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INCENTIVES IN MATCHING MARKETS: COUNTING AND
COMPARING MANIPULATING AGENTS

SOMOUAOGA BONKOUNGOU∗ AND ALEXANDER NESTEROV†

Abstract. Vulnerability to manipulation is a threat to successful matching market
design. However, some manipulation is often inevitable and the mechanism designer
wants to compare manipulable mechanisms and pick the best. Real-life examples
include reforms in the entry-level medical labor market in the US (1998), school
admissions systems in New York (2004), Chicago (2009-2010), Denver (2012), some
cities in Ghana (2007-2008), and England (2005-2010). We provide a useful crite-
rion for these design decisions: we count the number of agents with an incentive
to manipulate each mechanism under consideration during these reforms, and show
that this number decreased as a result of the reforms. Our conclusion is robust to
further additional strategic assumptions.

Keywords: market design, two-sided matching, college admissions, school choice,
manipulability
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1. Introduction

Many matching systems around the world recently underwent drastic changes to
deal with the strategic manipulation of their matching rules. These changes include
the US entry-level medical labor market in 1998, the New York City high school
admissions in 2005, the Chicago selective high school admissions in 2009 and 2010,
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the Denver public school admissions in 2012, the public school admissions in Ghana in
2007 and 2008, as well as school admissions in English cities between 2005 and 2010.
In this paper, we study these reforms and provide a simple criterion for evaluating
whether they were successful.

The matching systems in question are centralized markets whose outcomes are
based on participants’ reported private information. One of the key design objectives
is to provide participants with incentives to report this information truthfully as
opposed to “gaming the system” (Roth, 2008; Abdulkadiroğlu and Sönmez, 2003).
Truthful mechanisms are simple, thereby guaranteeing easy and equal access to all
participants regardless of their strategic sophistication (Pathak and Sönmez, 2008).1

In contrast, manipulable mechanisms are complicated to deal with and can result in
unfair and skewed outcomes. The old Boston school admission system provides a vivid
illustration: in the 2001-2002 school year, at least 19% of students strategized poorly
in a highly manipulable mechanism, and among them 27% ended up unassigned;
while they could have been matched if they had strategized well (Abdulkadiroğlu
et al., 2005b).2 It is now commonly understood that manipulation is a major threat
to the success of matching markets.

In practice, however, some manipulation is inevitable. Real markets are complex
and involve constraints and policy goals that create opportunities for manipulation.
For example, in medical labor markets, it is crucial to use a stable matching mech-
anism, which prevents doctors and hospitals from circumventing the system and ar-
ranging a mutually preferred match. Empirical evidence has documented that stable
mechanisms tend to succeed, while unstable ones tend to fail (Roth, 1991, 2002).3

Unfortunately, all stable mechanisms are manipulable (Roth, 1982).
To further illustrate the point, many school or college admission systems restrict

the number of schools that students are allowed to apply to (Haeringer and Klijn,
2009; Pathak and Sönmez, 2013). For example, in New York City, out of 700 study
programs, each student can rank only 12. The reasons behind these constraints
are not yet fully understood, but they appear to be crucial for practitioners. They
1They also facilitate the interpretation and the evaluation of the outcome since they generate more
credible policy-relevant data (Sönmez, 2013).
2In China the numbers are even more striking: in 2003, due to the use of a manipulable mechanism
and poor strategizing, 3 million students – representing more than half of the cohort – were matched
to significantly lower-ranked colleges than what they would have been matched to in a truthful
mechanism. What is worse, this mismatch was stronger for rural students and female students,
contributing to the education gap (Wu and Zhong, 2020).
3This is why several medical labor markets such as entry-level labor markets in Canada, the UK and
the US use stable mechanisms.
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remain widespread and bind the choice for a large share of students (Pathak, 2016).
Unfortunately, any sensible mechanism that is augmented with such constraints is
manipulable (Proposition 2).

While real matching markets involve manipulations, many systems have recently
undergone drastic changes to reduce it. In this paper, we study whether these changes
were successful. To quantify manipulations, we focus on agents that can beneficially
misrepresent their private information when others are truthful.4 We call themmanip-
ulating agents. Our analysis covers a wide range of settings, including recent real-life
applications (see Table 1). These settings differ in a few major aspects: the set of
strategic agents, the strategies these agents can use, whether stability is required and
whether there is a ranking constraint.

Our results are threefold. First, we consider the college admission problem where
both students and schools are strategic agents (Gale and Shapley, 1962) and schools
can misreport their preferences as well as their capacities. Dubins and Freedman
(1981) and Roth (1982) show that the student-proposing Gale-Shapley (GS) mecha-
nism is not manipulable by students. It is one of the main arguments in favor of its
choice for the National Resident Matching Program (NRMP). However, it also has
the largest number of manipulating schools among all stable mechanisms (Pathak
and Sönmez, 2013). In this paper, we show that, when all manipulations (by stu-
dents as well as by schools) are considered, this mechanism has the smallest number
of manipulating agents among all stable matching mechanisms (Theorem 1). This
result supports its choice for medical labor markets such as the NRMP, which took
place in 1998 (Roth and Peranson, 1999). What is more, even when schools can only
misreport their capacities, but not their preferences, this mechanism is still the best
choice (Proposition 1).

Second, we consider the same college admission problem where students and schools
are strategic agents, but students face ranking constraints. A canonical example is the
New York City high school admission (Abdulkadiroğlu et al., 2005a). In this setting,
stable mechanisms (with respect to the reported preferences) are manipulable even by
students. The result still holds: the constrained student-proposing GS mechanism has
the smallest number of manipulating agents among all stable mechanisms (Theorem

4The number of these agents can be interpreted as a measure of potential for manipulations. It has
been largely used to measure incentives in matching markets: Roth and Peranson (1999), for exam-
ple, conducted a simulation on data on the NRMP and showed that the potential for manipulation
is low. That is, a small number of agents could have beneficially misreported their information when
other agents are truthful.
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Who can
manipulate?

What are the
restrictions?

Design
instances

Recommended
design

Students,
schools

(rankings and
capacity)

Stability National Resident
Matching Program 1998

Student-proposing GS
(Theorem 1)

Stability,
ranking

constraints

Student-proposing GSk
(Theorem 2 (i))

Students,
schools

(only capacity)

Stability Student-proposing GS
(Proposition 1)

Stability,
ranking

constraints
New York 2004 Student-proposing GSk

(Theorem 2 (ii))

Only students Ranking
constraints

Brighton 2007, Chicago 2009,
East Sussex 2007, Sefton 2007,

Newcastle 2005

Replace Bostonk by GSk
(Theorem 3)

Chicago 2010, Ghana 2007, 2008,
Newcastle 2010, Surrey 2010

Replace GS` by GSk,
k > ` (Theorem 4)

Chicago 2009-2010, Denver 2012,
Kent 2007, Newcastle 2005-2010

Replace Boston` by GSk,
k > ` (Corollary 2)

Table 1. Summary of the results.

Notes: The table presents strategic settings (column 1), restrictions on the set of the mechanisms
(column 2), historical instances where these settings and restrictions occurred (column 3),
corresponding recommendations and results (column 4).

2). This result is again robust to whether schools can misreport their rankings or
only their capacities. These findings support using its use for the New York City high
school admission to reduce manipulations. This choice has actually been made by a
group of market design professionals in 2004 (Abdulkadiroğlu et al., 2005a).

Third, we consider the school choice problem (Abdulkadiroğlu and Sönmez, 2003)
where students are the only strategic agents and also face ranking constraints. Histor-
ically, many school choice systems have used the constrained immediate acceptance
(Boston) mechanism, but over time are shifting towards the constrained student-
proposing GS mechanisms and relaxing the constraint. We demonstrate that these
changes in admission mechanisms decrease the number of manipulating students (The-
orem 3 and Theorem 4). These results rationalize recent reforms such as in Chicago,
Denver, Ghana, and many English cities.

Related literature. This paper is part of the growing literature on two-sided match-
ing started by Gale and Shapley (1962). Roth and Sotomayor (1990) provide a good
account of the literature up until 1990. Our paper makes a contribution to a recent
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trend in the research, started by Pathak and Sönmez (2013), comparing manipula-
ble mechanisms. The paper that first formalizes counting manipulating agents in
mechanism design is Andersson et al. (2014a); they study the problem of allocat-
ing indivisible objects and money to agents and compare fair and budget-balanced
mechanisms by counting manipulating agents.

The criterion has long been used in market design, although it has not yet received
a systematic theoretical treatment. For example, in studying incentives in the medical
labor market, Roth and Peranson (1999) count the number of medical students who
could have benefited from truncating their rankings (and separately the number of
hospitals who could have benefited from reducing their capacities) and used it as a
measure of the potential for manipulations. In experiments, this criterion is also used
(see the surveys by Chen, 2008, and by Hakimov and Kübler, 2020). Kojima and
Pathak (2009) and Kojima et al. (2013) study incentives in large markets by counting
the proportion of manipulating agents and their results support the student-proposing
GS mechanism.

For the school choice problem, Pathak and Sönmez (2013) introduced a novel
method that is weaker than counting: they compare mechanisms by the set-inclusion
of problems with no manipulating agent.5 This method became the state-of-art for
comparing manipulable matching mechanisms (for example, it is used by Chen and
Kesten, 2017; Dur et al., 2021; Dur, 2019; Dur et al., 2019). However, this method
cannot be used to compare mechanisms at problems where they have manipulating
agents, which is likely in practice. Pathak and Sönmez (2013) provide two results.
First, at each problem where the constrained Boston mechanism has no manipulating
student, the constrained student-proposing GS mechanism also has no manipulating
student. Second, at each problem where the constrained student-proposing GS has no
manipulating student, the student-proposing GS with an extended constraint also has
no manipulating student. Our results on counting imply these results and generalize
the comparisons to all problems.

5The social choice literature has suggested many other methods to compare manipulable mechanisms.
For example, voting rules can be compared by counting the manipulable instances in the entire
domain (Kelly, 1993; Aleskerov and Kurbanov, 1999), by finding the domains where some rules
become strategy-proof while others do not (Moulin, 1980), and by set-inclusion of preference relations
that admit dominant strategies (Arribillaga and Massó, 2016). Recently, Chen et al. (2016) studied
matching with contracts (Hatfield and Milgrom, 2005) and introduced a manipulability notion that
measures the set of contracts that each agent can obtain by misreporting her preference. They show
that manipulability comparisons of stable mechanisms are equivalent to preference comparisons.
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Similarly, two subsequent papers compared the constrained Boston and constrained
GS mechanisms. They use different criteria that do not rely on instance-by-instance
comparison. Bonkoungou and Nesterov (2021) used a criterion called strategic acces-
sibility, and Decerf and Van der Linden (2020) used the notion of dominant preference-
inclusion introduced by Arribillaga and Massó (2016). These criteria and counting
are logically independent.

For the college admission problem, it is well-known that the student-proposing GS
is not manipulable by students (Roth, 1982; Dubins and Freedman, 1981) while any
stable mechanism is manipulable by schools. Furthermore, Pathak and Sönmez (2013)
show that any manipulating student in a stable mechanism is also a manipulating stu-
dent in the school-proposing GS mechanism, while any manipulating school in the
school-proposing GS mechanism via preferences is also a manipulating school in any
stable mechanism via preferences. Chen et al. (2016) define a notion of manipulabil-
ity that compares the set of outcomes that each agent can obtain via manipulations
and show that manipulability comparisons of stable mechanisms are equivalent to
preference comparisons. Since the preferences of agents on the two sides over stable
matchings are opposed, stable mechanisms are not comparable for all agents. An-
dersson et al. (2014b) also define a manipulability notion that compares each agent’s
maximal gain from manipulation and find least manipulable budget-balanced and
envy-free mechanisms.

The rest of the paper is structured as follows. In Section 2, we study the college
admission problem, in which both sides are strategic. In section 3, we study the
school choice problem, in which only one side is strategic. In Section 4, we conclude.
We present the proofs in the Appendix.

2. Two-sided matching

We consider the college admission problem (Gale and Shapley, 1962). There are
students and schools; students have preferences over schools and schools have pref-
erences over students. Both students and schools are strategic. Apart from college
admission, this model covers numerous real-life matching markets such as the entry-
level medical market in Canada, the UK, and the US.

Formally, the set I∪S of agents consists of a non-empty and finite set I of students
with a generic element i and a non-empty and finite set S of schools with a generic
element s. Being unmatched is denoted by ∅. Each student i has a strict preference
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relation Pi over the set S ∪ {∅} of schools and remaining unmatched. Then s Pi ∅
means that school s is acceptable to student i. Let Ri denote the “at least as good
as” relation associated with Pi.6

Each school s has qs ∈ N seats called capacity and a strict preference relation Ps
over 2I ∪{∅} where 2I is the set of all non-empty subsets of students and ∅ the option
of being unmatched. Let Rs denote the “at least as good as” relation associated with
Ps. In particular, Ps induces a strict linear ordering over individual students which
we denote by �s, i.e, i �s j if and only if {i} Ps {j}. We assume that the preference
relation Ps over groups of students is responsive to �s, meaning that (a) admitting
any acceptable student when there is an empty seat is better than leaving the seat
unfilled and (b) replacing any student with a more preferred student leads to a better
student body. Formally, the preference relation Ps of school s over groups of students
is responsive (Roth, 1985) if (a) for each each N ∈ 2I such that |N |< qs and each
i /∈ N , we have N ∪ {i} Ps N ⇔ i �s ∅ and (b) for each N ∈ 2I and each i, j /∈ N ,
we have N ∪ {i} Ps N ∪ {j} ⇔ i �s j.

We denote by P = (Pa)a∈I∪S the preference profile and by q = (qs)s∈S the vector of
capacities. Given an agent a ∈ I ∪ S, let P−a denote the preference profile of agents
other than a. Given a school s, let q−s denote the capacity vector of schools other
than s. The tuple (I, S, P, q) is a college admissions problem, or simply a problem.
We keep the sets I and S fixed and simply denote a problem by (P, q).

A matching is a function µ : I → S ∪ {∅} mapping the set of students to the set
of schools as well as the unmatched option such that no school is assigned to more
students than it has seats for, that is, for each school s, |µ−1(s)|≤ qs. Student i finds
matching µ at least as good as matching µ′ if and only if µ(i) Ri µ

′(i). School s
finds matching µ at least as good as matching µ′ if and only if µ−1(s) Rs µ

′−1(s). A
mechanism ϕ is a function that maps each problem to a matching. If ϕ(P, q) = µ

for a problem (P, q), then we denote by ϕi(P, q) = µ(i) the assignment of student i
and by ϕs(P, q) = µ−1(s) the set of students assigned to school s.

2.1. National Resident Matching Program. The entry-level labor market for
doctors in the US has a centralized matching system called the National Resident
Matching Program (NRMP). In 1951, after decades of chaotic experience with unrav-
eling and congestion in a decentralized process, this market has adopted a centralized
clearinghouse (Roth, 1984).

6For each s, s′ ∈ S ∪ {∅}, s Ri s
′ iff s Pi s

′ or s = s′.
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While several centralized markets have failed, NRMP has survived for half of a
century with the same matching mechanism. Roth (1984) discovered an important
feature of its design which may explain its success: no doctor and hospital have an
opportunity to circumvent the system and mutually arrange a preferred matching.
Such mechanism is said to be stable. Roth (1990, 1991) documented that stable
matching mechanisms tend to operate longer while unstable ones tend to fail.

Formally, matching µ is stable at the problem (P, q) if (a) it is individually rational
— every student is assigned to an acceptable school and every school is assigned
acceptable students, and (b) it is not blocked — no student prefers a school which
has an empty seat or has admitted a less preferred student. That is,

• µ is individually rational at (P, q): for each s ∈ S and each i ∈ µ−1(s), we
have s Pi ∅ and i �s ∅ and
• µ is not blocked at (P, q): there exists no school s and student i /∈ µ−1(s)
such that s Pi µ(i) and either [|µ−1(s)|< qs and i �s ∅] or [i �s j for some
j ∈ µ−1(s)].

A mechanism ϕ is stable if for each problem (P, q) its outcome ϕ(P, q) is stable at
(P, q). Gale and Shapley (1962) show that for any problem there exists a stable
matching. The set of stable matchings has a lattice structure such that there is an
element, called student-optimal stable matching, where for each student it is at least
as good as any other stable matching. Gale and Shapley (1962) develop the following
algorithm for producing student-optimal stable matchings.

• Step 1: Each student applies to her most preferred acceptable school (if any).
Let I1s denote the acceptable applicants of school s at this step. Each school
s tentatively accepts min(qs, |I1s |) of the most preferred acceptable applicants
among I1s and rejects the remaining ones. Let A1

s denote the tentative accep-
tances of school s at this step.
• Step t , t > 1: Each student who is rejected at step t − 1 applies to her most
preferred acceptable school from those she has not yet applied to (if any). Let
I ts denote the new acceptable applicants of school s at this step. Each school s
considers the new and the previously held applicants and tentatively accepts
min(qs, |At−1s ∪I ts|) of the most preferred acceptable applicants among At−1s ∪I ts
and rejects the rest. Let Ats denote the tentative acceptances of school s at
this step.

The algorithm stops when every student is either tentatively accepted or has been
rejected by all her acceptable schools. Then the tentative acceptances at this step
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become the final matching and students who have been rejected by all acceptable
schools remain unmatched. The student-proposing GS mechanism assigns to each
problem (P, q) the matching GS(P, q) obtained by this algorithm. Similarly, for each
problem, there is a school-optimal stable matching which can be obtained by applying
the school-proposing deferred acceptance algorithm.

Unfortunately, stable matching mechanisms are subject to various kinds of manip-
ulations by students and schools. Students may gain by misrepresenting their prefer-
ences while schools may gain by misrepresenting their preferences or under-reporting
their capacities. We formalize this as follows.

Definition 1 (Manipulation via preferences and capacities).
(a) We say that student i is a manipulating agent of mechanism ϕ at (P, q) if

there is P̂i such that
ϕi(P̂i, P−i, q) Pi ϕi(P, q).

(b) We say that school s is a manipulating agent of mechanism ϕ at (P, q) if
there is (P̂s, q̂s) such that q̂s ≤ qs and

ϕs(P̂s, P−s, (q̂s, q−s)) Ps ϕs(P, q).

Every stable matching mechanism is subject to manipulation by students or schools.
Specifically, the student-proposing GS mechanism is not manipulable by students
(Dubins and Freedman, 1981; Roth, 1982), while any stable matching mechanism is
manipulable by schools (see, e.g., Sönmez, 1997). The school-proposing GS mecha-
nism is manipulable by both students and schools.

The NRMP had been using the school-proposing GS mechanisms since its successful
redesign in 1951-1952. However, among other issues, its manipulability had been
observed and criticized for years (Williams, 1995; Ma, 2010), until, in 1998, the NRMP
decided to switch to the Roth and Peranson’s (1999) algorithm that is based on the
student-proposing GS mechanism. One of the reasons, according to the American
Medical Student Association and the Public Citizen Health Research Group, was
that “it would be best to choose the student-optimal algorithm to remove incentives, at
least for students. In other words, within the set of stable algorithms, you either have
incentives for both the hospitals and the students to misrepresent their true preferences
or only for the hospitals” (Ma, 2010).

However, it was later discovered that the student-proposing GS mechanism has
weakly more manipulating schools than any other stable matching mechanism (Pathak
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and Sönmez, 2013).7 Thus, there is an incentive trade-off and it was not clear if the
student-proposing GS mechanism is preferable in terms of incentives for students and
schools. The following theorem answers this question.

Theorem 1. Suppose that both students and schools are strategic agents and can
manipulate via preferences and capacities. For any problem, the student-proposing
GS mechanism has fewer or an equal number of manipulating agents compared to any
other stable matching mechanism.

One of the implications of the theorem is that in a marriage market (where each
school has one seat) the optimal stable matching mechanisms have the same number
of manipulating agents.8

Corollary 1. Suppose that every school has one seat. Then, for any problem, the
student-proposing and the school-proposing GS mechanisms have the same number of
manipulating agents.

We discuss the main argument of the theorem now. The intuition as to why the
student-proposing GS has fewer manipulating agents compared to any stable match-
ing mechanism is that students and schools have opposing interests over stable match-
ing mechanisms. To see this, consider a problem (P, q) and let ϕ be a stable matching
mechanism. Note that every school finds ϕ(P, q) at least as good as GS(P, q). By
implementing the matching ϕ(P, q) instead of GS(P, q) some schools receiving their
more preferred stable matching do not have any interest in misrepresenting their
preferences or capacities. These schools are matched with different students between
these two stable matchings. An important basic result in two-sided matching, called
the rural hospital theorem, implies that each such school has filled all its seats under
any stable matching. Therefore, some students were matched with this school under
GS(P, q) but are matched to different schools under ϕ(P, q). Because GS(P, q) is the
student-optimal stable matching, these students are worse off under ϕ(P, q) compared

7This result follows from a comparison using a stronger criterion, namely that every manipulat-
ing school of an arbitrary stable mechanism is a manipulating school of the student-proposing GS
mechanism (Pathak and Sönmez, 2013). The same manipulability criterion is used in matching with
contracts framework by Chen et al. (2014, 2016).
8The analogy with the marriage market is limited and cannot provide a complete intuition for the
college admissions problem. For example, when a marriage market has a unique stable matching,
both student-proposing GS and school-proposing GS coincide and have zero manipulating agents.
In a general college admissions problem, however, even if there is a unique stable matching, schools
can manipulate the student-proposing GS and the school-proposing GS; but the student-proposing
GS remains the least manipulable among all stable mechanisms (see Example 1).
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to GS(P, q). Finally, these students are manipulating agents of ϕ at (P, q) as each of
them can truncate her preferences and get the same school as under GS(P, q).

This argument crucially depends on whether or not schools can misrepresent their
preferences. Next, we address applications where schools can only manipulate their
capacities. This application is also relevant for college or university admissions. Their
preferences, then called priorities, are often mandated by state or local laws. For
example, when schools have to report the rankings of students according to their
grades, no school has a say on these rankings. But schools may still under-report
their capacities. Manipulation via capacities is first formalized by Sönmez (1997):

Definition 2 (Manipulation via capacities). We say that school s can manipulate its
capacity under mechanism ϕ at problem (P, q) if there is q̂s < qs such that

ϕs(P, (q̂s, q−s)) Ps ϕs(P, q).

This distinction is important because manipulations via capacities are more restric-
tive. For stable matching mechanisms, and when both manipulations via preferences
and via capacities are possible, any manipulation via capacities can be replicated by
manipulation via preferences while the reverse is not true. In particular, a manipula-
tion via preferences by which a school removes some acceptable students and ranks
the remaining ones according to its true preferences, called a dropping strategy, is
exhaustive (Kojima and Pathak, 2009). This means that it can be used to improve
the outcome of any strategy. When schools can manipulate their preferences, we can
focus on dropping strategies without loss of generality. Nevertheless, this distinction
does not change our conclusion.

Proposition 1. Suppose that students and schools are strategic agents but schools
can only manipulate their capacities. For any problem, the student-proposing GS
mechanism has fewer or an equal number of manipulating agents compared to any
stable matching mechanism.

We provide the main argument here. Following Ehlers (2010), we know that only
schools that have filled all their seats can manipulate the student-proposing GS mech-
anism via capacities. As before, any school that can manipulate the student-proposing
GS via capacities but not another stable matching mechanism ϕ is matched with dif-
ferent sets of students under these stable matchings. Therefore, some students are
matched to this school under the student-proposing GS mechanism but not under ϕ.
Such students are manipulating agents of ϕ.
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The following distinction between preference manipulations and capacity manipu-
lations is worth noting. We previously discussed the strategic trade-off between ma-
nipulating students and manipulating schools. In contrast, when we restrict ourselves
to capacity manipulations, the trade-off may disappear and the school-proposing
GS mechanism may have more manipulating schools than the student-proposing
GS mechanism. In other words, there might be schools that cannot manipulate
the student-proposing GS mechanism via capacities but can manipulate the school-
proposing GS mechanism (see also Ehlers, 2010). We illustrate this next.

Example 1. Let there be two schools s1 and s2 and three students i1, i2 and i3. Let
(P, q) be a problem such that qs1 = qs2 = 2 and P is specified as follows.

Pi1 Pi2 Pi3 �s1 �s2
s2 s1 s1 i1 i3

s1 s2 s2 i2 i1

i3 i2

For this problem, there is only one stable matching specified as follows:(
i1 i2 i3

s2 s1 s1

)
.

Thus, this matching is the outcome of the student-proposing GS mechanism as well
as the school-proposing GS mechanism. Next, we show that s2 cannot manipulate
the student-proposing GS mechanism via capacities but can manipulate the school-
proposing GS mechanism via capacities.

Each student is matched to her most preferred school. Thus, there is no manipulat-
ing student for the school-proposing GS mechanism. We only focus on manipulating
schools. Suppose that school s1 reports capacity q′s1 = 1 to the student-proposing GS
mechanism. Then during the first step of the algorithm, s1 will reject the application
of i3. Student i3 applies to school s2 in the second step and the algorithm ends. School
s1 will finally be matched to student i2. Since Ps1 is responsive, then {i2, i3} Ps1 {i2}.
Thus, school s1 cannot manipulate the student-proposing GS mechanism via capaci-
ties. Since school s2 received one application in the first step of the student-proposing
GS algorithm, reporting q′s2 = 1 or qs2 = 2 does not change the outcome. Therefore,
school s2 cannot manipulate the student-proposing GS mechanism via capacities.

Suppose now that school s2 reports q′s2 = 1 to the school-proposing GS mechanism.
Then the algorithm stops at the first step and s2 is matched to student i3. Since
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i3 �s2 i1, then school s2 can manipulate the school-proposing GS mechanism via
capacities.

In all our previous applications, students can rank as many schools as they wish.
In other applications, however, there are restrictions on the number of schools that
students can rank. Next, we study this setting.

2.2. New York City High School Match. Before 2003, the New York City high
school matching system was decentralized and highly congested: one-third of appli-
cants were unassigned and had to be administratively placed in schools that they did
not list (Abdulkadiroğlu et al., 2005a). An important feature of this system was that
schools were strategic agents. Although schools’ rankings of students were based on
their place of residence or whether they already have a sibling attending the school, “a
substantial number of schools apparently managed to conceal capacity from the central
administration, thus preserving places that could be filled later ” (Abdulkadiroğlu et al.,
2005a). These observations convinced the designers that the market was two-sided
and thus required stability. One of the design decisions was whether to implement
the student-proposing GS mechanism or another stable matching mechanism.

This application has two important features. First, before the reform, each student
could apply only to 5 schools out of more than 600 schools. After the reform, this
constraint was not eliminated but was extended to 12 schools.9 Second, although
schools are strategic agents, they can only misrepresent their capacities because their
rankings of students are exogenous. In this setting, which mechanism would we
recommend?

The standard argument, supporting that student-proposing GS is the best because
it is not manipulable by students while any stable matching mechanism is manipulable
by schools, cannot guide the choice in this application because the constraint makes
the student-proposing GS manipulable by students.10 Our criterion is also useful to
distinguish manipulable mechanisms. To develop our argument further we need the
following notation and terminology.

Let k ∈ {1, . . . , |S|}. For each student i, the truncation after the k’th acceptable
school (if any) of Pi with x acceptable schools is the preference relation P k

i with
min(x, k) acceptable schools such that all schools are ordered as in Pi.
9Abdulkadiroğlu et al. (2005a) documented that after the reform over 12,000 students ranked 12
schools, suggesting that the constraint was binding. The designers were aware that these constraints
worsen the properties of the mechanisms, but the matching system officials had their reasons to
maintain the constraints (Abdulkadiroğlu et al., 2005a; Pathak, 2016).
10Every sensible constrained mechanism is manipulable by students, see Proposition 2.
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Definition 3. Let k ∈ {1, . . . , |S|}. The constrained version ϕk of the mechanism ϕ

assigns to each problem (P, q) the matching ϕk(P, q) = ϕ(P k
I , PS, q), where P k

I is the
profile of truncated preferences after the k’th acceptable school.

The constrained mechanism ϕk is constrained stable if for each problem (P, q),
ϕk(P, q) is stable under (P k, q). Despite additional strategic flaws due to constraints,
the constrained student-proposing GS mechanism emerges as the best choice among
all constrained stable matching mechanisms, including the constrained school-proposing
GS. This result guides the design of the New York City high school match.

Theorem 2. Let k ≥ 2 and ϕ be a stable matching mechanism. Suppose that students
can only rank up to k schools.

(i) Suppose that schools can manipulate via preferences. Then the constrained
student-proposing GS mechanism GSk has fewer or an equal number of manipulating
agents compared to the constrained stable matching mechanism ϕk.

(ii) Suppose that schools can only manipulate via capacities. Then the constrained
student-proposing GS mechanism GSk has fewer or an equal number of manipulating
agents compared to the constrained stable matching mechanism ϕk.

The intuition behind the result is as follows. First, we show that for any problem
(P, q), manipulating students of the constrained student-proposing GS are unmatched
at the matching GSk(P, q). The rural hospital theorem (Roth, 1986) implies that
these students are also unmatched at constrained stable matching ϕk(P, q). The
main part of the argument is to show that they are also manipulating students of the
constrained stable matching mechanism ϕk at (P, q). The reason is that the strategy
for manipulating the student-proposing GS mechanism can be replicated to constitute
a manipulating strategy of ϕk — again due to the rural hospital theorem. Therefore,
every (unmatched) manipulating student of the constrained student-proposing GS
mechanism is also an unmatched manipulating student of any constrained stable
matching mechanism ϕk. The rest follows similar ideas as the proof of Theorem 1
and Proposition 1.

Finally, we note that the results in this section do not rely on the fact that the
problem having multiple stable matchings. Roth and Peranson (1999) observed that,
in the NRMP, the core tends to be relatively small. This core “convergence” can be
explained by the large size of the market, competition and interview requirements
that restrict the number of hospitals students can rank (Roth and Peranson, 1999;
Kojima and Pathak, 2009; Ashlagi et al., 2017). In markets where there is a unique
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stable matching, students cannot manipulate their preferences, but schools can still
manipulate their preferences as well as their capacities, as Example 1 demonstrates.

3. School Choice

So far we have considered settings where both sides are strategic. In this section,
we consider school admission systems with strategic students and study recent design
choices in Chicago, Denver, Ghana, and the UK.

In a school choice problem (Abdulkadiroğlu and Sönmez, 2003), only students’
welfare matters and they are the only strategic agents. The seats of each school
are treated as objects to be distributed among students, and its preference relation
is interpreted as students’ priorities in distributing these seats. These priorities are
often mandated by local/state laws and are based on students’ characteristics such as
location, grades, socioeconomic status, or lottery outcomes. In contrast to the college
admission model, we assume that each student is acceptable to each school. That
is, for each student i and each school s, i �s ∅. Most importantly, we assume that
priorities and capacities are reported truthfully and focus on student manipulations.

In their seminal paper, Abdulkadiroğlu and Sönmez (2003) describe the matching
procedure used in Boston and other US cities. The procedure is commonly used
around the world and is known in the literature as the Boston mechanism.11 For each
problem (P, q), it works as follows:

• Step 1 : Each student applies to her most preferred acceptable school (if any).
Let I1s denote the applicants of school s at this step. Each school s immediately
accepts min(qs, |I1s |) of the highest priority applicants among I1s and rejects
the remaining ones. For each school s, let q1s = qs − min(qs, |I1s |) denote its
remaining seats after this step.
• Step t , t > 1: Each student who is rejected at step t − 1 applies to her most
preferred acceptable school among those she has not yet applied to (if any).
Let I ts denote the applicants of school s at this step. Each school s immediately
accepts min(qt−1s , |I ts|) of the highest priority applicants among I ts and rejects
the remaining ones. Let qts = qt−1s −min(qt−1s , |I ts|) denote the remaining seats
of school s after this step.

The algorithm stops when every student is either accepted at some step or has been
rejected by all her acceptable schools. Every school is assigned the students that it has
immediately accepted at each step. The Boston mechanism assigns to each problem

11It is also called the immediate acceptance mechanism.
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(P, q), the matching β(P, q) obtained by this algorithm. The Boston mechanism is
individually rational but does not always produce a stable matching (Abdulkadiroğlu
and Sönmez, 2003). This mechanism is also manipulable.

We also study constrained rankings in school choice. Real-life examples include
the Chicago selective high school admission system, the Boston public school system
before the reform in 2005, the Ghanaian primary public school system, the New York
City high school match, the primary public school system in Denver, and school
admissions systems in several cities in UK (Pathak and Sönmez, 2013; Fack et al.,
2019). With such constraints, students need to be strategic about which schools to
include in their rankings. It turns out that for any sensible mechanism, its constrained
counterpart will be manipulable.

To be more specific, we define a sensible mechanism as one that is individually
rational and satisfies the following mild efficiency condition. We say that a matching
µ is weakly non-wasteful under P if there is no unmatched student who prefers a
school with an empty seat. That is, there is no student i and a school s such that
µ(i) = ∅, s Pi ∅ and |µ−1(s)|< qs. A mechanism is weakly non-wasteful if for each
problem (P, q), its outcome ϕ(P, q) is weakly non-wasteful under P .

Proposition 2. Let k ≥ 1 and suppose that there are at least as many students as
schools, |I| ≥ |S|, and k < |S|. Let ϕ be a weakly non-wasteful and individually
rational mechanism. Then, the constrained mechanism ϕk is manipulable.

In recent years, strategic concerns have motivated many school districts to reform
their admissions systems (Pathak and Sönmez, 2013). Some school districts replaced
the Boston mechanism with the student-proposing GS mechanism but maintained
the ranking constraints. Other reforms allowed students to apply to more schools.
None of these reforms eliminated manipulation, but, as we show next, they reduced
the number of manipulating agents. Such a conclusion supports these reforms and
could serve as a guide for future designs. Next, we describe these reforms and present
our results.

3.1. Chicago, Denver, and England: from immediate to deferred accep-
tance. Several matching systems have replaced the constrained Boston mechanism
with a student-proposing GS mechanism. Examples include the Chicago selective
high school system in 2009 and the public school system in many cities in England
(see Table 1 and Pathak and Sönmez, 2013).
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Replacing the manipulable Boston mechanism with the non-manipulable student-
proposing GS, is an obvious improvement. However, for constrained mechanisms, the
comparison is not straightforward because some students who could not manipulate
the constrained Boston mechanism can manipulate the constrained GS. To see this,
consider the following example.

Example 2. There are five students i1, i2, . . . , i5 and five schools s1, s2, . . . , s5. Let
(P, q) be a problem such that each school has one seat and the remaining components
are specified as follows.

Pi1 Pi2 Pi3 Pi4 Pi5 �s1 �s2 �s3 �s4 �s5
s1 s1 s2 s3 s3 i4 i5 i2

...
...

s2 s2 s3 s1 s1 i1 i1 i3

s3 s3 s4 s2 s2 i2 i2 i5
... ∅ ∅ ∅ ∅ ... i3 i4

Consider replacing the constrained Boston mechanism β2 with GS2. The outcome
of β2 is as follows:

β2(P, q) =

(
i1 i2 i3 i4 i5

s1 ∅ s2 ∅ s3

)
.

Students i2 and i4 are manipulating students: i2 could benefit by top-ranking s2 and
being matched to it, while i4 could benefit by top-ranking s1 and being matched to it.
Each of the remaining students received her most preferred school and thus cannot
manipulate β2 at (P, q). But under GS2 student i5 becomes a manipulating student.
To see this, consider the outcome of GS2:

GS2(P, q) =

(
i1 i2 i3 i4 i5

s2 ∅ s3 s1 ∅

)
.

Student i5 is unmatched. However, she is the highest priority student at s2. If
she top-ranks s2 (or even ranks it second), then she is matched to it under the new
problem: GS2

i5
(P s2

i5
, P−i5 , q) = s2. Therefore, i5 is a manipulating student of GS2 but

not β2.

Thus, when the constrained Boston is replaced with the constrained GS, the set
of manipulating students changes ambiguously. But, as we show in the following
theorem, the size of this set unambiguously decreases.
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Theorem 3. Let k > 1. For any problem, the constrained GS mechanism GSk

has fewer or an equal number of manipulating students compared to the constrained
Boston mechanism βk.

The main and novel part of the proof is to construct a one-to-one function between
manipulating students of GSk and a subset of manipulating students of βk. We
illustrate how we construct this function using Example 2 above.

Recall, that β2 has two manipulating students i2 and i4, and GS2 has two manip-
ulating students i2 and i5. Let us ignore i2 and focus on i4 and i5. (In the proof, we
show that if a manipulating student of βk is unmatched under GSk, which is the case
for student i2, then this student remains a manipulating student of GSk.)

We now show that, by replacing β2 with GS2, the manipulating statuses of students
i4 and i5 are changed correspondingly. Note that for β2(P, q), student i5 is matched
to school s3, which was assigned to student i3 under GS2(P, q). Student i3 is matched
to school s2, which was assigned to student i1 under GS2(P, q). Finally, student i1 is
matched to school s1, which was assigned to student i4 under GS2(P, q) and student
i4 is unmatched. We draw a sequence of these links as follows:

i5
s3−→ i3

s2−→ i1
s1−→ i4,

where every student is pointing at the student who was assigned under GS2(P, q) to
the school that she is assigned to under β2(P, q). The last student, i4, is not assigned
under β2(P, q) to any school that was assigned under GS2(P, q) to any student and
thus does not point at any student. Student i4 is a manipulating student of β2 at
(P, q). Thus, the number of manipulating students of GS2 is not greater than the
number of manipulating students of β2.

The steps of the proof involve showing the following points:

• Each manipulating student of GS2 at (P, q) who is unmatched under β2(P, q)

is also a manipulating student of β2 at (P, q).
• Starting from each manipulating student of GS2 at (P, q) who is matched
under β2(P, q), the pointing sequence ends at a manipulating student of β2 at
(P, q).
• Two sequences lead to different manipulating students of β2 at (P, q).

More generally, the function in question is constructed as follows (see Figure 1). The
set of manipulating students of GSk are distinguished into those who are matched
under βk, M , and those who are unmatched under βk, M∅. Our function returns
each student in M∅ to herself via an identity relation Id and each student in M
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M∅ - unmatched
at βk(P, q)

M - matched at
βk(P, q)

M∅

h(M)

Other manipulating
students

of βk at (P, q)

Id

h

Manipulating students
of GSk at (P, q)

Manipulating students
of βk at (P, q)

Figure 1. Relation between manipulating students of GSk and βk.

(initiator of a sequence) to the student closing this sequence via a relation h. The set
of manipulating students of βk includes M∅ ∪ h(M) and possibly others.

3.2. Chicago, Ghana, and England: extending constraints. The second change
involved an extension of the ranking constraint under the GS mechanism. These
changes were observed in Chicago in 2010, in Ghana in 2007 and 2008, and in two
cities in England (see Table 1 and Pathak and Sönmez, 2013).

The effect of these changes is also nuanced because some students who could not
manipulate GS with a tighter constraint can manipulate GS with an extended con-
straint. To see this, consider the following example.

Example 3. Consider the problem (P, q) in Example 2, and let GS1 be replaced by
GS2. The outcome of GS1 at the problem (P, q) is as follows:

GS1(P, q) =

(
i1 i2 i3 i4 i5

s1 ∅ s2 ∅ s3

)
.

Student i5 received her most preferred school, s3, and thus cannot manipulate GS1

at (P, q). But, as we saw in Example 2, student i5 can manipulate GS2 at (P, q).

By extending the constraint in the constrained student-proposing GS mechanism,
the set of manipulating students does not change in an inclusion order. However, as
the following theorem shows, the size of this set decreases.
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Theorem 4. Let k > ` ≥ 1. For any problem, the constrained GS mechanism GSk

has fewer or an equal number of manipulating students compared to the constrained
GS mechanism GS`.

The main and novel part of the proof involved the construction of intermediary
mechanisms, in which the constraint changes for only one student. For each subset
N of students, we construct a mechanism GSN that assigns to each problem (P, q)

the following matching: GS(P `
N , P

k
I\N , PS, q). That is, the constraint ` applies to

students in N while the constraint k applies to the remaining students. Thus, GS∅ =

GSk and GSI = GS`. For each problem (P, q), we count and compare the number
of manipulating students of GS∅, GS{i}, . . . , GSI at (P, q). The following example
illustrates the comparison.

Example 4. Consider the same problem as in Example 2. At problem (P, q), we
compare the number of manipulating students of GS∅ = GS2 – where all students
have an extended constraint k = 2, and GS{i1} = GS(P 1

i1
, P 2
−i1) – where student i1

has a smaller constraint ` = 1.
Student i1 is unmatched at the matching

GS{i1}(P, q) =

(
i1 i2 i3 i4 i5

∅ s2 s3 s1 ∅

)
.

Student i2 is matched at GS{i1}(P, q) and thus is not a manipulating student of GS{i1}

at (P, q). However, she was a manipulating student of GS2 at (P, q).
Student i1 is a manipulating student of GS{i1} at (P, q). Indeed, if she misrepresents

her preferences by ranking school s2 first, she will be matched to it:

GS{i1}(P s2
i1
, P−i1 , q) =

(
i1 i2 i3 i4 i5

s2 ∅ s3 s1 ∅

)
.

Student i5 also remains unmatched under GS{i1}(P, q) and is a manipulating student
of GS{i1} at (P, q). To sum up, there are two manipulating students, i2 and i5, of GS2

at (P, q). One student, i2, is no longer a manipulating student of GS{i1} at (P, q).
However, one new manipulating student, i1, of GS{i1} at (P, q) appears. Thus, when
we replace GS2 by GS{i1} the number of manipulating students in the example did
not decrease.

To prove the theorem, we first prove that for each proper subset N of students
and each i /∈ N , there are weakly more manipulating students of GSN∪{i} at (P, q)

compared to GSN . The most difficult steps involve showing that:
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• there is at most one student j, who is a manipulating student of GSN at (P, q)

and who is not a manipulating student of GSN∪{i} at (P, q) and, if such student
j exists, then
• student i is a manipulating student of GSN∪{i} but not a manipulating student
of GSN at (P, q), thereby “compensating” for the removal of the manipulating
student j.

We conclude that there are weakly more manipulating students of GS{i1} at (P, q)

compared to GS∅. Similarly, there are weakly more manipulating students of GS{i1,i2}

at (P, q) compared to GS{i1}. By a repeated application of this argument, there are
weakly more manipulating students of GSI = GS` at (P, q) compared to GS∅ = GSk.

From these results, we get an immediate corollary that the constrained Boston
mechanism has weakly more manipulating students compared to the constrained GS
mechanism with a longer list. These changes occurred in one step in Kent (2007)
and in Denver (2012), and in two steps in Chicago (2009 and 2010) and in Newcastle
(2005 and 2010) (see Table 1 and Pathak and Sönmez, 2013).

Corollary 2. Let k > ` ≥ 1. For any problem, the constrained GS mechanism GSk

has fewer or an equal number of manipulating students compared to the constrained
Boston mechanism β`.

Overall, our results — Theorem 3, Theorem 4, Corollary 2 — provide novel, stronger
support for the reforms mentioned above. The state-of-the-art notion for comparing
manipulable matching mechanisms, due to Pathak and Sönmez (2013), is the set
inclusion of non-manipulable profiles. For each reform, they show that at each profile
where the old mechanism has zero manipulating students, the new mechanism also
has zero manipulating students. In other words, for the problems where the new
mechanism is non-manipulable, the old mechanism has weakly more manipulating
students. Thus, this notion coincides with our notion, but only in this restricted
domain where the old mechanism has zero manipulating students, and our results
imply the results in Pathak and Sönmez (2013). We conclude this section with a
simulation that helps estimate the size of this gain.

3.3. Numerical simulations. We consider the school choice setting analogous to
Ergin and Erdil (2008). Let there be N = 100 students and K = 10 schools each
with capacity q = 10, uniformly randomly distributed on a 2-dimensional unit square.
The priorities of schools over students are based on euclidean distance: the closer a
student is located to a school – the higher is her priority at this school.
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Figure 2. Comparing mechanisms by the number of manipulating students.

Notes: The diagram shows the empirical cumulative distributions of the share of manipulating
students. The horizontal axis represents the share of manipulating students out of N = 100

students; one step of each curve is equivalent to an additional manipulating student. The vertical
axis represents the share of profiles that have a particular number of manipulating students.

The utility of student i from being matched to school s is determined by three
components: the euclidean distance from i to s, d(i, s); the objective quality of s
which is normally distributed and is common to all students, Zs ∼ N(0, 1), and the
intrinsic preference of i which is also normally distributed, Zis ∼ N(0, 1):

Uis = −βd(i, s) + (1− β)(αZs + (1− α)Zis),

where weights α, β ∈ [0, 1].
In the simulations, we consider the constrained Boston mechanisms β3, β4, the

unconstrained Boston mechanism β = β10, and the constrained GS mechanisms



23

GS3, GS4, GS6, and GS8. For each mechanism, we simulate 1000 preference pro-
files for α = 0.6, β = 0.7, and for each profile count the number of manipulating
students.

The resulting empirical distribution of the number of manipulating agents is pre-
sented in Figure 2. We see that moving from β4 to GS4 and further to GS6 substan-
tially decreases the number of manipulating agents. For example, the median number
— that is the number such that half of the profiles have fewer manipulating students
and half have more — decreases from 27 manipulating students for β4 to 18 students
for GS4 and further to 10 students for GS6. We also see that the manipulability
criterion of Pathak and Sönmez (2013) applies to a small set of profiles, in which the
number of manipulating students is zero: 8% of profiles for GS8, below 1% for GS6,
and is approximately zero for the other mechanisms.

4. Conclusion

Manipulations in real matching markets are undesirable yet often inevitable due
to certain restrictions. This calls for designs that keep manipulations low enough for
practical use. We addressed this issue by counting the number of manipulating agents
and recommending one mechanism over another in several important domains.

Our analysis demonstrates that the student-proposing GS mechanism has the small-
est aggregate number of manipulating agents – students and schools – among all stable
matching mechanisms. This result is surprisingly robust to changes in few key as-
pects of the problem: whether schools can manipulate rankings or only capacities, and
whether students can rank all schools or only a limited number of schools. Overall,
our results rationalize and strongly support several recent design choices.

There are many aspects of real markets that would require independent treatment.
First, there might be other manipulations, such as prearrangement — when the school
reduces its seats by one unit and commits to admit a student provided that she does
not participate in the market. A mechanism is vulnerable to prearrangements when
there is a school and a student preferring what they receive under prearrangement
than what they receive without it. Sönmez (1999) shows that any stable matching
mechanism is vulnerable to prearrangements.

Second, there are multiple extensions of the standard many-to-one matching model.
For example, in the medical labor market, some doctors seek dual jobs as a couple.
When couples are present, a stable matching may not exist (Roth, 1984). Roth
and Peranson (1999) and Kojima et al. (2013) define algorithms that find a stable
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matching when it does exist. However, these mechanisms are manipulable by agents
on both sides.

Thus, one avenue for future work is to search for a mechanism with a lower number
of manipulating agents, including prearrangements and when there are couples.

Finally, it would interesting to develop a criterion that measures the amount of
manipulations that involves equilibrium analysis. In this paper, we count agents with
an incentive to manipulate when others report their true preferences. However, these
are not necessarily equilibrium strategies. The standard game-theoretic approach
would involve counting the number of agents misreporting their preferences at a Nash
equilibrium. The immediate difficulty with this approach is that, in general, there
might be multiple equilibria, and thus no clear conclusions.
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Appendix

We need the following result that is very much used in the paper. The stable set
has an interesting property called the rural hospital theorem. It says that (i) each
agent is matched with the same number of partners across all stable matchings and
(ii) every agent which is not matched or has unfilled seats is matched to the same set
of partners across all stable matchings.

Lemma 1 (Rural hospital theorem, Roth, 1986). Suppose that schools have responsive
preferences. Let (P, q) be a problem and let ν and µ be two stable matchings.

(i) Each agent is matched with the same number of partners under ν and µ.
(ii) Suppose that for some school s, |µ−1(s)|< qs. Then µ−1(s) = ν−1(s).

The proofs of the following Theorem 1 and Proposition 1 coincide to a large extent
and are presented as one proof.
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Theorem 1: Suppose that both students and schools are strategic agents and can
manipulate via preferences and capacities. For any problem, the student-proposing
GS mechanism has fewer or an equal number of manipulating agents compared to any
other stable matching mechanism.

Proposition 1: Suppose that students and schools are strategic agents but schools
can only manipulate their capacities. For any problem, the student-proposing GS
mechanism has fewer or an equal number of manipulating agents compared to any
other stable matching mechanism.

Proof of Theorem 1 and Proposition 1. Let ϕ be a stable matching mechanism and
(P, q) be a problem. Let M be the set of manipulating agents of GS. Since GS is not
manipulable by students (Dubins and Freedman, 1981; Roth, 1982), we have M ⊂ S.
Let M1 ⊂M be the subset of schools that are also manipulating agents of ϕ at (P, q)

and let M2 ⊂ M be the subset of schools that are not manipulating agents of ϕ at
(P, q). ThenM = M1∪M2. The idea is to show that for each school s ∈M2, there is
a subset I(s) of manipulating students of ϕ at (P, q) such that there is no intersection
between two different subsets. We divide the rest in three steps.

Step 1: each school s ∈ M2 is matched to a different set of students: ϕs(P, q) 6=
GSs(P, q).

The proof of this step is different depending on whether we consider Theorem 1 or
Proposition 1. We consider each case separately.

Case 1: proof of Step 1 for Theorem 1. Let s ∈M2. We prove it by contradiction.
Suppose that GSs(P, q) = ϕs(P, q). Because s is a manipulating school of GS at
(P, q), there is (P ′s, q

′
s) such that q′s ≤ qs and

(1) GSs(P
′
s, P−s, q

′
s, q−s) Ps GSs(P, q).

Kojima and Pathak (2009, Lemma 1) show that the following manipulation strategy,
called dropping strategy, is exhaustive for any stable matching mechanism; in the
sense that it can be used to improve upon, according to the true preferences, the out-
come of any manipulation: a dropping strategy is any strategy that declares a subset
of acceptable students as not acceptable but keeps the remaining acceptable students
ranked as in the original strategy. In particular, they constructed a dropping strategy
P d
s such that the acceptable students is the set of students in GSs(P ′s, P−s, q′s, q−s) who

are acceptable under Ps. By Kojima and Pathak (2009, Lemma 1), we have

(2) GSs(P
d
s , P−s, q) Rs GSs(P

′
s, P−s, q

′
s, q−s).
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Lemma 1 (i) implies that school s is matched with the same number of students under
both GSs(P d

s , P−s, q) and ϕ(P d
s , P−s, q). Since |GSs(P ′s, P−s, q′s, q−s)|≤ q′s ≤ qs, there

are less than qs or an equal number of acceptable students under P d
s . Therefore, since

ϕ and GS are individually rational, they match s to the same set of students,

(3) ϕs(P
d
s , P−s, q) = GSs(P

d
s , P−s, q).

By equation 2 and 3 , we have ϕ(P d
s , P−s, q) Rs GSs(P

′
s, P−s, q

′
s, q−s). Now, be-

cause the preference relation Ps is transitive, this equation and equation 1 imply that
ϕs(P

d
s , P−s, q) Ps GSs(P, q). Finally, because GSs(P, q) = ϕs(P, q) by assumption, we

have
ϕs(P

d
s , P−s, q) Ps ϕs(P, q).

This equation means that school s is a manipulating agent of ϕ at (P, q) and thus
contradicting our assumption that school s is not a manipulating agent of ϕ at (P, q).
Therefore GSs(P, q) 6= ϕs(P, q).

Case 2: proof of Step 1 for Proposition 1. Let s ∈ M2. We also prove it by
contradiction. Suppose that ϕs(P, q) = GSs(P, q). Because school s is a manipulating
agent of GS at (P, q), then there is q′s < qs such that

(4) GSs(P, q
′
s, q−s) Ps GSs(P, q).

Because GS(P, q′s, q−s) is the school-pessimal stable matching at (P, q′s, q−s), we have

(5) ϕs(P, q
′
s, q−s) Rs GSs(P, q

′
s, q−s).

Since Rs is transitive, equation 4 and equation 5, and the fact that ϕs(P, q) =

GSs(P, q) imply that
ϕs(P, q

′
s, q−s) Ps ϕs(P, q).

This equation contradicts the assumption that school s is not a manipulating agent
(via capacities) of ϕ at (P, q). Therefore, ϕs(P, q) 6= GSs(P, q).

We state this result as a lemma and use it in the proof of Theorem 2 below.

Lemma 2. Let (P, q) be a problem. Suppose that schools can manipulate via prefer-
ences or capacities or only via capacities. Let ϕ be a stable mechanism. Let M2 be
the subset of schools which can manipulate GS but not ϕ at (P, q). Then for each
school s ∈M2, ϕs(P, q) 6= GS(P, q).

Step 2: For each school s ∈M2, there is a non-empty subset I(s) of manipulating
students of ϕ at (P, q) such that no two such subsets have a common element.
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Now, since GSs(P, q) 6= ϕs(P, q), the contraposition of Lemma 1 (ii) implies that
|GSs(P, q)|= qs. In addition, by Lemma 1, each school is matched with the same
number of students under GS(P, q) and ϕ(P, q). Let I(s) = ϕs(P, q) \ GSs(P, q).
Then, there is at least one student i ∈ I(s). We show that i is a manipulating
student of ϕ at (P, q).

Because GS(P, q) is the student-optimal stable matching at (P, q), we have

(6) GSi(P, q) Pi ϕi(P, q) = s.

Since ϕ is individually rational, GSi(P, q) = s′ for some acceptable school s′ under Pi.
Let P s′

i be a preference relation where i has ranked only s′ as an acceptable school.
As shown by Roth (1982), GSi(P s′

i , P−i, q) = s′. Since student i is matched at a
stable matching, Lemma 1 implies that she is also matched at any stable matching.
Since ϕ is individually rational and s′ is the only acceptable school under P s′

i , we
have ϕi(P s′

i , P−i, q) = s′. This, together with s′ Pi s and equation 6 imply that

s′ = ϕi(P
s′

i , P−i, q) Pi ϕi(P, q) = s.

This means that student i is a manipulating agent of ϕ at (P, q).
It is left to show that no two subsets intersect. Let s, s′ ∈ M2 be two different

schools. Let i ∈ I(s) and j ∈ I(s′). By definition of I(s) and I(s′), i ∈ ϕs(P, q) and
j ∈ ϕs′(P, q). Since ϕ(P, q) is a matching and s 6= s′, we have j 6= i.

Step 3: The mechanism ϕ has weakly more manipulating agents than GS at (P, q).
By the previous step, for each s, s′ ∈ M2, we have |I(s)|≥ 1 and I(s) ∩ I(s′) = ∅.

Thus, there are at least |M1|+
∑

s′′∈M2|I(s′′)|≥ |M | manipulating agents of ϕ at
(P, q). That is, ϕ has weakly more manipulating agents than GS at (P, q). �

Proposition 2: Let k ≥ 1 and suppose that there are at least as many students as
schools, |I| ≥ |S|, and k < |S|. Let ϕ be a weakly non-wasteful and individually
rational mechanism. Then, the constrained mechanism ϕk is manipulable.

Proof. Let ϕ be a weakly non-wasteful and individually rational mechanism. Let
(P, q) be a problem such that each school s ∈ S has one seat, qs = 1, and let students
have a common preference relation such that each school is acceptable: for each
i, j ∈ I and each s ∈ S, Pi = Pj and s Pi ∅.

First, note that ϕk(P, q) does not assign the schools not listed in P k since this would
violate individual rationality of ϕ(P k

I , PS, q) under (P k, PS). Since the constraint is
binding, k < |S| ≤ |I|, and only k schools have been ranked acceptable under P k,
then at least one student i is unmatched and at least one school s has an empty seat.



31

Second, consider a misreport P s
i where i only lists this school s as acceptable.

Again, since s is not acceptable to any student other than i at (P s
i , P

k
−i, PS), school s

cannot be assigned to a student other than i under ϕ(P s
i , P

k
−i, PS, q), otherwise this

would violate individual rationality of ϕ(P s
i , P

k
−i, PS, q) at (P s

i , P
k
−i, PS). Similarly,

at ϕk(P s
i , P−i, q) student i cannot be matched to any school other than s as this

would violate individual rationality of ϕ(P s
i , P

k
−i, PS, q) under (P s

i , P
k
−i, PS). Because

ϕ is weakly non-wasteful, ϕki (P s
i , P−i, q) = s, as otherwise s is unmatched and i is

unmatched. Since s is acceptable to i under P , we have ϕki (P s
i , P−i, q) Pi ϕ

k
i (P, q).

Thus, ϕk is manipulable. �

To prove the following results, we first formulate and prove a lemma (Lemma 3).
We first define intermediary mechanisms. Note that under GS` the ranking con-

straint is the same for all students, as well as under GSk. We define intermediate
mechanisms where the constraint is ` for some students and k for the remaining stu-
dents. Let N ⊆ I be a subset of students. We define the mechanism GSN that assigns
to each problem (P, q) the matching

GSN(P, q) = GS(P `
N , P

k
−N , PS, q).

This is the mechanism where the constraint is ` for students in N and the constraint
is k for students in I \N . Then GSk = GS∅ and GS` = GSI .

We now establish that manipulating students are unmatched and any manipulating
strategy can be replicated via top-ranking schools.

Lemma 3. Let (P, q) be a problem, i ∈ I and s ∈ S.
(i) Suppose that student i is a manipulating student of GSN at (P, q). Then, she

is unmatched under GSN(P, q).
(ii) Suppose that GSNi (P, q) = s and let P s

i be a preference relation where i has
ranked only school s acceptable. Then GSNi (P s

i , P−i, q) = s.

Proof. We prove (i) by contradiction. Suppose that there is a student i and a school
s such that GSNi (P, q) = s, and there is a preference relation P ′i such that

GSNi (P ′i , P−i, q) Pi GS
N
i (P, q).

Because GSN is individually rational, there is a school s′ such that GSNi (P ′i , P−i, q) =

s′. Let P̂ = (P `
N , P

k
−N , PS). Then, by definition, GSN(P, q) = GS(P̂ , q). Suppose

that i ∈ N . Then, schools s and s′ are among the top ` acceptable schools under Pi.
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Thus s′ P `
i s and

s′ = GSi(P
′`
i , P̂−i, q) P

`
i GSi(P

`
i , P̂−i, q) = s.

This means that student i can manipulate GS at P̂ , contradicting the fact that GS
is not manipulable.

Suppose that i /∈ N . The proof is the same. Schools s and s′ are among the top k
schools at Pi, thus s′Pis. We have

s′ = GSi(P
′k
i , P̂−i, q) P

k
i GSi(P

k
i , P̂−i, q) = s,

and GS is manipulable at P̂ , which is a contradiction.
To prove (ii), let P̂ = (P `

N , P
k
−N , PS). Then, GSi(P̂ , q) = s. As shown by Roth

(1982), GSi(P̂ , q) = s implies that GSi(P s
i , P̂−i, q) = s. Since k > ` ≥ 1, the

truncation of P s
i at k or ` is nothing but P s

i . Thus, GSNi (P s
i , P−i, q) = s. �

Theorem 2: Let k ≥ 2 and ϕ be a stable matching mechanism. Suppose that students
can only rank up to k schools.
(i) Suppose that schools can manipulate via preferences. Then the constrained student-
proposing GS mechanism GSk has fewer or an equal number of manipulating agents
compared to the constrained stable matching mechanism ϕk.
(ii) Suppose that schools can only manipulate via capacities. Then the constrained
student-proposing GS mechanism GSk has fewer or an equal number of manipulating
agents compared to the constrained stable matching mechanism ϕk.

Proof. The proof is divided into three steps and is similar to the proof of Theorem 1
and Proposition 1. Let M1 denote the set of manipulating students of GSk and M2

the set of manipulating schools of GSk at (P, q).

Step 1 : Every student inM1 is a manipulating student of ϕk at (P, q). Let i ∈M1.
By Lemma 3, student i is unmatched under GSk(P, q) and there is an acceptable
school s under Pi such that GSki (P s

i , P−i, q) = s where school s is the only acceptable
school under P s

i . Recall that GS(P k
I , PS, q) is stable at (P k

I , PS, q). By Lemma 1,
student i is also unmatched under ϕki (P, q) = ϕ(P k

I , PS, q). That is, ϕki (P, q) = ∅.
Since student i is matched under GSki (P s

i , P−i, q) = s, then by Lemma 1 she is also
matched under ϕki (P s

i , P−i, q). Since ϕk is individually rational and s is the only
acceptable school under P s

i , we have ϕki (P s
i , P−i, q) = s. Since school s is acceptable

under Pi, we have
s = ϕki (P

s
i , P−i, q) Pi ϕ

k
i (P, q) = ∅.
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Therefore, i is a manipulating student of ϕ at (P, q).

To formulate the second step of the proof we need more notation. Divide the set of
manipulating schools M2 into M̄2 – the subset of schools that are also manipulating
schools of ϕk at (P, q) and M̂2 – the subset of schools that are not manipulating
schools of ϕk at (P, q). Then M2 = M̄2 ∪ M̂2 and M̄2 ∩ M̂2 = ∅.

Step 2 : For every school s ∈ M̂2, there is a subset I(s) of manipulating students
of ϕk at (P, q) such that no student in I(s) is in M1.

Consider the problem (P k
I , PS, q). By Lemma 2, for each school s ∈ M̂2, we have

ϕs(P
k
I , PS, q) 6= GSs(P

k
I , PS, q). By Lemma 1, |GSs(P k

I , PS, q)|= qs. Let I(s) =

ϕs(P
k
I , PS, q) \ GSs(P k

I , PS, q). Then I(s) 6= ∅. Let i ∈ I(s). We claim that
i is a manipulating student of ϕk at (P, q). Because student i is matched under
ϕ(P k

I , PS, q), then Lemma 1 implies that she is also matched at any stable matching.
Thus GSi(P k

I , PS, q) = s′, for some school s′. Because GS(P k
I , PS, q) is the student

optimal stable matching under (P k, PS, q), we have

(7) s′ = GSi(P
k
I , PS, q) P

k
i ϕi(P

k
I , PS, q) = s.

Therefore s′ Pi s. Let P s′
i be a preference relation where school s′ is the only accept-

able school for student i. As shown by Roth (1982), GSi(P s′
i , P

k
I\{i}, PS, q) = s′. Since

student i is matched at a stable matching, Lemma 1 implies that she is also matched at
any stable matching, and in particular under ϕ(P s′

i , P
k
I\{i}, PS, q). Since ϕ is individu-

ally rational and s′ is the only acceptable school under P s′
i , then ϕi(P s′

i , P
k
I\{i}, PS, q) =

s′. Note now that because k ≥ 1, ϕi(P s′
i , P

k
I\{i}, PS, q) = ϕki (P

s′
i , P−i, q). This equation

and equation 7 imply that

(8) s′ = ϕki (P
s′

i , P−i, q) Pi ϕ
k
i (P, q) = s.

This means that student i is a manipulating student of ϕk at (P, q).
Finally, we show that no student in I(s) is in M1, that is, no student in I(s) is a

manipulating student of GSk at (P, q). Let i ∈ I(s). Because student i is matched
under ϕ(P k

I , PS, q), at a stable matching, Lemma 1 implies that she is also matched
under GS(P k

I , PS, q). By Lemma 3, student i is not a manipulating student of GSk

at (P, q) and thus i /∈M1.

Step 3: ϕk has weakly more manipulating agents than GSk at (P, q).
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First, for each s, s′ ∈ M̂2 such that s 6= s′, we show I(s)∩ I(s′) = ∅. Let i ∈ I(s) =

ϕs(P
k
I , PS, q) \ GSs(P k

I , PS, q) and j ∈ I(s′) = ϕs′(P
k
I , PS, q) \ GSs′(P k

I , PS, q). Since
ϕ(P k

I , PS, q) is a matching and s 6= s′, then we have i 6= j. That is, I(s) ∩ I(s′) = ∅.
Second, because for each school s ∈ M̂2, |I(s)|≥ 1, we have

|M1|+|M̄2|+
∑
s∈M̂2

|I(s)|≥ |M1|+|M̄2|+|M̂2|≥ |M1|+|M2|.

That is, ϕk has weakly more manipulating agents than GSk at (P, q). �

Theorem 3: Let k > 1. For any problem, the constrained GS mechanism GSk

has fewer or an equal number of manipulating students compared to the constrained
Boston mechanism βk.

Proof. We divide the proof into two parts. In the first part, we show that every
manipulating student of the constrained GS mechanism who is unmatched under
the constrained Boston mechanism is also a manipulating student of the constrained
Boston mechanism. In the second part, we show that every manipulating student
of the constrained GS mechanism who is matched under the constrained Boston
mechanism induces at least one new manipulating student under the constrained
Boston mechanism.

Part 1: For every problem (P, q), every manipulating student of GSk at (P, q) who
is unmatched under βk(P, q) is a manipulating student of βk at (P, q).

Let i ∈ I be a manipulating student of GSk at (P, q) and suppose that βki (P, q) = ∅.
By Lemma 3, there is a school s such that,

GSki (P s
i , P−i, q) = s Pi GS

k
i (P, q) = ∅,

where s is the only acceptable school under P s
i .

First, student i did not rank school s first under Pi. Otherwise, because she is
matched to school s under GSk(P s

i , P−i, q), then this matching would be stable at
(P k

I , PS, q). By Lemma 1, the same set of students are matched at all stable matchings.
Therefore, student i is also matched under GSki (P, q). This result contradicts the
assumption that GSki (P, q) = ∅.

Second, we claim that there are less than qs students who have ranked s first
under P and have higher priority than i under �s. Otherwise, GSki (P s

i , P−i, q) = s

would imply that at least one of these students is not matched to school s under
GSk(P s

i , P−i, q). This contradicts the stability of GSk(P s
i , P−i, q) under (P s

i , P
k
−i, q)
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because student i is matched to school s while a student with a higher priority under
�s prefers this school to her assignment.

Therefore, by ranking s first, i is matched to it under βki (P s
i , P−i, q) = s, and

βki (P s
i , P−i, q) = s Pi β

k
i (P, q) = ∅.

That is, student i is a manipulating student of βk at (P, q).

Part 2 : Manipulating students of GSk at (P, q) who are matched under βk(P, q)
can be associated in a one-to-one relation with a subset of manipulating students of
βk at (P, q) who are not manipulating students of GSk at (P, q).

LetM denote the set of the manipulating students ofGSk at (P, q) who are matched
under βk(P, q). For the rest of the proof, the strategy is to pair each student in M
with a manipulating student of βk at (P, q) who is not a manipulating student of GSk

at (P, q). Let
µ = GSk(P, q) and ν = βk(P, q).

We label the seats of each school s into qs different copies s1, ..., sqs . Let

Ŝ = {s11, ..., s
q1
1 , s

1
2, ..., s

q2
2 , ..., s

1
m, ..., s

qm
m }

denote the collection of these copies with a generic element x. We call them seats.
We assume that each student who is matched to the same school under both µ and
ν is matched to the same copy of this school. That is, for each student i and each
school s such that µ(i) = ν(i) = s, then µ(i) = ν(i) = s`.

To do our pairing, define a directed graph with vertices I as follows. For each
students i, j ∈ I, define an edge from i to j if there is a seat x ∈ Ŝ such that ν(i) = x

and µ(j) = x. We label the edge from i to j as x. The edge i x−→ j means that, under
ν, student i has taken the seat x that was allotted to student j under µ. A chain in
this graph is a sequence of κ > 1 different vertices (i1, ..., iκ) and κ− 1 different edges
(x1, ..., xκ−1) such that

(1) for each ` = 1, ..., κ− 1, i`
x`−→ i`+1 , and

(2) there is no outgoing edge from iκ, that is, there is no vertex i and a seat x
such that iκ

x−→ i.

We call the vertex i1 the tail of the chain and iκ the head of the chain. We establish
five steps to proving the theorem.

Step 1: No loop. Suppose that there is a sequence of κ > 1 different vertices
(i1, . . . , iκ) and κ − 1 different edges (x1, . . . , xκ−1) such that i1 ∈ M and for each
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` ∈ {1, . . . , κ − 1}, i`
x`−→ i`+1. Then, there is no outgoing edge iκ

x−→ j such that
j ∈ {i1, . . . , iκ−1}.

Suppose that there is an outgoing edge iκ
x−→ j from iκ. First, j 6= i1 because

µ(i1) = ∅ and, under ν, iκ could not have taken a seat that was allotted to student
i1 under µ. Suppose, to the contrary, that j = i` for some ` ∈ {2, . . . , κ− 1}. Thus,
iκ

x−→ i` and i`−1
x`−1−−→ i`. By assumption, i`−1 and iκ are different vertices. Since ν is

a matching, student iκ and i`−1 are allotted (if at all) different seats under ν. Then,
under ν, student i`−1 and student iκ have taken seats which were allotted to student
i` under µ. This conclusion contradicts the fact that µ is a matching and that i` was
allotted only one seat under µ.

Step 2: Every vertex in M is the tail of a chain.
Let i ∈ M . First, there is an outgoing edge from i. To see this, recall that, by

assumption, student i is matched under ν. That is, ν(i) = x for some seat x ∈ Ŝ

while µ(i) = ∅. Suppose that x is a seat at school s. Since the GS mechanism is
individually rational, s is one of the top k acceptable schools under Pi. Thus, we have
s P k

i µ(i) = ∅. Since µ = GS(P k
I , PS, q) is stable at (P k

I , PS, q), we have |µ−1(s)|= qs.
Therefore, there is a student j such that µ(j) = x and thus i1

x−→ j. Next, there is
κ ≥ 1 and a sequence (i1, . . . , iκ+1) of different vertices and different edges (x1, . . . , xκ)

such that i1 = i and for each ` ∈ {1, . . . , κ}, i`
x`−→ i`+1. The sequence (i, j) and x

is one of these sequences. Since there is a finite number of students, there is a finite
number of these sequences. By step 1, the one with the greatest number of vertices
is a chain.

Step 3 : The head of each chain with a tail in M is a manipulating student of βk

at (P, q).
Let j be the head of a chain with a tail in M . There is an edge i x−→ j. Then,

µ(j) = x. Since there is no outgoing edge from j, either ν(j) = ∅ or ν(j) = x′ such
that there is no student j′ with µ(j′) = x′. We claim that µ(j) Pj ν(j). Otherwise,
ν(j) Pj µ(j) = x and thus ν(j) P k

j µ(j) = x. Because µ is individually rational under
P k, we have ν(j) = x′. Suppose that x′ is a copy of school s. Then s P k

j µ(j). Since
µ is stable at (P k

I , PS, q), we have |µ−1(s)|= qs. Therefore, there is a student j′ such
that µ(j′) = x′ and j x′−→ j′. This contradicts the fact that there is no outgoing edge
from j. Therefore s = µ(j)Pjν(j).

Next, we claim that there are less than qs students who have ranked school s first
and have higher priority than student i under P . Otherwise, the fact that µ(j) = s

would imply that one of such students is not matched to school s under µ. This
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conclusion contradicts the fact that µ is stable at (P k
I , PS, q) because student i is

matched to school s and a student with higher than i under �s prefers s to her
assignment.

Finally, we claim that student j did not rank school s first under Pj. Otherwise,
she would be matched to school s under ν = βk(P, q) because there are less than
qs students who have ranked it first under P and have higher priority than j under
�s. Let P s

j be a preference relation where student j has ranked only school s as
acceptable. Then, βj(P s

j , P
k
−j, q) = s. Since s = µ(j) Pj ν(j), we have

s = βkj (P s
j , P−j, q) Pj β

k
j (P, q) = ν(j).

This means that j is a manipulating student of βk at (P, q).

Step 4 : The head of each chain with a tail in M is not a manipulating student of
GSk at (P, q).

Let i be the head of a chain with a tail in M . Then there is an edge j x−→ i. Thus
µ(i) = x. That is, student i is matched under GSk(P, q). By Lemma 3, student i is
not a manipulating student of GSk at (P, q).

Step 5: No two chains with different tails in M have the same head.
This follows from the fact that no two chains with tails in M have a vertex in

common. Otherwise, since such chains have different tails, there are different edges
j

x−→ i and j′
x′−→ i where i is one of the common vertices. Since ν is a matching,

student j and j′ are allotted different seats under ν. This means that both student
j and j′ have taken seats x and x′ which were allotted to student i under µ. This
conclusion contradicts the fact that µ is a matching and student i was allotted one
seat under µ.

We are ready to complete the proof of the theorem (see Figure 1 for an illustration).
Let (P, q) be a problem. Let M∅ denote the set of manipulating students of GSk

at (P, q) who are unmatched under βk(P, q). By part 1, every student in M∅ is a
manipulating student of βk at (P, q). The set M ∪M∅ is the set of all manipulating
students of GSk at (P, q). Let h(M) denote the collection of students such that each
of them is the head of a chain with a tail in M . By step 3, each student in h(M) is a
manipulating student of βk at (P, q). By step 4, M∅∩h(M) = ∅. By step 5, there are
as many students in M as there are in h(M). Therefore, each student in M∅ ∪ h(M)

is a manipulating student of βk at (P, q) and |M∅ ∪M |= |M∅ ∪ h(M)|. There are
weakly more manipulating students of βk than GSk at (P, q). �
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Next, we formulate and prove Lemma 4, which is the main part for proving Theorem
4 below. Recall the notation used to formulate Lemma 3 above.

Lemma 4. Let N ( I and i /∈ N . For each problem (P, q), the mechanism GSN∪{i}

has weakly more manipulating students than GSN at (P, q).

Proof. Let P̂ = (P `
N , P

k
−N , PS). Then, GSN(P, q) = GS(P̂ , q) and GSN∪{i}(P, q) =

GS(P `
i , P̂−i, q). We compare the number of manipulating students of GSN at (P, q)

to the number of manipulating students of GSN∪{i} at (P, q). We consider two cases
depending on the matching status of student i.

Case 1: Student i is unmatched under GSN(P, q) or matched under GSN∪{i}(P, q).
For this case, we will show that every manipulating student of GSN at (P, q) is

also a manipulating student of GSN∪{i} at (P, q).
First, suppose that student i is unmatched under µ = GSN(P, q). Note that

because i /∈ N , P̂ = (P k
i , P̂−i) and GS(P k

i , P̂−i, q) is stable at (P k
i , P̂−i, q). Since

student i is unmatched under GS(P k
i , P̂−i, q) and ` < k, GS(P k

i , P̂−i, q) is also stable
at (P `

i , P̂−i, q). By Lemma 1, the same set of students are matched in every stable
matching. Therefore, the same set of students are matched under GS(P k

i , P̂−i, q) and
at GS(P `

i , P̂−i, q).
Second, suppose that student i is matched under GS(P `

i , P̂−i, q). Since k > `,
GS(P `

i , P̂−i, q) is also stable at (P k
i , P̂−i, q). By Lemma 1, the same set of students

are matched under GS(P `
i , P̂−i, q) and GS(P k

i , P̂−i, q). In either case, the same set
of students are matched under GSN(P, q) = GS(P k

i , P̂−i, q) and GSN∪{i}(P, q) =

GS(P `
i , P̂−i, q).

Let j ∈ I be a manipulating student of GSN at (P, q). By Lemma 3, j is unmatched
under GSN(P, q) and there is a school s such that

s = GSNj (P s
j , P−j, q) Pj GS

N
j (P, q) = ∅,

where P s
j is a preference relation where j has ranked only s as an acceptable school.

Because the same set of students are matched under GSN(P, q) and GSN∪{i}(P, q),
student j is also unmatched under GSN∪{i}(P, q). That is,

(9) GS
N∪{i}
j (P, q) = ∅.

First, suppose that j = i. Since ` ≥ 1, the truncation of P s
i after the `’th acceptable

school is nothing but P s
i . Therefore, GSN∪{i}(P s

i , P−i, q) = GSN(P s
i , P−i, q) and we

have
s = GS

N∪{i}
i (P s

i , P−i, q) Pi GS
N∪{i}
i (P, q) = ∅.
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This means that student i is also a manipulating student of GSN∪{i} at (P, q).
Second, suppose that j 6= i. Note that since k > `, student i has extended her

list of acceptable schools under P k
i compared to P `

i . Gale and Sotomayor (1985)
showed that, after such an extension, no student other than i is better off in GS. In
particular,

GSj(P
s
j , P

`
i , P̂−{i,j}, q) R

s
j GSj(P

s
j , P

k
i , P̂−{i,j}, q) = s,

where the equality in the last part follows from the fact that GSNj (P s
j , P−j, q) =

GSj(P
s
j , P

k
i , P̂−{i,j}, q) = s. Since GS is individually rational, we have

GSj(P
s
j , P

`
i , P̂−{i,j}, q) = s = GS

N∪{i}
j (P s

j , P−j, q).

This equation and equation 9 yield the following relation:

s = GS
N∪{i}
j (P s

j , P−j, q) Pj GS
N∪{i}
j (P, q) = ∅.

This means that student j is a manipulating student of GSN∪{i} at (P, q).
As a conclusion of Case 1, for each problem (P, q), each manipulating student of

GSN at (P, q) is also a manipulating student of GSN∪{i} at (P, q). Therefore, GSN∪{i}

has weakly more manipulating students than GSN at (P, q).

Case 2: Student i is matched underGSN(P, q) and unmatched underGSN∪{i}(P, q).
Let µ = GS(P̂ , q) and ν = GS(P `

i , P̂−i, q). Let us summarize our proof strategy in
the following diagram. We divide the set of students into matched and unmatched
at µ. The manipulating students of GSN at (P, q) are unmatched under GSN(P, q).
We would like to construct the set of manipulating students of GSN∪{i} at (P, q) from
the set of manipulating students of GSN at (P, q).

First, we will show that student i joined the set of manipulating students of GSN∪{i}

at (P, q). Second, we will show that all manipulating students of GSN at (P, q), but
at most one, remain manipulating students of GSN∪{i} at (P, q).

Step 1: Student i is a manipulating student of GSN∪{i} at (P, q) but not a manip-
ulating student of GSN at (P, q).

Because student i is matched under µ = GSN(P, q), by Lemma 3, she is not a
manipulating student of GSN at (P, q). Let s = µ(i) and let P s

i be a preference
relation where she has ranked only school s as an acceptable school. As shown by
Roth (1985),

GSi(P̂ , q) = s ⇒ GSi(P
s
i , P̂−i, q) = s.
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Manipulating
students

Unmatched students Matched students

student i∅

≤ 1

Figure 3. Matched, unmatched and manipulating students at (P, q) be-
tween GSN and GSN∪{i}.

Notes: The diagram shows the flow of students across matched, unmatched and manipulating
students when moving from mechanism GSN to GSN∪{i} at (P, q). The green arrows show
possible flows and the red arrow shows an impossible flow. (i) At most one student can leave the
set of manipulating students of GSN at (P, q); (ii) student i, who is not a manipulating student of
GSN at (P, q) became a manipulating student of GSN∪{i} at (P, q), and no student can leave the
set of manipulating students of GSN at (P, q) and remain unmatched under µ. While there can be
new manipulating students of GSN∪{i} that were unmatched under GSN (P, q).

Since ` ≥ 1, the truncation of P s
i after the `’th acceptable school is nothing but P s

i .
Therefore,

GSNi (P s
i , P−i, q) = s ⇒ GS

N∪{i}
i (P s

i , P−i, q) = s.

Since GSN∪{i}i (P, q) = ∅ and school s is an acceptable school under Pi, we have

GS
N∪{i}
i (P s

i , P−i, q) = s Pi GS
N∪{i}
i (P, q) = ∅.

This means that student i is a manipulating student of GSN∪{i} at (P, q).

Step 2: Every manipulating student of GSN at (P, q) who is unmatched under ν
is a manipulating student of GSN∪{i} at (P, q).

Let j be a manipulating student ofGSN at (P, q) and suppose that she is unmatched
under ν = GSN∪{i}(P, q). Since she is a manipulating student of GSN at (P, q), by
Lemma 3, we have GSNj (P, q) = ∅ and there is a school s such that s Pi GSNj (P, q)

and GSNj (P s
j , P−j, q) = s. Student i has extended her list of acceptable schools under

P k
i compared to P `

i . As shown by Gale and Sotomayor (1985), no other student is
better off under GS after such an extension. In particular, we have
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GSj(P
s
j , P

`
i , P̂−{i,j}, q) R

s
j GSj(P

s
j , P̂−j, q) = s.

Since GS is individually rational, GSj(P s
j , P

`
i , P̂−{i,j}, q) = s. Let x be a natural

number such that x = ` if j ∈ N and x = k if j ∈ I \N . Since x ≥ 1, the truncation
of P s

j after the x’th choice is nothing but P s
j . Therefore,

GS
N∪{i}
j (P s

j , P−j, q) = s.

Since by assumption GSN∪{i}j (P, q) = ∅, we have

s = GS
N∪{i}
j (P s

j , P−j, q) Pj GS
N∪{i}
j (P, q) = ∅.

This means that student j is a manipulating student of GSN∪{i} at (P, q).

Step 3 : Every student but i who is matched under GSN(P, q) is also matched under
GSN∪{i}(P, q).

Note that student i has extended her list of acceptable schools under P k
i compared

to P `
i . As shown by Gale and Sotomayor (1985), no other student is better off in GS

after such an extension. Thus,

(10) for each student j 6= i, ν(j) = GSj(P
`
i , P̂−i, q) R̂j GSj(P

k
i , P̂−i, q) = µ(j).

Let j 6= i be a student other than i and suppose that µ(j) = s for some school s.
Since µ is individually rational under P̂ , then ν(j) 6= ∅.

Step 4: There is at most one student who is a manipulating student of GSN at
(P, q) but not a manipulating student of GSN∪{i} at (P, q).

By step 2, any manipulating student of GSN at (P, q) who is not a manipulating
of GSN∪{i} at (P, q) is matched under GSN∪{i}(P, q). We prove, more generally, that
there is at most one student who is unmatched under µ = GSN(P, q) but matched
under ν = GSN∪{i}(P, q). To do that, we compare the number of students who are
matched to each school under µ and ν.

Let s be a school. Suppose that it does not have an empty seat under µ. Then, we
have |ν−1(s)|≤ |µ−1(s)|= qs.

Suppose now that s has an empty seat under µ. We prove that there is no student
in ν−1(s) \ µ−1(s). Suppose, to the contrary, that there is j ∈ ν−1(s) \ µ−1(s). Then,
because by assumption i is unmatched under ν, we have j 6= i. By equation 10,

s = ν(j) P̂j µ(j).
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Because school s has an empty seat under µ, by assumption, this contradicts the fact
that µ = GS(P̂ , q) is stable at (P̂ , q). Thus, there is no student who is matched to
school s under ν but not under µ. Therefore, |ν−1(s)|≤ |µ−1(s)|.

We conclude that no school is matched to more students under ν than µ. Thus,

(11)
∑
s∈S

|ν−1(s)|≤
∑
s∈S

|µ−1(s)|.

Recall that by step 3, all students but student i, who are matched under µ are also
matched under ν. Then inequality 11 implies that there is at most one student who
is unmatched under µ but matched under ν.

To sum up, among the manipulating students of GSN at (P, q), at most one of
them is not a manipulating student of GSN∪{i} at (P, q). By including student i,
who is a manipulating student of GSN∪{i} at (P, q), but not a manipulating student
of GSN at (P, q), there are weakly more manipulating students of GSN∪{i} at (P, q)

than GSN at (P, q). �

Theorem 4: Let k > ` ≥ 1. For any problem, the constrained GS mechanism GSk

has fewer or an equal number of manipulating students compared to the constrained
GS mechanism GS`.

Proof. Let (P, q) be a problem. For simplicity, let I = {1, . . . , |I|}. Let m(ϕ) denote
the number of manipulating students of ϕ at (P, q). Then,

m(GS∅) ≤ m(GS{1}) ≤ m(GS{1,2}) ≤ . . . ≤ m(GSI),

where each inequality follows from Lemma 4. Note now that GS∅ = GSk and GSI =

GS`. Thus, GS` has weakly more manipulating students than GSk at (P, q). �


