuing new debt BT given a bond

pricing schedule QT-1(B). In equilibrium, bond prices along the schedule QT-1(B) must be

consistent with rational expectations about whether the government will repay its debt. In this

subsection we show that an equilibrium bond pricing schedule satisfying these requirements

exists. We also assert that whenever the cost of default is positive, there exist more than one

such schedule—in other words, there are multiple equilibria.

The debt acquired in period T − 1 will be repaid in T whenever repayment is feasible. Full

repayment is feasible if the government is able to roll over the debt indefinitely at the risk-free

interest rate given the constant fiscal surplus ST :

BT ≤
1 + r

r
ST . (17)

The fiscal surplus ST on the right-hand side depends on current productivity, as well as on
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capital investment decisions made in period T − 1 that are guided by period T − 1 expectations

about period T productivity. We introduce the following notation:

ST = τAT [kT (AeT )]α − trT ≡ S(AT , kT (AeT ), trT ), (18)

where kT (AeT ) is determined through (16) denoting AeT ≡ ET−1[AT ] for brevity. We now give

definition to the equilibrium bond pricing schedule QT-1(B).

Definition 1A. Equilibrium bond pricing schedule QT-1(B): perfect foresight. The

equilibrium bond pricing schedule is a function QT-1(B) such that for each BT ∈ B the bond

price qT−1 ∈ QT-1(BT ) satisfies

qT−1 =
χT

1 + r
(19)

where

χT =

1, if BT ≤ S(aT , kT (AeT ), trT ) · 1+rr ;
γ·S(aT [1−ψ],kT (AeT ),trT )·(1+r)/r

BT
, if BT > S(aT , kT (AeT ), trT ) · 1+rr ,

(20)

and

kT (AeT ) =

[
αAeT (1− τK)

r + δ

] 1
1−α

(21)

with

AT =

aT , if BT ≤ S(aT , kT (AeT ), trT ) · 1+rr ;

aT (1− ψ), if BT > S(aT , kT (AeT ), trT ) · 1+rr .
(22)

and

AeT = AT . (23)

Under perfect foresight rational foreign creditors correctly predict the recovery rate when pricing

bonds through (19). Condition (20) states that the recovery rate equals 1 (i.e. the government

fully repays its debt) if the debt can be backed by the stream of future fiscal surpluses; this

stream is affected by the capital kT (AeT ). The capital investment decision depends on expecta-

tionsAeT through (21); (23) requires these expectations to match the actual realized productivity.

Whether or not this productivity is affected by the default penalty ψ is contingent on whether

or not there is default (as stated in 22).

Finding QT-1(B) means assigning to each BT ∈ B a price qT−1 that satisfies Definition

1A. This task is simplified by the fact that AeT , the expected productivity, can only take one

of two values: aT or aT [1 − ψ]. If investors expect AeT = aT , they must also anticipate full

debt repayment in T and high productivity unaffected by default penalties; when they expect

AeT = aT [1 − ψ], they would also predict default in T accompanied by a productivity penalty.

Armed with this insight, we proceed as follows.

We start by picking one of two values, aT or aT [1−ψ], as an initial guess for AeT ; we then use

this guess together with (21) to characterize the capital investment decision. Given kT (AeT ), we
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check whether our guess about AeT complies with rational expectations by verifying that (22)

selects the matching productivity value. It is straightforward to show that at least one of the

two guesses will always be correct: if under AeT = aT (22) selects AT = aT (1−ψ), then it would

also select AT = aT (1 − ψ) under AeT = aT (1 − ψ) because the function S(aT , kT (AeT ), trT ) is

increasing in AeT ; similarly, if under AeT = aT (1−ψ) (22) chooses AT = aT , then AT = aT would

also be chosen under AeT = aT . After finding a valid AeT , we can determine the corresponding

recovery rate through (20) and the bond price qT−1 through (19). Note that the reasoning above

suggests that we can find a valid qT−1 for any BT , which means that a bond pricing function

QT-1(B) satisfying Definition 1A can be constructed for any set of model parameters.

Lemma 1. The bond pricing schedule QT-1(B) that satisfies Definition 1A exists.

We now follow the steps outlined above to locate all qT−1 that satisfy Definition 1A for

each BT . Intuitively, for low levels of debt agents should rationally expect full repayment and

price the bonds at a high risk-free price; for high levels of debt they should expect default, and

bonds should trade at a lower price. In what follows we derive the threshold values of debt that

delineate these intervals and show that the intervals intersect.

Suppose agents expect full debt repayment and AeT = aT . They would then choose

capital kT (AeT ) = kT (aT ) through (21). The expectation of full repayment and AeT = aT is

rational if (20) and (22) select χT = 1 and AT = aT , which will be the case if the debt does not

exceed the discounted sum of future fiscal surpluses under the capital choice kT (aT ):

BT ≤ S(aT , kT (aT ), trT )
1 + r

r
≡ B̄T . (24)

When debt exceeds B̄T , the expectation of debt repayment and AeT = aT cannot be validated;

when BT ≤ B̄T , the equilibrium with full debt repayment can be constructed, and in this equi-

librium the expectation AeT = aT is rational. We therefore arrive at a conclusion that there

is an upper bound on debt, B̄T , beyond which we cannot construct an equilibrium bond price

consistent with an anticipated full repayment. At the same time, for any BT ≤ B̄T this can be

done: the bond price qfT−1 = 1
1+r that anticipates full repayment together with the expected

productivity AeT = aT satisfy Definition 1A.

Suppose agents expect default and AeT = aT [1 − ψ]. They then choose capital kT (AeT ) =

kT (aT [1 − ψ]) through (21). These expectations are validated if (20) and (22) choose χT < 1

and AT = aT (1− ψ), which will happen if debt is too high relative to the corresponding fiscal

surplus:

BT > S(aT , kT (aT [1− ψ]), trT )
1 + r

r
≡ BT . (25)

There is therefore a threshold BT such that whenever debt exceeds this threshold, expectations

of default with productivity AeT = aT [1−ψ] can be an equilibrium outcome. The corresponding

bond price that satisfies Definition 1A equals qdT−1 = γ·S(aT [1−ψ],kT (aT [1−ψ]))/r
BT

.
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The results discussed above crucially depend on how the ex ante expectation of a produc-

tivity loss in conjuncture with default affects the capital investment decision. When investors

expect debt repayment, they also anticipate returns on capital investments to be unhindered by

the default penalty; they accordingly make substantial capital investments which translate into

higher future capital stock, output and fiscal surpluses. When BT ≤ B̄T , these relatively high

fiscal surpluses are enough to ensure full debt repayment; this validates investors’ expectations

of full debt repayment. At the same time, when investors expect future fiscal surpluses to be in-

sufficient for full debt repayment, they anticipate capital returns diminished by default penalties

and underinvest in capital; this leads to lower output and fiscal surpluses. When BT > BT , the

diminished surpluses make debt repayment infeasible, which validates the original pessimistic

expectation.

Crucially, whenever the productivity loss triggered by default is positive (i.e. ψ > 0) we have

BT < B̄T .12 This means that the debt intervals for which an equilibrium with default and an

equilibrium with repayment can be constructed intersect. Armed with this insight and taking

into account the above discussion about debt thresholds, we arrive at the following results.

First, for each BT ≤ BT it is also true that BT < B̄T , and therefore an equilibrium with

anticipated full repayment and bond price qfT−1 can be constructed. At the same time, an

expectation of default cannot be validated as an equilibrium outcome, because even if in period

T − 1 investors expect default penalties (AeT = aT [1 − ψ]) and underinvest in capital choosing

kT (aT [1 − ψ]), debt repayment is still feasible in T (as condition 25 is violated), which means

that the pessimistic expectation of default cannot be rational, and that the price qdT−1 would

not arise in equilibrium.

Second, for each BT > B̄T it is also true that BT > BT , hence we can construct an

equilibrium with anticipated default and a corresponding bond price qdT−1. At the same time,

an equilibrium with anticipated repayment cannot be constructed: even if ex ante investors

optimistically expect high productivity (AeT = aT ) and invest kT (aT ), debt repayment is still

infeasible ex post, as debt exceeds fiscal surpluses, violating condition 24. Therefore, for this

region the price qfT−1 is not consistent with equilibrium.

Finally, for each BT ∈ (BT , B̄T ] we can construct both an equilibrium with anticipated

default and an equilibrium with anticipated repayment. On the one hand, BT > BT means that

if in period T−1 investors expect default with productivity penalties (AeT = aT [1−ψ]) and invest

kT (aT [1−ψ]) in capital, then in period T , due to low fiscal surplus, debt repayment is infeasible

(as condition 25 holds) and the government defaults, which validates investor pessimism. On

the other hand, BT ≤ B̄T implies that if in period T − 1 investors expect repayment and high

productivity (AeT = aT ) choosing kT (aT ), then high surpluses in period T make repayment

feasible, validating investor optimism. Therefore, for each BT ∈ (BT , B̄T ] there exist two

distinct bond prices that satisfy Definition 1A: qfT−1, a bond price consistent with rational

12To see this, note that, first, capital investment described in (21) is strictly increasing in expected productivity
AeT , which means kT (aT [1 − ψ]) < kT (aT ); second, the fiscal surplus is strictly increasing in the capital stock,
implying S(aT , kT (aT [1− ψ]), trT ) < S(aT , kT (aT ), trT ) and therefore BT < B̄T .
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expectations of full debt repayment and AeT = aT , and qdT−1, a bond price that corresponds to

a rationally anticipated default with AeT = aT [1− ψ].

Denote by QT-1(B) the correspondence that collects all bond prices qT−1 that satisfy Defi-

nition 1A for each BT ∈ B. Figure 1(a) depicts this correspondence; the correspondence assigns

both qfT−1 and qdT−1 to each BT ∈ (BT , B̄T ], as both bond prices can be supported as equilibrium

under perfect foresight. The equilibrium bond pricing function QT-1(B) can then be constructed

by choosing a selection from QT-1(B) that assigns unique values to each BT (e.g. see Figure 1b).

Because QT-1(B) has two distinct bond prices corresponding to each BT ∈ (BT , B̄T ], we can

construct an infinite number of distinct selections QT-1(B) from QT-1(B), i.e. there are in

fact infinitely many bond pricing schedules that can be supported as equilibrium with perfect

foresight.

Figure 1: Constructing bond pricing schedule

(a) Correspondence QT-1(B)

QT-1(B)

B

qdT−1

qfT−1

BT B̄T

(b) Decreasing bond price function QT-1(B)

QT-1(B)

B

qdT−1

qfT−1

BT B̂T B̄T

Proposition 1. For ψ > 0 there exist infinitely many bond pricing schedules QT-1(B) that

satisfy Definition 1A. The bond prices along these schedules 1) equal qfT−1 for all BT ≤ BT 2)

assume one of two values for each BT ∈ (BT , B̄T ], either qfT−1 or qdT−1 < qfT−1 3) equal qdT−1
for each BT > B̄T , where

qfT−1 = 1/(1 + r),

qdT−1 =
γ · S(aT [1− ψ], kT (aT [1− ψ]), trT )/r

BT
.

Proof. see Appendix A.

To see the intuition behind this result, suppose the economy is very close to its fiscal limit:

investors choose capital kT (aT ) expecting debt repayment, but the resulting fiscal surplus is just

enough to cover the debt, i.e. BT = B̄T . At this boundary any decrease in fiscal surpluses would

make debt no longer sustainable—therefore, if capital investment drops below kT (aT ), default

is guaranteed. This opens a door for a self-fulfilling debt crisis: if investors start expecting

default and reduce their capital investment to kT (aT [1 − ψ]), then the debt BT = B̄T will not

be repaid, and the expectations of default will be validated. Because of the wedge introduced by
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the default cost to productivity this logic can be extended to lower debt levels that are close to

B̄T ; however, for debt levels at or below BT this is no longer true: even if capital investment falls

to the ‘pessimistic’ level kT (aT [1− ψ]) reducing the fiscal surplus, the debt can still be repaid,

which means that such investor pessimism cannot be a valid equilibrium outcome. Therefore,

the multiplicity brought forth by the presence of default costs is most acute when the economy

is close to its fiscal capacity. In other words, we assert that the fiscal limit cannot be pinned

down by the fundamentals of the economy, as it crucially depends on investor sentiment.

The debt interval for which multiple equilibria are possible increases with the value of de-

fault cost ψ. Intuitively, a high productivity loss in the event of default means that there is a

large gap between capital investments chosen when investors anticipate default and when they

expect repayment. This implies that even relatively low debt levels can become unsustainable

as expectations of default cause a dramatic decline in fiscal surpluses. Corollary 1A below es-

tablishes this result.

Corollary 1A. The lower bound of the multiplicity interval, BT , decreases with ψ, i.e. higher

default costs expand the region of debt in which default can be an equilibrium outcome.

Proof. see Appendix A.

It is plain to see that when there is no loss of productivity associated with default, this

multiplicity does not arise. At ψ = 0, capital investment decisions with- and without default

is exactly the same; there is therefore no ambiguity in what the fiscal limit might be: investor

sentiment pertaining to default has no bearing on the future fiscal surplus.

We have established that there are many possible bond pricing schedules that satisfy Defini-

tion 1A; however, not all such schedules are equally intuitive. For example, consider a function

QT-1(B) that attains qfT−1 on BT ≤ BT , returns qdT−1 for BT > B̄T , but switches back and forth

between qdT−1 and qfT−1 on (BT , B̄T ]. This schedule technically satisfies Definition 1A—however,

it is counterintuitive, as there will be values B∗T > B∗∗T such that QT-1(B∗T ) > QT-1(B∗∗T ), i.e.

the function QT-1(B) will sometimes return higher prices for higher debt levels, implying that

the more debt the government sells, the higher bond prices it faces.

We will now show that the multiplicity caused by the productivity loss associated with

default arises even if we exclude such counterintuitive cases and restrictQT-1(B) to be decreasing

in B. To construct such decreasing bond pricing schedule we can select some B̂T ∈ [BT , B̄T ]

and set

QT-1(BT ) =

q
f
T−1, if BT ≤ B̂T ;

qdT−1, if BT > B̂T .
(26)

Proposition 1 established that qdT−1 < qfT−1 for all B̂T ∈ (BT , B̄T ]; furthermore, qdT−1 =

γ S(aT [1−ψ],kT (aT [1−ψ]),trT )/rBT
decreases in BT . This means that a function described in (26) is

decreasing regardless of the specific choice of the threshold B̂T . Note that we can construct in-

finitely many such decreasing functions choosing different B̂T ∈ [BT , B̄T ] each time. Figure 1(b)

shows an example of one such decreasing bond pricing schedule.
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Note that the function family described by (26) does not capture all possible selections

from QT-1(B) that are decreasing functions: we could construct a decreasing function with a

different behavior around the jump point. The function family in (26) sets the bond price at

the jump point to QT-1(B̂T ) = qfT−1. We could alternatively assign QT-1(B̂T ) = qdT−1 as the

value at the jump point. However, such definition has a serious drawback: the corresponding

revenue function would have no maximum on B. Proposition 2 below makes this distinction,

establishing that (26) describes all decreasing bond pricing schedules that satisfy Definition 1A

and at the same time permit there to be a maximum revenue from the auction of bonds. In

what follows we focus on the function family in (26) when constructing decreasing equilibrium

bond pricing schedules.

Proposition 2. For ψ > 0 there exist infinitely many decreasing bond pricing functions

QT-1(B) that satisfy Definition 1A such that max
BT
{QT-1(BT ) · BT } exists; all such functions

belong to the function family described by (26).

Proof. see Appendix A.

We will now consider how equilibrium multiplicity affects the government’s ability to roll

over its debt in period T − 1, focusing on the family of decreasing bond pricing schedules

described in Proposition 2. The government enters period T − 1 carrying a pre-existing debt

BT−1. The capital stock in period T −1, k(AeT−1), is predetermined by period T −2 investment

decisions based on period T − 2 expectations, AeT−1. In period T − 1 the government attempts

to repay its debt; it chooses BT to satisfy

BT−1 − S(aT−1, k(AeT−1), trT−1) = QT-1(BT ) ·BT . (27)

As we discuss in subsection 2.1, we assume that if there is more than one value of debt that

solves this equation, the government chooses the lowest BT that solves (27).

Repayment of debt BT−1 is feasible if the maximum of QT-1(BT ) ·BT lies above the value of

the pre-existing debt less the current fiscal surplus shown on the left-hand side of (27). Using

the decreasing bond pricing schedule described in (26) with some threshold B̂T ∈ [BT , B̄T ] we

can derive the revenue from the auction of bonds for different bond issuances:

QT-1(BT )BT =

q
f
T−1BT = 1

1+rBT , if BT ≤ B̂T ;

qdT−1BT = γS(aT [1− ψ], kT (aT [1− ψ]), trT )/r, if BT > B̂T .
(28)

Figure 2 shows this function given different choices of the threshold B̂T . Through Proposition

1 we know that qfT−1 > qdT−1 for B̂T ∈ [BT , B̄T ], which means that at the threshold B̂T there is

a fall in revenue; to the left of the threshold, the revenue is increasing in BT ; to the right of the

threshold, the revenue is constant. It follows that the maximum revenue from the auction of

bonds that the government can extract lies at the threshold B̂T , and equals 1
1+r B̂T . Since the

threshold B̂T is arbitrary (in the sense that it is not pinned down by the fundamentals of the
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economy), this implies indeterminacy over the maximum revenue from the auction of bonds.

Figure 2: Revenue from the auction of bonds and multiplicity

(a) ‘Pessimistic’ expectations (low B̂T )

QT-1(BT )BT

BBT B̂T B̄T

max
BT
{QT-1(BT )BT }

(b) ‘Optimistic’ expectations (high B̂T )

QT-1(BT )BT

BBT B̂T B̄T

max
BT
{QT-1(BT )BT }

Corollary 2A. Given ψ > 0 and a decreasing bond pricing schedule, the maximum revenue

from the auction of government bonds can take any value in [ 1
1+rBT ,

1
1+r B̄T ], i.e. there is in-

determinacy over the maximum revenue from the bonds auction.

Proof. see Appendix A

We conclude that in the presence of positive fixed costs of default economic fundamentals

do not pin down the maximum revenue that the government can extract from auctioning bonds.

We can interpret this result as suggesting that the equilibrium outcome is driven by investor

sentiment. Figure 2 illustrates this point. If ‘pessimistic’ investors perceive the threshold B̂T

to be low (Figure 2a), the maximum revenue from selling bonds is lower compared to that

associated with the ‘optimistic’ investor expectations and a corresponding high B̂T (Figure 2b).

The width of the interval [ 1
1+rBT ,

1
1+r B̄T ] increases with the value of the perceived produc-

tivity loss from default, ψ. Higher costs of default decrease the lower bound BT , widening the

multiplicity interval (see Corollary 1A). Intuitively, the bound BT reflects discounted revenues

from tax collection given low capital investment under expectations of default; the higher the

default penalties, the lower the capital investment and the tax revenue under such expectations.

More specifically:

1

1 + r
B̄T −

1

1 + r
BT = τaT

[
αaT (1− τK)

r + δ

] α
1−α [

1− (1− ψ)
α

1−α
] 1

r
(29)

When ψ = 0 there is no multiplicity and B̄T = BT ; as ψ rises, so does the gap between 1
1+r B̄T

and 1
1+rBT .

To make sense of these results numerically, suppose that transfers trT are set to be a fixed

share of GDP: trT = τ tr · yT . With this assumption, 1
1+rBT is lower than 1

1+r B̄T by [1− (1−
ψ)

α
1−α ] × 100 percent. Assuming α = 1/3 and a 10% anticipated reduction in productivity in
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the event of default, this gap would be at 5%; with a 5% productivity loss the gap would be

about 3%.

Note that none of the qualitative results presented so far depend on the specific assumptions

about the recovery rate and the fraction γ of the fiscal surplus being transferred to foreign

creditors. On Figure 2 the value of γ affects the hight of the horizontal line, but not the value

at the peak. The above results would hold under γ = 1, i.e. if the government transfers the

entirety of the fiscal surplus to foreign creditors in the event of default. They would also hold

under γ = 0, a full default.13

Interestingly, it is straightforward to show that the bond pricing schedule described in (26)

is decreasing in ψ in the regions where it is differentiable. That is, aside from introducing

equilibrium multiplicity, the default cost in this model has a negative effect on the equilibrium

bond price—once a specific bond pricing schedule is selected. This result appears to go against

conventional intuition: in models where the government is not constrained by fiscal limits, but

optimally chooses whether to repay the debt or default, higher default costs dampen incentives

to default, raising the probability of repayment and the associated risky bond price. In (26),

while the risk-free bond price qfT−1 is not affected by the default cost, the bond price that

anticipates default, qdT−1, is strictly decreasing in ψ, provided that γ > 0. This is due to

our assumption that in the event of default, the debt recovery rate depends positively on the

government’s fiscal surplus. A high cost of default decreases this amount through two channels:

first, it has a direct negative effect on GDP when the country is in default and thereby on the

fiscal surplus; second, in the period preceding default, high ψ discourages capital investment,

resulting in lower capital stock when default occurs and, again, lower fiscal surplus.

This latter result depends on the value of γ: if nothing is transferred to the creditors in the

event of default (i.e. γ = 0), then the bond price anticipating default would not decrease as

ψ goes up because the repayment rate would be unaffected by the default cost. In Section 5

we show that once we introduce uncertainty over fundamentals, there emerges another channel

that can make the bond price decreasing in ψ. Suppose that in some states of the world the

government is expected to default, while in other states it repays the debt. As default costs

rise, expected productivity ex post decreases, which depresses capital investment ex ante. This

results in a reduction of the expected future surplus, followed by an increase in the number

of states of the world in which the government is forced to default on its debt. As a result,

the bond price would decrease even under γ = 0, as the number of states in which default is

expected would go up.

4 Dynamic Implications of Equilibrium Multiplicity

We now turn to study the dynamic implications of the equilibrium multiplicity in this model. In

subsection 4.1 we use a sequential equilibrium framework with perfect foresight to derive fiscal

13In this paper we do not examine how the default cost ψ may be affected by the renegotiation process over γ:
our results hold as long as some fixed loss resulting from default exists. For papers examining the link between
default costs and the debt restructuring process, see e.g. Asonuma et al. 2019.
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limits for an arbitrary t < T . We show that the fiscal limit in period t, i.e. the maximum amount

of debt that can be backed by fiscal surpluses, is not pinned down by the fundamentals of the

economy—due to the feedback loop between investment decisions and future fiscal surpluses

arising under a positive default cost ψ. We construct an example featuring two equilibrium

fiscal limits: a fiscal limit that corresponds to the ‘optimistic’ expectations about future bond

prices and a fiscal limit associated with investor pessimism. We show that the gap between the

two limits widens as default costs go up.

In subsection 4.1 we thus show that there are multiple possible paths that could be sup-

ported as equilibria under perfect foresight. Importantly, alongside any of these paths the

future equilibrium allocations are correctly anticipated by the economic agents, i.e. there is

no uncertainty over which allocation will be realized. In subsection 4.2 we introduce sunspots

that shift the economy between ‘optimistic’ and ‘pessimistic’ states. We consider a recursive

equilibrium structure in which the agents perceive a possibility of a self-fulfilling debt crisis

and assign probability values to different equilibria being selected. We construct an example in

which the equilibrium fiscal limits depend negatively on the value of the default cost in both

the ‘optimistic’ and the ‘pessimistic’ states of the world.

4.1 Perfect foresight equilibria and fiscal limits in infinite horizon

We now turn to study dynamic implications of equilibrium multiplicity in a sequential equilib-

rium framework with perfect foresight. We start by pinning down the conditions under which

debt repayment is feasible in period T − 1. We then work backwards and study fiscal limits

arising arbitrary periods prior to period T . Finally, we set T to infinity and examine multiplicity

in a setting where the specific assumptions made about the absorbing state T cease to matter.

We have previously established that in period T − 1 there is an infinite number of bond

pricing schedules consistent with the perfect foresight equilibrium, i.e. schedules that satisfy

Definition 1A. We will now extend this argument to other periods; to this end we define an

equilibrium bond pricing schedule for an arbitrary t ≤ T − 2 in Definition 1B in Appendix

A. Solving the model by backward induction requires producing a sequence of bond pricing

schedules consistent with perfect foresight equilibrium. In Proposition 3 below we present a

formal characterization of such a sequence and show that for an arbitrary t ≤ T−2 the feasibility

of debt repayment in period t may be driven by self-fulfilling expectations: specifically, there is

a non-empty interval of debt levels for which 1) there is a sequence of equilibrium bond pricing

schedules consistent with default on current debt and at the same time 2) there is a sequence

of equilibrium bond pricing schedules that allows for debt repayment.

Because we are constructing a perfect foresight equilibrium in which the future outcomes are

always correctly anticipated, when the government issues debtBt+1 in any given period t ≤ T−1,

it faces one of two bond prices: the price qft = 1
1+r consistent with anticipated repayment, or the

price qdt = γS(at+1[1− ψ], k(at+1[1− ψ]), trt+1)/(rBt+1) consistent with anticipated default. In

Section 3 we established that for t = T − 1 there is an interval of debt levels, (BT , B̄T ], on

which both qfT−1 and qdT−1 can be supported as equilibrium prices for debt levels BT . Suppose
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we find that in some period t < T − 1 there is also a set of new debt levels Bt+1 for which two

equilibrium bond prices can be constructed. We will now denote such a set by B̂t+1.

In Section 3 we show that in period T −1 the set of debt levels for which both qfT−1 and qdT−1
are consistent with equilibrium, B̂T , is non-empty (see Propostion 1 ). Because of the sequential

nature of the equilibrium constructed here, it is reasonable to expect that for t < T − 1 the

sets B̂t+1 would be non-empty as well. This means that at any given t < T − 1, there might be

multiple bond pricing schedules that can be supported as equilibrium. Therefore, to construct

a specific equilibrium path we would need to come up with a selection mechanism that assigns

unique prices to each Bt+1 ∈ B̂t+1 whenever B̂t+1 is non-empty.

Before proceeding with a formal argument, we construct an intuitive example in which

we compare equilibrium paths under two alternative mechanisms for selecting bond pricing

schedules—we term them the ‘optimistic’ rule and the ‘pessimistic’ rule. These selection mech-

anisms will operate as follows. Suppose we find that in period t there is a set B̂t+1 of new debt

levels such that for each Bt+1 ∈ B̂t+1 both qft and qdt are consistent with equilibrium. We will

call the ‘optimistic’ selection, Qt,o(B), the bond pricing schedule such that Qt,o(Bt+1) = qft for

all Bt+1 ∈ B̂t+1. In other words, under the ‘optimistic’ rule, whenever multiple bond prices are

possible, the highest bond price gets selected. By contrast, we will denote with Qt,p(B) the

‘pessimistic’ bond pricing schedule, a function for which Qt,p(Bt+1) = qdt for all Bt+1 ∈ B̂t+1.

We first use backward induction to solve for the equilibrium path under the ‘pessimistic’

rule. In period T − 1 the set B̂T for which two bond prices can realize as equilibrium outcomes

is given by (BT , B̄T ] where BT is defined in (25) and B̄T is given by (24). The ‘pessimistic’

bond pricing schedule QT-1,p(B) assigns qdT−1 to each BT ∈(BT , B̄T ]; for BT 6∈ (BT , B̄T ] the rule

assigns the corresponding unique values. This is equivalent to setting the bond pricing schedule

according to (26) under B̂T = BT . Per Proposition 2 this schedule satisfies Definition 1A.

Under the ‘pessimistic’ schedule QT-1,p(B), the maximum revenue that can be extracted

from the auction of bonds in period T − 1 equals 1
1+rBT , or S(aT , kT (aT [1 − ψ]), trT )/r. In

period T − 1, the pre-existing debt BT−1 is repaid if it does not exceed the sum of the current

fiscal surplus and the maximum revenue from the auction of new bonds, that is, if:

BT−1 ≤ S(aT−1, k(AeT−1), trT−1) + S(aT , kT (aT [1− ψ]), trT )/r. (30)

where S(aT−1, k(AeT−1), trT−1) is the fiscal surplus in period T − 1 that is conditional on the

concurrent capital stock k(AeT−1).

We now move to derive the ‘pessimistic’ bond pricing schedule for period T − 2, QT-2,p(B),

corresponding to debt BT−1. Condition (30) suggests that the feasibility of debt repayment

depends on expectations about productivity in period T − 1 formed in period T − 2, AeT−1. As

before, we have two options for AeT−1: either agents expect repayment, in which case AeT−1 =

aT−1, or agents expect default and AeT−1 = aT−1[1 − ψ]. The expectation of repayment can

be validated if debt does not exceed the present value of future fiscal surpluses conditional on
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expected repayment and capital k(aT−1):

BT−1 ≤ S(aT−1, k(aT−1), trT−1) + S(aT , kT (aT [1− ψ]), trT )/r ≡ B̄p
T−1. (31)

The expectation of default can be rationalized if debt is higher than the present value of future

fiscal surpluses that arises when agents expect default and invest k(aT−1[1− ψ]) in capital:

BT−1 > S(aT−1, k(aT−1[1− ψ]), trT−1) + S(aT , kT (aT [1− ψ]), trT )/r ≡ Bp
T−1. (32)

Note that Bp
T−1 < B̄p

T−1 for any ψ > 0. Similarly to what we observed for period T − 1, in

period T − 2 for all BT−1 ∈ (Bp
T−1, B̄

p
T−1] ≡ BT−1 there are two bond prices consistent with

rational expectations: qfT−2 and qdT−2. We can now construct the ‘pessimistic’ bond pricing

schedule QT-2,p(B) assigning qdT−2 to each BT−1 ∈ (Bp
T−1, B̄

p
T−1], q

f
T−2 to each BT−1 ≤ Bp

T−1
and qdT−2 to each BT−1 > B̄p

T−1.

Repeating this backward induction process we arrive at the ‘pessimistic’ bond pricing sched-

ule consistent with perfect foresight equilibrium for an arbitrary t ≤ T − 2:

Qt,p(Bt+1) =

q
f
t = 1

1+r , if Bt+1 ≤ Bp
t+1;

qdt = γS(at+1[1− ψ], k(at+1[1− ψ]), trt+1)/(rBt+1), if Bt+1 > Bp
t+1,

(33)

where

Bp
t+1 =

T−t−1∑
i=1

S(at+i, k(at+i[1− ψ]), trt+i)

(1 + r)i−1
+

1

r

S(aT , k(aT [1− ψ]), trT )

(1 + r)T−t−2
.

The maximum revenue that the government can extract from the auction of bonds in period t is

then given by 1
1+rB

p
t+1. We deduce that under the ‘pessimistic’ bond pricing schedule and given

the accumulated capital k(Aet ), repayment in any period t ≤ T − 2 is feasible if the preexisting

debt does not exceed the following fiscal limit:

Bt ≤ S(at, k(Aet ), trt) +

T−t−1∑
i=1

S(at+i, k(at+i[1− ψ]), trt+i)

(1 + r)i
+

+
1

r

S(aT , k(aT [1− ψ]), trT )

(1 + r)T−t−1
≡ BT

t . (34)

The value of the fiscal limit BT
t on the right-hand side depends negatively on default costs.

This is because under the ‘pessimistic’ bond pricing rule agents expect debt repayment to be

infeasible whenever there is room for self-fulfilling expectations of default. When default costs

are high, high expected productivity losses associated with default make self-fulfilling defaults

possible under lower levels of debt. The government becomes unable to extract high revenues

from auctioning bonds in the future, which results in a lower threshold for debt sustainability

today.

We now dispense with the terminal period T and set T → ∞. With this modification the
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specific assumptions we made about the absorbing state T cease to matter for determining the

debt limit. Repayment of accumulated debt in period t is now feasible if:

Bt ≤ S(at, k(Aet ), trt) +

∞∑
i=1

S(at+i, k(at+i[1− ψ]), trt+i)

(1 + r)i
≡ B∞t . (35)

As in the case of finite horizon, this fiscal limit depends negatively on the value of default costs.

Again, this is due to the ‘pessimistic’ bond pricing schedule always selecting the worst case

scenario.

We now contrast these results with the fiscal limit that would obtain under the ‘optimistic’

selection rule that assigns qft to all Bt+1 ∈ B̂t+1, i.e. the bond pricing schedule that anticipates

full debt repayment whenever this expectation can be validated. Repeating the previous steps

we derive Qt,o(B), the ‘optimistic’ bond pricing schedule for an arbitrary t ≤ T − 2:

Qt,o(Bt+1) =

q
f
t = 1

1+r , if Bt+1 ≤ B̄o
t+1;

qdt = γS(at+1[1− ψ], k(at+1[1− ψ]), trt+1)/(rBt+1), if Bt+1 > B̄o
t+1,

(36)

where

B̄o
t+1 =

T−t−1∑
i=1

S(at+i, k(at+i), trt+i)

(1 + r)i−1
+

1

r

S(aT , k(aT ), trT )

(1 + r)T−t−2
.

Clearly, B̄o
t+1 > Bp

t+1, and therefore bond prices along the ‘optimistic’ schedule are higher or

equal to the corresponding ‘pessimistic’ prices, i.e. Qt,o(Bt+1) ≥ Qt,p(Bt+1).

As in the case of the bond pricing schedule QT-1(B) discussed in Section 3, the schedules

Qt,p(B) and Qt,o(B) are decreasing in the level of default costs (where differentiable). The

sections of the schedules to the right of the respective jump points with bond prices qdt are

strictly decreasing in ψ if γ > 0. Once again, this result arises due to the assumption that in the

event of default the government transfers a share γ of the fiscal surplus to the foreign creditors.

Higher default costs reduce this surplus (by imposing a direct loss ex post and depressing capital

investment ex ante), thereby lowering the debt recovery rate and the corresponding bond price.

We can also deduce that under the ‘optimistic’ bond pricing schedule repayment in period

t is feasible if:

Bt ≤ S(at, k(Aet ), trt) +
T−t−1∑
i=1

S(at+i, k(at+i), trt+i)

(1 + r)i
+

1

r

S(aT , k(aT ), trT )

(1 + r)T−t−1
≡ B̄T

t . (37)

Under T →∞ this condition becomes:

Bt ≤ S(at, k(Aet ), trt) +

∞∑
i=1

S(at+i, k(at+i), trt+i)

(1 + r)i
≡ B̄∞t . (38)

The fiscal limits B̄T
t and B̄∞t are higher compared to the corresponding limits BT

t and B∞t
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obtained under the ‘pessimistic’ selection mechanism. Furthermore, the limits B̄T
t and B̄∞t are

unaffected by the value of default costs: this is because the ‘optimistic’ rule selects bond prices

consistent with anticipated repayment whenever possible.

We have shown that there is a stark difference between the fiscal limit that corresponds to

the bond pricing schedules reflecting ‘optimistic’ self-fulfilling expectations (i.e. the ‘optimistic’

fiscal limit B̄∞t ) and the fiscal limit that arises when expectations are always ‘pessimistic’ (i.e.

the ‘pessimistic’ fiscal limit B∞t ). In either case the debt sustainability criterion states that

debt must not exceed the sum of discounted future fiscal surpluses. Under the ‘optimistic’

rule these surpluses are calculated using high levels of capital investment, k(at). Under the

‘pessimistic’ rule the surpluses are computed using lower capital investment levels that arise

when productivity is expected to be impaired by default penalties, k(at[1 − ψ]). This latter

result emerges because under the ‘pessimistic’ rule investor pessimism is presumed to always

be self-fulfilling: whenever expectations of default can be validated as equilibrium outcome,

they get reflected in the bond pricing schedules—in other words, whenever there is room for

a self-fulfilling debt crisis, default is expected. When debt exceeds B∞t , capital outflow can

trigger a budget shortage; therefore, debt repayment hinges on whether or not future capital

investment is expected to be depressed by the anticipated default penalties. This is when

pessimistic expectations can become self-fulfilling.

Proposition 3 below makes a more general argument about debt repayment in period t in

conjuncture with self-fulfilling expectations about future bond pricing schedules. We show that

for any Bt in (BT
t , B̄

T
t ] (or, under T → ∞, in (B∞t , B̄

∞
t ]) we can construct some sequence of

decreasing equilibrium bond pricing schedules such that the government is forced to default in

t; we can also construct some sequence of decreasing equilibrium bond pricing schedules such

that the government is able to repay the debt in t.

Proposition 3 Consider the economy entering period t ≤ T − 2 with pre-existing debt Bt and

capital k(Aet ) where ψ > 0. There exists an infinite number of perfect foresight equilibria in

which each period the government faces a decreasing bond pricing schedule that satisfies Defini-

tion 1B; furthermore, for each debt level Bt in (BT
t , B̄

T
t ] there is at least one such equilibrium

where Bt is consistent with default in t, and at least one equilibrium in which it is consistent

with full debt repayment in t. As T →∞ this interval converges to (B∞t , B̄
∞
t ].

Proof. see Appendix A.

The result that we can construct both equilibrium with repayment and equilibrium with

default for any Bt between the ‘pessimistic’ and the ‘optimistic’ fiscal limits derived above is

intuitive: we derived these limits assuming most extreme selections from the space of plausible

equilibrium bond pricing schedules, featuring the ‘always optimistic’ or ‘always pessimistic’

choices; however, there is an infinite number of choices between these two alternatives which

result in fiscal limits that fall between the two extremes.

The results uncovered in this section crucially depend on the value of default costs. The
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equilibrium multiplicity discussed in Proposition 3 disappears for zero costs of default: for

ψ = 0 we have BT
t = B̄T

t and B∞t = B̄∞t . It is therefore the presence of the anticipated losses

to productivity in the event of default that allows for multiple equilibria with distinct fiscal

limits. Furthermore, the range of fiscal limits that can be validated as equilibria expands with

the value of default costs: as ψ increases, the lower bounds of the multiplicity intervals (BT
t

and B∞t ) go down, and self-fulfilling debt crises fueled by investor pessimism become possible

for lower levels of debt.

4.2 Sunspot equilibria in infinite horizon

In subsection 4.1 we show that when defaults are associated with productivity losses the model

generates infinitely many perfect foresight sequential equilibria with distinct fiscal limits. Each

of these equilibria gives rise to a unique sequence of bond pricing schedules. We constructed

an example that compares fiscal limits arising under two specific sequences of equilibrium bond

pricing schedules: the ‘pessimistic’ equilibrium (with bond prices that anticipate default when-

ever this expectation can be self-fulfilling) and the ‘optimistic’ equilibrium (with bond prices

that anticipate repayment whenever it can be rationalized). Crucially, whichever sequence of

bond pricing schedules is selected, agents predict future prices perfectly, i.e. even though multi-

ple equilibrium paths are possible, there is not uncertainty along a specific path. Therefore, the

fact that multiple equilibria co-exist does not factor into the decisions economic agents make.

In this section we consider a version of the model in which agents perceive the possibility of

self-fulfilling debt crises, and assign probability values to different equilibria being selected. We

consider a sunspot Markov equilibrium that mirrors the example discussed in subsection 4.1,

in which the bond pricing schedule depends on the realization of extrinsic uncertainty that

switches the economy between two states, state ‘o’ and state ‘p’. Each period the bond pricing

schedule that the government faces when issuing new bonds B′, Q(B′), may take one of two

forms, Qo(B′) or Qp(B′), such that for Qo(B′) ≥ Qp(B′) for all B′. The exogenous probability

of the state ‘p’ realizing is 0 < πp < 1; the probability of state ‘o’ is (1 − πp). We will show

that, in contrast to the results obtained in subsection 4.1, here, the default cost affects fiscal

limits that arise in both the ‘optimistic’ and the ‘pessimistic’ equilibria—because the agents

internalize the possibility of sunspots that switch the economy from state ‘o’ to state ‘p’.

We assume that unpenalized productivity aT and transfers trT are time-invariant and de-

note them by a and tr; for brevity in this section we will write S(A′, k(E[A′])) instead of

S(A′, k(E[A′]), tr). Definition 2 below summarizes what we consider to be equilibrium bond

pricing schedules in this setup.

Definition 2. Equilibrium bond pricing schedules Qi(B): sunspots. The equilibrium is

characterized by a pair of bond pricing schedules Qp(B′), Qo(B′) such that for each B′ the bond

price qi ∈ Qi(B′) for i = {p, o} satisfies

qi =
E[χ′j ]

1 + r
(39)
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where

χ′j =


1, if B′ ≤ S(a, k(E[A′])) + max

B′′
{Qj(B′′)B′′};

γ·S(a[1−ψ],k(E[A′]))·(1+r)/r
B′ , if B′ > S(a, k(E[A′])) + max

B′′
{Qj(B′′)B′′},

(40)

and

k(E[A′]) =

[
αE[A′](1− τK)

r + δ

] 1
1−α

(41)

with

A′j =


a, if B′ ≤ S(a, k(E[A′])) + max

B′′
{Qj(B′′)B′′};

a(1− ψ), if B′ > S(a, k(E[A′])) + max
B′′
{Qj(B′′)B′′}

(42)

where j = p with probability πp and j = o with probability 1−πp, and E[A′] = πpA′p+(1−πp)A′o.
Furthermore, for any B′, Qo(B′) ≥ Qp(B′).

The bond pricing schedules that satisfy Definition 2 must be such that the maxima of

Qj(B′)B′ exist. Denote these maxima by:

Xi ≡ max
B′
{Qi(B′)B′} (43)

where i = {p, o}. The fact that Qo(B′) ≥ Qp(B′) implies that Xo ≥ Xp.

In what follows we will construct an example featuring bond pricing schedules Qp(B′) and

Qo(B′) that comply with Definition 2. One technical difficulty is that we cannot find Xi without

determining Qi(B′) first. We thus proceed in three steps. First, we characterize all combinations

of debt B′, bond prices and expectations E[A′] that satisfy (39)-(42) given some arbitrary X̌o

and X̌p (to be determined later). Second, using these results and conditioning on X̌o and X̌p

we construct an example featuring decreasing functions Qo(B′|X̌o, X̌p) and Qp(B′|X̌o, X̌p) such

that Qo(B′|X̌o, X̌p) ≥ Qp(B′|X̌o, X̌p) for all B′. Third, we find Xo and Xp by substituting

Qo(B′|X̌o, X̌p) and Qp(B′|X̌o, X̌p) into (43) and solving the resulting system of equations; we

then use Xo and Xp to construct Qo(B′) and Qp(B′) and verify that the functions satisfy

Definition 2.

We start by looking for combinations of debt, bond prices and expectations about produc-

tivity E[A′] that can be supported as equilibrium in Definition 2, given some choice of X̌o and

X̌p such that X̌o ≥ X̌p. With the sunspot switching the economy between two states there are

only three possible values that E[A′] could take.

Suppose agents expect full repayment in both states. If next period agents anticipate

full repayment in both states ‘o’ and ‘p’, then E[A′] = a. They would then choose k(a) (capital

choice under certain full repayment) as the next period’s capital. This expectation is rational

for levels of borrowing B′ that, given this capital choice, can be repaid fully next period even
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in the pessimistic state:

B′ ≤ S(a, k(a)) + X̌p ≡ B̄(X̌p). (44)

If (44) holds, then under E[A′] = a repayment of B′ is feasible in both state ‘p’ and state ‘o’, as

by construction X̌p ≤ X̌o. The threshold B̄(X̌p) denotes the maximum value of debt consistent

with anticipated repayment in both states. For any debt level within B̄(X̌p) a risk-free bond

price qf = 1
1+r can be supported as an equilibrium outcome.

Suppose agents expect default in both states. This results in expectations E[A′] =

a[1−ψ], and a capital choice k(a[1−ψ]). These expectations can be rationalized for debt levels

that cannot be repaid even in state ‘o’:

B′ > S(a, k(a[1− ψ])) + X̌o ≡ B(X̌o). (45)

For debt that exceeds the thresholdB(X̌o) we can construct an equilibrium bond price consistent

with default in both states: qd = γ S(a[1−ψ],k(a[1−ψ]))rB′ .

Suppose agents expect default in state ‘p’ and full repayment in state ‘o’. The

expected productivity then reads E[A′] = a[1− πpψ] (and the capital choice is k(a[1− πpψ])).

This can be supported as equilibrium for debt levels in the following interval:

B′ > S(a, k(a[1− πpψ])) + X̌p ≡ B̃l(X̌p) (46)

B′ ≤ S(a, k(a[1− πpψ])) + X̌o ≡ B̃h(X̌o). (47)

Note that the reverse (i.e. default in ‘o’ and full repayment in ‘p’) is not possible, as by

construction X̌o ≥ X̌p. When debt lies in (B̃l(X̌p), B̃h(X̌o)], a bond price consistent with

expectations of default in ‘p’ and repayment in ‘o’ can be supported as an equilibrium outcome:

qπ = 1
1+r [(1− πp)+πpγ S(a[1−ψ],k(a[1−ψ]))(1+r)rB′ ].

Unlike in the perfect foresight case, here it is not necessarily true that B(X̌o) < B̄(X̌p);

however, we will show that there exists an infinite number of function pairs Qo(B′), Qp(B′)

featuring decreasing bond pricing schedules that satisfy Definition 2 for which this is true—see

the example below.

Example: Equilibrium with certain default or certain repayment

Suppose B(X̌o) < B̄(X̌p). We will rely on this assumption to construct Qo(B′|X̌o, X̌p) and

Qp(B′|X̌o, X̌p). We will then use (43) to find Xo, Xp and construct Qo(B′), Qp(B′); we then

verify that, consistent with the assumption made above, B(Xo) < B̄(Xp) holds.

Figure 3(a) presents a correspondence Q(B|X̌o, X̌p) that collects all bond prices that can be

supported as equilibria given some X̌o and X̌p, and assuming B(X̌o) < B̄(X̌p)—in accordance

with the reasoning presented above; Figure 3(b) shows corresponding revenues from the auction

of bonds. The green lines show the constant bond price corresponding to anticipated full

repayment in both states, qf , and the associated revenue from the auction of bonds; the red
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Figure 3: Revenue from bonds auction and multiplicity

(a) Correspondence Q(B)

Q(B)

B

qd

qf

qπ

B B̃hB̃l B̄

(b) Revenues from bonds auction Q(B)B

Q(B′)B′

BB̄ B̃hB̃l B

(c) Bond price in ‘optimistic’ state Qo(B)

Qo(B)

BB̂o

qd

qf

B B̄

(d) Revenues from bonds auction Qo(B)B

Qo(B)B

BB̂o

max{Qo(B)B}

B̄B

(e) Bond price in ‘pessimistic’ state Qp(B)

Qp(B)

BB̂p

qd

qf

B B̄

(f) Revenues from bonds auction Qp(B)B

Qp(B)B

BB̂p

max{Qp(B)B}

B̄B

lines correspond to expectations of default in both states with a price qd; the blue dashed line

represents expectations of default in state ‘p’ and repayment in state ‘o’; given arbitrary X̌o

and X̌p we do not know the exact positioning of thresholds B̃l(X̌p) and B̃h(X̌o) (and therefore

the blue lines are dashed), but it is immaterial for the argument presented below.

We proceed by constructing two decreasing bond pricing schedules as selections from the

correspondence Q(B|X̌o, X̌p). Each schedule combines qf and qd such that Qo(B′|X̌o, X̌p) ≥
Qp(B′|X̌o, X̌p), and features a downward jump at some B̂j ∈ [B(X̌o), B̄(X̌p)]:

Qj(B′|X̌o, X̌p) =

qf = 1
1+r , if B′ ≤ B̂j ;

qd = γS(a[1− ψ], k(a[1− ψ]))/(rB′), if B′ > B̂j .
(48)
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with B̂o > B̂p (we do not consider B̂o = B̂p to ensure that the schedules Qo(B′|X̌o, X̌p) and

Qp(B′|X̌o, X̌p) are distinct). Figure 3(c) and Figure 3(e) depict examples of such bond pricing

schedules Qo(B|X̌o, X̌p) and Qp(B|X̌o, X̌p).

We are now in position to determine Xo and Xp. Set B̂j = mjB(Xo) + (1 − mj)B̄(Xp)

with mj ∈ [0, 1]; require that mp > mo. Crucially, the maxima of the revenues under schedules

Qo(B|X̌o, X̌p) and Qp(B|X̌o, X̌p) above will lie at the respective jump points, as shown on

Figure 3(d) and Figure 3(f). Combining this insight with the definition (43) we get:

Xo = qf · B̂o =
1

1 + r
[moB(Xo) + (1−mo)B̄(Xp)] (49)

Xp = qf · B̂p =
1

1 + r
[mpB(Xo) + (1−mp)B̄(Xp)] (50)

Substituting these results into (44) and (45), we obtain two linear equations from which we can

solve for B̄, B:

B̄(Xp) = S(a, k(a)) +
1

1 + r
[mpB(Xo) + (1−mp)B̄(Xp)] (51)

B(Xo) = S(a, k(a[1− ψ])) +
1

1 + r
[moB(Xo) + (1−mo)B̄(Xp)] (52)

This system yields:

B =
(1 + r)(r +mp)

r(1 + r +mp −mo)
S(a, k(a[1− ψ])) +

(1 + r)(1−mo)

r(1 + r +mp −mo)
S(a, k(a))

B̄ =
(1 + r)mp

r(1 + r +mp −mo)
S(a, k(a[1− ψ])) +

(1 + r)

(r +mp)
[1 +

mp(1−mo)

r(1 + r +mp −mo)
]S(a, k(a))

We can substitute this result into (49) and (50) to find Xo and Xp; we can also construct Qo(B′)

and Qp(B′) substituting B̂j = mjB(Xo) + (1−mj)B̄(Xp) into (48). Finally, we can verify that

our original guess that B̄ > B is correct: with some algebra we can show that B̄ > B whenever

S(a, k(a)) > S(a, k(a[1− ψ])), which is always the case under ψ > 0.

By construction, the functions Qo(B′) and Qp(B′) in our example satisfy (39)-(42) given

our solutions for Xo and Xp. Furthermore, Xo and Xp represent the maxima of Qo(B′)B′

and Qp(B′)B′. Because mp > mo, it follows that B̂o > B̂p and (48) implies that Qo(B′)B′ ≥
Qp(B′)B′ for all B′. We therefore conclude that Qo(B′) and Qp(B′) in our example satisfy

Definition 2. We have shown that the equilibrium bond pricing schedules described in Definition

2 exist and that we can construct equilibria in which the economy switches between two states,

each associated with a distinct decreasing bond pricing schedule.

The argument above works for any choices of B̂o > B̂p in [B, B̄]. But within this class of

equilibria, if B̂o and B̂p lie relatively close to each other, then the two states do not differ much

in the associated economic outcomes and the maximum revenues from the auction of bonds. We

will now consider an extreme case featuring the most distinct bond pricing schedules Qo(B) and

Qp(B), in which B̂o and B̂p lie on the opposite ends of the multiplicity interval, with B̂o = B̄

(and mo = 0) and B̂p = B (and mp = 1). This equilibrium mirrors the example presented
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in subsection 4.1, in which in the ‘pessimistic’ equilibrium default was anticipated whenever

possible, while in the ‘optimistic’ equilibrium repayment was always expected if it could be

rationalized.

With mo = 0 and mp = 1, in state ‘o’ given capital k, debt B can be repaid if:

B ≤ S(a, k) +
1

r(2 + r)
S(a, k(a[1− ψ])) +

1 + r

r(2 + r)
S(a, k(a)) (53)

while in state ‘p’ debt B can be repaid if:

B ≤ S(a, k) +
1 + r

r(2 + r)
S(a, k(a[1− ψ])) +

1

r(2 + r)
S(a, k(a)) (54)

Unlike in the example considered in subsection 4.1, here the default cost ψ affects the fiscal

limits that arise in both states—not only when investors are pessimistic, but also in the ‘opti-

mistic’ state. This is because, unlike in the sequential perfect foresight equilibrium discussed in

subsection 4.1, here in state ‘o’ agents perceive the possibility of the sunspot occurring in the

future, and the potential for a switch between ‘o’ and ‘p’.

To see the intuition behind this result, consider Xo defined in (49). Suppose that the

economy is currently in state ‘o’. In state ‘o’, the maximum of the revenue function, Xo,

corresponds to the biggest debt level that can be repaid fully in both states in the future (which

trades at the risk-free price qf )—as illustrated on Figure 3(d). If state ‘p’ realizes in the future,

investors will anticipate default and productivity penalties whenever such expectation can be

rationalized; higher default costs push down future Xp along with the maximum level of debt

that can be repaid in the future state ‘p’. As a result, in the current state ‘o’ the maximum

debt that can be repaid in both future states goes down as default cost increases—this has a

negative impact on the maximum revenue Xo that can be extracted in state ‘o’ and, as a result,

on the maximum debt that can be repaid in state ‘o’ defined in (53).

To sum up, the fiscal limit, i.e. the maximum level of debt that can be repaid, depends on the

maximum revenue that can be extracted from auctioning bonds, which, in turn, is conditional

on default costs. Note that under ψ = 0, the fiscal limits in states ‘o’ and ‘p’ become identical;

furthermore, they would match the ‘optimistic’ fiscal limit in the sequential equilibrium model

specified in (38). For ψ > 0 fiscal limits in both states are negatively affected by the value of

the default cost.14

14Note that the probability of the sunspot occurring, πp, does not affect the fiscal limits—because they depend
on the maximum revenues from auctioning bonds that are achieved at risk-free borrowing levels. But the example
presented here is not the only equilibrium satisfying Definition 2 that we can construct. We found that for high
γ and low πp we can also construct an equilibrium in which the maximum revenue from the auction of bonds is
achieved at price qπ which anticipates repayment in state ‘o’ and default in state ‘p’. In this equilibrium, the
feasibility of debt repayment is affected by both γ and πp.
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5 Multiplicity and Uncertainty over Fundamentals

The results presented so far describe bond prices and multiplicity under the assumption that

there is no uncertainty over the fundamentals of the economy: Section 3 and subsection 4.1

consider equilibria with perfect foresight, while subsection 4.2 introduces a sunspot that switches

the economy between states characterized by distinct expectations about the future. In both

these setups we constructed bond prices that were decreasing in the level of debt, as well as in

the default cost (where differentiable). We also pointed out intervals on which the bond prices

were strictly decreasing in ψ (i.e. where qt = qdt ).

This latter result emerged because of our assumption about debt recovery rates: we assume

that after a default the government transfers a fraction γ of its fiscal surpluses to the foreign

creditors. The default cost has a two-fold effects on this post-default surplus: first, it creates

a direct loss to output when default occurs which results in a lower recovery rate; second, the

anticipation of low returns following a default depresses capital investment and through it, the

capital stock and the fiscal surplus that is transferred to the foreign creditors when default

occurs. Importantly, these two channels disappear if γ = 0, i.e. assuming full default on debt.

In this section we introduce uncertainty over the fundamentals of the economy and show

that, provided that uncertainty is continuously distributed, there emerges an additional channel

through which the default cost can negatively affect the bond price that is not tied to the value

of γ. Intuitively, when repayment is uncertain, higher default costs ex post reduce expected

returns on capital and depress capital investment ex ante. This results in lower capital stock

and fiscal surplus ex post. In consequence, ex ante default is expected to occur in more states

of the world, resulting in a lower associated bond price.

In what follows we present an extension of the sequential version of the model with the

absorbing state T , in which we introduce uncertainty over the transfer payments in period T .

Our interpretation of this setup is similar to that discussed in Lorenzoni & Werning (2019): for

example, there could be a political event taking place in period T (e.g. an election) that could

prompt changes to fiscal policy. We assume that the transfers are distributed continuously

with pdf f(trT ) and support [trmin, trmax]. While the results presented below are specific

to this setup, the mechanism discussed above would also arise under uncertainty over other

fundamentals that affect the fiscal surplus (e.g. uncertainty over productivity or tax rates).

Here, we prefer to use uncertainty over transfer payments because it does not impact the capital

accumulation decision through any other channel aside from expectations of default and default

penalties.

As in the deterministic case, the realized return rKT = αATk
α−1
T depends on whether default

happens in period T and, in consequence, on whether there is a default penalty. Capital

investment in period T − 1 is determined by expectations of period T − 1 about how different

realization of transfers relate to default decisions and default penalties in period T . The realized

fiscal surplus equals:

ST ≡ S(AT , kT (ET−1[AT ]), trT ) = τAT [kT (ET−1[AT ])α − trT . (55)
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The surplus depends on the current realization of transfer payments as well as the capital

choice that, in turn, is conditional on past expectations about productivity. We assume that

S(aT (1 − ψ), kT (a(1 − ψ)), trmax) > 0 which ensures that the surplus is always positive—for

ease of exposition.

Definition 3. Equilibrium bond pricing schedule QT-1(B): uncertainty. A bond pricing

schedule is a function QT-1(B) such that for each BT ∈ B the bond price qT−1 ∈ QT-1(BT )

satisfies

qT−1 =
ET [χT ]

1 + r
(56)

where

χT =

1, if BT ≤ S(aT , kT (ET−1[AT ]), trT ) · 1+rr ;

γ
S(aT [1−ψ],kT (ET−1[AT ]),trT )·(1+r)/r

BT
, if BT > S(aT , kT (ET−1[AT ]), trT ) · 1+rr .

(57)

and

kT =

[
αET−1[AT ](1− τK)

r + δ

] 1
1−α

(58)

with

AT =

aT , if BT ≤ S(aT , kT (ET−1[AT ]), trT ) · 1+rr ;

aT (1− ψ), if BT > S(aT , kT (ET−1[AT ]), trT ) · 1+rr .
(59)

The bond pricing schedule faced by the government depends on expectations about the real-

ization of transfers, trT . First, these expectations directly affect the future fiscal surplus, and

through it, the expected recovery rate. This mechanism is similar to other models of default.

Second, the expected recovery rate affects expected returns on capital which then determine

present capital choice. This choice, in turn, has an effect on future fiscal surpluses and the ex-

pected recovery rate. This feedback loop results in a fixed-point problem that may have several

solutions. As before, we will show that positive default costs may cause equilibrium multiplicity.

Note that expressions (57) and (59) give recovery rates and default penalties conditional

on the realization of the shock to transfers, trT . Using the definition of the fiscal surplus

S(aT , kT (ET−1[AT ]), trT ) we can rewrite them as follows:

χT =

1, if trT ≤ t̂rT ;

γ
S(aT [1−ψ],kT (ET−1[AT ]),trT )·(1+r)/r

BT
, if trT > t̂rT ;

(60)

and

AT =

aT , if trT ≤ t̂rT ;

aT (1− ψ), if trT > t̂rT ;
(61)
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where

t̂rT ≡ τaT (kT (ET−1[AT ]))α −BT
r

1 + r
. (62)

Therefore, default and productivity penalties occur whenever the realization of transfers sur-

passes an endogenous threshold t̂rT . We can use this insight to express the bond pricing equation

(56) and the capital investment decision (58) in terms of expectations of the realization of trT

relative to the threshold t̂rT :

qT−1 = F (t̂rT )
1

1 + r
+
γ

r
·
∫∞
t̂rT

[τaT (1− ψ)(kT (ET−1[AT ])α − trT ]f(trT )dtrT

BT
(63)

and

kT (ET−1[AT ]) =

[
αaT

[
1− (1− F (t̂rT ))ψ

]
(1− τK)

r + δ

] 1
1−α

(64)

where F (.) is the cdf of trT . Bond prices depend on the probability of transfers staying within

t̂rT , F (t̂rT ), and on the expected surplus that will be transferred to foreign creditors if they

do surpass t̂rT (the right term in 63). This latter value is affected by the expected transfers as

well as the capital choice. When t̂rt is such that the probability of default is positive (i.e. when

F (t̂rT ) < 1), capital investment decreases with the default cost ψ; it also decreases with the

probability of default, (1 − F (t̂rT )). This is intuitive: capital returns drop in times of default

by the magnitude which is predicated on the value of the default cost ψ. Consequently, the

realized fiscal surplus also depends on t̂rT :

S(AT , kT (ET−1[AT ]), trT ) = τAT

[
αaT

[
1− (1− F (t̂rT ))ψ

]
(1− τK)

r + δ

] α
1−α

− trT . (65)

To construct bond prices that satisfy Definition 3 we will use reasoning similar to that

employed in Section 3 when constructing bond prices under perfect foresight: we will make

guesses about expected productivity ET−1[AT ], and then find values of BT for which these

guesses can be correct in equilibrium.

There are three possible values that expected productivity ET−1[AT ] could take. First,

agents could be anticipating repayment in every state, in which case they would expect ET−1[AT ] =

aT ; below we derive necessary and sufficient conditions under which an equilibrium featuring

these expectations can be constructed. Second, agents could be expecting default in every state

with ET−1[AT ] = aT [1 − ψ]—again, we derive necessary and sufficient conditions for this to

be an equilibrium. Third, agents may be anticipating default in some states and repayment in

other states, in which case ET−1[AT ] = aT
[
1− (1− F (t̂rT ))ψ

]
. Unlike with the previous two

sets of expectations, here we will only define sufficient (but not necessary) conditions for such

an equilibrium to exist.

Suppose agents expect full repayment in all states and ET−1[AT ] = aT . These expec-

tations are validated if (60) and (61) select χT = 1 and AT = aT in every state. This is the case

if t̂rT ≥ trmax or, equivalently, if under the capital choice kT (aT ) associated with anticipated
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repayment in all states, in each of those states the debt BT does not exceed the discounted

sum of future fiscal surpluses, S(aT , kT (aT ), trT ) · (1 + r)/r. Since S(.) is decreasing in trT ,

this condition holds for each state if and only if it holds in the state with the highest transfers

possible, i.e. under BT ≤ S(aT , kT (aT ), trmax) · (1 + r)/r, or:

BT ≤

(
τaT

[
αaT (1− τK)

r + δ

] α
1−α

− trmax
)

1 + r

r
≡ B̄T (66)

As in the previous sections, we conclude that there is an upper bound on debt BT beyond which

one cannot construct an equilibrium bond price consistent with full repayment in all states. At

the same time, for debt levels below this threshold such a bond price can be constructed and

would equal qfT−1 = 1
1+r . As in the previous sections, BT ≤ B̄T is a necessary and sufficient

condition for the existence of an equilibrium bond price that anticipates full repayment in all

states: if BT ≤ B̄T is violated, expectations of full repayment cannot be validated as equilibrium,

as given the corresponding capital choice in some of the states the debt will not be repaid.

Suppose agents expect default in all states and ET−1[AT ] = aT [1 − ψ]. Again, these

expectations are validated if (60) and (61) select χT < 1 and AT = aT [1 − ψ] in every state,

which is the case if t̂rT < trmin or, equivalently, if under the capital choice kT (aT [1 − ψ])

consistent with expected default in all states, in each of those states the debt BT exceeds

the discounted sum of future fiscal surpluses, S(aT , kT (aT [1 − ψ]), trT ) · (1 + r)/r. Again,

because S(.) is decreasing in trT , this condition holds if and only if under capital kT (aT [1−ψ])

debt cannot be repaid even in the state with the lowest realization of transfers, i.e. under

BT > S(aT , kT (aT [1− ψ]), trmin) · (1 + r)/r, or:

BT >

(
τaT

[
αaT (1− ψ)(1− τK)

r + δ

] α
1−α

− trmin
)

1 + r

r
≡ BT (67)

There is therefore a lower bound on debt BT such that for all debt levels exceeding it we can

construct an equilibrium bond price consistent with default in all states, while for BT ≤ BT

this cannot be done. Again, BT > BT is a necessary and sufficient condition for the bond price

corresponding to default in all states to satisfy Definition 3.

Suppose agents expect default in some states and full repayment in other states,

and ET−1[AT ] = aT
[
1− (1− F (t̂rT ))ψ

]
). These expectations are validated if there exists

some t̂r ∈ [trmin, trmax) such that (60) and (61) select χT = 1 and AT = aT for all trT ≤ t̂rT

and χT < 1 and AT = aT [1 − ψ] for all trT > t̂rT . The capital choice is then determined by

the expected productivity ET−1[AT ] = aT
[
1− (1− F (t̂rT ))ψ

]
. For trT ≤ t̂rT the discounted

realized surplus S(aT , kT (aT
[
1− (1− F (t̂rT ))ψ

]
), trT ) · (1 + r)/r must not exceed BT , while

for trT > t̂rT it must be greater than BT . Because the surplus is continuously decreasing over

trT and since trT is continuously distributed, at trT = t̂rT the debt must exactly match the
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value of discounted future fiscal surpluses:

BT =

τaT [αaT [1− (1− F (t̂rT ))ψ
]

(1− τK)

r + δ

] α
1−α

− t̂rT

 1 + r

r
≡ Ω(t̂rT ). (68)

To find t̂rT that can support expectations of default under trT > t̂rT and repayment under

trT ≤ t̂rT , we need to find t̂rT ∈ [trmin, trmax) that solves problem (68). The function Ω(t̂rT )

captures the discounted sum of fiscal surpluses at the threshold trT = t̂rT . It is not clear

whether the function Ω(t̂rT ) is decreasing or increasing: on the one hand, higher t̂rT means

higher expected productivity and, as a result, higher level of capital investment and fiscal

surplus; on the other hand, higher t̂rT also implies larger transfer payments and lower fiscal

surplus. We cannot derive necessary conditions for the existence of t̂rT ∈ [trmin, trmax) that

solves problem (68) without making additional assumptions about the structure of uncertainty.

Nevertheless, we will derive sufficient conditions that guarantee the problem (68) to have a

solution on t̂rT ∈ [trmin, trmax).

Note that Ω(trmin) = BT and Ω(trmax) = B̄T . Note also that the function Ω(t̂rT ) is

continuous on [trmin, trmax). Consider the following two possibilities: BT > B̄T and BT <

B̄T . Suppose BT > B̄T ; it follows that Ω(trmin) > Ω(trmax) and that on [trmin, trmax),

because of continuity, the function Ω(t̂rT ) assumes each value in (Ω(trmax),Ω(trmin)] at least

once. It follows that for any BT ∈ (B̄T , BT ] problem (68) has at least one solution on t̂rT ∈
[trmin, trmax). Consequently, whenever BT > B̄T , we can find t̂rT for any BT ∈ (B̄T , BT ] such

that there is default under trT > t̂rT and repayment otherwise.

Suppose now that BT < B̄T ; this implies that Ω(trmin) < Ω(trmax) and that, again, because

of continuity, on [trmin, trmax) the function Ω(t̂rT ) assumes each value in [Ω(trmin),Ω(trmax))

at least once. It follows that for any BT ∈ [BT , B̄T ) problem (68) has at least one solution

on t̂rT ∈ [trmin, trmax). Therefore, for any BT ∈ [BT , B̄T ) we can find t̂rT such that there is

default under trT > t̂rT and repayment otherwise.

The above considerations yield an important result. For each BT we can construct at

least one t̂rT that satisfies (60)-(62) and (64); for some BT there is more than one such t̂rT

(e.g. for BT ∈ (BT , B̄T ] when BT < B̄T ). We can therefore construct a correspondence

ΦT-1(B) that links each BT ∈ B with a threshold t̂rT that satisfies (60)-(62) and (64). We

can then construct a bond pricing schedule that satisfies Definition 3 through one of two al-

ternative routes. First, we can construct a correspondence QT-1(B) by applying (63) to each

pair (BT , t̂rT ) : t̂rT = ΦT-1(BT ); we can then construct a function QT-1(B) by specifying a

selector from the correspondence QT-1(B). Alternatively, we can specify a selector function

φT-1(B) from the correspondence ΦT-1(B) that assigns each BT a unique t̂rT ; we can then ob-

tain QT-1(B) by applying (63) to each pair (BT , t̂rT ) : t̂rT = φT-1(BT ). Because (63) describes

a function, these two routes result in the same set of bond pricing schedules QT-1(B) that

satisfy Definition 3. We have therefore established that a bond pricing schedule that satisfies

Definition 3 exists (see proof of Proposition 4 below for additional details).
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Importantly, there may be more than one bond pricing schedule that satisfies Definition 3.

Specifically, when BT < B̄T , correspondences ΦT-1(B) and QT-1(B) assign more then one value

to each BT ∈ (BT , B̄T ] as there are several t̂rT that satisfy (60)-(62) and (64) and therefore

several bond prices satisfying Definition 3. In this case, multiple distinct selections from ΦT-1(B)

andQT-1(B) are possible, and more than one distinct bond pricing schedule satisfying Definition

3 can be constructed.

Proposition 4 below summarizes these results and establishes that a sufficient condition for

multiplicity, BT < B̄T , requires that the default cost ψ is ‘high enough’. Proposition 4 also

asserts that under this condition multiple decreasing schedules exist. Denote

ψ̃ ≡ 1−

1− trmax − trmin

τaT

[
αaT (1−τk)

r+δ

] α
1−α


1−α
α

. (69)

Proposition 4. Equilibrium bond pricing schedule QT-1(B) that satisfies Definition 3 exists.

Furthermore, if ψ > ψ̃, then BT < B̄T and there exist multiple decreasing bond pricing sched-

ules QT-1(B) that satisfy Definition 3 with each schedule taking distinct values on the interval

(BT , B̄T ]. When the cost ψ goes up, the interval (BT , B̄T ] expands as the threshold BT de-

creases.

Proof. see Appendix A.

Note that the model with uncertain transfers nests the deterministic model presented in

Section 3: under trmin = trmax we would have ψ̃ = 0, and the multiplicity region (BT , B̄T ]

would exist for any ψ > 0—Proposition 4 would then state the results from Proposition 1,

namely, that it is always possible to construct an equilibrium bond price consistent with default

alongside the price consistent with full repayment in the region (BT , B̄T ]. In addition to these

results, Proposition 4 states that a similar multiplicity can also arise under uncertainty (i.e.

trmin < trmax), provided the costs of default are high enough relative to the range of possible

realizations of transfer payments. This is intuitive: with a large range of possible trT it is likely

that for some particularly small levels of transfers repayment is feasible even if investors are

pessimistic and expect default in all states, and in consequence invest little in capital; this then

would invalidate expectation of default in all states. As in the deterministic case discussed in

Section 3, the higher the cost ψ, the lower BT and the wider the region (BT , B̄T ] in which

multiplicity is guaranteed.

Figure 4 plots the correspondence QT-1(B) from a Matlab simulation in which transfers trT

are distributed according to a truncated normal distribution, for γ = 1 and ψ = 0.15. The flat

part of the correspondence marked in green represents bond prices consistent with expectations

of repayment in all states and expected productivity ET−1[AT ] = aT ; these expectations can

be validated for BT ≤ B̄T . The monotonically decreasing segment on the right marked in red

corresponds to expectations of default in every state and ET−1[AT ] = aT [1 − ψ]; such expec-

tations can be validated for BT > BT . Because in this example ψ > ψ̃ (and, in consequence,
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Figure 4: Bond price correspondence QT-1(B): a simulation.
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B̄T > BT ), on (BT , B̄T ] both expectations of default in all states and repayment in all states can

be validated—these two segments of QT-1(B) also appear on Figure 1(a) describing QT-1(B)

for the deterministic case.

The middle segment of QT-1(B) marked in blue on Figure 4 represents bond prices consistent

with repayment in some states and default in other states. Unlike the correspondence Q(B)

constructed in subsection 4.2 (see Figure 3a), this correspondence is ‘smooth’ (i.e. there are no

discrete jumps)—this is due to the distribution of transfers being continuous. The graph shows

intuition behind the sufficient conditions for existence of equilibrium bond price corresponding

to uncertain repayment: because of continuity, the blue line must connect the green and red

sectors of QT-1(B); whenever B̄T > BT , we can be sure that there will be at least one such

bond price corresponding to each BT between BT and B̄T (and we can make a similar argument

for when B̄T < BT ). At the same time, the graph demonstrates that this sufficient condition is

not necessary: the bond prices marked in blue can also be constructed for some BT < BT and

for some BT > B̄T .

In line with Proposition 4 we observe that a bond price consistent with Definition 3 can

be constructed for any BT—therefore, we can construct QT-1(B) by specifying a selection from

QT-1(B) that assigns a unique price to each BT . Furthermore, we can construct a decreasing

selector function. For example, we can specify a function similar to that discussed in Section 3,

that assigns risk-free bond prices for BT ≤ B̂T and prices anticipating default in all states for

BT > B̂T , with B̂T set between BT and B̄T .

Figure 5(a) and Figure 5(b) show the correspondence QT-1(B) for different values of default

costs ψ. In line with Proposition 4, while multiplicity arises for values of default costs that are

relatively high, it disappears as ψ tends to zero: the correspondence QT-1(B) is uniquely-valued

under ψ = 0.01. Furthermore, the range of values of debt for which multiplicity arises shrinks

as the default cost is reduced.

The bond price correspondences plotted on Figure 5(a) and (b) appear to be moving upward
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Figure 5: Bond price correspondences and default costs
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as ψ decreases, and higher equilibrium bond prices become available for some debt levels. This,

however, does not necessarily mean that the bond pricing schedules constructed as selectors

from these correspondences would be decreasing in ψ: because of multiplicity, schedules QT-1(B)

constructed under high ψ would feature discrete jumps—their behavior around the jump points

cannot be generalized without specifying how each jump point is selected. At the same time,

we can examine the behavior of QT-1(B) for debt regions in which the function is ‘smooth’.

As we mention above, for a given ψ the function QT-1(B) can be constructed by choosing

a selector φT-1(B) from the correspondence ΦT-1(B) that links each BT with all appropriate

thresholds t̂rT , and applying the function (63) to each pair (BT , ˆtrT ) : ˆtrT = φT-1(BT ). To

reflect the fact that the threshold t̂rT returned by φT-1(B) may be affected by the default cost

ψ, we will now specify the threshold function in terms of both the level of debt and the default

cost: φT-1(B,ψ). The bond pricing schedule constructed using φT-1(B,ψ) may be affected by

the default cost as well—we now denote it with QT-1(B,ψ). Proposition 5 below considers a

neighborhood of some point (B0
T , ψ

0) in which the function φT-1(B,ψ) is differentiable in both
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arguments. It asserts that if φT-1(B,ψ) is decreasing in BT (i.e. if higher debt results in default

being triggered by lower realizations of transfers), then in that neighborhood the bond pricing

schedule is decreasing in both BT and ψ.

Proposition 5. Suppose there exists a neighborhood of (B0
T , ψ

0) in which the function φ(B,ψ)

is differentiable in both BT and ψ and is decreasing in BT . Then in this neighborhood the bond

pricing schedule QT-1(B,ψ) decreases in BT and ψ, i.e. higher default costs are associated with

lower bond price.

Proof. see Appendix A.

The assumption that φT-1(B,ψ) is decreasing in BT is intuitive: it means that as debt rises,

default happens in more states of the world. Proposition 5 shows that whenever this is the

case for some interval, then the bond pricing schedule on that interval is decreasing in both

BT and the value of the default cost. The latter result arises for two reasons. First, as in

Section 3, higher costs of default mean that in the event of default the fiscal surplus would be

lower: ex post, higher default penalty triggers a larger direct loss of output; ex ante, anticipated

high penalties depress capital investment. This reduces pledgeable funds and the expected

repayment rate whenever full repayment is uncertain. Second, as default costs increase, for

each BT associated with uncertain repayment, default can now be triggered in more states of

the world—again, due to an ex ante decrease in capital investment. This mechanism is not

present in the deterministic version of the model.

To make this contrast more evident, Corollary 5A shows that under γ = 0, i.e. when in

the event of default the repayment rate is zero, we can assert that in neighborhoods where the

bond pricing schedule is decreasing in BT , it is also decreasing in ψ. Furthermore, if the bond

pricing schedule is strictly decreasing in BT , it is strictly decreasing in ψ as well.

Corollary 5A. Suppose γ = 0 and that there exists a neighborhood of (B0
T , ψ

0) in which the

function φ(B,ψ) is differentiable over both BT and ψ, and the bond pricing schedule is decreas-

ing in BT . Then in this neighborhood the bond pricing schedule QT-1(B,ψ) is decreasing over

ψ, i.e. higher default costs are associated with lower bond price. In addition, if QT-1(B,ψ) is

strictly decreasing over BT in this neighborhood, it is also strictly decreasing in ψ

Proof. see Appendix A.

Figure 5(b) depicts simulated bond pricing schedules for different default costs under γ = 0.

Similarly to Figure 5(a), we see that the segments of the schedule associated with uncertainty

over debt repayments move up as default costs decrease, suggesting that lower default costs lead

to higher bond prices. Unlike on Figure 5(a), there is only one mechanism at work here: an

increase in ψ causes a reduction in the expected capital return for BT associated with uncertain

repayment—this reduces capital accumulation ex ante and fiscal surpluses ex post, resulting in

default in more states ex post and lower bond prices ex ante. We have shown that uncertainty
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over fundamentals of the economy brings forth an additional mechanism through which an

increase in the default cost may adversely affect bond prices on newly issued debt.

6 Concluding Remarks

Defaults on government debt impair economic activity in debtor countries. Previous literature

has asserted that these perceived default costs may deter debtor countries from defaulting on

their debts when repayment is feasible, as governments would optimally choose to avoid default

costs by repaying their creditors. In this paper—contrary to this intuition—we show that the

presence of default costs may adversely affect the feasibility of debt repayment. This result arises

because the losses that follow defaults are perceived not only by the governments, but also by

the private capital investors; when the latter anticipate that default costs may dampen future

capital returns, they cut their investment into domestic capital. This, in turn, lowers future

output and revenues from tax collection, tightening the fiscal limits that the governments are

facing, raising the probability of default for high levels of borrowing and reducing the associated

bond prices.

We identify three channels through which an increase in the perceived default cost may result

in lower bond prices. Two of these channels arise under the assumption that the amount of debt

recovered after default depends positively on the concurrent level of economic activity within

the debtor country (e.g. because it affects its fiscal surplus). First, high default costs have a

direct negative effect on the post-default output. Second, the anticipation of capital returns

hindered by default penalties discourages capital investment; this lowers future capital stock

and output. Both these effects reduce perceived recovery rates following default (assuming they

depend positively on output) and bond prices. The third channel emerges under uncertainty

over the fundamentals of the economy. Consider high levels of debt that the government can

repay in some future states of the world, but is forced to default on in the other states. If

the perceived losses to productivity associated with ‘default’ states increase, this would depress

current capital investment and cause reductions in future output and tax revenues. As a result,

repayment would become infeasible in more states of the world, which would, again, reduce the

expected recovery rate and the associated bond price.

We also demonstrate that the very presence of default costs may result in equilibrium multi-

plicity: with positive default costs the fiscal limits that the governments face may not be pinned

down by the fundamentals of the economy. Intuitively, future fiscal surpluses depend positively

on output, which, in turn, depends on future capital stock. But capital accumulation decisions

are driven by expectations of how capital returns might be affected by default penalties, which

can be self-fulfilling. On the one hand, when investors are ‘optimistic’, they invest more in

capital; this raises future fiscal surpluses and reduces the probability of the government hitting

the fiscal limit in the future, which validates investor optimism. On the other hand, investor

pessimism translates into lower capital investment, lower future fiscal surpluses, tighter fiscal

limits and default in more states—validating pessimistic expectations. The higher the default

cost, the larger the gap between the ‘pessimistic’ and the ‘optimistic’ fiscal limits.
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Appendix A Proposition proofs

Proposition 1. For ψ > 0 there exist infinitely many bond pricing schedules QT-1(B) that satisfy

Definition 1. The bond prices along these schedules 1) equal qfT−1 for all BT ≤ BT 2) assume one of two

values for each BT ∈ (BT , B̄T ], either qfT−1 or qdT−1 < qfT−1 3) equal qdT−1 for each BT > B̄T , where

qfT−1 = 1/(1 + r),

qdT−1 =
γ · S(aT [1− ψ], kT (aT [1− ψ]), trT )/r

BT
.

Proof. Note that under ψ > 0 for BT in (25) and B̄T in (24) we have BT < B̄T , and therefore the

interval (BT , B̄T ] is nonempty. Notice also that the definitions of the bond price and the recovery rate

together imply that the bond price can only assume one of two values, qdT−1 or qfT−1. As there are no

other candidate bond prices, to characterize all possible bond pricing schedules it is sufficient to establish

for each BT whether qdT−1 and qfT−1 can be supported as equilibrium.

First, we show that for BT > BT the bond price qdT−1 satisfies Definition 1 with AeT = aT (1 −
ψ); furthermore, qdT−1 < qfT−1. To check this, suppose that agents expect a default and anticipate

productivity to be lowered by the default penalty, i.e. AeT = aT (1 − ψ). Under these expectations the

capital investment decision will be kT (aT [1− ψ]) in accordance with (21). Given this capital stock, the

expectation of default is validated if (20) selects χT < 1 and (22) selects AT = aT (1 − ψ). Note that

BT > BT implies BT > S(aT , kT (aT [1−ψ]), trT ) 1+r
r , which given the expectation AeT = aT (1−ψ) we can

rewrite as BT > S(aT , kT (AeT ), trT ) 1+r
r . We can now observe that for BT > BT and AeT = aT (1−ψ) (22)

selects AT = aT (1−ψ) (therefore satisfying 23) and (20) selects χT = γ·S(aT [1−ψ],kT (aT [1−ψ]),trT )(1+r)/r
BT

.

Finally, (19) implies the bond price of qT−1 = γ·S(aT [1−ψ],kT (aT [1−ψ]),trT )/r
BT

≡ qdT−1. We have therefore

established that for BT > BT , the price qdT−1 is consistent with (19)-(23) under an expectation of

AeT = aT (1−ψ). Finally, note that on the interval BT > BT the price qdT−1 is smaller than qfT−1 = 1
1+r .

This follows from γ ≤ 1 and the fact that BT > S(aT , kT (aT [1− ψ]), trT ) 1+r
r on this interval.

Second, we show that for BT ≤ B̄T the bond price qfT−1 satisfies Definition 1. To see this, suppose

there is an expectation of full repayment with AeT = aT . Capital investment given this expectation

will be kT (aT ) in line with (21). Note that BT ≤ B̄T implies BT ≤ S(aT , kT (aT ), trT ) 1+r
r , or BT ≤

S(aT , kT (AeT ), trT ) 1+r
r ; this means that (22) selects AT = aT (therefore satisfying 23) and (20) selects

χT = 1. Finally, (19) implies the bond price of qT−1 = 1
1+r ≡ qfT−1. We have therefore shown that for

BT ≤ B̄T , the price qfT−1 is consistent with (19)-(23) under an expectation of AeT = aT .

Third, we show that for BT ≤ BT the bond price qdT−1 does not satisfy Definition 1. From (20),

the bond price qdT−1 can only be equilibrium outcome if there are expectations of default; suppose

it is the case, and AeT = aT (1 − ψ), and therefore kT (AeT )=kT (aT [1 − ψ]) and S(aT , kT (AeT ), trT ) =

S(aT , kT (aT [1−ψ]), trT ). Notice that BT ≤ BT implies BT ≤ S(aT , kT (aT [1−ψ]), trT ) 1+r
r . Given this,

(22) implies AT = aT and (20) implies full repayment. We reach a contradiction.

Fourth, we show that for BT > B̄T the bond price qfT−1 does not satisfy Definition 1. From (20),

the bond price qfT−1 can only be supported as equilibrium under expectations of full repayment; suppose

there are such expectationsd, and AeT = aT , and therefore kT (AeT )=kT (aT ) and S(aT , kT (AeT ), trT ) =

S(aT , kT (aT ), trT ). Notice that BT > B̄T implies BT > S̄(aT , kT (aT ), trT ) 1+r
r . Given this, (22) implies

AT = aT (1− ψ) and (20) implies default, a contradiction.

Combining these findings we can now state the following. For BT ≤ BT the only price that satisfies

Definition 1 is qfT−1, i.e. the correspondence QT-1(B) is single-valued; for BT > B̄T the only price that

satisfies Definition 1 is qdT−1, and the correspondence QT-1(B) is single-valued in this region as well;

for BT ∈ (BT , B̄T ] both qfT−1 and qdT−1 < qfT−1 satisfy Definition 1, and the correspondence QT-1(B)
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connects each BT with two admissible bond prices. As this is true for the whole interval BT ∈ (BT , B̄T ],

there is an infinite number of distinct selections QT-1(B) from the correspondence QT-1(B) that all

satisfy Definition 1 and differ from one another on the interval BT ∈ (BT , B̄T ].

Corollary 1A. The lower bound of the multiplicity interval, BT , decreases with ψ, i.e. higher default

costs expand the region of debt in which default can be an equilibrium outcome.

Proof. To show that BT decreases with ψ, recall:

BT ≡ S(aT , kT (aT [1− ψ]))
1 + r

r
=

[
τaT

[
αaT [1− ψ](1− τK)

r + δ

] α
1−α

− trT

]
1 + r

r
. (70)

The expression on the right-hand side decreases in ψ. The upper bound B̄T is not affected by the value

of default costs. Therefore, the length of the interval (BT , B̄T ] increases with ψ.

Proposition 2. For ψ > 0 there exist infinitely many decreasing bond pricing functions QT-1(B) that

satisfy Definition 1A such that max
BT
{BT · QT-1(BT )} exists; all such functions belong to the function

space described by (26).

Proof. The proof consists of two parts. First, we show that For ψ > 0 there exist infinitely many

decreasing bond pricing functions QT-1(B) that satisfy Definition 1A, and describe a function space Q

that contains all such functions (and includes functions defined by 26). Second, we show that within Q,

only functions defined by (26) permit existence of max
BT
{BTQT-1(BT )}.

Denote by Q the function space that includes two function families: first, a family described by (26)

with B̂T ∈ [BT , B̄T ]; second, a family described by

QT-1(BT ) =

q
f
T−1, if BT < B̂T ;

qdT−1, if BT ≥ B̂T .
(71)

with B̂T ∈ (BT , B̄T ].

In Proposition 1 we established that qdT−1(BT ) = γ S(aT [1−ψ],kT (aT [1−ψ]),trT )/rBT
satisfies Definition

1A for BT > BT , that qfT−1 = 1
1+r satisfies Definition 1A for any BT ≤ B̄T , and that BT < B̄T for

any ψ > 0. It follows that QT-1(B) constructed in accordance with (26) satisfies Definition 1A for an

arbitrary B̂T ∈ [BT , B̄T ] and that QT-1(B) constructed in accordance with (71) satisfies Definition 1A

for any B̂T ∈ (BT , B̄T ]. Because on BT ∈ (BT , B̄T ] we have qdT−1(BT ) < qfT−1, and because qdT−1(BT )

is decreasing in BT > BT , the functions described in (26) and (71) are decreasing. We conclude that all

functions in Q satisfy Definition 1A and are decreasing on B.

We will now show that there are no decreasing schedules QT-1∗(B) satisfying Definition 1A that

cannot be described using (26) or (71). In other words, we show that Q describes all decreasing selections

from QT-1(B). Let us attempt to construct a decreasing selection QT-1∗(B) from QT-1(B) that does not

belong to Q. On BT ≤ BT and BT > B̄T the correspondence QT-1(B) is single-valued, and therefore

there is only one possible selection from QT-1(B); it follows that on BT ≤ BT and BT > B̄T the graph

of QT-1∗(B) must be the same as the graphs of all functions in Q.

On (BT , B̄T ] the correspondenceQT-1(B) returns two distinct values for eachBT , qfT−1 and qdT−1(BT ),

with qfT−1 > qdT−1(BT )—the function QT-1∗(B) must assign one of the two values to each BT . There are

three possible ways in which a decreasing selection can be constructed on this interval. First, we can set

QT-1∗(B) = qfT−1—this possibility is incorporated in (26). Second, we can set QT-1∗(B) = qdT−1(BT );

this is accounted for by both (26) and (??). Third, we can permit the function QT-1∗(B) to jump
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once from qfT−1 to qdT−1(BT ). Denote by B̂T the jump point; we can define the jump such that

limBT→B̂−
T

= QT-1∗(B) and limBT→B̂+
T
6= QT-1∗(B), this is accounted for in (26). Alternatively, the

jump can be set such that limBT→B̂+
T

= QT-1∗(B) and limBT→B̂−
T
6= QT-1∗(B); this possibility is incor-

porated in (??).

We have shown that the graph of QT-1∗(B) matches the graphs of all functions in Q on BT ≤ BT
and BT > B̄T ; we have also shown that the graph of QT-1∗(B) matches the graph of at least one function

in Q on BT ∈ (BT , B̄T ]. It follows that QT-1∗(B) ∈ Q. We reach a contradiction and conclude that Q

must describe all decreasing functions that satisfy Definition 1A.

Note that for both (26) and (71) the supremum of {BT · QT-1(BT )} lies at the jump point and

equals limBT→B̂−
T
BT · QT-1(BT ) = B̂T q

f
T ≡ B̂T

1
1+r , the value of debt at the jump point multiplied by

the risk-free price. Under (26), QT-1(B̂T ) = qfT and therefore B̂T · QT-1(B̂T ) = B̂T q
f
T , which is the

maximum of {BT · QT-1(BT )}. In other words, the revenue attains a maximum at B̂T . Under (71),

QT-1(B̂T ) = qdT (B̂T ) < qfT and therefore B̂T · QT-1(B̂T ) < B̂T q
f
T . But we can always find a B∗T < B̂T

such that B∗T · QT-1(B∗T ) = B∗T · q
f
T > B̂T · QT-1(B̂T ). However, for any such B∗T there always exists

a B∗∗T > B∗T such that B∗∗T · QT-1(B∗∗T ) > B∗T · QT-1(B∗T )—in other words, under (71) the revenue

function has no maximum value, as for any candidate B∗T we can find a B∗∗T > B∗T that delivers a higher

revenue. We conclude that within Q only the function family in (26) corresponds to a revenue function

BT ·QT-1(BT ) that has a maximum value.

Corollary 2A. Given ψ > 0 and a decreasing bond pricing schedule, the maximum revenue from the

auction of government bonds can take any value in [ 1
1+rBT ,

1
1+r B̄T ], i.e. there is indeterminacy over the

maximum revenue from the bonds auction.

Proof. Proposition 2 establishes that all decreasing bond pricing schedules QT-1(BT ) consistent with Def-

inition 1A such that the corresponding revenue function QT-1(BT )BT has a maximum can be described

by (26). Given (26), the revenue from the auction of bonds can therefore be written as

QT-1(BT )BT =

q
f
T−1BT = 1

1+rBT , if BT ≤ B̂T ;

qdT−1BT = γS(aT [1− ψ], kT (aT [1− ψ]), trT )/r, if BT > B̂T ,
(72)

with B̂T ∈ [BT , B̄T ]. Note that qfT−1BT is strictly increasing in BT while qdT−1BT is constant. Fur-

thermore, at B̂T there is a downward jump because by Proposition 1, qfT−1 > qdT−1. It follows that for

the bond pricing schedule described in (26) the maximum revenue is at 1
1+r B̂T . Depending on B̂T , the

maximum revenue can assume any value in [ 1
1+rBT ,

1
1+r B̄T ].

Definition 1B. Equilibrium bond pricing schedule Qt-1(B): perfect foresight. For t ≤ T − 1

the equilibrium bond pricing schedule is a function Qt-1(B) such that for each Bt ∈ B the bond price

qt−1 ∈ Qt-1(Bt) satisfies

qt−1 =
χt

1 + r
(73)

where

χt =


1, if Bt ≤ S(at, kT (Aet ), trt) + max

Bt+1

{Qt(Bt+1)Bt+1};
γ·S(at[1−ψ],k(Aet ),trt)·(1+r)/r

Bt
, if Bt > S(at, kT (Aet ), trt) + max

Bt+1

{Qt(Bt+1)Bt+1},
(74)
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and

k(Aet ) =

[
αAet (1− τK)

r + δ

] 1
1−α

(75)

with

At =


at, if Bt ≤ S(at, kT (Aet ), trt) + max

Bt+1

{Qt(Bt+1)Bt+1};

at(1− ψ), if Bt > S(at, kT (Aet ), trt) + max
Bt+1

{Qt(Bt+1)Bt+1}.
(76)

and

Aet = At (77)

where for t < T −1 the function Qt(B) must satisfy Definition 1B, and for t = T −1 the function Qt(B)

must satisfy Definition 1A.

Proposition 3 Consider the economy starting period t ≤ T − 2 with pre-existing debt Bt and capital

k(Aet ) where ψ > 0. There exists an infinite number of perfect foresight equilibria in which each period

the government faces a decreasing bond pricing schedule that satisfies Definition 1B; furthermore, for

each debt level Bt in (BTt , B̄
T
t ] we can construct at least one such equilibrium where Bt is consistent

with default in t, and at least one equilibrium in which it is consistent with full debt repayment in t. As

T →∞ this interval converges to (B∞t , B̄
∞
t ].

Proof. We need to show that we can construct a sequence of bond pricing schedules such that each

schedule satisfies Definition 1B. We will solve this problem by backward induction: starting in T − 1

we construct some QT-1*(B) that satisfies Definition 1A; we then construct a QT-2*(B) that satisfies

Definition 1B given QT-1*(B); we then construct a QT-3*(B) that satisfies Definition 1B given QT-2*(B),

etc. This exercise is simplified by the fact that Definition 1B is very similar to the Definition 1B,

except that the conditions that select χt and At, (74) and (76), include not only the current surplus

as in Definition 1A, but also the maximum revenue from the auction of bonds in the next period,

max
Bt+1

{Qt(Bt+1)Bt+1}. Therefore, when solving the model with backward induction we will make sure to

select bond pricing schedules that are such that max
Bt+1

{Qt(Bt+1)Bt+1} exists.

We start by looking for QT-1(B) that satisfies Definition 1A. Per the statement of Proposition 3

we must choose a decreasing QT-1(B). Furthermore, to be able to solve the problem with backward

induction we need to make sure that the QT-1(B) we construct is such that the corresponding revenue

from the auction of bonds has a maximum on BT . By Proposition 2, all functions that comply with

these criteria (i.e. satisfy Definition 1A, are decreasing and are such that the revenue function has a

maximum) belong to the function family described by (26) with thresholds B̂T in [BT , B̄T ].

Denote by QT-1*(B) a specific selection from this family of functions with a corresponding B̂*
T ∈

[BT , B̄T ]. We now show that given this bond pricing schedule in period T − 1 we can construct a

decreasing bond pricing schedule arising in period T − 2 consistent with Definition 1B ; with some abuse

of notation we denote this schedule with QT-2(B|B̂*
T ) to indicate that it is conditional on a specific

selection QT-1*(B) with a distinct corresponding B̂*
T ∈ [BT , B̄T ].

Given a choice of B̂*
T , the maximum revenue from the auction of bonds the government can extract in

period T−1 equals B̂*
T /(1+r). Note that now that we have a specific max

Bt+1

{Qt(Bt+1)Bt+1} = B̂*
T /(1+r),

the Definition 1B is almost the same as Definition 1A, with the addition of a constant term in the

conditions selecting χt and At. We can therefore use the proofs in Propositions 1 and 2 to establish

existence of QT-2(B|B̂*
T ) and its properties. We briefly demonstrate the intuition below.
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The repayment in T − 1 is possible if:

BT−1 ≤ S(aT−1, k(AeT−1), trT−1) + B̂*
T /(1 + r). (78)

There are two possible expectations about productivity, AeT−1, that can be supported as equilibria in

T − 2: AeT−1 = aT−1 and AeT−1 = aT−1(1−ψ). Accordingly, there are two possible values that k(AeT−1)

in (78) can take. The expectation AeT−1 = aT−1 can be validated as equilibrium if:

BT−1 ≤ S(aT−1, k(aT−1), trT−1) + B̂*
T /(1 + r) ≡ B̄T−1(B̂*

T ), (79)

while the expectation AeT−1 = aT−1(1− ψ) can be validated as equilibrium if

BT−1 > S(aT−1, k(aT−1[1− ψ]), trT−1) + B̂*
T /(1 + r) ≡ BT−1(B̂*

T ). (80)

Note that (79) and (80) mirror (24) and (25), and that for ψ > 0 we have B̄T−1(B̂*
T ) > BT−1(B̂*

T ).

Retracing the steps detailed in the proof of Proposition 1 we can ascertain that given B̂*
T /(1 + r)

there exist infinitely many bond pricing schedules QT-2(B|B̂*
T ) that satisfy Definition 1B ; the bond

prices along these schedules 1) equal qfT−2 for all BT−1 ≤ BT−1(B̂*
T ); 2) assume one of two values for

each BT−1 ∈ (BT−1(B̂*
T ), B̄T−1(B̂*

T )], either qfT−2 or qdT−2; 3) equal qdT−2 for each BT−1 > B̄T−1(B̂*
T ),

where qfT−2 = 1/(1 + r) and qdT−2 = γ·S(aT−1[1−ψ],kT (aT−1[1−ψ]),trT−1)/r
BT−1

.

We can now use the arguments made in Proposition 2 to construct a decreasing bond pricing schedule

QT-2(B|B̂*
T ) that satisfies Definition 1B, such that the corresponding revenue function has a maximum

on BT−1. Following the steps of Proposition 2 we verify that there are infinitely many such schedules;

a subset of them can be described as a function family similar to (26):

QT-2(BT−1|B̂*
T ) =

q
f
T−2, if BT−1 ≤ B̂T−1;

qdT−2, if BT−1 > B̂T−1.
(81)

where B̂T−1 is any value in [BT−1(B̂*
T ), B̄T−1(B̂*

T )].

We verified that for any B̂*
T ∈ [BT , B̄T ] we can use (81) to construct a decreasing functionQT-2(B|B̂*

T )

that is consistent with Definition 1B. We will now use this result to construct a family of decreasing

functions QT-2(B), such that for each selection QT-2*(B) from this family there is at least one QT-1*(B)

consistent with Definition 1A such that QT-2*(B) satisfies Definition 1B given QT-1*(B).

Within the family of functions described by (81) the thresholds B̂T−1 can vary between [BT−1(B̂*
T ), B̄T−1(B̂*

T )]

where B̂*
T can take any value in [BT , B̄T ]. Hence, the threshold B̂T−1 in (81) can take any value in

[BT−1(BT ), B̄T−1(B̄T )]. In other words, for each B̂*
T−1 ∈ [BT−1(BT ), B̄T−1(B̄T )] we can use (81) to

construct an equilibrium bond pricing schedule QT-2*(B), as there will always be some counterpart

QT-1*(B) that satisfies Definition 1A such that given QT-1*(B), QT-2*(B) satisfies Definition 1B. The

resulting family of decreasing equilibrium bond pricing schedules can be described by setting

QT-2(BT−1) =

q
f
T−2, if BT−1 ≤ B̂T−1;

qdT−2, if BT−1 > B̂T−1.
(82)

and requiring that B̂T−1 ∈ [BT−1, B̄T−1] where

BT−1 ≡ BT−1(BT ) = S(aT−1, k(aT−1[1− ψ]), trT−1) + S(aT , k(aT [1− ψ]), trT )/r,

B̄T−1 ≡ B̄T−1(B̄T ) = S(aT−1, k(aT−1), trT−1) + S(aT , k(aT ), trT )/r.
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Repeating the steps outlined above we confirm that a set of decreasing equilibrium bond pricing

schedules arising in T − 3 can be constructed by setting

QT-3(BT−2) =

q
f
T−3, if BT−2 ≤ B̂T−2;

qdT−3, if BT−2 > B̂T−2.
(83)

and demanding that B̂T−2 ∈ [BT−2, B̄T−2] where

BT−2 = S(aT−2, k(aT−2), trT−2) +
S(aT−1, k(aT−1), trT−1)

1 + r
+
S(aT , k(aT ), trT )/r

1 + r
,

B̄T−2 = S(aT−2, k(aT−2[1− ψ]), trT−2) +
S(aT−1, k(aT−1[1− ψ]), trT−1)

1 + r
+

+
S(aT , k(aT [1− ψ]), trT )/r

1 + r
.

For each function QT-3*(B) in (83) we can construct a decreasing schedule QT-1*(B) consistent with

Definition 1A and a decreasing schedule QT-2*(B) consistent with Definition 1B given QT-1*(B), such

that given QT-2*(B) the function QT-3*(B) satisfies Definition 1B.

Repeating these steps and iterating backwards we deduce that for bonds issued in period t we can

construct a family of decreasing equilibrium bond pricing schedules by setting

Qt(Bt+1) =

q
f
t , if Bt+1 ≤ B̂t+1;

qdt , if Bt+1 > B̂t+1.
(84)

and demanding that B̂t+1 ∈ [Bt+1, B̄t+1] with

Bt+1 =

T−t−1∑
i=1

S(at+i, k(at+i[1− ψ]), trt+i)

(1 + r)i−1
+
S(aT , k(aT [1− ψ]), trT )/r

(1 + r)T−t−2
, (85)

B̄t+1 =

T−t−1∑
i=1

S(at+i, k(at+i), trt+i)

(1 + r)i−1
+
S(aT , k(aT ), trT )/r

(1 + r)T−t−2
. (86)

All functions in the family described by (84) satisfy Definition 1B, in that for any such function Qt*(B)

we can construct a sequence of functions Qt+1*(B), Qt+2*(B), ..., QT-1*(B) such that QT-1*(B) satisfies

Definition 1A, QT-2*(B) satisfies Definition 1B given QT-1*(B),..., Qt+1*(B) satisfies Definition 1B

given Qt+2*(B), and Qt*(B) satisfies Definition 1B given Qt+1*(B).

We have now shown that any bond pricing schedule described by (84) can be supported as equilibrium.

For each such function the maximum revenue from the auction of bonds that the government can extract

in period t equals B̂t+1/(1 + r). It follows that the equilibrium maximum revenue from the auction of

bonds can take any value in [Bt+1/(1 + r), B̄t+1/(1 + r)]. Therefore, in period t default on debt Bt can

be supported as equilibrium if:

Bt > S(at, k(Aet ), trt) +

T−t−1∑
i=1

S(at+i, k(at+i[1− ψ]), trt+i)

(1 + r)i
+
S(aT , k(aT [1− ψ]), trT )/r

(1 + r)T−t−1
≡ BTt
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while repayment can be supported as equilibrium if:

Bt ≤ S(at, k(Aet ), trt) +

T−t−1∑
i=1

S(at+i, k(at+i), trt+i)

(1 + r)i
+
S(aT , k(aT ), trT )/r

(1 + r)T−t−1
≡ BTt .

Since S(aT , k(aT ), trT ) is bounded, taking a limit T →∞ yields

lim
T→∞

BTt = S(at, k(Aet ), trt) +

∞∑
i=1

S(at+i, k(at+i[1− ψ]), trt+i)

(1 + r)i
≡ B∞t ,

lim
T→∞

B̄Tt = S(at, k(Aet ), trt) +

∞∑
i=1

S(at+i, k(at+i), trt+i)

(1 + r)i
≡ B̄∞t .

Proposition 4. Equilibrium bond pricing schedule QT-1(B) that satisfies Definition 3 exists. Fur-

thermore, if ψ > ψ̃, then there exist multiple decreasing bond pricing schedules QT-1(B) that satisfy

Definition 3 and take distinct values on the interval (BT , B̄T ]. When the cost ψ goes up, the interval

(BT , B̄T ] expands as the threshold BT decreases.

Proof. Here we will show formally that for any value of BT ∈ B a bond price satisfying Definition 3

can be constructed. We will split B into three regions and show that at least one bond price satisfying

Definition 3 can be constructed in each region.

First, consider BT ≤ B̄T . For this region we can construct a bond price consistent with anticipated

repayment in every state. If repayment is anticipated in every state, then according to (58) capital must

equal

kT =

[
αaT (1− τK)

r + δ

] 1
1−α

(87)

Under this capital choice, fiscal surplus defined in (92) is

S(AT , kT (ET−1[AT ]), trT ) = τAT

[
αaT (1− τK)

r + δ

] α
1−α

− trT . (88)

Conditions (57) and (59) select χT = 1 and AT = aT for states in which BT ≤ S(aT , kT (ET−1[AT ]), trT )·
1+r
r , or

BT ≤

[
τaT

[
αaT (1− τK)

r + δ

] α
1−α

− trT

]
· 1 + r

r
(89)

The right-hand side of the above inequality is decreasing in trT ; to ensure that χT = 1 and AT = aT

are selected in all states it is therefore sufficient to check that it is selected in the state with the highest

possible transfers, trT = trmax which will be true when:

BT ≤

[
τaT

[
αaT (1− τK)

r + δ

] α
1−α

− trmax
]
· 1 + r

r
(90)

which holds for any BT ≤ B̄T . We have therefore verified that for BT ≤ B̄T expectations of repayment

in all states are consistent with (58), (57) and (59). We can now use (56) to construct the corresponding

bond price q = 1/(1 + r) that is consistent with all requirements of Definition 3.

Second, consider BT > BT . For this region we can construct a bond price consistent with

anticipated default in every state. Given expectations of default penalties in every state, capital in (58)
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must equal

kT =

[
αaT (1− ψ)(1− τK)

r + δ

] 1
1−α

(91)

Given this capital choice, fiscal surplus defined in (92) is

S(AT , kT (ET−1[AT ]), trT ) = τAT

[
αaT (1− ψ)(1− τK)

r + δ

] α
1−α

− trT . (92)

Conditions (57) and (59) select χT < 1 andAT = aT (1−ψ) for states in whichBT > S(aT , kT (ET−1[AT ]), trT )·
1+r
r , or in this case

BT >

[
τaT

[
αaT (1− ψ)(1− τK)

r + δ

] α
1−α

− trT

]
· 1 + r

r
(93)

Again, the right-hand side of the above inequality is decreasing in trT ; to ensure that χT < 1 and

AT = aT (1− ψ) are selected in all states it is sufficient to check that it is selected in the state with the

lowest possible transfers, trT = trmin which will be true when:

BT >

[
τaT

[
αaT (1− ψ)(1− τK)

r + δ

] α
1−α

− trmin
]
· 1 + r

r
(94)

which holds for any BT < BT . We verified that for BT ≤ BT expectations of default in all states are

consistent with (58), (57) and (59). We can now use (56) to construct the corresponding bond price that

is consistent with all requirements of Definition 3.

Third, suppose BT > B̄T and consider BT ∈ (B̄T , BT ], or that BT < B̄T and consider

BT ∈ [BT , B̄T ). For this region we can construct a bond price consistent with anticipated default in

some states and repayment in other states. Suppose that there is a t̂rT ∈ [trmin, trmax) such that

repayment is expected for states with trT ≤ t̂rT , while default is expected in states where trT > t̂rT .

We will show that 1) If such t̂rT exists, we can construct a bond price satisfying Definition 3 and that

2) such t̂rT exists.

Given expectations discussed above, capital choice in (58) equals capital in (64), while the fiscal

surplus is given by (65). For the expectations above to be validated, it must be true that (57) and (59)

select χT = 1 and AT = aT for trT ≤ t̂rT and χT < 1 and AT = aT (1 − ψ) for trT > t̂rT . In other

words, for trT ≤ t̂rT it must be that

BT ≤

τaT [αaT [1− (1− F (t̂rT ))ψ
]

(1− τK)

r + δ

] α
1−α

− trT

 1 + r

r
(95)

and for trT < t̂rT we must have

BT >

τaT [αaT [1− (1− F (t̂rT ))ψ
]

(1− τK)

r + δ

] α
1−α

− trT

 1 + r

r
(96)

Note that the right-hand side of the two expressions above is decreasing in trT . This means that if there

is a t̂rT such that

BT =

τaT [αaT [1− (1− F (t̂rT ))ψ
]

(1− τK)

r + δ

] α
1−α

− t̂rT

 1 + r

r
≡ Ω(t̂rT ) (97)
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which lies in [trmin, trmax), then it is indeed true that (57) and (59) select χT = 1 and AT = aT for

trT ≤ t̂rT and χT < 1 and AT = aT (1− ψ) for trT > t̂rT .

It remains to show that a solution to problem (97), BT = Ω(t̂rT ), can be found in [trmin, trmax).

The function Ω(t̂rT ) is continuous on [trmin, trmax) which means that on [trmin, trmax) it takes each

value in [Ω(trmin),Ω(trmax)) at least once.

If BT > B̄T then Ω(trmin) > Ω(trmax); in that case we would consider BT ∈ (B̄T , BT ] and therefore

know that BT ∈ (Ω(trmax),Ω(trmin)]. It follows that there is at least on point of intersection between

BT and Ω(t̂rT ) in [trmin, trmax).

If BT < B̄T then Ω(trmin) < Ω(trmax); in that case we would consider BT ∈ [BT , B̄T ),which would

mean that BT ∈ [Ω(trmin),Ω(trmax)). Again, it follows that there is at least on point of intersection

between BT and Ω(t̂rT ) in [trmin, trmax).

We have shown that if BT < B̄T , then for any BT ∈ [BT , B̄T ) we can find a t̂rT such that given

the capital choice in (58), (57) and (59) select χT = 1 and AT = aT for trT ≤ t̂rT and χT < 1 and

AT = aT (1 − ψ) for trT > t̂rT . We have shown that the same is true for BT > B̄T and (B̄T , BT ]. We

can then use (56) to construct the corresponding bond price that is consistent with all requirements of

Definition 3.

The steps above ascertain that 1) if BT ≤ B̄T , then we can construct at least one bond price

consistent with Definition 3 for each BT and 2) the same is true if BT > B̄T . There, the bond pricing

schedule described in Definition 3 exists.

We have also shown that if BT < B̄T , then for each BT on the interval [BT , B̄T ] there exist multiple

distinct bond prices satisfying Definition 3. This means that we can construct multiple bonds pricing

schedules that satisfy Definition 3. The condition BT < B̄T holds if

ψ > 1−

1− trmax − trmin

τaT

(
αaT (1−τk)

r+δ

) α
1−α


1−α
α

≡ ψ̃. (98)

Note that because we assumed that S(aT (1− ψ)kT (a(1− ψ)), trmax) > 0, the term inside the brackets

is always positive, and the right hand side is smaller than unity, i.e. there is always some ψ < 1 such

that ψ > ψ̃

Finally, we show that under ψ > ψ̃ we can construct multiple decreasing bond pricing schedules with

distinct values in (BT , B̄T ]. We will show this by constructing an example. We have established that for

BT > BT we can construct a bond pricing schedule that corresponds to anticipated default in all states:

QT-1,p(B) =
γ

r

∫∞
−∞[τaT (1− ψ)(kpT )α − trT ]f(trT )dtrT

BT
(99)

with

kpT =

[
αaT (1− ψ)(1− τK)

r + δ

] 1
1−α

(100)

For BT ≤ B̄T we can also construct a bond pricing schedule that corresponds to anticipated full repay-

ment in all states:

QT-1,o(B) =
1

1 + r
. (101)

QT-1,p(B) satisfies Definition 3 on the interval BT > BT ; QT-1,o(B) satisfies Definition 3 on the interval

BT ≤ B̄T . On the interval BT ∈ (BT , B̄T ] both satisfy Definition 3. On this interval BT > [τaT (kpT )α−
trT ] 1+rr for all trT because (57) selects default given kpT in each state. It follows that [τaT (1−ψ)(kpT )α−
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trT ] is smaller than BT
r

1+r for each trT , and that the same is true for the expected surplus appearing

in the numerator of (63). With this we can deduce that QT-1,p(B) < γ
1+r ≤

1
1+r = QT-1,o(B) on the

interval (BT , B̄T ].

We can now choose an arbitrary B̂T ∈ (BT , B̄T ] and construct a bond pricing schedule that antici-

pates full repayment in all states for BT ≤ B̂T and full default in all states for BT > B̂T :

QT-1(B) =

QT-1,o(B) if BT ≤ B̂T
QT-1,p(B) if BT > B̂T

Because the choice of B̂T ∈ (BT , B̄T ] is arbitrary, there is an infinite number of such possible bond pric-

ing schedules. Furthermore, each such schedule is decreasing over BT , as both QT-1,o(B) and QT-1,p(B)

are decreasing and because there is a downward at B̂T .

Proposition 5. Suppose there exists a neighborhood of (B0
T , ψ

0) in which the function φ(B,ψ) is

differentiable over both BT and ψ and is decreasing over BT . Then in this neighborhood the bond pricing

schedule QT-1(B,ψ) is decreasing over BT and ψ, i.e. higher default costs are associated with lower bond

price.

Proof. Denote the neighborhood with N(B0
T , ψ

0). Consider some (B0∗
T , ψ

0∗) ∈ N(B0
T , ψ

0). There are

three possibilities with respect to values returned by φ(B0∗
T , ψ

0∗) and the corresponding bond price.

First, if φ(B0∗
T , ψ

0∗) < trmin, then the corresponding bond price anticipates default in all states, and

(63) becomes:

qT−1 =
γ

r
· τaT (1− ψ)(kT (aT [1− ψ]))α − ET−1[trT ]

BT
. (102)

An increase in ψ results in a decrease in the bond price: first, it directly decreases the surplus that can be

recovered in default by lowering the productivity; second, the lowered anticipated productivity negatively

affects the capital stock, further reducing the pledgeable surplus. The function is also decreasing in BT .

Therefore, if φ(B0∗
T , ψ

0∗) < trmin then the bond pricing schedule is decreasing at (B0∗
T , ψ

0∗) over both

BT and ψ.

Second, if φ(B0∗
T , ψ

0∗) ≥ trmin, then the corresponding bond price anticipates full repayment in all

states, and (63) becomes:

qT−1 =
1

1 + r
. (103)

This function is also decreasing in BT and ψ.

Finally, suppose φ(B0∗
T , ψ

0∗) ∈ [trmin, trmax). This corresponds to an equilibrium in which there is

default in some states and repayment in other states. As discussed in the text, in this equilibrium (68)

must yield a solution with t̂rT ∈ [trmin, trmax). Therefore, it must be that (68) holds under (B0∗
T , ψ

0∗)

and t̂r0∗ = ψ(B0∗
T , ψ

0∗) ∈ [trmin, trmax). Using (68) and applying the implicit function theorem we can

calculate the derivatives of φ(BT , ψ) over BT and ψ:

∂φ

∂BT
= − r

1 + r
· θ (104)

∂φ

∂ψ
= − α

1− α
τaT k(t̂r0∗)α(1− F (t̂r0∗))

1− (1− F (t̂r0∗))ψ
· θ (105)

where θ = 1/
[
1− α

1−α
τaT k(t̂r

0∗)αψf(t̂r0∗)

1−(1−F (t̂r0∗))ψ

]
. If θ ≥ 0, then both ∂φ

∂BT
≤ 0 and ∂φ

∂ψ ≤ 0; if θ < 0, then both
∂φ
∂BT

> 0 and ∂φ
∂ψ > 0. It follows that for the ∂φ

∂BT
≤ 0 to hold it must be that θ ≥ 0. If θ ≥ 0, we also

have ∂φ
∂ψ ≤ 0. In other words, if the threshold t̂r is decreasing with the level of debt (i.e. higher debt
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leads to lower transfer levels causing default), then it must be that the threshold t̂r is also decreasing in

ψ (i.e. higher default costs lead to lower transfer levels causing default).

The derivatives of the bond price defined in (63) over BT and ψ are:

∂q

∂BT
=

∂φ

∂BT
· Ω− γ

r

∫∞
t̂r0∗

[τaT (1− ψ)k(t̂r0∗)α − tr]f(tr)d(tr)

B2
T

(106)

∂q

∂ψ
=

∂φ

∂ψ
· Ω− γ

r

τaT k(t̂r0∗)α(1− F (t̂r0∗))

BT
(107)

where Ω = f(t̂r0∗)
[
1−γ
1+r + γ

r
τaT k(t̂r

0∗)α

BT

(
α

1−α
(1−ψ)(1−F (t̂r0∗))

1−(1−F (t̂r0∗))ψ
+ 1
)]

. It is straightforward to see that

Ω ≥ 0. From ∂φ
∂BT

≤ 0 and ∂φ
∂ψ ≤ 0 it follows that ∂q

∂BT
≤ 0 and ∂q

∂ψ ≤ 0, i.e. the bond pricing schedule

is decreasing in both BT and ψ. We have therefore shown that regardless of the particular location

of the neighborhood N(B0
T , ψ

0), if the function φ(B,ψ) is differentiable and decreasing in BT in that

neighborhood, then the associated bond pricing schedule is decreasing in both BT and ψ.

Corollary 5A. Suppose γ = 0 and that there exists a neighborhood of (B0
T , ψ

0) in which the function

φ(B,ψ) is differentiable over both BT and ψ, and the bond pricing schedule is decreasing in BT . Then

in this neighborhood the bond pricing schedule QT-1(B,ψ) is decreasing over ψ, i.e. higher default costs

are associated with lower bond price. In addition, if QT-1(B,ψ) is strictly decreasing over BT in this

neighborhood, it is also strictly decreasing in ψ.

Proof. Following the proof of Proposition 5 we can again consider three possible locations for

(B0∗
T , ψ

0∗) ∈ N(B0
T , ψ

0). For φ(B0∗
T , ψ

0∗) < trmin and φ(B0∗
T , ψ

0∗) ≥ trmax the bond pricing sched-

ule is decreasing in ψ (see poof of Proposition 5 ). For φ(B0∗
T , ψ

0∗) ∈ [trmin, trmax) computing the

derivatives of the bond pricing schedule we get:

∂q

∂BT
=

∂φ

∂BT
· Ω (108)

∂q

∂ψ
=

∂φ

∂ψ
· Ω (109)

where Ω = f(t̂r0∗) 1
1+r > 0 for φ(B0∗

T , ψ
0∗) ∈ [trmin, trmax). Clearly, ∂q

∂BT
≤ 0 is only possible if ∂φ

∂BT
≤ 0.

The derivatives ∂φ
∂BT

and ∂φ
∂ψ can be derived as in the proof of Proposition 5 :

∂φ

∂BT
= − r

1 + r
· θ (110)

∂φ

∂ψ
= − α

1− α
τaT k(t̂r0∗)α(1− F (t̂r0∗))

1− (1− F (t̂r0∗))ψ
· θ (111)

where θ = 1/
[
1− α

1−α
τaT k(t̂r

0∗)αψf(t̂r0∗)

1−(1−F (t̂r0∗))ψ

]
. If ∂φ

∂BT
≤ 0, then θ ≥ 0; it follows that ∂φ

∂ψ ≤ 0. Substituting

this result into the derivative ∂q
∂ψ we assert that ∂q

∂ψ ≤ 0. We have therefore shown that regardless of the

particular location of the neighborhood N(B0
T , ψ

0), if the function φ(B,ψ) is differentiable and the bond

price is decreasing in BT in that neighborhood, then the associated bond pricing schedule is decreasing

in ψ.

It remains to show that if the bond pricing schedule is strictly decreasing over BT in N(B0
T , ψ

0), then

it is also strictly decreasing in ψ. Consider the three options discussed above. For φ(B0∗
T , ψ

0∗) < trmin

and φ(B0∗
T , ψ

0∗) ≥ trmax the bond pricing schedule is not strictly decreasing in BT . Consider now

φ(B0∗
T , ψ

0∗) ∈ [trmin, trmax). In (108), if ∂q
∂BT

< 0 then ∂φ
∂BT

< 0. From (110) it then follows that θ > 0.

Then, from (111) it follows that ∂φ
∂ψ < 0, in which case (109) implies that ∂q

∂ψ < 0.
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Online Appendix B A model with foreign capital investment

Here we show that the assumption that it is only the foreigners who invest in domestic capital is not

strictly necessary for the results obtained in this paper, and neither is the assumption about domestic

households not having access to the international capital markets. We re-state the model assuming that

domestic capital investment is carried out by domestic households, and that the domestic households

can borrow and lend freely on international markets.

Suppose that, unlike in the baseline model, the domestic households can trade in risk-free assets

on the international capital market. To make the contrast with the baseline more stark, we further

assume that foreigners cannot access the domestic capital market: only domestic households can invest

in domestic capital. We additionally assume that the domestic households are risk-neutral, and that

their interest incomes received from abroad are not taxed by the domestic government.

Domestic Households

A representative domestic household trades with risk-neutral foreign investors in risk-free assets, st,

at the the risk-free world interest rate. The households invest in domestic capital and receive interest

income; they also supply a unit of labor and receive wages; they pay taxes to the government and receive

transfers. The households’ flow budget constraint is

ct + kt+1 + st+1 ≤
[
1− δ + rKt (1− τK)

]
kt + (1 + r)st + (1− τw)wt + trt. (112)

The households choose ct, kt+1 and st+1 to maximize their expected welfare, Et[
∑∞
i=0 β

ict+i]. The

first-order conditions characterizing the solution of the households’ problem are:

1 = β[1− δ + Et[r
K
t+1](1− τK)], (113)

1 = β[1 + r]. (114)

These conditions exactly mirror (7) and (8). Combining them we obtain an expression identical to (10)

that pins down the expected capital return:

Et[r
K
t+1](1− τK)− δ = r. (115)

Assumptions about the household sector affect the results derived in the text insofar as they alter the

capital accumulation decision. Here, it is clear that capital investment ends up being exactly the same as

the one we arrived at when solving the baseline model. Therefore, the results obtained for the baseline

specification would also apply here.

We have therefore shown that this alternative setup yields results that are identical to those in our

baseline model if 1) domestic households are risk-neutral and 2) the government does not tax interest

income from abroad.

If the first condition fails, i.e. if capital investment decisions are made by risk-averse domestic

households, this would alter the optimality condition (10). The first order condition obtained under

risk-aversion would take into account the correlation between returns to capital and fluctuations in the

households’ utility. We expect this would amplify the effect that expectations have on capital investment

decisions that is at the core of the argument made in this paper.

Violation of the second condition may have more prominent consequences for our argument. In this

paper we argue that anticipated productivity losses in the event of default may trigger a capital outflow

causing an output drop. If only domestic households can invest in capital and the government can tax

53



whatever interest income they receive from abroad, the capital outflow could potentially be prevented,

which could undercut the mechanism discussed here. Therefore, the argument developed in this paper

is most appropriate for countries where either the foreign creditors have access to the domestic capital

markets, or the domestic capital investors can avoid being taxed on their interest earnings received from

abroad.
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