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1 Introduction

While the LTCM and 2007-2009 crises highlighted the interactions between

funding and market liquidity, our understanding of these interactions re-

mains largely limited to competitive settings.1 The reality of financial mar-

kets, however, is often closer to imperfect competition. For instance, LTCM,

which initially motivated the literature, was nicknamed the “central bank of

volatility”, due to its dominant position in derivatives markets. LTCM is

not an isolated case: many financial markets are dominated by a few large

players.2 More generally, there has been a noted increase in market power in

financial markets.3 Hence, the capital devoted to intermediation or arbitrage

in these markets is often concentrated, not dispersed. Yet, financial con-

straints due to regulations, internal risk management, or outside financiers

(e.g. prime brokers, repo market participants) may limit the funding liquid-

ity of large traders, and have probably become tighter after 2007-2009 (see,

e.g. Boyarchenko, Eisenbach, Gupta, Shachar, and Tassel (2018)).

In this paper, I study the effects of VaR-based financial constraints on

imperfectly competitive arbitrageurs.4 I show that these constraints affect

1For models of financially constrained arbitrage in competitive markets, see, among
others, Shleifer and Vishny (1997), Gromb and Vayanos (2002, 2010, 2018), Kondor (2009),
Brunnermeier and Pedersen (2009). Attari and Mello (2006) study numerically how a
monopolistic arbitrageur subject to financial constraints trades, but their setting does not
lend itself to a welfare analysis.

2For instance, five dealer banks represent 90% of the notional amount of derivative
contracts (OCC, 2018). Hedge funds or banks (e.g. Amaranth, the “London whale”, etc.)
often become dominant players.

3 For evidence of market power in financial markets, see e.g. Kryzanowski, Perrakis,
and Zhong (2020) for the CDS market, An and Song (2021) for the MBS market, Wallen
(2020b) for the FX market, Froot (2001) for the catastrophe bond market, Gabaix, Gopikr-
ishnan, Plerou, and Stanley (2006) for the stock market, etc. Loecker, Eckhout, and Unger
(2020) provide general evidence of market power in financial markets. Wallen (2020a)
shows that both shocks to capital and shocks to the concentration of capital matter for
asset prices. Traders with market power account for their price impact, consistent with
the evidence in, e.g., Chan and Lakonishok (1995) and van Kervel and Menkveld (2019).
Given the mixed evidence about the performance of large traders, a large fraction of
their trading must stem from reasons other than superior information, e.g. risk-sharing
(Vayanos, 1999).

4VaR models are pervasive in practice: they are used to calculate capital requirements
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market liquidity and social welfare in different and sometimes opposite ways

when arbitrageurs have market power. When capital is dispersed across

competitive arbitrageurs, binding constraints impair their ability to exploit

profitable trading opportunities; the dry-up in funding liquidity leads to

lower market liquidity, which hurts the investors who are on the other side

of their trades. However, when capital is concentrated into an oligopoly of

arbitrageurs, imposing the same constraints can in some cases improve both

market liquidity and social welfare. Further, close but lesser-used alterna-

tives such as fixed margins (used by some CCPs) or position limits (used

for some derivatives or in the Volcker rule) have essentially the same effects

as VaR constraints in competitive markets, but do not yield liquidity and

Pareto improvements when arbitrageurs have market power. These results

imply that margin setting and capital requirements should depend on the

market structure.

Arbitrageurs with market power may benefit from financial constraints

because they face a commitment problem, as durable goods producers. Since

they understand that closing the arbitrage would wipe out their capital gains,

in any period they reduce but do not eliminate the mispricing. But, as the

mispricing persists, arbitrageurs cannot refrain from trading further, which

erodes their market power ex-ante. However, a binding constraint in the

future limits their ability to retrade, mitigating their commitment problem.

Surprisingly, the investors on the other side of their trades may also ben-

efit, for two reasons. First, the only way for the arbitrageur to make the

constraint binding in the future is to pledge more capital to the arbitrage

early on, which speeds up risk-sharing. Second, the constraint is an imper-

fect commitment device: it does not prevent the arbitrageur entirely from

retrading, as early capital gains generate additional collateral for later trad-

ing rounds. While the benefit for arbitrageurs of restricting future trading

in the Basel framework, set margins on CCPs or exchanges, or in internal models for
capital allocation within banks, by prime brokers, etc. Expected Shortfall generates a
similar type of constraint as VaR in my model.
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via binding constraints is general, the ability to exploit this benefit ex-ante

requires margins to adjust endogenously. This is the case when they are

based on VaR, but not for the alternative constraints I consider.

Model. I introduce imperfect (Cournot) competition among arbitrageurs

in an otherwise standard model of financially constrained arbitrage.5 The

model has two types of investors: hedgers and arbitrageurs, which trade for

two rounds and then consume. There is a risky asset traded in two seg-

mented markets (A and B) and a risk-free asset. In each segmented market,

the risk-averse, competitive hedgers receive endowment shocks correlated

with the asset payoff. For simplicity, these shocks are symmetric: hedgers

in market A are overexposed to the risky asset and would like to hedge by

selling, and vice versa in market B. Market segmentation prevents welfare-

improving trades between the two groups. As a result, the risky asset trades

at a discount in A and at a premium in B.

While hedgers are restricted to trade in their respective market, arbi-

trageurs can trade across markets. As the risky asset gives claims to the

same cash-flows in both markets, prices converge in the final period. Thus,

the spread between prices in markets A and B creates a textbook arbitrage

opportunity for arbitrageurs, who face a relative value trade with a fixed

convergence date. Arbitrageurs, however, must separately collateralize each

leg of the arbitrage. Arbitrageurs’ wealth serves as collateral, for both long

and short positions, and must remain sufficiently large over time to absorb

adverse price movements.6 The stressed VaR for capital requirements in

5Cournot competition produces outcomes consistent with the evidence of markups (e.g.
Wallen (2020b)), non-competitive pricing (e.g. An and Song (2021), Kryzanowski, Per-
rakis, and Zhong (2020)), and order-splitting (e.g. van Kervel and Menkveld (2019))
motivating the paper (footnote 3). Bertrand outcomes are not consistent with this ev-
idence. Demand schedule competition would also in this framework produce outcomes
consistent with the data, but is less tractable than Cournot in the presence of financial
constraints.

6I use wealth and capital as synonyms. To avoid dealing with default in equilibrium,
I assume that the worst change in fundamental is bounded above and below, and that
arbitrageurs must fully collateralize all potential losses. This is akin to a 100% VaR con-
straint. Gromb and Vayanos follow a similar strategy, while Brunnermeier and Pedersen
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Basel 2.5 and the margin requirements for non-centrally cleared derivatives

are examples of VaR constraints recently imposed by regulators.7 The in-

ability to cross-collateralize is also pervasive in practice, either to maintain

secrecy or for institutional reasons.8

Results. Suppose first that arbitrageurs face financial constraints but

are competitive.9 In equilibrium, arbitrageurs eliminate the arbitrage op-

portunity when capital is abundant. When capital is scarce, arbitrageurs hit

their funding constraint, which prevents them from building large enough

positions to eliminate the spread. As time passes, arbitrageurs earn capital

gains, which increase their wealth and relax the financial constraint, so that

the spread decreases. In this competitive setting, imposing financial con-

straints has either no effect on the equilibrium (when arbitrageurs’ capital is

large), or prevents arbitrageurs from intermediating trades between markets,

which reduces hedgers’ welfare.

Imposing financial constraints on arbitrageurs with market power can

have sharply different effects. I show that when capital is intermediate and

the risk to benefit ratio of the trade is sufficiently high, imposing constraints

on arbitrageurs leads to a Pareto improvement. In all other situations, im-

posing constraints has either no effect, because they never bind, or limits the

liquidity provision by arbitrageurs, which reduces the welfare of at least one

type of investors.10

consider an α% VaR, but do not study welfare.
7For the former, see https://www.bis.org/publ/bcbs148.pdf, section 4, p. 11. For the

latter, see https://www.bis.org/bcbs/publ/d475.pdf, paragraph 3.1, p. 12. The exercise
of this paper thus has a positive flavour: given realistic imperfection in competition,
I determine the welfare and price effects of widely-used financial constraints. See also
Brunnermeier and Pedersen (2009, Appendix A) for the mapping of this kind of constraint
to various institutional settings.

8For instance, positions cannot be netted out across CCPs: Benos, Huang, Menkveld,
and Vasios (2021) show that global dealers enter interest-rate swaps with US clients on
CME and hedge their positions by trading on LCH in London, without the possibility to
net these offsetting positions across the CCPs.

9Unless otherwise noted, financial constraints refer to the VaR constraints throughout
the paper.

10In the model, the numerator of the risk benefit ratio is the worst case scenario for the
fundamental. In practice, it would correspond to a quantile of the return distribution, e.g.
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The Pareto improvement follows from a subtle interaction between mar-

ket power and financial constraints. Consider first a monopoly without con-

straints. The arbitrageur is akin to a durable good producer; he faces a

commitment problem: since he accounts for his price impact, he provides

limited liquidity to avoid closing the spread. Thus, after each trading round,

gains from trade remain and the arbitrageur cannot refrain from providing

further liquidity, thereby reducing the spread further. Hedgers anticipate

this behaviour, which erodes the arbitrageur’s market power ex-ante.11

Because of these Coasian dynamics, the arbitrageur would be better off if

he could commit to a trading strategy, i.e. decide ex-ante how much liquidity

to provide over time and stick to it. In this case, he would trade only once

at the beginning. Doing so, he would earn static monopoly profits, as is

well-known in IO; this hurts hedgers relative to the no-commitment case.

Suppose now that the arbitrageur chooses trades sequentially, subject to

the financial constraint. In states or at dates where the constraint binds,

the choice is purely mechanical: max out the constraint. To this extent, a

binding constraint in the future works as a commitment device. Yet, this

commitment is imperfect. Financial constraints may limit retrading, but do

not eliminate it: they merely prevent the arbitrageur from reaching his pre-

ferred position. The reason is simple: when providing liquidity, a monopoly

always earns capital gains, which generate additional collateral and allows

the arbitrageur to retrade next period.12 Besides, since the arbitrageur in-

the 99% quantile.
11As hedgers have reduced their positions at time 0, they are less exposed to the endow-

ment shock at time 1. To this extent, receiving liquidity / sharing risk/ buying insurance
(all synonyms in this model) by trading the risky, imperfectly liquid asset against cash
(the liquid asset) is akin to buying a durable good. However, in contrast to the literature
on the Coase conjecture, the horizon is finite. In IO, it is typically assumed that the
good is infinitely durable. Classic papers on the Coase conjecture include Stockey (1981),
Bulow (1982), Gul, Sonnenschein, and Wilson (1986).

12By contrast, competitive arbitrageurs earn capital gains only when their constraints
bind. With financial constraints, it is essential to generate more collateral for later rounds
that the rents the monopolistic arbitrageur extracts in the first round cannot be diverted
or repledged elsewhere. Without such ability, it is ex-post optimal for the arbitrageur to
keep pledging capital to the arbitrage, for lack of a better investment opportunity. Indeed,
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ternalizes his price impact, he has more leeway than price-takers in choosing

strategically ex-ante whether or at least when to make constraints bind. For

this reason, financial constraints may bind at some date and not at other.

The welfare and liquidity improvement occur only in cases where the

constraint is slack at time 0 and binding at time 1. The binding constraint

at time 1 mitigates the arbitrageur’s problem ex-ante; the slack constraint at

time 0 allows the arbitrageur to reap the benefit of it. Indeed, the prospect of

a binding constraint induces hedgers to shift some of their liquidity demand

earlier. The slack constraint allows the arbitrageur to exploit this extra

demand. The arbitrageur’s welfare increases relative to the no commitment,

no constraint case, but does not reach the perfect commitment level, because

the retrading maintains some Coasian dynamics. Thus, the arbitrageur is

not able to charge static monopoly prices.

Hedgers are also better off when the constraint binds at time 1 but not

at time 0 than without constraint. In this case, the constraint induces faster

risk-sharing but does not eliminate retrading. Instead, perfect commitment

speeds up risk-sharing but eliminates retrading.13 Receiving liquidity early

matters to hedgers: the asset is conditionally riskier at time 0, because

dividends news accrue every trading round.14

Risk-sharing speeds up endogenously: to make the financial constraint

binding next round, the arbitrageur must trade more aggressively early on

than without constraints. By taking larger positions, the arbitrageur pledges

more capital to the trade now and makes it more likely to have a binding

the only alternative investment is the risk-free asset, which offers lower returns than the
arbitrage. Note that in Dow, Han, and Sangiorgi (2019), a financially constrained arbi-
trageur also prefers to stick to his existing position, not for a lack of better opportunities,
but because it is costly to exit.

13Under perfect commitment, hedgers anticipate that the arbitrageur will not retrade
and shift their demand to the initial trading round. The arbitrageur provides more liq-
uidity initially to exploit this extra demand.

14Uncertainty about prices at time 0 gives hedgers a preference to trade early and plays
the same role as a discount factor. It also creates a role for arbitrageurs in both periods.
Without it, hedgers’ demand would not remain downward-sloping at time 0, so that there
would be no demand for liquidity. Hedgers would face a temporary risk-free asset and
would flatten out demand, becoming arbitrageurs themselves.
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constraint next period. But doing so, he provides more liquidity and re-

duces the spread. The financial constraint does not eliminate retrading:

in fact, the larger gains earned ex-ante increase the maximum position the

arbitrageur can afford given the constraint.15 As a result, the arbitrageur

accumulates larger positions than in the no commitment, no constraint case.

The combination of faster risk-sharing (more liquidity early) and higher total

amount of liquidity is necessary for an improvement in hedgers’ welfare with

a monopoly, but not with an oligopoly. In the latter, more early liquidity

and enough retrading suffice.16

The conditions for the Pareto improvement are that capital is intermedi-

ate and the risk to benefit ratio of the trade is sufficiently high. Intuitively,

if capital is very low, the arbitrageur cannot take larger positions early on

without violating the constraint. But if capital is large, he will never be

financially constrained ex-post. A high risk to benefit ratio implies that po-

sitions are sufficiently capital-intensive relative to potential profits. Hence,

even taking into account the capital gains from providing early liquidity, the

arbitrageur’s constraint does bind next period. As the ratio becomes very

high, however, the hedging needs that pushes prices apart in the first place

decrease in relative terms, so that arbitrageurs can accommodate them with

very little capital, and constraints become irrelevant.

It is worth noting that a high enough risk benefit ratio, for which the

liquidity- and Pareto-improving equilibrium occurs, corresponds to the most

realistic situation: indeed, a low ratio implies that financiers would offer ar-

bitrageurs to pay negative margins to invest the first dollars in the arbitrage,

most likely an unusual situation.

The risk benefit ratio also determines the comparative statics of spreads

with respect to initial capital. In markets with a low risk benefit ratio,

15Without constraint, this position would be even larger.
16Competition among arbitrageurs erodes capital gains, so arbitrageurs’ financial con-

straints relax less, and arbitrageurs may not provide more liquidity in total. Still, hedgers
may be better off. Hence, what is essential is that the arbitrageur provides more liquidity
early on and retrades, not that he provides more liquidity in total.
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comparative statics are qualitatively similar to the competitive case: less

capital may lead to higher spreads. In markets with a high risk to benefit

ratio, however, a drop in capital first reduces the spread and then increases

it. As capital drops, hedgers anticipate that the arbitrageur will trade more

aggressively early on and face a binding constraint later, and eventually

provide more liquidity, which reduces spreads. As capital drops further,

however, the arbitrageur will no longer be able to trade aggressively early

on, and spreads will increase, as in the competitive case. To the best of

my knowledge, the empirical literature has not used the risk benefit ratio

as a conditioning variable, and has not tested this unique prediction of the

model.1718 Note that positions and VaR feature similar comparative statics:

when the risk benefit ratio is low, a drop in capital leads to smaller positions

and VaR, as in the competitive case. When it is higher, the arbitrageur’s

positions and VaR first increase and then decrease. Similar non-monotonic

effects occur when hedgers’ risk aversion or the volatility of the fundamental

increase: as they tighten financial constraints, liquidity and welfare may first

increase and then decrease.

Policy. My results should be of interest to policy-makers regulating mar-

kets with large traders. The debate around the regulations set in place after

the 2007-2009 crisis has focused on the possibly negative effects on liquidity

provision of new capital and margin requirements. I show, however, that in

some situations there are welfare gains from imposing financial constraints

on arbitrageurs with market power.19 Further, there is something specific

about VaR constraints, which are price-based and forward-looking: the wel-

17The welfare result also holds in the oligopolistic case, but spreads may not be lower
at all dates.

18Under the US Market Risk Capital Rule, large banks must report daily VaR and P&L
(see, e.g. Falato, Iercosan, and Zikes (2019). This newly available regulatory data could
be used to test the empirical predictions of the paper and for policy analysis.

19One aspect that I abstract from in this paper is that binding constraints may lead to
firesales and even default in equilibrium. Thus, the benefits of being constrained should
be weighted against the costs generated by firesales and default. However, to the best of
my knowledge, such benefits have not been highlighted before.

10



fare improvement occurs only with such rules, not with fixed margins or

mere position limits. Indeed, price-based, forward-looking margins reflect

the fact that arbitrageurs make profit, which provides “cushion” from the

point of view of financiers. This allows arbitrageurs to tackle the arbitrage

more aggressively early on and speeds up risk-sharing. Fixed margins do not

allow such aggressive trading early on. As discussed in the literature review

below, position limits delay risk-sharing (see Table 1).20

This point is noteworthy as new and extant regulations have included

a mix of VaR constraints, fixed margins, and position limits. These con-

straints have differential effects only when arbitrageurs have market power:

in competitive markets, imposing any of these constraints on arbitrageurs al-

ways reduces liquidity and redistributes welfare at the expenses of hedgers.21

Capital requirements and margin setting or regulation should thus not be

designed independently of the market structure.

My mechanism provides a rationale for (in specific cases) imposing cer-

tain financial constraints on imperfectly competitive arbitrageurs, not in

favor of market power itself. A standard argument in favor of market power

is that pecuniary externalities arise from the fact that agents do not in-

ternalize their price effects. Thus, given constraints, it may be beneficial

to give traders market power to curb externalities.22 Here the competitive

20The model with fixed margins can only be analysed numerically, so this claim is based
on numerical analysis. The model with position limits (capacity constraints) is analytically
tractable.

21Fixed margins and position limits are imposed by CCPs or exchanges in some deriva-
tives markets. Interestingly, for non-centrally cleared derivatives, regulators expect so-
phisticated investors to use VaR models, but allow unsophisticated ones to use a schedule
of fixed margins, see https://www.bis.org/bcbs/publ/d475.pdf, Appendix A. Similarly,
the Volcker rule is based on an array of metrics, including position limits and VaR (see,
e.g., Bao, O’Hara, and Zhou (2018)).

22Eisenbach and Phelan (2020) show that this argument may not always go through
when imperfectly competitive traders differ in their trading needs. On a different note,
Glosten (1989) shows that arbitrageur’s market power can have benefits in a model of
asymmetric information. When arbitrageurs (in Glosten’s context, market-makers) are
competitive, the market may break down when the adverse selection problem becomes
extreme. A monopolistic market-maker (e.g. a specialist) can average profits over time,
which reduces the likelihood of a market break-down.
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equilibrium is constrained efficient, so this mechanism does not arise. The

mechanism of this paper is different, and to the best of my knowledge novel:

given market power, which is a feature of many financial markets, imposing

such financial constraints may improve liquidity and welfare, because of the

way constraints interact with arbitrageurs’ market power. While it is well-

known that adding a friction to a second-best equilibrium can either worsen

or improve efficiency, this paper highlights a specific and novel interaction

between financial constraints and market power.

Three additional policy implications arise: first, the model may explain

why large financial institutions fund themselves more cheaply. It is often

argued that this funding cost advantage results from an implicit government

put.23 In my model, large arbitrageurs are always less severely constrained

than competitive arbitrageurs, because their profits lead to a larger “pledge-

able income”.24 Second, the model implies that netting is not necessarily

a panacea. Allowing arbitrageurs to net positions across markets is equiva-

lent to eliminate the financial constraint, and thus to forego the welfare and

liquidity improvements that occur for certain parameters. This implies that

the cost of fragmenting the order flow across CCPs may in some cases be

overestimated or confused with arbitrageurs’ (dealers’) market power. Third,

the model highlights an unintended consequence of capital requirements and

margin regulation. They may increase traders’ market power by limiting

their ability to trade in some states.25

Related literature. To the best of my knowledge, this paper is the

first to solve the dynamic problem of imperfectly competitive traders under

realistic financial constraints when all investors are rational. As a result,

23See e.g. Acharya, Cooley, Richardson, and Walter (2010).
24Related ideas have been developed in the banking literature. For instance, Keeley

(1990) shows that banks with market power are more likely to act prudently with regard
to risk-taking, because they risk losing valuable bank charters.

25In the absence of constraints, the mere continuous presence on the market of a trader
or his tendency to break up trades to execute block orders are factors that erode her
market power. Indeed, rational investors can anticipate better prices for liquidity in the
future and shift their demand.
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the paper contributes to three strands of the literature. My first contribu-

tion is to extend the literature on the limits of arbitrage, which is cast into

the competitive framework, to imperfect competition. I build on Gromb

and Vayanos (2002, 2010) and Brunnermeier and Pedersen (2009). Like the

former, I carry out a welfare analysis.26

Second, I contribute to the literature on imperfect competition in finan-

cial markets by analyzing the interaction between market power and financial

constraints. Several papers in this active literature model all investors as ra-

tional and emphasize the parallel with the durable goods problem studied by

Coase (1972), but not study the effects of financial constraints.27 Instead,

Attari and Mello (2006) do study the effects of financial constraints on a

monopolistic arbitrageur, but do not model all agents as rational, assuming

that the arbitrageur faces exogenous demand curves, i.e. that hedgers do

not optimize. This assumption rules out a welfare analysis and eliminates

the Coasian dynamics, which are central to my results.

Finally, the paper contributes more broadly to the literature on durable

goods monopoly. In IO, commitment devices lead to a reduction in consumer

surplus. However, here financial constraints may lead to a Pareto improve-

ment relative to a no-constraint case, even though they may provide some

form of commitment. In this regard, it is instructive to contrast my results

to McAfee and Wiseman (2008), where the monopolist pays a small cost to

set up ex-ante a maximum capacity per period (in the context of financial

markets, capacity constraints are similar to position limits). With such ca-

pacity constraints, I find that hedgers are worse off than in all other cases.

The reason is that capacity constraints do not eliminate retrading but delay

26Other recent papers on financially constrained arbitrage include Kondor and Vayanos
(2019) and Dávila and Korinek (2017), among others.

27See, e.g., Basak (1997), Vayanos (1999), Kihlstrom (2000), Pritsker (2009), DeMarzo
and Urosevic (2006), Marinovic and Varas (2019). Following Brunnermeier and Pedersen
(2005), there is also a literature on predatory trading, where strategic traders exploit
other traders’ constraints to push them into distress. In this paper, I shut this possibility
by considering arbitrageurs with identical capital. This more homogeneous situation has
been less studied.
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risk sharing. Indeed, to avoid unused capacity at time 1, the arbitrageur

chooses a “small” capacity and trades at maximum capacity over time. This

decreases liquidity at time 0 relative to the no-commitment case. Further, if

the arbitrageur can set up a time-dependent capacity, he will simply choose

one inducing the perfect commitment outcome. By contrast, VaR constraints

induce both faster risk sharing and sufficient retrading. This is possible be-

cause their tighthness depends endogenously on the trading process. It is this

endogeneity that overturns their welfare effects as commitment devices.28

Commitment/Constraint Risk sharing Retrading Hedgers Arbitrageurs

Perfect commitment Earlier No Worse off Better off

Capacity constraints (position limits) Delayed Yes Worse off (Quasi)

MacAfee and Wiseman (2008) Indifferent

(VaR-based) Earlier Yes Better off Better off

financial constraints (sometimes) (sometimes)

Table 1: Welare effects relative to the no constraint, no commitment equilibrium
(u0, u1)

2 Model

I consider a standard model of financially constrained arbitrage, where ar-

bitrageurs exploit price differences between two identical assets over time,

while facing realistic capital constraints.

Assets and timeline. The model has three periods, indexed by t = 0, 1, 2.

Financial markets are open at time 0 and time 1, and consumption takes

place at time 2. There are two identical risky assets, A and B, and a risk-

free asset with return rf normalized to 0. The risky assets trade in segmented

28Because of this endogeneity, there is also a feedback loop between financial constraints
and trading strategies, which may lead to multiple equilibria. Equilibria may coexist, be-
cause arbitrageurs choose quantities, but not hedgers’ expectations. However, hedgers’
expectations about whether constraints bind or not in the future determine market depth
today, and therefore the arbitrageur’s incentives to trade in a way that makes the con-
straint binding or not.
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markets at price pkt , k ∈ {A,B}. They are both in zero net supply and pay

the same dividend D2 at time 2, with D2 = D+ε1+ε2. The dividend news εt

are iid random variables with a symmetric bounded support [−ē, ē], a mean

of 0 and variance σ2. The news εt is revealed to all investors at time t before

trading. There are two types of investors: hedgers and arbitrageurs.

Hedgers. In each market, there is a continuum mass one of risk-averse

competitive hedgers with mean-variance preferences: U
(
wk2
)

= E
(
wk2
)
−

a
2V
(
wk2
)
.29 Every period, hedgers receive endowment shocks skεt that are

correlated with the dividend of the risky asset, and will therefore affect their

demand for the risky asset. At time t, hedgers’ weath at is

wkt = wkt−1 + skεt + Y kt−1(pkt − pkt−1), (1)

i.e. hedgers’ wealth changes because of capital gains on the risky asset (third

term) and the endowment shocks. For simplicity, the magnitude of the shock,

sk, is deterministic, constant over time, and symmetric across markets.30

That is, at time t = 1, 2, hedgers in market A receive a shock sAεt = sεt,

while hedgers in market B receive opposite shocks, sBεt = −sεt. As a result,

A-investors have a low valuation for the risky asset, and B-investors a high

valuation. Market segmentation prevents hedgers from sharing risk across

markets, although they could perfectly insure each other. Therefore, assets

29Mean-variance preferences are also used for tractability reasons in, e.g., Banerjee
and Green (2015). With mean-variance preferences, I consider time-consistent trading
strategies.

30The assumption of constant shock magnitude s can be relaxed at the cost of increased
complexity but is not essential for the main results. Similarly, Coasian dynamics would
remain in the presence of stochastic shocks. Relaxing the assumption of deterministic
shocks, however, would require a separate analysis, as additional effects would arise. As
shown in Gromb and Vayanos (2002), stochastic shocks lead to pecuniary externalities,
so that the competitive equilibrium is not constrained efficient anymore. Market power
would lead arbitrageurs to internalize some of the pecuniary externalities, opening an in-
teraction that is not present with deterministic shocks, where the competitive equilibrium
is constrained efficient. Eisenbach and Phelan (2020) start from a constrained inefficient
equilibrium and study the effect of giving liquidity suppliers market power, albeit in a
static setting. I discuss the bearing of the assumption of deterministic shocks for the
results further in Section 7.
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A and B may trade at different prices in their respective market, even though

their cash-flows are identical. Since the endowment shock will shift hedgers’

demand up or down by |s|, it is convenient to think of s as the net supply

(in absolute value) in each market (see Section 3.2 for additional details).

Arbitrageur(s). There are n ≥ 1 identical arbitrageurs, who can partic-

ipate in all markets, but face financial constraints, described below. Arbi-

trageurs have no initial holdings of the risky asset but own initial wealth

(capital) W i
0 = W0

n , where W0 is the total capital in the arbitrage industry.

I focus on the comparison between the monopolistic (n = 1) and competi-

tive cases in the text and consider the more general oligopolistic case in the

Internet Appendix.

Arbitrageurs have strictly increasing, continuously differentiable and con-

cave utility over final wealth u (W2). Because they have access to all markets,

arbitrageur’s final wealth is W i
2 =

∑
k∈{A,B}X

i,k
1 D2 + Bi1, where Xi,k

t =

Xi,k
t−1 + xi,kt denotes the end-of-period position at time t in asset k of arbi-

trageur i, xi,kt the corresponding trade, and Bit = Bit−1 −
∑
k∈{A,B} x

i,k
t pkt ,

the arbitrageur’s risk-free asset holdings at the end of period t. Wealth

consists initially only of cash, W i
0 = Bi−1.

When n is finite, arbitrageurs internalize their own price impact in both A

and B markets. Hedgers’ inverted demand and market clearing define a price

schedule, derived below, that links the arbitrageur’s trade to the equilibrium

price in each market. An arbitrageur chooses trades xi,kt given these price

schedules and other arbitrageurs’ trades x−i,kt (Cournot competition).

Financial constraints. Arbitrageurs need capital to trade the risky as-

sets. I model the financial constraint in the same fashion as Gromb and

Vayanos (2002, 2010) and Brunnermeier and Pedersen (2009). Arbitrageurs

must fully collateralize their positions in each market. The maximum pos-

sible loss on the position over the next period in market k ∈ {A,B} is

maxpkt+1
Xk
t

(
pkt − pkt+1

)
. The arbitrageur’s wealth must cover the total max-
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imum loss on each account:

Wt ≥
∑

k=A,B

max
pkt+1

Xk
t

(
pkt − pkt+1

)
(2)

The presence of the financial constraint implies that arbitrageurs may not

be able to fully eliminate the price differences between A and B assets.

The modeling of the constraint also implies that asset A cannot be used as

collateral for asset B (and vice-versa). In other words, cross-collateralization

is not allowed, which can be viewed as a consequence of the assumption of

market segmentation. In practice, cross-collateralization may be limited by

financiers concerned about imperfect correlation between assets (although

this would not be an issue here). Sometimes traders also voluntarily avoid

cross-collateralization in order to avoid revealing their trading strategies.31

Finally, the inability to cross-collateralize may result from the fragmentation

of trading and clearing. For instance, global dealers may enter interest rate

swaps with US clients on CME, and hedge their trades with other investors

on LCH in London, without the possibility to net positions across the two

CCPs (Benos et al., 2021).

Given the symmetry assumptions, and in line with the literature, it is

natural to focus on equilibria in which the arbitrageur holds opposite posi-

tions in both assets, i.e. Xi,A
t = −Xi,B

t = Xi
t . Given that arbitrageurs start

with no endowment in the risky assets, this implies that trades are symmet-

ric xi,At = −xi,Bt = xit, for t = 0, 1. Thus, we can rewrite the arbitrageur’s

budget constraint as follows:

W i
2 = W i

0 +
∑
t=0,1

xit∆t, with ∆t = pBt − pAt (3)

31For instance, Pérold (1999) reports: “LTCM inernalized most of the back-office func-
tions associated with contractual arrangements, due to the complexity and and advanced
nature of many of the firm’s trades. This also helped maintain the confidentiality of its
positions. LTCM chose Bear Stearns as a clearing agent partly because Bear Stearns was
committed to customer business rather than being focused on proprietary trading, and
thus there were fewer conflicts of interest.”
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The equation shows that by setting up opposite position in each leg of the

arbitrage, arbitrageurs eliminate all fundamental risk and derive all their

profits from exploiting the spread ∆ between the prices of the two assets.32

Symmetry assumptions also lead to opposite risk premia on assets A and

B, which simplifies the financial constraint. Let Dt denote the conditional

expected value of the asset at time t, i.e. Dt = Et(D2) = Dt−1+εt. Then the

risk premium in market A is Dt− pAt = ∆t

2 and opposite in B. Thus, we can

write (minus) the price change in each market as pkt −pkt+1 = ∆t+1−∆t

2 −εt+1.

Then we can rewrite the financial constraint (2) as follows:

W i
t ≥

∑
k=A,B

max
pkt+1

Xi,k
t

(
pkt − pkt+1

)
≥ max

εt+1

Xi
t

(
∆t+1 −∆t

2
− εt+1

)
+ max

εt+1

−Xi
t

(
−∆t+1 −∆t

2
− εt+1

)
≥ 2Xi

t

(
∆t+1 −∆t

2

)
+ max

εt+1

Xi
t (−εt+1) + max

εt+1

−Xi
t (−εt+1)

≥ 2|Xi
t |ē−Xi

t (∆t −∆t+1) (4)

The last step follows from the symmetric support of the distribution. Note

that the constraint may bind upwards or downwards. An upward-binding

constraint generates an upper bound on how much the arbitrageur can hold,

e.g. for a long position, Xi
t ≤

W i
t

2ē−(∆t−∆t+1) . Instead, a downward-binding

constraint generates a lower bound on the arbitrageur’s position, e.g. for

short positions, the arbitrageur needs to hold at least Xi
t ≥

W i
t

−(2ē+∆t−∆t+1) .

It is convenient to rewrite constraint (4) as

f+
t (Xi

t)1Xit≥0 + f−t (Xi
t)1Xit<0 ≥ 0 (5)

where f+
t (Xi

t) = W i
t − 2Xi

t ē+Xi
t (∆t −∆t+1) and f−t (Xi

t) = W i
t + 2Xi

t ē+

Xi
t (∆t −∆t+1). The spread change ∆t − ∆t+1 will itself depend on the

arbitrageurs’ positions Xi
t , so the constraint is non-linear in Xi

t . I denote

32I assume that B−1 = W0, i.e. the initial wealth is just the endowment in cash.
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X̄i
t the largest long position satisfying arbitrageur’s i constraint at time t

given other arbitrageurs’ positions, i.e. f+
t (X̄i

t) = 0. Since arbitrageurs have

no endowments, X̄i
0 = x̄i0. Because wealth depends on initial positions, and

Xi
t = Xi

t−1 + xit, X̄1 is a function of the previous position x0.

VaR / margins. The financial constraint corresponds to a one-period VaR

constraint at the 100 percent level (as implied by the assumption of full

collateralization). The 100 percent level is for simplicity only, as it rules out

default in equilibrium and thus makes welfare comparisons simpler33, but

the constraint is motivated by real-world regulations and risk management

practices of financiers or CCPs.34

The VaR constraint can also be written as a margin constraint. Suppose

that the arbitrageur holds a long position, Xi
t ≥ 0. We can rewrite the right-

hand side of inequality (4) as 2m+
t X

i
t , where m+

t = ē− 1
2 (∆t −∆t+1) denotes

the margin required on the position. Margins increase with fundamental risk

ē and decrease with the expected price change Et(p
k
t+1) − pkt = ∆t−∆t+1

2 .

A riskier asset leads to a larger potential loss on the position, which in-

duces financiers to ask for more collateral. Instead, a higher expected re-

turn increases the “pledgeable income”, reducing the margin requirement.

Financiers reduce margins when they expect the spread to decrease, i.e.

∆t+1 ≤ ∆t. To this extent, margins play a stabilizing role for asset prices.
35

33In particular, there is no need to compute the welfare of financiers on the other side
of the constraint.

34For instance, Brunnermeier and Pedersen (2009), Appendix A, provide additional in-
stitutional details to motivate the analysis of this type of constraint. Bruche and Kuong
(2019) obtain a similar constraint in a static setting when deriving optimal contract be-
tween financiers and arbitrageurs.

35Brunnermeier and Pedersen (2009) obtain a similar constraint in their benchmark
case with informed financiers. They also consider a situation in wihch financiers are
assumed to be uninformed. In this case, uncertainty about whether the mispricing will
decrease or not in the future can lead to procyclical, destabilizing margins. Brunnermeier
and Pedersen show that a margin spiral, in which low liquidity leads to higher margins,
which further limits the ability of arbitrageurs to provide liquidity, can result from the
presence of uninformed financiers. This margin spiral complements and amplifies the
loss spiral created by the financial constraint (“a decrease in arbitrageurs’ capital impairs
their ability to provide liquidity and eliminate the mispricing, which in turn reduces their
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The main text focuses on these VaR-based margins. I discuss fixed (ex-

ogenous) margins, where mt = m, and capacity constraints (position limits)

in Section 7. Note that under my assumptions, imposing constraints has

two equivalent meanings: either introducing a new constraint or, given an

existing constraint, not allowing arbitrageurs to net positions across markets.

Terminology. In the literature, market liquidity refers to the price spread

∆t ≡ pBt − pAt , which resembles a bid-ask spread. However, market liquidity

is a multifaceted concept. One measure of liquidity in the model is market

depth, given by the slope of hedgers’ inverted demand. Thus, to avoid ambi-

guity, I use spread instead of market liquidity for ∆t. Further, I use the ex-

pression “provide liquidity” as synonym to “provide insurance/risk-sharing”.

Funding liquidity relates to the tightness of the arbitrageur’s financial con-

straint.

In sum, the model is close to Gromb and Vayanos (2002), but imposes

three simplifications: deterministic and constant hedging needs, two trading

rounds, and mean-variance preferences. I discuss further the bearing of these

assumptions in Section 7, after presenting the main result.

3 Benchmarks

To highlight the novel interaction betwen market power and financial con-

straints of the model, I first review the effect of each ingredient separately.

3.1 Financial constraints without market power

In a competitive economy, there is a continuum mass one of price-taking

arbitrageurs endowed with capital W0. A competitive equilibrium is a col-

lection of prices and trades such that (i) hedgers’ holdings are optimal given

prices, (ii) the arbitrageurs’ holdings are optimal given prices and financial

capital”). Under the assumptions of this paper, there can be a loss spiral, but no margin
spiral.
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constraints, and (iii) markets clear. I denote Xt the position of the (individ-

ual and aggregate) arbitrageur; a ∗ denotes the competitive outcome in the

paper.

Proposition 1 (Gromb and Vayanos, 2002) There exists a unique com-

petitive equilibrium:

� If W0 ≥ ω∗ ≡ 2sē, the financial constraint never binds, arbitrageurs

absorb the supply s, i.e. X∗t = s at t = 0, 1, and the spread between

assets A and B is always 0: ∆0 = ∆1 = ∆2 = 0

� If 0 ≤ W0 < ω∗, the financial constraint binds at t = 0 and t = 1 and

the spread between assets A and B narrows over time and is closed only

at t = 2, i.e. ∆0 > ∆1 > ∆2 = 0. The arbitrageurs’ positions in asset

A, x̄0 and X̄1, are the largest (long) positions allowed by the financial

constraints, and satisfy f+(X̄t) = 0.

The equilibrium links the spread ∆ to arbitrageurs’ initial capital W0, and

takes a simple form: if arbitrageurs’ capital is large enough, then arbitrageurs

eliminate the arbitrage opportunity; if instead arbitrageurs start with lower

capital, then the financial constraints are binding, and assets A and B trade

at a positive spread, which decreases over time. An increase in the supply

s or in the fundamental risk (increase in ē) tightens proportionately the

financial constraint. This is because the worst possible loss increases, so

arbitrageurs need to post more collateral. Clearly, binding constraints limit

risk-sharing and make hedgers worse-off. However, arbitrageurs benefit as

they earn capital gains. Gromb and Vayanos, 2002 show that the equilibrium

is constrained-efficient.

A drop in arbitrage capital has the following consequences:

Corollary 1 (Comparative Statics in the Competitive Benchmark)

Suppose that competitive arbitrageurs are constrained, i.e. 0 ≤ W0 < ω∗. A

decrease in capital increases the spread, even more so if capital was initially
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low:
∂∆∗t
∂W0

< 0,
∂2∆∗t
∂W 2

0

< 0

Instead, if the constraint is slack, equilibrium spreads and positions are in-

dependent of capital.

Proof. The result follows from Proposition 1 and Corollary 4 (Appendix

A.1).

3.2 Market power (monopoly) without financial con-

straints

Definition 1 The price schedule is a function pkt (Xt) : R→ R mapping the

arbitrageur’s position Xt to the equilibrium price in market k. A monopolistic

equilibrium consists in arbitrageur’s and hedgers’ trades (xkt , y
k
t )
k∈{A,B}
t=0,1 and

spreads ∆t, such that (i) hedgers’ demand is optimal given the equilibrium

price path in each market, and (ii) the arbitrageur’s trades maximize expected

utility given the price schedule.36

In Lemma 2 in the Appendix, I show that at t = 0, 1, hedgers’ demand

in market A is Yt = E(pt+1)−pt
aσ2 − s. Inverting the demand and imposing

market-clearing gives the price schedule faced by the arbitrageur:

Lemma 1 (Price Schedules) Suppose that n = 1. At t = 0, 1, the price

schedule faced the monopolist in market A is

pt(Xt) = E(pt+1)− aσ2(s−Xt) (6)

Proof. See Appendix A.2.

This equation shows that the equilibrium price today is increasing in

the anticipated price next period. A similar dynamic relationship between

36Recall that xt = xAt = −xBt . As usual in the IO and finance literature, I assume that
deviations by a zero mass of hedgers do not affect the course of the game.

22



prices arises in textbook presentations of Coasian dynamics, see e.g. Tirole

(1988), p. 81. To see the intuition, consider hedgers in market A, who are

natural sellers of the asset. When they anticipate a high price tomorrow,

their willingness to accept a low price to trade today is reduced.

Thus, while the arbitrageur does not face competition from other traders,

he competes with himself over time: hedgers understand at time 0 that the

arbitrageur will retrade and provide additional liquidity at time 1.

The liquidity received at time 0 is durable from hedgers’ point of view,

because they remain exposed to the same source of risk over time. For

instance, hedgers in market A (who have some willingness to sell) will suffer

less from the endowment shock at time 1 if they have already reduced their

positions at time 0.37 Risk-sharing is thus akin to a durable “insurance”, and

is subject to Coasian dynamics. As is well-known from IO, a monopoly can

evade Coasian dynamics when he has commitment power. I now compare

the equilibrium under no commitment and perfect commitment.

Proposition 2 (No Commitment Equilibrium) In equilibrium:

1. The arbitrageur buys less than the supply in each market and increases

his total position over time: xu0,u1

0 = 2
5s, X

u0,u1

1 = 7
10s.

2. The spread decreases over time: ∆u0,u1

0 = 9
5aσ

2s, ∆u0,u1

1 = 3
5aσ

2s.

3. The arbitrageur earns strictly positive trading profits: Ωu0,u1

0 = W0 +
9
10aσ

2s2.

Proof. This is a special case of Proposition 4.

As the arbitrageur has market power, he does not fully integrate markets,

even though there are no financial constraints. Further, the arbitrageur splits

trades to control his price impact. Because the asset is conditionnally riskier

at time 0, the arbitrageur trades more aggressively in the first trading round.

37Note that this effect is maximal under our assumptions, because the exposure does
not change sign.

23



Indeed, hedgers are more desperate to share risk at time 0 than at time 1.38

This higher willingness to trade implies that price impact is higher at time

0 than at time 1.39 Since markets are not fully integrated, prices do not

converge and the arbitrageur realizes trading profits by earning the spread.

Proposition 3 (Perfect Commitment Equilibrium) Suppose that the ar-

bitrageur can commit to a trading strategy. Then:

1. The arbitrageur trades more than in the no-commitment case at time

0 and does not trade at time 1: xpc0 = Xpc
1 = s

2 .

2. Equilibrium spreads are larger at time 0 and time 1: ∆pc
0 = 2aσ2s and

∆pc
1 = aσ2s.

3. The arbitrageur is better off, and hedgers are worse off: Ωpc0 = W0 +

aσ2s2 > Ωu0,u1

0 = W0 + 9
10aσ

2s2 and Upc0 = − 3
4aσ

2s2 < Uu0,u1

0 =

− 27
40aσ

2s2.

Proof. See Internet Appendix.

If the arbitrageur can commit to a trading strategy, he will trade only

at time 0, eliminating competition with himself over time. Note that if the

arbitrageur were to trade only at time 1, he would forego the benefit of the

extra demand for risk-sharing at time 0. With perfect commitment ability,

not surprisingly the arbitrageur limits further the amount of risk-sharing,

hurting hedgers’ welfare, increasing the spreads and his own trading profits

relative to the no-commitment case.

38The uncertainty about the fundamental between 0 and 1 makes the capital gain un-
certain, which ensures that hedgers’ demand is downward-sloping at time 0. Hedgers have
no discount factor in the model, but since hedgers are risk averse the higher risk at time
0 plays a similar role as a discount factor.

39This feature of the model is broadly consistent with the empirical evidence, see e.g.
Zarinelli, Treccani, Farmer, and Lillo (2015): “for a given execution size, earlier trans-
actions of the metaorder change the price more than later transactions”, p. 5. Hence,
although stylized, the model captures salient features of real markets.
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4 Financially constrained monopoly

The definition of equilibrium remains the same as in Section 3.2, with the

extra requirement that in each period the monopoly’s positions must satisfy

the financial constraints.

Equilibrium drivers. Inspecting the arbitrageur’s financial constraints (4)

and the price schedule (6) shows that the equilibrium will be determined by

two key variables: the arbitrageur’s capital W0 and the risk benefit ratio ρ,

defined as follows.

Notation 1 (Risk Benefit Ratio) Let ρ ≡ ē
aσ2s denote the risk benefit

ratio.

The risk benefit ratio is a cost benefit ratio of the trade from the arbi-

trageur’s point of view. Note that risk appears both in the nominator and

the denominator, in different forms. In the numerator, ē measures by how

much the fundamental can go up or down relative to the conditional mean,

thus it measures the largest potential gain or loss due to the fundamental.

In the denominator, the product aσ2s measures the (maximum) profitability

of the arbitrageur’s trade in a given market. It is determined by the amount

of hedging needs from hedgers. Hedgers are more desperate to share risk

if the asset is riskier (larger σ2), if their endowment shock is larger (larger

s), or if they are more risk averse (larger a).40 In the text, I vary the risk-

benefit ratio by varying the supply s, holding a, ē, and σ constant. I provide

additional graphs as a function of these other parameters in the Internet

Appendix, where I also illustrate the relation between ē and σ for different

distributions.

I determine the equilibrium for any ρ > 0. However, ρ ≥ 1 seems more

realistic. Indeed, combining the expression of margins derived in Section 2

and the price schedules shows that ρ < 1 is equivalent to negative margins for

40Alternatively, one can think of the inverse of the risk benefit ratio as the maximum
profit per unit of maximum risk, for each leg of the arbitrage.
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small (long) positions Xt ≈ 0. Thus, the arbitrage is so profitable relative to

the fundamental risk of the position that financiers would pay the arbitrageur

to set up the first few units of the trade (it does not mean that equilibrium

margins are negative, though).

Equilibrium multiplicity. Lemma 1 shows that the price schedule at time

0 depends on the expected price at time 1, which itself depends on whether

the arbitrageur’s constraint is binding at time 1. But the tightness of the

constraint itself depends on prices. Therefore, in the presence of financial

constraints, equilibria can be self-fulfilling and multiple equilibria coexist.

Indeed, the arbitrageur chooses a position, but does not control hedgers’

expectations. The anticipation of a binding constraint next period affects

hedgers’ demand today, and the price at which they are ready to trade.41

But this price matters for the tightness of the financial constraints.

4.1 Equilibria with a slack constraint at time 1

Suppose that at time 0 hedgers anticipate that the arbitrageur is uncon-

strained at time 1. I conjecture that the arbitrageur chooses a position x0

such that his time-1 constraint is slack, and verify under which conditions

this holds. That is, given hedgers’ anticipations u1 (for unconstrained at

time 1), I determine under which conditions the arbitrageur chooses a po-

sition x0 leading to state l = {u1, c̄1, c1} at time 1, where c̄1 denotes an

upward-binding constraint and c1 a downward-binding constraint. Denoting

Ωu1,l
0 the value function associated with hedgers’ expectations u1 and state

l, the arbitrageur chooses x0 such that his time 0 expected utility Ωu0 is

Ωu0 = max (Ωu1,u1

0 ,Ωu1,c̄1
0 ,Ω

u1,c1
0 ). There exists an equilibrium with a slack

constraint at time 1 iff Ωu0 = Ωu1,u1

0 .

Given that the arbitrageur takes offsetting positions across markets, his

41Hegders anticipate prices, but since the model is of complete information and given
the price schedule (6), there is an equivalence between the price next period and the
arbitrageur’s position. Thus, when I use the expressions “hedgers anticipate binding
constraints”, I mean the price induced by binding constraints.
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wealth is risk-free, and only the trading profits in each period enter his value

functions. Each value function Ωu1,l
0 is thus defined as follows:

Ωu1,l
0 = max

x0∈F0
0

W0 + x0∆u1
0 (x0) + Ωl1(x0)

s.t. ∆u1
0 (x0) = 2aσ2(s− x0) + ∆u1

1 (x0)

+ additional consistency conditions

where F0
0 is the set of time-0 positions satisfying the financial constraint (4)

at time 0, ∆u1
0 (·) ≡ pBt (·) − pAt (·) is the time-0 spread schedule, i.e. the

difference between the price schedule in each market when hedgers assume

that the arbitrageur’s constraint is slack at time 1, and Ωl1 is the continuation

value at time 1, given state l = {u1, c̄1, c1}. The spread schedule is fixed,

in the sense that I keep hedgers’ anticipation u1 fixed. However, given this

schedule, the arbitrageur internalizes that his trade leads to a binding or

slack constraint and the associated continuation value at time 1 (i.e. Ωl1

depends on l, not u1). The associated consistency conditions, provided in

the Appendix, ensure that the arbitrageur’s actions are time-consistent, e.g.

on the equilibrium path, he has indeed sufficient wealth at time 1 to hold his

preferred position.

Proposition 4 (Equilibria with slack time-1 constraint) There exist

thresholds ωu0 , ωu1 , and ωf , that define four regions in terms of initial arbi-

trage capital:

1. In the first region, W0 ≥ max(ωu0 , ω
u
1 ), arbitrage capital is abundant,

both constraints are slack in equilibrium, and the arbitrageur holds his

preferred positions xu0,u1

0 and Xu0,u1

1 given in Proposition 2 (u0,u1

equilibrium).

2. In second region (max(ωf ,min(ωu0 , ω
u
1 )) ≤ W0 < max(ωu0 , ω

u
1 )) and

third regions (max(0, ωf ) ≤ W0 < min(ωu0 , ω
u
1 )), either there is no

equilibrium with a slack constraint at time 1 (no u1), or there exists
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an equilibrium in which the constraint binds at time 0 but not at time

1 (c0,u1 equilibrium).

In the latter, the arbitrageur holds a smaller position at time 0, allow-

ing him to hold his preferred position Xu
1 (x0) at time 1 without violat-

ing the constraint: xc0,u1

0 < xu0,u1

0 , Xc0,u1

1 = Xu
1 (xc0,u1

0 ) =
s+x

c0,u1
0

2 .

This equilibrium arises in particular in the second region when the risk

benefit ratio is sufficiently low (ρ < 7
10).

3. In the fourth region, 0 ≤ W0 < max(0, ωf ), there is little arbitrage

capital, and thus there is no equilibrium with a slack constraint at time

1 (no u1).

Proof. See Appendix C.

The equilibrium takes a simple, intuitive form. When arbitrage capital is

sufficiently abundant, constraints never bind, and the arbitrageur holds his

preferred positions. In the opposite case, where capital is particularly scarce,

the arbitrageur cannot trade in such a way that the constraint remains slack

at time 1. In between these two regions, either we are in the former case, or

in an intermediate case, where the arbitrageur reduces positions at time 0

to ensure that he can hold his preferred position at time 1. In other words,

in such equilibria, the arbitrageur decides to save capital at time 0 to ensure

that, given the time 0 position, he can trade his preferred quantity at time

1. The different cases are represented in Figure 1.

In the second and third regions, the equilibrium can be determined an-

alytically, but is not sufficiently tractable.42 Thus, in Figure 2, I solve nu-

merically for the equilibrium. The parameters chosen here show a typical

case. Panel 2a shows in red the equilibrium that prevails in the regions where

42The reason is that given hegders’ anticipations, and thus the price schedule, one must
check that it is indeed optimal for the arbitrageur to follow the conjectured strategy. How-
ever, deviations involve making the constraint binding at time 1. Such binding constraint
implies that the effect of the position x0 on the time 1 profit is no longer quadratic,
so that first-order conditions become highly non-linear. The solution can be written in
closed-form, but is cumbersome. Proposition 13 in the Appendix provides somewhat more
detailed equilibrium conditions.
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two cases may arise. Panel 2b eliminates the redundant information of the

picture. The resulting equilibrium representation is strikingly simple. For

ρ ≥ 7
10 (left-hand side of the picture), either capital is large enough such

that no constraint binds and the arbitrageur holds his preferred positions, or

the arbitrageur has not enough capital to keep the constraint slack at time

1. When the risk benefit ratio is lower, an intermediate case arises, where

the arbitrageur’s capital is relatively low, but sufficient to allow him to keep

his constraint slack at time 1. Doing so, however, requires to trade less at

time 0. Intuitively, the arbitrage is profitable enough relative to the risk of

the position to relax the constraint at time 1. This is because wealth at time

1 increases sufficiently thanks to the capital gains made by the arbitrageur

at time 0.

There may be no equilibrium with a slack constraint at time 1 for two

reasons. Either there is not enough capital, so that it is impossible for the

arbitrageur to keep the constraint slack and hold his preferred position at

time 1 (this is so if W0 < ωf , where the superscript f stands for floor). Or it

is possible but not optimal for the arbitrageur to do so. When capital is not

very abundant, and the risk benefit ratio is high enough, keeping enough dry

powder at time 0 to trade his preferred position at time 1 is costly for the

arbitrageur. It requires to reduce the time 0 trade away from his preferred

level. In that case, the arbitrageur may thus deviate from the conjectured

strategy and make the constraint binding at time 1. The loss from being

constrained at time 1 may be more than offset by the benefit of trading his

preferred position at time 0 (which is not necessarily the same amount as

if the constraint is slack at time 1). This trade-off yields an endogenous

threshold (represented by a dotted line in panels a and b of Figure 2) under

which there is no equilibrium with a slack time 1 constraint.

4.2 Equilibria with binding time-1 constraint

There exist equilibria, in which the constraint binds upwards at time 1.

However, I show in the Appendix that there is no equilibrium in which the
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Figure 1: Equilibria with slack time-1 constraint. The parameters are a =
σ = 1, ē = 1.5.

constraint binds downwards. It is intuitive: since arbitrageurs naturally want

to go long the spread, the main issue arising from limited capital is that they

cannot go long as much as they wish, i.e. that the constraint binds upwards.

Proceeding as in the previous section, I conjecture an equilibrium strategy

and determine under which conditions it holds in equilibrium.

Proposition 5 (Equilibria with binding time-1 constraint) Let ωp0
and ωp1 denote two thresholds. There are equilibria in which the arbi-

trageur’s constraint binds upwards at time 1, as follows.

1. If 0 ≤ ρ < 3
4 , then ωp1 < ωp0 , and there are three regions in terms of

arbitrage capital:
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(a) In the first region, with 0 ≤ W0 < max(0, ωf ), the arbitrageur’s

constraint binds upwards at time 0 and time 1 in equilibrium

(c0, c1 equilibrium). This equilibrium is the same as in the con-

strained competitive case, for a given level of capital. The arbi-

trageur holds the largest (long) positions satisfying the financial

constraints at each date: xc0,c10 = x̄0, and Xc0,c1
1 = X̄1(x̄0).

(b) In the second region, with max(0, ωf ) ≤ W0 < max(0, ωp1), there

are two cases: there is either no equilibrium in which the arbi-

trageur’s constraint binds upwards at time 1 (no c1), or an equi-

librium where both constraints bind as in (a).

(c) In the third region, with max(0, ωp1) ≤ W0 < ωp0 or ωp0 ≤ W0,

there is no equilibrium in which the arbitrageur’s constraint binds

upwards at time 1 (no c1).

2. If ρ ≥ 3
4 , then ωp1 > ωp0 , and there are four regions in terms of arbitrage

capital:

(a) In the first region, with 0 ≤ W0 < ωf , the equilibrium is c0, c1,

as in case 1a.

(b) In the second region, with ωf ≤ W0 < ωp0 , the equilibrium is the

same as in 1b.

(c) In the third region, with ωp0 ≤ W0 < ωp1 , there may exist an

equilibrium in which the abritrageur’s constraint binds upwards at

time 1 and is slack at time 0 (u0, c1 equilibrium). In this equi-

librium, the arbitrageur holds the same amount as in the perfect

commitment case at time 0, xu0,c1
0 = xpc0 , and the largest position

satisfying the constraint at time 1: Xu0,c1
1 = X̄1(xu0,c1

0 ).

(d) In the fourth region, with ωp1 ≤ W0, there is no equilibrium in

which the arbitrageur’s constraint binds upwards at time 1 (no

c1), as in 1c.
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For the same reason as with the u1 equilibrium, some cases have an

analytical albeit rather intractable solution. So I proceed as before and

illustrate Proposition 5 graphically.I determine the numerical solution in

Figure 3. The graph is a typical case, and does not critically depend on the

choice of parameters. Panel b of Figure 3 shows the equilibrium regions. The

intuition for the form of the equilibrium is simple. With abundant capital,

there is no equilibrium in which the arbitrageur’s constraint binds at time 1

(no c1). With little capital, constraints are likely to bind not only at time 1,

but also at time 0 (c0, c1). With intermediate capital, the most interesting

case arises when the risk benefit ratio is large enough (ρ ≥ 3
4 ) and arbitrage

capital is intermediate (ωp0 ≤ W0 < ωp1). In this case, the arbitrageur’s

constraint binds at time 1, but not at time 0. The conditions on arbitrage

capital for this equilibrium are intuitive. The tresholds ωpt for this partly

constrained equilibrium are associated with the time t constraints. There

must be enough capital for the arbitrageur to be able to hold xu0,c1
0 at time

0 (W0 ≥ ωp0). However, capital cannot be large enough (W0 < ωp1), for

otherwise, the constraint would not bind at time 1.

Holding a larger position at time 0 is a necessary condition for the con-

straint to bind at time 1. Doing so, the arbitrageur pledges more capital

at time 0, increasing the chance to be constrained at time 1 (of course,

not only the position but also the depth of the market, and therefore the

arbitrageurs’ trading profits, are different across the two equilibria). This

equilibrium arises only if the risk benefit ratio is large enough, which is the

most realistic case. It makes sense: for the constraint to bind at time 1,

it must be that the position is sufficiently risky relative to profits. Other-

wise, trading is not very capital intensive, and the arbitrageur will be free

to re-optimize when time 1 comes.

Having a sufficiently low level of capital does not only ensure time con-

sistency. A low W0 also ensures that deviating from being constrained at

time 1 is not attractive. With sufficiently low capital, the arbitrageur must

take a small position at time 0 to ensure that his time-1 constraint is slack.
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This reduces his time-0 profit, and thus prevents the arbitrageur from fully

benefiting from the deviation.

4.3 Coexistence

Proposition 6

� There is a unique equilibrium when arbitrage capital is either suffi-

ciently low or sufficiently high:

– If 0 ≤W0 < max(0, ωf ), the unique equilibrium is c0, c1.

– If W0 ≥ max(ωu0 , ω
u
1 , ω

p
1), the unique equilibrium is u0,u1.

� When capital is intermediate, i.e. if max(0, ωf ) ≤W0 < max(ωu0 , ω
u
1 , ω

p
1),

multiple equilibria may coexist depending on the level of ρ, as detailed

in Proposition 18.

Figure 4 superimposes the results of the numerical solutions in panel b of

Figures 2 and 3. There are four possible equilibria: u0, u1, c0, u1, u0, c1, and

c0, c1. Equilibria coexist in two regions characterized by intermediate capital

and a large enough risk benefit ratio. In all other regions, the equilibrium

is unique. With abundant capital, the unconstrained equilibrium u0, u1 is

unique, while with scarce capital, the fully constrained equilibrium c0, c1

prevails. Further, when the risk benefit ratio and capital are low, the unique

prediction of the model is c0, u1, i.e. the arbitrageur reduces his time-0

position to remain unconstrained. When the risk benefit ratio is larger, the

fully constrained and unconstrained equilibria overlap. If we increase further

the risk benefit ratio, the unconstrained equilibrium coexists with the u0, c1

equilibrium.

Multiple equilibria arise even though the abitrageur has market power

and chooses how much to trade. Intuitively, the arbitrageur does choose

quantities, but cannot pick hedgers’ expectations. Since hedgers’ expecta-

tions affect market depth (through the price schedule), they affect the arbi-

trageur’s incentives to trade in one way or another, leading to self-fulfilling
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equilibria. It is not surprising that equilibria coexist for intermediate amount

of capital and moderately capital intensive positions. In such case, the arbi-

trageur’s constraint is close to be binding, and thus hedgers’ anticipations,

by affecting market depth, may tip the equilibrium outcome in one way or

another. Market depth is not as determinant when capital is very scarce or

abundant.

5 Welfare

In this section, I show that (i) With a monopolistic arbitrageur, the u0, c1

equilibrium Pareto-dominates the u0, u1 equilibrium. (ii) Imposing con-

straints on a competitive arbitrageur reduces welfare. However, imposing

the same constraint on a monopoly with the same amount of initial capital

may increase welfare.

Proposition 7 (u0, c1 Pareto-dominates u0, u1) Suppose that a partly con-

strained equilibrium (u0, c1) exists and that it coexists with the unconstrained

equilibrium (u0, u1). Then in the partly constrained equilibrium:

1. Spreads are smaller: ∆u0,c1
t < ∆u0,u1

t , t = 0, 1;

2. The arbitrageur holds larger positions: Xu0,c1
t > Xu0,u1

t , t = 0, 1;

3. Hedgers are better off;

4. The arbitrageur is better off if and only if W0 ∈ [max(ωu1 , ω
p
0), ωa),

where ωa < ωp1 . This interval is non-empty if ρ ≥ 2
√

5
5 > 3

4 , i.e. there

exists a non-empty set of parameters such that the arbitrageur is better

off.

Proof. See Appendix F.

A key consequence of this result is that imposing financial constraints on

a monopolistic arbitrageur improves social welfare in certain markets:

Corollary 2 (When Do Constraints Improve Welfare?)
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1. In markets with a large amount of capital, imposing financial con-

straints on a monopolistic arbitrageur has no effect, because the con-

straint never binds.

2. In markets with intermediate capital (ωp0 ≤ W0 < wa) and sufficiently

high risk-benefit ratios (ρ > 2
√

5
5 ), imposing financial constraints on a

monopolistic arbitrageur

� improves social welfare if ωp0 ≤W0 < ωu1 and

� may improve it if ωu1 ≤W0 < ωa.

If the risk-benefit ratio is lower (3
4 ≤ ρ < 2

√
5

5 ) and / or capital is

larger (ωa < W0 ≤ ωp1), the arbitrageur is worse off.

3. In markets with sufficiently small capital, imposing constraints either

has no effect or leads to a reduction in liquidity in at least one date,

with at least one type of investors being worse off.

Proof. See Appendix F.

This result provides conditions under which imposing financial constraints

on a large arbitrageur may increase or decrease social welfare. The Pareto

improvement occurs only in markets with high enough risk benefit ratios and

where the arbitrageur is neither too well nor too poorly capitalized. In other

situations, either the constraint has no effect, or hurts at least one type of

market participant. This result is at odds with the competitive case, where

financial constraints are either irrelevant or reduce hedgers’ welfare.

It is well-known that adding a second friction may bring the economy

either closer or further away from the first-best. The contribution of this pa-

per, however, is to highlight a new mechanism through which this effect may

occur. Here financial constraints interact with the arbitrageur’s commitment

problem. The arbitrageur faces a Coasian problem of competition with one-

self over time, and benefits from being able to commit to trade only once.

Without commitment, the arbitrageur cannot help retrading. However, the

financial constraint does not rule out retrading. It serves as an endogenous
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and imperfect commitment device to trade less at time 1. Indeed, we have

xu0,u1

0 < xu0,c1
0 , but xu0,u1

1 > xu0,c1
1 (recall that x1 = X1−x0). However, the

arbitrageur holds larger positions at all dates in the u0, c1 equilibrium, i.e.

xu0,u1

0 > xu0,u1

0 and Xu0,c1
1 = xu0,c1

0 + xu0,c1
1 > xu0,u1

0 + xu0,u1

1 = Xu0,u1

1 .

A larger position at time 0 is inherent to the u0, c1 equilibrium: by pledg-

ing more capital early on, the arbitrageur ensures that the constraint is in-

deed binding at time 1. However, doing so, the arbitrageur also makes larger

gains, which mechanically increase the position he can afford at time 1. The

larger positions lead to smaller spreads, although the price impact is different

across equilibria: in the u0, c1 equilibrium, hedgers demand more liquidity

at time 0 in anticipation of the binding constraint at time 1, potentially

increasing the spread.

Both the arbitrageur and hedgers are better off in the u0, c1 equilibrium,

but the conditions are stricter for the arbitrageur to be better off, because the

retrading maintains some Coasian dynamics. Arbitrageurs would be better

off if they were able to divert capital gains entirely between 0 and 1 and keep

the same level of capital after trading at time 0. This would allow them to

earn full commitment profits. For hedgers, the situation is opposite: they

benefit from the fact that the arbitrageur provides more liquidity at time

0, and that he evenutally also holds a larger position at time 1, despite the

binding constraint at time 1. In fact, both the increase in early liquidity and

the increase in the final position are necessary to obtain hedgers’ welfare gain.

To see this, I compute hedgers’ welfare under two counterfactual allocations.

Proposition 8 (Why hedgers are better off) Suppose the u0, u1 and

u0, c1 equilibria coexist.

� Counterfactual 1: If the time-1 position increases to Xu0,c1
1 without an

increase in the time 0 position (xcf1
0 = xu0,u1

0 ), hedgers are better off

in the u0, c1 equilibrium than in the counterfactual.

� Counterfactual 2: If the time-1 position remains the same Xcf2
1 =

Xu0,u1

1 but the time 0 position increases (xcf1
0 = xu0,c1

0 ), hedgers are
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better off in the u0, u1 equilibrium than in the counterfactual.

Thus, hedgers are better off because both the time-1 and time-0 positions

increase in the u0, c1 equilibrium.

Proof. See Appendix F.

This result shows that varying both the extensive margin (the total po-

sition, counterfactual 1) and the intensive margin (the amount of liquidity

at time 0, counterfactual 2) is necessary to improve hedgers’ welfare. It is

intuitive that the increase in the final position matters: hedgers have shared

more risk in the market, getting closer to the first-best.

The reason why the intensive margin – given a total amount of liquidity,

how much liquidity is provided at time 0 – matters is that the asset is con-

ditionally riskier at time 0 than at time 1, making it valuable for hedgers to

share risk early. The binding constraint at time 1, which is required to reduce

the Coasian dynamics, requires the arbitrageur to trade more aggressively

at time 0. This increase in liquidity at time 0 is essential.

The uncertainty about the fundamental between 0 and 1 is a key ingredi-

ent of the model: it implies that hedger’s demand remains downward-sloping

at time 0. Without it, there is no demand for liquidity at time 0. Indeed,

the risky asset would be temporarily risk-free, so that hedgers would flat-

ten out the demand – in other words, hedgers would become arbitrageurs

themselves. The price would simply equal the expected price next period

and arbitrageurs would have no incentive to trade (for any trade would push

the price away from the expected time 1 price, and hedgers would step in to

correct this distortion).

The results of this part provide a nuanced picture of the effects of finan-

cial constraints on liquidity and welfare in the presence of market power. As

I discuss in Section 7, the benefits of financial constraints arise with VaR con-

straints, but not with close, but less widespread substitutes such as position

limits and fixed margins. Regulators may predict the effects of introducing

new constraints or allowing netting or not by evaluating only two parame-

ters: arbitrage capital and the risk benefit ratio. While this information is
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fairly granular and proprietary, data collected at the trading desk level by

US regulators in the context of the Volcker rule may be used to assess these

parameters.

These results may also shed a new light on the cost of fragmentation

of the order flow across CCPs, by providing a clear counterfactual. Benos,

Huang, Menkveld, and Vasios (2021) document the presence of a CCP ba-

sis (a spread) in the interest-rate swap market, where global dealers (arbi-

trageurs) trade with investors in the US (hedgers) and hedge their positions

in London with international investors (other group of hedgers). They at-

tribute this basis to the inability to net positions across CCPs. OTC deriva-

tives markets are concentrated, with the top five dealers representing 68% of

the total margining in the last few years.43 Due to market power, the model

predicts that the CCP basis would not disappear even if arbitrageurs were

allowed to net their positions. In fact, the model shows that the basis may

even increase if ρ is large enough and capital is intermediate.

6 Empirical implications

The model also delivers new, and to the best of my knowledge, untested em-

pirical predictions: (i) A drop in arbitrage capital may increase spreads when

the risk benefit ratio is low enough, and first decrease and then increase them

otherwise. Similar effects occur for positions, margins, and VaR. (ii) Merg-

ing constrained competitive arbitrageurs into a single arbitrageur softens the

financial constraint and may reduce spreads at time 1.

43See OTC derivatives regulators forum, www.otcdrf.org/documents/twg_mkt_conc.

pdf, p.6-7.
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6.1 Price effects of a drop in capital

Figures 5a to 8b show the competitive and imperfectly competitive spreads

as a function of arbitrage capital at time 0 and 1.44 For ρ ≤ 3
4 , there is

no qualitative difference between the competitive and monopolistic cases:

a drop in capital leads to an increase in spread when the economy enters

the region where constraints bind. For ρ > 3
4 , the comparative statics are

qualitatively different: a drop in capital first reduces the spread. A further

drop leads to an increase in spreads. The reduction is due to the fact that

as capital drops, hedgers rationally anticipate that constraints will bind at

time 1 (u0, c1 becomes the unique equilibrium as capital drops), leading to

a reduction in spreads relative to the previous situation, in which u0, u1 is

the equilibrium (possibly coexisting with u0, c1).

I am not aware of any other setting delivering such empirical implication,

nor of any test of this implication in the literature. The model emphasizes the

role of the risk benefit ratio as a conditioning variable for empirical tests of

the relation between spreads and arbitrage capital. Markets characterized by

a high risk benefit ratio are those in which risk is large relative to profitability.

Empirically, the risk could be proxied by a certain quantile of the return

distribution (e.g. 99% quantile), and profitability by the P&L of trading

desks involved in a given arbitrage.

6.2 Positions, margins and VaR

The non-monotonic effect of a drop in capital on prices carries through to

positions, margins, and VaRs.

Corollary 3 When competitive arbitrageurs hit their funding constraints

(e.g. following a drop in capital), positions, margins and the VaR at t = 0, 1

44For each type of equilibrium, it is possible to write the comparative statics of the
spreads with respect to capital in analytical form (see Corollaries 6 and 8 for the expression
of the spreads in the different cases). However, it is difficult to do so across equilibria,
hence the largely numerical approach.
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decrease. With a monopoly, the same occurs for a sufficiently low risk benefit

ratio (ρ < 3
4). If the ratio is high instead, a drop in capital first increases

and then decreases time-0 positions, margins and the VaR, and may do so

at time 1.

Proof. See Appendix F.

For an outside observer, an increases in positions and VaRs following

a drop in arbitrage capital may look like a gamble for resurrection. Here,

however, the effect is solely driven by the interaction between market power

and the financial constraint.

6.3 Other comparative statics

In the Internet Appendix, I plot the equilibrium and spreads as a function

of hedgers’ risk aversion, volatility and the support of the boundary. The

results retain the same flavour as when the risk benefit ratio comes from a

variation in supply. In particular, an increase in volatility or risk aversion,

by tightening constraints, can lead to a hump-shaped reaction in welfare and

a U-shaped reaction in spreads.

6.4 Liquidity fragility

The multiplicity of equilibria that occurs for intermediate capital and suffi-

ciently high risk benefit ratio shows that market liquidity may be “fragile”:

it may jump following a change in the market’s (hedgers’) expectations with-

out a large shock, if any, to arbitrage capital. With competitive arbitrageurs,

such fragility occurs only when margins are procyclical (Brunnermeier and

Pedersen, 2009). Instead, when the arbitrageur is monopolistic, fragility oc-

curs even though margins are countercyclical. Hence, markets with a domi-

nant arbitrageur may be more prone to sudden jumps in market liquidity.
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6.5 Effects of a merger

Merging competitive arbitrageurs into a monopoly affects both equilibrium

prices, positions, and capital requirements. Note first that

Proposition 9 The wealth thresholds can be written as the sum of two terms:

ωlt = Λlt sē︸ ︷︷ ︸
maximum position loss

− Γlt aσ
2s2︸ ︷︷ ︸

profit adjustment

, l ∈ {u, p}

Similary, ω∗ = Λ∗sē−Γ∗aσ2s2, with Λl0 < Λl1 < Λ∗ = 2, and Γ∗ = 0 < Γl0 <

Γl1 (no profit adjustment in the competitive case). Thus, the monopoly’s

constraint is always slacker than the competitive arbitrageurs’ constraints:

max(ωl0, ω
l
1) < ω∗, l ∈ {u, p}.

Proof. Follows from the definitions of ωut , ωpt and ω∗.

The form of the ωlt thresholds is intuitive. The first term, Λltsē, repre-

sents the maximum potential loss caused by fundamentals. It is the product

of the worst possible change in fundamental ē and the arbitrageur’s total

exposure at time t, Λlts. In a competitive market, arbitrageurs fully inte-

grate markets A and B, and their total position is s − (−s) = 2s, as each

leg of the arbitrage is of size |s|.45 In a monopolistic market, the arbitrageur

acquires a smaller position than competitive arbitrageurs and split orders to

limit his price impact, so Λl0 < Λl1 and Λlt < 2, for l = u, p. The second

term in ωlt, −Γltaσ
2s2, is an adjustment measuring how much accumulated

profits due to market power relax the capital requirement. This term is zero

in a competitive market, since profits are competed away. The monopoly

always earns capital gains in equilibrium, which provides “cushion” from the

financiers’ point of view.46

45E.g. Λut s = 2Xt.
46The trade-off between the risk of the position and the profit adjustment also means

that i) the wealth threshold may be negative and thus non-binding as long as the arbi-
trageur starts with positive wealth (i.e. ωut may be negative); this occurs if ρ is small
enough; and ii) that the arbitrageur may be constrained at time 0, but not at time 1, or
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Merging arbitrageurs thus softens their funding constraint. As a result,

when there is limited arbitrage capital in aggregate, a monopoly may be

unconstrained or partly constrained, while competitive arbitrageurs are con-

strained. Hence, while competitive arbitrageurs’ constraints are slack, the

spread is always smaller than with a monopoly, but it is no longer always

the case when their constraints bind.

Proposition 10 (Merging Arbitrageurs May Reduce Time-1 Spreads)

Suppose that competitive arbitrageurs are constrained, i.e. W0 < ω∗. Merg-

ing all arbitrageurs into a monopoly, holding capital constant, leads to a

decrease in the time 1 spread (and equivalently, to an increase in time-1 posi-

tion) (a) If W0 ∈ [ωp0 , ω
p
1 [ when the equilibrium is u0, c1; (b) If W0 ∈ [ωu1 , ω

m[

and ρ ≥ 21
10 when the equilibrium is u0, u1 (ωu1 < ωm).

From this result, we see that merging arbitrageurs always reduces the time-1

spread if the monopoly is partly constrained in equilibrium, and may re-

duce it if the monopoly is unconstrained. Figure 5 illustrates the case with

a partly constrained arbitrageur, although the difference between the com-

petitive and monopolistic spreads is very small. The reduction in spread at

time 1 does not lead to a welfare improvement, as the competitive equilib-

rium is constrained efficient (Gromb and Vayanos, 2002). Thus, in this set

up, merging arbitrageurs may lead to smaller spreads, but not to a Pareto

vice versa. Intuitively, at time 0, the position is smaller, but so is the profit. At time
1, both the position and the profit increase (i.e. both Λlt and Γlt increase with time). If
the profit increases faster than the position, the arbitrageur’s constraint relaxes at time
1, even if the constraint was binding at time 0. In a competitive market, being intially
unconstrained implies that the price gap between the two assets is closed. Thus wealth
does not increase over time. Further, at time 1, when hedgers receive a new shock, the
previous shock has been fully hedged. This implies that if arbitrageurs had enough wealth
to close the price gap at time 0, they have enough wealth to do so at time 1 as well. Hence
the condition boils down to a single threshold. Conversely, in a competitive market, if
the constraint binds at time 0, it also binds at time 1. It is not necessarily the case,
however, when the arbitrageur has market power. The reason is simply that competitive
arbitrageurs do not internalize their price impact, while the monopoly does. Because he
takes into account his price impact, the monopoly takes a smaller position at time 1. The
profits from time 0 may be large enough to finance this smaller position, but are never
large enough to finance a position that eliminates the spread.
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improvement.

7 Discussion and extensions

The oligopolistic case. With a monopolistic arbitrageur, imposing VaR

constraints may be socially desirable in certain markets. Is it a special case?

The short answer is no. In the Internet Appendix, I derive the analogs of

the u0, u1 and u0, c1 equilibria with n equally capitalized arbitrageurs. These

equilibria may coexist, as in the monopolistic case. When they do coexist,

the u0, c1 equilibrium no longer Pareto-dominates. However, if we start from

a no-constraint oligopolistic economy and impose constraints, then we still

obtain a Pareto-improvement under similar conditions as the monopolistic

case: intermediate capital and sufficiently high risk benefit ratio.

In the oligopolistic case, I provide examples in which hedgers are better

off even without an increase in the time-1 position (relative to the u0, u1

equilibrium). It suffices that the time-0 position increases. That the final

position does not increase is a consequence of competition: more competi-

tion leads to lower capital gains, so that arbitrageurs’ constraint at time 1

is tighter than under a monopoly. This fact implies that spreads may be

reduced only at time 0 relative to a no-constraint case.

Assumptions. I now discuss the bearing of my assumptions for the

results. First, the fact that there are only two trading rounds is for simplic-

ity only. Given that constraints may bind only occasionally, adding trading

rounds will simply multiply the already large number of potential cases with-

out affecting the economics at play. Further, the assumption of two trading

rounds entails a loss of generality when the arbitrage is risky (see Gromb

and Vayanos, 2002), but not when the arbitrage is risk-free. Second, the

assumption of mean-variance preferences allows to invert hedgers’ demand

and keep it linear. The model with linear demand is widely used in appli-

cations in economic theory and IO. Working with a more general expected

utility would make the model intractable, ruling out a sharp characterisa-
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tion of the equilibrium.47 Note that I solve for time-consistent strategies for

hedgers. Given that arbitrageurs face a riskless arbitrage opportunity, their

preferences have no bearing on the result.

The third simplifying assumption is precisly that hedgers’ hedging needs

are constant and deterministic, implying that the arbitrage is risk-free. The

fact that hedging needs are constant is for simplicity and does not affect

primarily the results. For instance, if hedging needs are known to decrease

over time, the demand for liquidity to the arbitrageur would decrease over

time for exogenous reasons, worsening the effects of competition with oneself.

The fact that hedging needs are deterministic implies that arbitrageurs take

the appropriate level of risk; the equilibrium is constrained-efficient (Gromb

and Vayanos, 2002).

The case of risk-free arbitrage shows that equilibria with interesting fea-

tures may arise, and that the interaction between market power and financial

constraints is subtle. With risky arbitrage, Coasian dynamics would remain,

but additional effects would arise. On the one hand, hedgers would be even

more eager to share risk early. On the other hand, arbitrageurs would be

less strategic, because they also would also be willing to share risk. However,

they would still compete with themselves over time: when the arbitrage is

risky, it is possible to derive a generalization of the price schedule (6), which

is at the heart of the Coasian dynamics.

There is no reason to believe that the welfare improvement induced by a

binding constraint at time 1 would not remain in this more general setting.

Indeed, the risk-free arbitrage case is simply the limiting case of the risky

arbitrage case when arbitrage risk goes to zero. In fact, hedgers would ben-

efit even more from more liquidity at time 0, since they would be more risk

averse with risky arbitrage (to the extent that there would be two sources of

risk regarding their endowment shock, both s and ε being random). Thus,

47Gromb and Vayanos (2002) assume that hedgers have CARA utility and show the
existence of a positive, strictly convex and symmetric function f such that E(e−asεt ) =
eaf(s). While this approach is elegant, it would make the model much less tractable: even
the static equilibrium could not be computed explicitly.
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the main result of this paper is likely to remain after introducing some ar-

bitrage risk, in particular if arbitrageurs are not too risk averse. But as

arbitrageurs may fail to take the efficient level of risk, and in particular fail

to internalize their pecuniary externalities, other interesting topics would

arise. Investigating these topics, however, is beyond the scope of this paper.

Form of the financial constraint. In my model, the tightness of the

constraint (4) is endogenous at all dates, to the extent that wealth (on the

left-hand side) is endogenous at time 1, and that margins (on the right-

hand side) are endogenous at time 0 and time 1. Further, the constraint is

forward-looking, as margins depend on expected price changes.

I analyse a model with the same constraint but exogenous margins mt

in the Internet Appendix. This case is also relevant in practice, as regula-

tors or exchanges may impose fixed margins.48 In a competitive economy,

the conclusions remain largely similar to the model with a VaR constraint: a

tightening of the margin reduces liquidity at the expenses of hedgers, and the

benefit of arbitrageurs. When arbitrageurs have market power, the model is

perhaps surprisingly less tractable than the model with endogenous margins,

so I used numerical analysis. However, I could not find parameter combina-

tions such that a u0, c1 equilibrium exists when margins are constant over

time, i.e. when m0 = m1 = m. In this case, when the time-1 constraint

is sufficiently tight to prevent deviations, the time-0 constraint is also tight

and prevents the arbitrageur from taking his preferred position at time 0. In

other words, the equilibrium is always c0, c1, not u0, c1. When margins are

allowed to vary over time, it is of course possible to pick m0 such that the

constraint is slack at time 0. However, this model is clearly inferior to the

one where margins endogenously change over time, in particular because it

allows one extra degree of freedom.

Note that with fixed margins, the time-1 constraint is endogenous, be-

cause wealth at time 1 is endogenous, but not the time-0 constraint; thus it

48This is the case for instance for VIX futures on CBOE. See also my remarks in footnote
21 in the introduction.
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is the fact that the constraint with endogenous margins is forward-looking

that generates the u0, c1 equilibrium. Margins are forward-looking, because

they are set using VaR.

In the Internet Appendix, I also derived margins in the case where they

are set to cover an Expected Shortfall of level α. Altough parametrically dif-

ferent, margins keep exacly the same functional form mt = ζα−βα∆t−∆t+1

2 ,

and thus retain the same properties.

Next, I consider another type of constraint used in the IO literature.

Comparison to IO. The result of this paper may be puzzling from

the point of view of the IO literature, since generally giving arbitrageurs

some commitment power reduces hedgers’ (consumers’) welfare. The key

reason for the difference is that the tightness of the constraint is endogenous,

because it depends on equilibrium prices.

The IO literature, instead, has considered the effects of exogenous capac-

ity constraints (McAfee and Wiseman, 2008). To facilitate comparisons, I

now study the effects of such constraints. Capacity constraints resemble po-

sition limits, which are in use in some derivatives markets (i.e. a maximum

number of contracts in a given derivative) or in the Volcker rule.

The arbitrageur trades sequentially; however, at time 0, before the first

trading round, the arbitrageur (or its risk manager) chooses the maximum

number of shares k he may trade per period. A capacity k costs c(k), e.g.

c(k) = ck. I look at vanishly small costs, c → 0. The tightness of the

constraint is set ex-ante and is independent of prices, so the equilibrium

remains unique:

Proposition 11 (Capacity Constraints) Suppose that the per unit ca-

pacity cost c is small, but strictly positive. The arbitrageur chooses optimal

capacity k = 3
10s = xu0,u1

1 .

1. The arbitrageur trades less than in the non commitment, no constraint

case, and less than the perfect commtiment: xcc0 < xu0,u1

0 < xpc0 . At

time 1, he holds a larger position than with perfect commitment and a

smaller one than without commitment: Xpc
1 < Xcc

1 < Xu0,u1

1 .
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2. Equilibrium spreads at time 0 are larger than in the other cases: ∆u0,u1

0 <

∆pc
0 < ∆cc

0 = 11
5 aσ

2s. At time 1, spreads increase relative to the no

commitment case and decrease relative to perfect commitment: and

∆u0,u1

1 < ∆cc
1 = 4

5aσ
2s < ∆pc

1 .

3. The arbitrageur is worse off than if he could fully commit and almost

as well-off as without commitment: Ωu0,u1

0 ≈ Ωcc0 < Ωpc0

4. Hedgers ar worse off than in the other cases: U cc0 = − 31
40aσ

2s2 <

Upc0 < Uu0,u1

0 . Hence, hedgers are also worse-off than in the u0, c1

equilibrium.

Proof. See Internet Appendix.

The proof shows that the arbitrageur is indifferent between two capac-

ities: k = xu0,u1

1 and k = xu0,u1

0 . However, with a small but positive cost,

the latter is more expensive. Because of the small capacity, the arbitrageur

restricts liquidity at time 0 more than in the other cases, which explains why

the time-0 spread is the largest. The final position, however, is intermediate,

and thus so is the time-1 spread. While the arbitrageur provide less liq-

uidity in total than in the no commitment case, he benefits from the larger

spreads, and so achieves almost the same welfare (up to the cost). Hedgers,

however, suffer from the lack of liquidity at time 0; they would be better off

with higher liquidity at time 0 and a lower final position, as in the perfect

commitment case. In sum, capacity constraints delay risk-sharing, hurting

hedgers.49

Entry. I take the market structure as given in the paper. The possibility

of entry of a new strategic arbitrageur at time 1 could make hedgers’ demand

more elastic and reduce the potential spread at time 0, working against the

ex-ante effect of binding constraints tomorrow. However, in the presence of

fixed costs, entry requires the new arbitrageur to be able to capture enough

49As with fixed margins, the competitive benchmark with capacity constraints leads to
the same message as with VaR: binding constraints lower hedgers’ welfare and increases
the arbitrageur’s.
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rents at time 1. In the u0, c1 equilibrium, more risk-sharing takes place than

in the u0, u1, implying that there are fewer rents to capture for entrants.

While a full analysis of the equilibrium effects of entry is beyond the scope

of this paper, it is unlikely that entry will entirely eliminate the u0, c1 equi-

librum. Fardeau (2021) studies entry of strategic agents in a similar model,

but without financial constraints.

8 Conclusion

In this paper, I consider the effects of imperfect competition among arbi-

trageurs subject to financial constraints. I characterize markets in which

imposing these constraints may benefit both arbitrageurs and their trading

counterparties (hedgers) and improve market liquidity. This analysis reveals

novel and subtle mechanisms through which constraints affects both types of

investors in the presence of arbitrageurs’ market power. On the one hand, a

binding constraint can mitigate the commitment problem of an imperfectly

competitive arbitrageur. On the other hand, the constraint is endogenous

to the arbitrageur’s trading strategy: to make a constraint binding in the

future, an arbitrageur must invest more aggressively today, which speeds

up the convergence of the arbitrage and risk-sharing. This strategy yields

capital gains, leading to some amount of retrading. The increase in early

liquidity combined with sufficient retrading makes hedgers better off. These

mechanisms are specific to imperfect competition: in a competitive economy,

arbitrageurs take prices as given and do not recognize the commitment prob-

lem. They are also specific to constraints based on VaR: exogenous margins

or position limits do not yield any Pareto or liquidity improvements, while

they have similar effects as VaR constraints in competitive settings.

The analysis also delivers new empirical predictions about spreads, VaR,

positions, and margins as a function of capital and the risk benefit ratio of

the arbitrage. Spreads are U-shaped and positions, margins, and VaR are

hump-shaped in arbitrage capital for a large enough risk benefit ratio. But
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they are respectively increasing and decreasing in capital for low risk benefit

ratio, or when arbitrageurs are competitive. Overall, imposing financial con-

straints on arbitrageurs may have diametrically different effects for different

structures of the arbitrage industry.

The model may be extended to consider internal allocation of capital

across trading desks or investment units. In my framework, an arbitrageur

with market power would benefit from being able to commit to decrease her

capital level in the future. This may be achieved by pledging capital gains

to new trades, for instance by reallocating capital across different trading

desks over time. Such effect would not arise with competitive arbitrageurs.

Imperfect competition among arbitrageurs should thus result in different

internal capital allocations.

I compare the equilibrium impact of arbitrageurs under two structures

of the arbitrage industry, given a specific financial constraint. This exercise

makes sense, given that the type of constraint I consider is so widely used by

practitioners and regulators and has been microfounded in a static setting

(see, e.g., Bruche and Kuong (2019)). However, a related and important

exercise would consist in deriving the optimal constraint from first principles

for each type of structure in a dynamic setting. These extensions are left for

future research.
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Appendix

This Appendix contains the main proofs. Additional proofs and the oligopoly

case are relegated to the Internet Appendix.

A Benchmarks

A.1 Competitive benchmark

Lemma 2 (Hedgers’ Demand and Certainty Equivalent) At time t = 0, 1,

in market A hedgers’ demand and certainty equivalent are

Yt =
E(pt+1)− pt

aσ2
− s

Ut = wt +

∑T
τ=t (Et(pτ+1)− pτ )2

2aσ2
− s

(
T∑
τ=t

(Et(pτ+1)− pτ )

)
(7)

Proof. See Internet Appendix.

Corollary 4 (Competitive Outcome in the Constrained Region) Suppose

that 0 ≤ W0 < ω∗. Then arbitrageurs’ positions in market A and equilibrium

spreads are

x̄0 =
aσ2s− ē+

√
d∗0

2aσ2
, X̄1 =

aσ2s− ē+
√
d∗1

2aσ2

∆∗0 = 2
(
aσ2s+ ē

)
−
√
d∗0 −

√
d∗1; ∆∗1 = aσ2s+ ē−

√
d∗1, (8)

with d∗0 =
(
ē− aσ2s

)2
+ 2aσ2W0 and d∗1 =

(
ē− aσ2s

)2
+ 4aσ2x0ē.

Proof. The positions x̄0 and X̄1 are solutions to the system of equations (Gromb

and Vayanos, 2002)

x̄0 − x̄0
aσ2 (s− x̄0)

ē
=

W0

2ē
(9)

X̄1 − X̄1
aσ2s− X̄1

ē
= x̄0 (10)

To obtain equilibrium spreads, subtitute for hedgers’ demand Y kt and plug these
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quantities into the identity

Y kt +

n∑
i=1

Xi,k
t = 0 (11)

A.2 Monopoly without Financial Constraints

Price schedules (Lemma 1)

Proof. The result follows from inverting hedgers’ demand given in Lemma 2 and

imposing market clearing (11).

Lemma 1 implies that the spread schedules ∆t(·) ≡ pBt (·)− pAt (·) are given by

∆1(X1) = 2aσ2(s−X1) = 2aσ2(s− x0 − x1) (12)

∆0(x0, x1) = 2aσ2(s− x0) + ∆1(x0, x1) (13)

B Static Equilibrium (t = 1)

At time 1, the arbitrageur solves the following problem:

max
x1

B0 + x1∆1(X1) (14)

s.t. f+
1 (X1) 1X1≥0 + f−1 (X1) 1X1<0 ≥ 0

where B0 is the position in the risk-free asset, ∆1(X1) is given by (12), and f+

and f− are given in the text. The financial constraints define a set F1 = {X1 ≥
0 | f+

1 (X1) ≥ 0} ∪ {X1 < 0 | f−1 (X1) ≥ 0}.

Notation 2 (Boundaries of F1)

� Let X+
1 ≡

aσ2s−ē−
√
d+
1

2aσ2 and X̄1 ≡
aσ2s−ē+

√
d+
1

2aσ2 denote the smallest and

largest roots, if they exist, of f+
1 , with d+

1 ≡ 2aσ2W1 + (aσ2s− ē)2.

� Let X1 ≡
aσ2s+ē−

√
d−1

2aσ2 denote the smallest root of f−1 , with d−1 ≡ 2aσ2W1 +

(aσ2s+ ē)2.
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Notation 3 (Preferred position at t = 1) Let Xu
1 ≡ x0 + xu1 = s+x0

2
denote

the arbitrageur’s preferred position at time 1, where xu1 ≡ s−x0
2

solves (14) without

constraints.

Proposition 12 (Static Equilibrium) Suppose that the arbitargeur starts with

wealth W1 and position x0. There exists a wealth threshold W̄+
1 < 0 such that

1. If W1 < W̄+
1 , or if W̄+

1 ≤W1 < 0 and ρ > 1, the arbitrageur has not enough

capital to hold any position at time 1.

2. If W̄+
1 ≤ W1 < 0 and ρ ≤ 1, the arbitrageur can hold only long positions in

F1 =
[
X+

1 , X̄1

]
. The optimum depends on the initial wealth and the initial

position in the asset x0:

� If x0 < −s, the arbitrageur’s preferred position is a short one, thus his

constraint binds downwards (Xu
1 < 0 < X+

1 < X̄1). It is optimal to

hold X+
1 .

� If −s ≤ x0 < −sρ, the constraint binds downwards (0 < Xu
1 < X+

1 <

X̄1) if W1 <
1
2
aσ2(x2

0 − s2) + ē(x0 + s). In this case, it is optimal for

the arbitrageur to hold X+
1 . Otherwise, the arbitrageur can hold his

preferred position Xu
1 .

� If x0 ≥ −sρ, then the arbitrageur’s constraint binds upwards (0 <

X+
1 < X̄1 < Xu

1 ) if W1 <
1
2
aσ2(x2

0 − s2) + ē(x0 + s). In this case, it is

optimal for the arbitrageur to hold X̄1. Otherwise, the arbitrageur can

hold his preferred position Xu
1 .

3. If W1 ≥ 0, then the arbitrageur can choose long and short positions in the

segment F1 =
[
X1, X̄1

]
, with X1 < 0 and X̄1 > 0. The optimum depends

on the initial wealth and the initial position in the asset x0:

� If x0 < −s, then Xu
1 < 0. If W1 ≥ 1

2
aσ2(x2

0 − s2) − ē(x0 + s), the

constraint is slack and the arbitrageur holds Xu
1 . Otherwise, the arbi-

trageur’s constraint binds downwards, and the arbitrageur chooses X1.

� If x0 ≥ −s, then

– If ρ ≥ 1, then if W1 ≥ 1
2
aσ2(x2

0−s2)+ ē(x0 +s) > 0, the constraint

is slack and the arbitrageur holds Xu
1 . If 0 ≤ W1 <

1
2
aσ2(x2

0 −
s2) + ē(x0 + s), the constraint binds upwards and the arbitrageur

holds X̄1.
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– If ρ < 1, then

* if −s ≤ x0 < −sρ, the constraint is slack, the arbitrageur

holds Xu
1 .

* if x0 ≥ −sρ, the arbitrageur holds Xu
1 if W1 ≥ 1

2
aσ2(x2

0 −
s2) + ē(x0 + s), and X̄1 otherwise.

Proof. See Internet Appendix.

Corollary 5 (Subgame spreads) Equilibrium spreads in the subgame are ∆u
1 =

aσ2(s− x0), ∆c̄
1 = aσ2s+ ē−

√
d+

1 , and ∆
c
1 = aσ2s− ē+

√
d−1 .

C Equilibrium with Slack Constraint at Time

1

In this section, I conjecture that the arbitrageur holds an unconstrained position

at time 1 and verify under which conditions it is optimal to do so. Here is the full

version of Proposition 4:

Proposition 13 (Equilibria with slack time-1 constraint) There exists three

thresholds ωu0 , ωu1 , and ωf , with ωf ≡ ωc 1ρ<7 + ω̂ 1ρ≥7, that define four regions

in terms of initial arbitrage capital:

1. In the first region, W0 ≥ max(ωu0 , ω
u
1 ), arbitrage capital is abundant, both

constraints are slack in equilibrium, and the arbitrageur holds his desired

position at time 0 and time 1 xu0,u1
0 and Xu0,u1

1 given in Proposition 2

(u0,u1)

2. In second region, where max(ωf ,min(ωu0 , ω
u
1 )) ≤ W0 < max(ωu0 , ω

u
1 ), there

are two cases:

� If ρ ≥ 7
10

, an equilibrium may exist, in which the arbitrageur’s con-

straint binds at time 0 and is slack at time 1 (c0,u1).

Namely, if Ω̃u1,u1
0 (xc0,u1

0 ) ≥ Ω̃u1,c̄1
0 (xd∗0 ), where

xd∗0 = arg max
x0∈D

c̄1
0

Ω̃u1,c̄1
0 (x0),
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the arbitrageur holds less than his desired position xu0,u1
0 at time 0 to

keep the constraint slack at time 1: xc0,u1
0 = min(x̂0, x̄0) < xu0,u1

0 , and

Xc0,u1
1 = Xu

1 (xc0,u1
0 ) =

s+x
c0,u1
0
2

. Otherwise, there is no equilibrium

with a slack constraint at time 1.

� If ρ < 7
10

, an equilibrium exists, where the constraint binds at time 0

but not at time 1 (c0,u1), with xc0,u1
0 = x̄0 < xu0,u1

0 , and Xc0,u1
1 =

Xu
1 (xc0,u1

0 ) = s+x̄0
2

.

3. In the third region, where max(0, ωf ) ≤ W0 < min(ωu0 , ω
u
1 ), the situation is

the same as in the second region with ρ ≥ 7
10

. The interval
[
ωf ,min(ωu0 , ω

u
1 )
)

is non-empty iff ρ ∈
[
0, 3− 2

5

√
30
)
∪
(
3− 2

5

√
30,∞

)
.

4. In the fourth region, 0 ≤ W0 < max(0, ωf ), there is little arbitrage capital,

and thus there is no equilibrium with a slack constraint at time 1 (no u1).

Proof. The proof relies on three main steps: i) I first write the arbitrageur’s

objective function and payoffs from deviating, assuming that hedgers anticipate

a slack constraint at time 1. The arbitrageur’s maximization involves choosing a

position satisfying a set of constraints. ii) I derive the sets of feasible positions and

possible deviations. These sets depend on the initial level of arbitrage capital W0

and the risk benefit ratio ρ. iii) I determine the candidate equilibrium strategy and

verify conditions under which it is possible/ optimal for the arbitrageur to follow

it.

C.1 Step 1: arbitrageur’s problem

Objective functions. Using the notations introduced in the main text, given

hedgers’ anticipations, the arbitrageur’s problem is to choose x0 (or equivalently

an action leading to state l = {u1, c̄1, c1} at time 1) to maximize expected utility:

Ωu1
0 = max (Ωu1,u1

0 ,Ωu1,c̄1
0 ,Ω

u1,c1
0 )
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Of course, x0 must also satisfy the financial constraint at t = 0. The value functions

Ωu1,l
0 associated to each action are defined as follows:

Ωu1,u1
0 = max

x0

Ω̃u1,u1
0 (x0) = W0 + x0∆u1

0 (x0) + Ωu1 (x0)

s.t. f+
0 (x0) ≥ 0 1x0≥0 + f−0 (x0) 1x0<0 ≥ 0

f+
1

(s+ x0

2

)
1x0≥−s + f−1

(s+ x0

2

)
1x0<−s ≥ 0

W1(x0) = W0 + 2aσ2x0(s− x0) ≥ 0

The objective function Ω̃u1,u1
0 relies on two premises: i) the continuation value

Ωu1 (x0) ≡ 1
2
aσ2(s−x0)2 assumes that the arbitrageur chooses his preferred position

at time 1, and ii) the spread schedule, based on the price schedule in each market,

requires that hedgers correctly anticipate that the arbitrageur’s time 1 constraint

is slack in equilibrium. Given equation 13, the spread schedule is ∆u1
0 (x0) =

E0 [∆u
1 (x0)] + 2aσ2(s − x0) = 3aσ2(s − x0), since ∆u

1 (x0) = 2aσ2(s − Xu
1 ) =

aσ2(s− x0).

The first constraint ensures that the arbitrageur has enough capital to hold

a position x0 at time 0. The next constraint ensures that given the position es-

tablished at time 0, x0, the arbitrageur can indeed hold his preferred position

Xu
1 (x0) at time 1, be it a long or a short position. This requirement ensures that

the arbitrageur’s strategy is time-consistent. The arbitrageur’s ability to satisfy

the time-1 constraints requires positive wealth at time 1, which yields the last

constraint. Otherwise, Proposition 12 shows that the arbitrageur’s constraint is

necessarily binding at time 1. Next, I consider the payoff from deviating towards

an upward-binding constraint at time 1.

Ωu1,c̄1
0 = max

x0

Ω̃u1,c̄1
0 (x0) = W0 + x0∆0(x0)u1 + Ωc̄1(x0)

s.t. f+
0 (x0) ≥ 0 1x0≥0 + f−0 (x0) 1x0<0 ≥ 0

f+
1

(s+ x0

2

)
1x0≥−s + f−1

(s+ x0

2

)
1x0<−s < 0

W1(x0) = W0 + 2aσ2x0(s− x0) ≥ 0

The objective function includes a different continuation value at time 1. The

first constraint ensures that the position is feasible at time 0. The next constraint
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ensures that, given x0, the arbitrageur can indeed not choose his preferred position

at time 1 (time consistency). The last constraint requires that wealth be positive

at time 1, as Proposition 12 requires. Finally, I define the payoff from deviating

towards a downward-binding constraint at time 1:

Ω
u1,c1
0 = max

x0∈[−s,−sρ[∪]−∞,−s]
Ω̃
u1,c1
0 (x0) = W0 + x0∆u1

0 (x0) + Ω
c
1(x0)

s.t. f+
0 (x0) ≥ 0 1x0≥0 + f−0 (x0) 1x0<0 ≥ 0

f+
1

(s+ x0

2

)
1x0≥−s + f−1

(s+ x0

2

)
1x0<−s < 0

W1(x0) < 0 if x0 ∈ [−s,−sρ[, or,

0 ≤W1(x0) <
1

2
aσ2(x2

0 − s2)− ē(x0 + s) if x0 < −s

The payoff is built as in the previous case. However, the last constraint requires

negative wealth and x0 must be chosen in the interval [−s,−sρ[, as this is necessary

for the constraint to bind downwards at time 1, by Proposition 12.

Feasible positions. Suppose first that the arbitrageur chooses x0 leading to u1.

This position must satisfy the following set of constraints. First, the position must

satisfy the constraint at time 0, so x0 ∈ F0
0 , where F0

0 = {x0 < 0 | f−0 (x0) ≥ 0} ∪
{x0 ≥ 0 | f+

0 (x0) ≥ 0}. Second, it must be such that at time 1, the arbitrageur can

hold his preferred position. I denote F1
0 the interval determined by the constraints

at time 1. It is convenient to write F1
0 as the union of two intervals, one for long

and one for short unconstrained positions at time 1, i.e. F1
0 = F1−

0 ∪ F1+
0 , where

F1−
0 = {x0 < −s | f−1

(
s+x0

2

)
≥ 0} and F1+

0 = {x0 ≥ −s | f+
1

(
s+x0

2

)
≥ 0}.

Finally, the positive wealth constraint defines a set Fpw0 = {x0 | W1(x0) = W0 +

2aσ2x0(s − x0) ≥ 0}. The intersection of these sets thus defines a set of feasible

positions

Fu0 = F0
0 ∩ Fu1

0 ∩ F
pw
0

Therefore we can rewrite Ωu1,u1
0 simply as

Ωu1,u1
0 = max

x0∈Fu0
W0 + x0∆0(x0) + Ωu1

1 (x0)
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Similarly, we can define the sets Dc̄10 and Dc10 of positions leading to upward -or

-downward-binding constraints at time 1. I derive these sets in detail in Section

C.2.2 below. Using these notations, we can also rewrite Ωu1,c̄1
0 and Ω

u1,c1
0 as

follows:

Ωu1,c̄1
0 = max

x0∈D
c̄1
0

Ω̃u1,c̄1
0 (x0) = W0 + x0∆0(x0) + Ωc̄1(x0)

Ω
u1,c1
0 = max

x0∈D
c1
0

Ω̃
u1,c1
0 (x0) = W0 + x0∆0(x0) + Ω

c
1(x0)

C.2 Step 2: Feasible positions and possible deviations

at t = 0

Definition 2 (Time-0 Boundary Positions)

� Let x0 denote the smallest root of f−0 (x0) = 0 and x̄0 the largest root of

f+
0 (x0) = 0, if they exist.

� Let x̂0 and x̂−0 denote the largest and smallest roots, if they exist, of f+
1

(
s+x0

2

)
=

0, for all x0 ≥ −s.

� Let x0 denote the smallest root of f−1
(
s+x0

2

)
= 0, for x0 < −s.

� Let z0 and z̄0 denote the smallest and largest roots of W1 = W0 +2aσ2x0(s−
x0) = 0.

C.2.1 Feasible positions

Note: I use the convention that if a > b, then [a, b] = ∅.

Proposition 14 (Interval Fu0 )

� If 0 ≤ ρ < 1 or if 1 ≤ ρ < 7, then

Fu0 =


∅ if W0 < ωc[
max(x̂−0 , x0),min(x̂0, x̄0)

]
if ωc ≤W0 < ω̂[

x0,min(x̂0, x̄0)
]

if ω̂ ≤W0 < ω̂ + ω∗[
max(x̂−0 , x0),min(x̂0, x̄0)

]
if W0 ≥ ω̂ + ω∗
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� If ρ ≥ 7, then Fu0 =


∅ if W0 < ωc

∅ if ωc ≤W0 < ω̂[
x0,min(x̂0, x̄0)

]
if ω̂ ≤W0 < ω̂ + ω∗[

max(x̂−0 , x0),min(x̂0, x̄0)
]

if W0 ≥ ω̂ + ω∗

Proof. See Internet Appendix.

C.2.2 Possible deviations

Lemma 3 Suppose hedgers anticipate a slack constraint at time 1. Deviations

from the arbitrageur leading to a downward-binding constraint at time 1 are either

not feasible or dominated at time 0.

Note: recall that max(x, y) = x ∨ y and min(x, y) = x ∧ y.

Lemma 4 Suppose hedgers anticipate a slack constraint at time 1. Deviations

from the arbitrageur leading to an upward-binding constraint at time 1 must belong

to the set Dc̄10 , given by

If ρ < 1,

Dc̄10 =


[x0, x̄0] if W0 < ωc

[x0,max(x̂0, x̄0)) ∪ (min(x̂0, x̄0), x̄0] if ωc ≤W0 < ω̂

(min(x̂0, x̄0), x̄0] if ω̂ ≤W0 < ω̂ + 4ē2

aσ2[
(x0 ∨ −sρ), (x0 ∨ x̂

−
0 )
)
∪ ((x̂0 ∧ x̄0), x̄0] if W0 ≥ ω̂ + 4ē2

aσ2

If 1 ≤ ρ < 7,

Dc̄10 =


[x0, x̄0] if W0 < ωc

[x0,max(x̂0, x̄0)) ∪ (min(x̂0, x̄0), x̄0] if ωc ≤W0 < ω̂

(min(x̂0, x̄0), x̄0] if ω̂ ≤W0 < ω̂ + ω∗[
−s,max(−s, x̂−0 )

)
∪ (min(x̂0, x̄0), x̄0] if W0 ≥ ω̂ + ω∗

If ρ ≥ 7,

Dc̄10 =


[x0, x̄0] if W0 < ωc or ωc ≤W0 < ω̂

(min(x̂0, x̄0), x̄0] if ω̂ ≤W0 < ω̂ + ω∗[
−s,max(−s, x̂−0 )

)
∪ ((x̂0 ∧ x̄0), x̄0] if W0 ≥ ω̂ + ω∗

The proofs of these Lemmata are in Internet Appendix.
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C.3 Step 3: Equilibrium determination

C.3.1 Value functions and candidate equilibrium strategy

Given the results in Proposition 12 and Corollary 5, we can define the objective

functions as follows:

Ω̃u1,u1
0 (x0) =W0 + x0∆u1

0 (x0) + Ωu1 (x0) = W0 + 3aσ2x0(s− x0) +
aσ2

2
(s− x0)2

Ω̃u1,c̄1
0 (x0) =W0 + x0∆u1

0 (x0) + Ωc̄1(x0) = W0 + x0∆u1
0 (x0) + x̄1(x0)∆c̄

1(x0)

Ω̃
u1,c1
0 (x0) =W0 + x0∆u1

0 (x0) + Ω
c
1(x0) = W0 + x0∆u1

0 (x0) + x1(x0)∆
c
1(x0)

We can now determine under which conditions the arbirtrageur’s preferred position

satisfies the constraints at time 0 and time 1.

Proposition 15 (Candidate equilibrium strategy u0,u1) Let ωu0 and ωu1 de-

note two wealth thresholds, with ωu0 = 4
5
sē − 12

25
aσ2s2 and ωu1 = 7

5
sē − 9

10
aσ2s2,

and let ωu = max(ωu0 , ω
u
1 ).

1. If W0 ≥ ωu, then the arbitrageur can hold his preferred positions at time 0

and time 1 xu0,u1
0 = 2

5
s and Xu0,u1

1 = 7
10
s

2. The arbitrageur’s expected utility is denoted Ωu0,u1
0 = Ω̃u1,u1

0 (xu0,u1
0 ).

3. For any x0 such that Ω̃c̄1(x0) exists, Ω̃u1,c̄1
0 (x0) ≤ Ω̃u1,u1

0 (x0).

Proof. The arbitrageur’s objective function Ω̃u1,u1
0 admits a global maximum at

xu0,u1
0 given in the Proposition. Substituting xu0,u1

0 into Xu
1 (Definition 2) gives

Xu0,u1
1 . Since xu0,u1

0 > 0, the relevant constraints are f+
0 and f+

1 . Thus, to

determine the thresholds ωu0 , ωu1 , it suffices to substitute xu0,u1
0 into f+

0 (x0) ≥ 0

and f+
1

(
s+x0

2

)
≥ 0 and rearrange the terms. The last point follows from the fact

that for any x0 such that Ωc̄1(x0) exists, Ωc̄1(x0) ≤ Ωu1 (x0), and from the definition

of Ω̃u1,c̄1
0 and Ω̃u1,u1

0 .

C.3.2 Capital and risk benefit thresholds

Wealth thresholds. Given our analysis so far, we must order the following wealth

thresholds: ωu0 , ωu1 , ωc, ω̂, ω̂ + ω∗ and ω̂ + 4ē2

aσ2 . It is easy to see that ω̂ + ω∗ is

larger than ωu0 , ωu1 , ωc, and ω̂. Similarly, when ρ < 1, ω̂ + 4ē2

aσ2 is larger than ωu0 ,

ωu1 , ωc, and ω̂.
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Lemma 5 (Wealth Threshold Ordering for u0, u1 & c0, u1 Equilibrium) The

order of thresholds is given in Table 2.

Proof. By direct calculation using threshold definition.

Table 2: Wealth Threshold Order for Equilibrium with Slack Time-1 Con-
straint

Treshold Greater than Condition Value

ωu0 ≡ 4
5 sē−

12
25aσ

2s2 ωu1 ρ < 7
10

ωc ρ < 3− 2
5

√
30 or ρ > 3 + 2

5

√
30 0.809 — 5.19

0 ρ ≥ 3
5

ω̂ ρ > 28
5

ωu1 ≡ 7
5 sē−

9
10aσ

2s2 ωc for all ρ > 0

0 ρ > 9
14 0.64

ω̂ ρ > 7
2

ωc ≡ ωu1 − ē2

10aσ2 0 7− 2
√

10 ≤ ρ ≤ 7 + 2
√

10 0.675—13.32

ω̂ never, equality for ρ = 7

ω̂ ≡ 4aσ2s2 0 for any ρ > 0

Releveant ρ thresholds. The relevant thresholds from Table 2 and previous

results are 3
5
, 9

14
, 7 − 2

√
10, 7

10
,3- 2

5

√
30, 1, 7

2
, 3 + 2

5

√
30, 28

5
, 7, 7 + 2

√
10. If

ρ ≥ 7 − 2
√

10, wealth thresholds not necessarily positive but are always in the

same order. Thus, for simplicity, I treat all the cases with ρ < 7 − 2
√

10 as one

case. Similarly, I ignore the case ρ > 7 + 2
√

10, which determines the positivity

of ωc, but does not affect the order of the thresholds. However, I add 1 and 7,

which do not affect the order of tresholds, but affect the set of feasible positions

or deviations.

C.3.3 Equilibrium case by case

Equilibrium determination follows from combining the results above. The details

are available in the Internet Appendix.
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Table 3: ρ and Wealth Intervals for Equilibrium with Slack Time-1 Con-
straint

Case ρ interval Wealth ordering
1 0 ≤ ρ < 7

10 0 < (ωc, 0)+ < (ωu1 , 0)+ < (ωu0 , 0)+ < ω̂

2 7
10 ≤ ρ < 3− 2

5

√
30 0 < ωc < ωu0 < ωu1 < ω̂

3 3− 2
5

√
30 ≤ ρ < 1 0 < ωu0 < ωc < ωu1 < ω̂

4 1 ≤ ρ < 7
2 0 < ωu0 < ωc < ωu1 < ω̂

5 7
2 ≤ ρ < 3 + 2

5

√
30 0̄ < ωu0 < ωc < ω̂ < ωu1

6 3 + 2
5

√
30 ≤ ρ < 28

5 0 < ωc < ωu0 < ω̂ < ωu1
7 28

5 ≤ ρ < 7 0 < ωc < ω̂ < ωu0 < ωu1
8 7 ≤ ρ 0 < ωc < ω̂ < ωu0 < ωu1

C.4 Equilibrium spreads

Corollary 6 (Equilibrium spreads in the u1 equilibria)

In the u0, u1 and c0, u1 equilibria, spreads are

∆u0,u1
0 =

9

5
aσ2s, and ∆u0,u1

1 =
3

5
aσ2s (15)

∆c0,u1
0 = 3aσ2(s− xc0,u1

0 ),

and ∆c0,u1
1 = 2aσ2(s−Xu

1 (xc0,u1
0 )) = aσ2(s− xc0,u1

0 ) (16)

Proof. Equilibrium spreads follow from substituting the equilibrium quantity

(either xu0,u1
0 or xc0,u1

0 ) into the spreads schedule (13)-(12).

D Equilibrium with Binding Time-1 Constraint

Here is the full result:

Proposition 16 (Equilibria with binding time-1 constraint)

� There are no equilibria in which the arbitrageur’s constraint binds downwards

at time 1.

� There are equilibria in which the arbitrageur’s constraint binds upwards at

time 1, as follows. Let ωp0 ≡ sē − 1
2
aσ2s2 and ωp1 ≡ 3

2
sē − 7

8
aσ2s2 denote

two thresholds.
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1. If 0 ≤ ρ < 3
4

, then ωp1 < ωp0 , and there are three regions in terms of

arbitrage capital:

(a) In the first region, with 0 ≤ W0 < max(0, ωf ), the arbitrageur’s

constraint binds upwards at time 0 and time 1 in equilibrium (c0, c1

equilibrium). This equilibrium is the same as in the constrained

competitive case, for a given level of capital. The arbitrageur holds

xc0,c10 = x̄0, and Xc0,c1
1 = X̄1(x̄0).

(b) In the second region, with max(0, ωf ) ≤ W0 < max(0, ωp1), there

are two cases

i. If max(x̂0, x̄0) = x̂0, there is no equilibrium in which the ar-

bitrageur’s constraint binds upwards at time 1 (no c1).

ii. Otherwise, both constraints bind in equilibrium as in (a) iff

Ωc0,c10 ≥ Ωc̄1,u1
0 (xd∗0 ), where xd∗0 = arg maxx0∈Du0 Ωc̄1,u1

0 (x0).

(c) In the third region, with max(0, ωp1) ≤ W0 < ωp0 or ωp0 ≤ W0,

there is no equilibrium in which the arbitrageur’s constraint binds

upwards at time 1 (no c1).

2. If ρ ≥ 3
4

, then ωp1 > ωp0 , and there are four regions in terms of arbitrage

capital:

(a) In the first region, with 0 ≤W0 < ωf , the equilibrium is c0, c1, as

in case 1a.

(b) In the second region, with ωf ≤ W0 < ωp0 , the equilibrium is the

same as in 1b.

(c) In the third region, with ωp0 ≤W0 < ωp1 , there is an equilibrium in

which the abritrageur’s constraint binds upwards at time 1 and is

slack at time 0 (u0, c1 equilibrium) iff Ωu0,c1
0 ≥ Ωc̄1,u1

0 (xd∗0 ), where

xd∗0 = arg maxx0∈Du0 Ωc̄1,u1
0 (x0).

(d) In the fourth region, with ωp1 ≤W0, is no equilibrium in which the

arbitrageur’s constraint binds upwards at time 1 (no c1), as in 1c.

The proof is based on the same three steps as in the previous case.
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D.1 Arbitrageur’s problem

Suppose hedgers anticipate an upward-binding constraint at time 1. Let Ωc̄1,l0 de-

note the arbitrageur’s expected utility when hedgers anticipate an upward-binding

constraint, and the arbitrageur chooses a trade x0 subject to the t = 0 con-

straint, leading to state l ∈ {c̄1, u1, c1} at time 1, i.e. an upward-binding, slack,

or downward-binding constraint at time 1. The maximization problem of the ar-

bitrageur is thus as follows.

Ωc̄10 = max (Ωc̄1,c̄10 ,Ω
c̄1,c1
0 ,Ωc̄1,ū1

0 ) (17)

The expected utilities associated with state l are defined as follows:

Ωc̄1,c̄10 = max
x0

Ω̃c̄1,c̄10 = W0 + x0∆c̄1
0 (x0) + Ωc̄1(x0)

s.t. f+
0 (x0) 1x0≥0 + f−0 (x0) 1x0<0 ≥ 0

f+
1

(s+ x0

2

)
1x0≥−s + f−1

(s+ x0

2

)
1x0<−s < 0

W1 = W0 + 2aσ2x0(s− x0) ≥ 0

where Ωc̄1(x0) = 2aσ2x̄1(x0)(s − X̄1(x0)). The second constraint ensures that in

equilibrium, the arbitrageur cannot hold his preferred position because his con-

straint binds upwards at time 1. The last constraint ensures that equilibrium

wealth is positive at time 1, which is required by Proposition 12. Next, I consider

the expected utlity from deviations leading to a slack constraint at time 1.

Ωc̄1,u1
0 = max

x0

Ω̃c̄1,u1
0 = W0 + x0∆c̄1

0 (x0) + Ωu1 (x0)

s.t. f+
0 (x0) 1x0≥0 + f−0 (x0) 1x0<0 ≥ 0

f+
1

(s+ x0

2

)
1x0≥−s + f−1

(s+ x0

2

)
1x0<−s ≥ 0

W1 = W0 + 2aσ2x0(s− x0) ≥ 0

The difference with the previous problem is that the constraints at time 1 are slack,

leading to continuation value Ωu1 at time 1. Finally, here is the expected utlity from
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deviations leading to a downward-binding constraint at time 1.

Ωc̄1,u1
0 = max

x0∈[−s,−sρ[∪]−∞,−s]
Ω̃
c̄1,c1
0 = W0 + x0∆c̄1

0 (x0) + Ω
c
1(x0)

s.t. f+
0 (x0) 1x0≥0 + f−0 (x0) 1x0<0 ≥ 0

f+
1

(s+ x0

2

)
1x0≥−s + f−1

(s+ x0

2

)
1x0<−s < 0

W1(x0) < 0 if x0 ∈ [−s,−sρ[, or,

0 ≤W1(x0) <
1

2
aσ2(x2

0 − s2)− ē(x0 + s) if x0 < −s

D.2 Set of feasible positions and possible deviations at

t = 0

Lemma 6 There is no equilibrium with a downward-binding constraint at time 1.

Lemma 7 Let F c̄10 denote the set of feasible positions with upward-binding con-

straint at time 1, and Du1
0 the set of deviations leading to a slack constraint at time

1. We have: F c̄10 = Dc̄10 , and Du1
0 = Fu0 .

The proofs of these Lemmata are in Internet Appendix.

D.3 Equilibrium determination

D.3.1 Value functions and candidate equilibrium

Assume that hedgers anticipate an upward-binding constraint at time 1. We have

ruled out equilibria with downward-binding constraints. Using Proposition ?? and

Corollary 5, the value functions in the remaining cases (l = {c̄1, u1, }) are re

Ωc̄1,c̄10 (x0) = W0 + x0∆c̄1
0 (x0) + Ωc̄1(x0) = W0 + x0∆c̄1

0 (x0) + x̄1(x0)∆c̄
1(x0)

Ωc̄1,u1
0 (x0) = W0 + x0∆c̄1

0 (x0) + Ωu1 (x0) = W0 + x0∆c̄1
0 (x0) + xu1 (x0)∆u

1 (x0)

Proposition 17 (Candidate u0, c1 equilibrium strategy) Let ωp0 ≡ sē− 1
2
aσ2s2

and ωp1 ≡ 3
2
sē− 7

8
aσ2s2 denote two wealth thresholds.

1. The function Ω̃c̄1,c̄10 admits a maximum xu0,c1
0 iff W0 ∈ [ωp0 , ω

p
1), where

xu0,c1
0 = s

2
, and Xu0,c1

1 = X̄1(xu0,c1
0 ).
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2. The interval [ωp0 , ω
p
1) is non-empty iff ρ > 3

4
.

3. At this candidate equilibrium strategy, the arbitrageur’s utility is

Ωu0,c1
0 ≡ Ω̃c̄1,c̄10 (xu0,c1

0 ) =
ē

aσ2

[
aσ2s− ē+

√
d+

1 (xu0,c1
0 )

]
,

where d+
1 (xu0,c1

0 ) = 2aσ2W0 + 2a2σ4s2 + ē2 − 2aσ2sē

4. For any x0 such that Ω̃c̄1(x0) exists, Ω̃c̄1,c̄10 (x0) ≤ Ω̃c̄1,u1
0 (x0).

Proof. Let’s first rewrite the objective function Ω̃c̄1,c̄10 by substituting for ∆c̄1
0 and

Ωc̄1.

W0 + x0∆c̄1
0 (x0) + Ωc̄1(x0) (18)

= W0 + 2aσ2x0(s− x0) + x0∆c̄
1(x0) + (X̄1(x0)− x0)∆c̄

1(x0)

= W0 + 2aσ2x0(s− x0) + X̄1(x0)∆c̄
1(x0)

= W0 + 2aσ2x0(s− x0)︸ ︷︷ ︸
W1(x0)

+

(
aσ2s+ ē−

√
d+

1 (x0)

)(
aσ2s− ē+

√
d+

1 (x0)

)
2aσ2

The last line follows from substituting for X̄1 and ∆c̄
1. Then developing the nu-

merator in the last term, substituting for d+
1 and simplifying, we get:

W0 + x0∆c̄1
0 (x0) + Ωc̄1(x0) =

ē

aσ2

[
aσ2s− ē+

√
d+

1 (x0)

]
Therefore maximizing Ω̃c̄1,c̄10 is equivalent to maximizing d+

1 subject to the con-

straint, which boils down to maximizing W1(x0) = W0 + 2aσ2x0(s − x0), subject

to constraints. The solution is xu0,c1
0 = s

2
if f+

0 ( s
2
) ≥ 0 and f+

1 ( 3s
4

) < 0. The first

condition requires W0 ≥ ωp0 , and the second W0 < ωp1 .

These conditions define a non-empty interval iff ωp0 < ωp1 , which is equivalent to

ρ > 3
4
.

Substituting xu0,c1
0 into W1 yields the equilibrium utility Ωu0,c1

0 .

Finally, since for any x0 such that Ωc̄1(x0) exists, Ω̃c̄1(x0) ≤ Ω̃u1 (x0), we also have,
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by definition of the value functions Ωc̄1,c̄10 and Ωc̄1,u1
0 , Ω̃c̄1,c̄10 (x0) ≤ Ω̃c̄1,u1

0 (x0).

Corollary 7 If ρ > 3
4

and W0 < ωp0 , or if ρ ≤ 3
4

and W0 < min(ωp0 , ω
p
1), the can-

didate equilibrium strategy is xc0,c10 = x̄0, and Xc0,c1
1 = X̄1(x̄0). At this strategy,

the arbitrageur’s expected utility is Ωc0,c10 ≡ Ω̃c̄1,c̄10 (x̄0).

Proof. Follows immediately from Proposition 17.

Note that this strategy is the same as the constrained equilibrium of the competitive

case (for a given W0), but with different wealth thresholds.

D.3.2 Relevant thresholds

Wealth thresholds. Given our analysis of feasible positions and deviations, the

relevant wealth thresholds are ωc, ωp0 , ωp1 , ω̂, ω̂ + ω∗, and ω̂ + 4ē2

aσ2 .

Lemma 8 (Wealth Tresholds Ordering in u0, c1 & c0, c1 Equilibrium) The

order of the wealth thresholds is given in Table 4.

Table 4: Wealth Threshold Order for Equilibrium with Binding Time-1 Con-
straint

Treshold Greater than Condition Numerical value

ωp0 ≡ sē−
1
2aσ

2s2 ωp1 ρ < 3
4

ωc for any ρ > 0 (equality if ρ = 2)

0 ρ ≥ 1
2

ω̂ ρ > 9
2

ωp1 ≡
3
2 sē−

7
8aσ

2s2 ωc for all ρ > 0

0 ρ > 7
12 0.583

ω̂ ρ > 13
4

ωc ≡ ωu1 − ē2

10aσ2 0 7− 2
√

10 ≤ ρ ≤ 7 + 2
√

10 0.675 - 13.32

ω̂ never, equality for ρ = 7

ω̂ ≡ 4aσ2s2 0 for any ρ > 0

Relevant risk benefit ratio thresholds. The relevant thresholds for ρ are thus,

in ascending order, 1
2
, 7

12
, 7− 2

√
10, 3

4
, 1, 13

4
, 9

2
, 7 and 7 + 2

√
10. The thresholds

1 and 7 correspond to a change in F c̄10 . The ordering of wealth thresholds per
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ρ-interval is given in Table 5. Since the positivity of the wealth thresholds does

not affect the equilibrium outcome, I group all the cases where ρ < 3
4

together.

Similarly, I do not distinguish the case with ρ ≥ 7 + 2
√

10, as it does not affect the

order.

Table 5: ρ and Wealth Intervals for Equilibrium with Binding Time-1 Con-
straint

Case ρ interval Wealth ordering
1 ρ < 3

4 (ωc, 0)+ < (ωp1 , 0)+ < (ωp0 , 0)+ < ω̂
2 3

4 ≤ ρ < 1 0 < ωc < ωp0 < ωp1 < ω̂
3 1 ≤ ρ < 13

4 0 < ωc < ωp0 < ωp1 < ω̂
4 13

4 ≤ ρ <
9
2 0 < ωc < ωp0 < ω̂ < ωp1

5 9
2 ≤ ρ < 7 0 < ωc < ωp0 < ω̂ < ωp1

6 7 ≤ ρ (ωc, 0)+ < ω̂ < ωp0 < ωp1

D.3.3 Equilibrium case by case

Equilibrium determination follows from combining the results above. The details

are available in the Internet Appendix.

D.4 Equilibrium spreads

Corollary 8 (Equilibrium Spreads in the c̄1 equilibria) In the u0, c1 and c0, c1

equilibria, spreads are

∆u0,c1
0 =2aσ2s+ ē−

√
d+

1 (xu0,c1
0 ), ∆u0,c1

1 = aσ2s+ ē−
√
d+

1 (xu0,c1
0 ) (19)

∆c0,c1
0 =2(aσ2s+ ē)−

√
d+

0 (xc0,c10 )−
√
d+

1 (xc0,c10 ),

∆c0,c1
1 = aσ2s+ ē−

√
d+

1 (xc0,c10 )

Proof. Follows from substituting equilibrium positions in the spread schedules

(13)-(12).
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E Coexistence

Proposition 18 (u1 and c1 Equilibria May Coexist) � There is a unique

equilibrium when arbitrage capital is either sufficiently low or sufficiently

high:

– If 0 ≤W0 < max(0, ωf ), the unique equilibrium is c0, c1.

– If W0 ≥ max(ωu0 , ω
u
1 , ω

p
1), the unique equilibrium is u0,u1.

� When capital is intermediate, i.e. if max(0, ωf ) ≤ W0 < max(ωu0 , ω
u
1 , ω

p
1),

multiple equilibria may coexist depending on the level of ρ:

– For 0 ≤ ρ < 7
10

, two equilibria may coexist:

* If ωf ≤W0 < max(ωu0 , ω
u
1 ), c0,u1 may coexist with c0, c1.

* If max(ωu0 , ω
u
1 ) ≤W0 < ωp1 , u0,u1 may coexist with c0, c1.

In the special case where 0 ≤ ρ < 79
140

and ωp1 ≤W0 < ωu0 , c0,u1 is the

unique equilibrium, with xc0,u1
0 = x̄0.

– For 7
10
≤ ρ < 3

4
, two equilibria may coexist: u0,u1 with c0, c1, or

c0,u1 with c0, c1.

– For ρ ≥ 3
4

, ωu0 < ωu1 < ωp1 , and

* If ωf ≤W0 < min(ωu1 , ω
p
0), c0,u1 may coexist with c0, c1.

* If ωp0 ≤W0 < ωu1 , c0,u1 may coexist with u0, c1.

* If ωu1 ≤W0 < max(ωu1 , ω
p
0), u0,u1 may coexist with c0, c1.

* If max(ωp0 , ω
u
1 ) ≤W0 < ωp1 , u0,u1 may coexist with u0, c1.

Proof. See Internet Appendix.

F Welfare

F.1 Proposition 7

Proof. Price effects. Given the definition of d+
1 (x0) and the spread ∆u0,c1

t given in

Proposition 17 and Corollary 8, and the definition of ∆u0,u1
t given in Proposition
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2 we get: ∆u0,c1
1 < ∆u0,u1

1 ⇔ 2
5
aσ2s + ē <

√
d+

1 (xu0,c1
0 ). Raising both sides to

the square and rearranging terms gives after simplication

∆u0,c1
1 < ∆u0,u1

1 ⇔ W0 > r1 ≡
7

5
sē− 71

50
aσ2s2

Proceeding in the same fashion for time-0 spreads gives:

∆u0,c1
0 < ∆u0,u1

0 ⇔ W0 > r0 ≡
6

5
sē− 37

25
aσ2s2

Clearly, r0 < r1, so ∆u0,c1
1 < ∆u0,u1

1 ⇒ ∆u0,c1
0 < ∆u0,u1

0 . I then determine the

position of the thresholds r0 and r1 relative to 0, ωu0 , ωu1 , ωp0 , and ω̄u0 . The results

are given in Table 6.

Table 6: Thresholds for price effects in Proposition 7

Threshold Lower than Interval Threshold Lower than Interval
r1 < 0 ρ < 71

70 r0 < 0 ρ < 37
30

< ωu1 always < ωu0 ρ < 5
2

< ωp1 always < ωu1 always
< ωp0 ρ < 23

10 < ωp0 ρ < 49
10

< ωu0 ρ < 47
30 < ωp1 always

Further, from Proposition 17, ωp0 < ωp1 iff ρ > 3
4
, so we only need to consider

this region. The potential coexistence region is determined by the position of ρ

relative to 1 (Proposition 18). Thus, the relevant thresholds for ρ are 3
4
, 1, 47

30
, 23

10
,

5
2
, and 49

10
(ignoring the positivity constraints for r0 and r1). Therefore, there are

six cases:

1. If 3
4
≤ ρ < 1, then r0 < r1 < ωu0 < ωu1 < ωp0 < ωp1 . The potential coexistence

region for this interval is [ωp0 , ω
p
1 [. Thus, if the u0, u1 and u0, c1 equilibria coexist,

then W0 ≥ max(r0, r1), so ∆u0,c1
t < ∆u0,u1

t .

2. If 1 ≤ ρ < 47
30

, then r0 < r1 < ωu0 < ωp0 < ωu1 < ωp1 . The potential

coexistence region is now [ωu1 , ω
p
1 [. If equilibria coexist, then W0 ≥ max(r0, r1), so

∆u0,c1
t < ∆u0,u1

t . The remaining cases are the same as case 2:

3. If 47
30
≤ ρ < 23

10
, then r0 < ωu0 < r1 < ωp0 < ωu1 < ωp1 . 4. If 23

10
≤ ρ < 5

2
, then

r0 < ωu0 < ωp0 < r1 < ωu1 < ωp1 . 5. If 5
2
≤ ρ < 49

10
, then ωu0 < r0 < ωp0 < r1 < ωu1 <

ωp1 . 6. If 49
10
≤ ρ, then ωu0 < ωp0 < r0 < r1 < ωu1 < ωp1 . Thus, if the two equilibria
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coexist, spreads are always smaller in the u0, c1 equilibrium.

Hedgers’ welfare. Since E0(p1)−p0 = 1
2
(∆0−∆1) and E0(p2−p1) = 1

2
∆1, we can

rewrite equation (7) in Lemma 2 as

U0 =
(∆0 −∆1)2 + ∆2

1

8aσ2
− s

2
∆0 (20)

The first term represents hedgers’ capital gains on their time 0 and time 1 positions.

The second term represents the total cost of sharing risk at a discount relative to

the fundamental value (the expected value). Equation (20) gives hedgers’ welfare

in market A. Market B is symmetric. From (20), we get:

Uu0,c1
0 > Uu0,u1

0 (21)

⇔ (∆u0,c1
0 −∆u0,c1

1 )2 − (∆u0,u1
0 −∆u0,u1

1 )2 + (∆u0,c1
1 )2 − (∆u0,u1

1 )2

> 4aσ2s(∆u0,c1
0 −∆u0,u1

0 )

Using (19) and Proposition 17, we get ∆u0,c1
0 −∆u0,c1

1 = aσ2s, ∆u0,u1
0 −∆u0,u1

1 =
3
5
aσ2s, thus condition (21) becomes

11

5
a2σ4s2 + 2ē2 + 2aσ2W0 − 2(aσ2s+ ē)

√
d+

1 (xu0,c1
0 )

> 4aσ2s

[
1

5
aσ2s+ ē−

√
d+

1 (xu0,c1
0 )

]
Rearranging the terms, we can rewrite condition (21) as

aσ2(W0 − ωh) > (ē− aσ2s)

√
d+

1 (xu0,c1
0 ), with ωh ≡ 2sē− 7

10
aσ2s2 − ē2

aσ2 (22)

I then place ωh relative to 0, ωu0 , ωu1 , ωp0 , and ωp1 : see Table 7. Since the interval

of interest is ρ ≥ 3
4
, the only relevant thresholds are 3+

√
29

10
(≈ 0.88), 3

5
+
√

14
10

(≈ 0.97), 1 and 1 +
√

1.2
2

. I add the threshold 1, as it determines the region of

potential coexistence. We have thus five cases:

1. If 3
4
≤ ρ < 3+

√
29

10
, then 0 < ωu0 < ωu1 < ωh < ωp0 < ωp1

2. If 3+
√

29
10

≤ ρ < 3
5

+
√

14
10

, then 0 < ωu0 < ωh < ωu1 < ωp0 < ωp1

3. If 3
5

+
√

14
10
≤ ρ < 1, then 0 < ωh < ωu0 < ωu1 < ωp0 < ωp1

4. If 1 ≤ ρ < 1 +
√

1.2
2

, then 0 < ωh < ωu0 < ωp0 < ωu1 < ωp1
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Table 7: Thresholds for hedgers’ welfare in Proposition 7

Threshold Greater than Interval

ωh > 0 iff ρ ∈
]
1−

√
1.2
2 , 1 +

√
1.2
2

[
> ωu0 iff ρ ∈

]
3
5 −

√
14

10 ,
3
5 +

√
14

10

[
> ωu1 iff ρ ∈

]
0, 3+

√
29

10

[
> ωp0 iff ρ ∈

]
1
2 −

√
5

10 ,
1
2 −

√
5

10

[
> ωp1 iff ρ ∈

]
0, 1

4 +
√

95
20

[

5. If 1 +
√

1.2
2
≤ ρ, then ωh < 0 < ωu0 < ωp0 < ωu1 < ωp1

It is clear that when equilibria potentially coexist under the conditions of Propo-

sition 18, then W0 ≥ ωh. Therefore for any ρ ≥ 3
4
, the left-hand side of condition

(22) is positive. Instead, the right-hand side is negative for ρ < 1 and positive oth-

erwise. Thus, if 3
4
≤ ρ < 1, condition (22) holds and Uu0,c1

0 > Uu0,u1
0 . If ρ ≥ 1, we

can raise both sides of (22) to the square to determine the trade-off. Substituting

for d+
1 (xu0,c1

0 ), we can rewrite (22) as:

a2σ4W 2
0 − 2aσ2

[
aσ2ωh + (ē− aσ2s)2

]
W0 + (aσ2ωh)2

− (ē− aσ2s)2 [a2σ4s2 + (aσ2s− ē)2] > 0

Viewing the left-hand side as a polynomial in W0, we can calculate its discriminant.

After a few lines of algebra, we obtiain

4a2σ4(ē− aσ2s)2
[
2(ē− aσ2s)2 + 2aσ2ωh + a2σ4s2

]
> 0.
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After calculating the term in parenthesis, we can write the roots as

W(1) =
aσ2ωh + (ē− aσ2s)2 − (ē− aσ2s)

√
8
5
a2σ4s2

aσ2

= −
√

8

5
sē+

(
3

10
+

√
8

5

)
aσ2s2

W(2) =

√
8

5
sē+

(
3

10
−
√

8

5

)
aσ2s2

In the relevant region for coexistence, ρ ≥ 1; this implies that W(1) < W(2). It then

remains to determine the position of these roots relative to ωu1 and ωp1 . We have:

for any ρ, W(2) < ωp1 and W(2) < ωu1 . Thus W0 ∈ [ωu1 , ω
p
1 [ implies W0 > W(2),

which implies that Uu0,c1
0 > Uu0,u1

0 .

Arbitrageurs’ welfare. First, I show that Ωu0,c1
0 > Ωu0,u1

0 is equivalent to W0 ∈
[ωa, ωa

′
]. To see this, note that Ωu0,c1

0 > Ωu0,u1
0 is equivalent to (equilibrium

utilities are given in Propositions 2 and 17)

ē

√
d+

1 (xu0,c1
0 ) > aσ2(W0 − ωa), with ωa ≡ sē− 9

10
aσ2s2 − ē2

aσ2

Since W0 ≥ ωp0 > ωa0 , the right-hand side is positive. So raising both sides to the

square preserves the order. After some simple algebra, the condition becomes

−a2σ4W 2
0 + 2aσ2(ē2 + aσ2ωa)W0 + ē2 [a2σ4s2 + (aσ2s− ē)2]− (aσ2ωa)2 > 0

Viewing the left-hand side as a polynom in W0, and using the definition of ωa, we

compute the discriminant. After some simplification, we obtain 4
5
a4σ8s2ē2. Thus,

we can write the roots as

ωa =

(
1 +

1√
5

)
sē− 9

10
aσ2s2 > ωa

′
=

(
1− 1√

5

)
sē− 9

10
aσ2s2

This establishes the first point. Second, I compare the roots to the equilibrium

thresholds. Since 1 + 1√
5
< 3

2
, ωp1 > ωa. Since 1 + 1√

5
> 7

5
, ωa > ωu1 . Further,

ωa
′
< ωp0 and ωa > ωp0 iff ρ > 2

√
5

5
. Thus, arbitrageurs are better off in the partly

constrained equilibrium iff W0 ∈ [max(ωu1 , ω
p
0), ωa[. Given that ωp0 > ωu1 for ρ < 1,

this interval is not empty iff ρ > 2
√

5
5

.
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F.2 Corollary 2

Proof. The first point is obvious. The condition under which the constraint

does not bind is W0 ≥ max(ωu0 , ω
u
1 , ω

p
1)1ρ<0.7∩ρ>0.75 +h10.7≤ρ≤0.75, where h is the

threshold represented by a dotted line on Figure 7.

The second point follows from Proposition 7 and the fact that, in the absence

of constraint, the unique equilibrium is u0, u1. Proposition 7 shows that hedgers

are better off in the u0, c1 than in the u0, c1 equilibrium under milder conditions

than point 2. Thus, the conditions for Pareto improvement are those for the

improvement in the arbitrageur’s welfare. We have shown that ωa > ωp0 iff ρ > 2
√

5
5

,

so we must restrict our attention to this interval. For W0 ∈ [ωp0 , ω
u
1 ], u0, c1 is

the unique equilibrium in the presence of constraints. Given that ωu1 < ωa, the

arbitrageur is better off. For W0 ∈ [ωu1 , ω
a], u0, c1 coexists with u0, u1, thus the

arbitrageur is better off only if u0, c1 is selected.50

The third point follows from comparing hedgers’ welfare in the u0, u1 vs c0, c1

or c0, u1 equilibria. From Proposition 4, recall that xc0,u1
0 = x̄0 < xu0,u1

0 and

Xc0,u1
1 = s+x̄0

2
. This implies that ∆c0,u1

1 = aσ2(s−x̄0) > ∆u0,u1
1 and that ∆c0,u1

0 −
∆c0,u1

1 = 2aσ2(s− x̄0). Then using (20), Uc0,u1
0 < Uu0,u1

0 iff

5

8
aσ2(s− x̄0)2 − 3

2
aσ2(s− x̄0) <

5

8
aσ2(s− xu0,u1

0 )2 − 3

2
aσ2(s− xu0,u1

0 )

After a few lines of simple algebra, this condition boils down to

5

2
(x̄2

0 − (xu0,u1
0 )2) < aσ2s(xu0,u1

0 − x̄0)

Thus, xc0,u1
0 = x̄0 < xu0,u1

0 implies that this condition is satisfied, so hedgers’

welfare decreases when imposing constraints leads to c0, u1.

Similarly, we get

Uc0,c10 =
4a2σ2(s− x̄0)2 + 4a2σ2(s− X̄1)2

8aσ2
− s

2

[
2aσ(s− x̄0) + 2aσ2(s− X̄1)

]
50Given that it Pareto-dominates, one may argue that this is the most likely outcome.
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Thus the condition Uc0,c10 < Uu0,u1
0 can be simplified to

1

2
aσ2 [(s− x̄0)2 − (s− xu0,u1

0 )2 + (s− X̄1)2 − (s−Xu0,u1
1 )2]

< aσ2s
[
xu0,u1

0 − x̄0 +Xu0,u1
1 − X̄1

]
,

which can be further reduced to

1

2
aσ2

[
x̄2

0 − (xu0,u1
0 )2 + X̄2

1 − (Xu0,u1
1 )2

]
< 0

This condition holds true since when the constraint binds, x̄0 < xu0,u1
0 and X̄1 <

Xu0,u1
1 (the latter also follows from the analysis in the proof of Proposition 10).

Hence hedgers’ welfare also decreases when imposing constraints leads to c0, c1.

F.3 Proposition 8

Proof. Counterfactual 1. I compute hedgers’ welfare using equation (20), under

the assumptions that xcf1
0 = xu0,u1

0 = 2
5
s andXcf1

1 = Xu0,c1
1 =

aσ2s−ē+
√
d+
1 (x

u0,c1
0 )

2aσ2 .

These quantities imply the following spreads:

∆cf1
1 = ∆u0,c1

1 , ∆cf1
0 = 2aσ2(s− xu0,u1

0 ) + ∆u0,c1
1 =

6

5
s+ ∆u0,c1

1 > ∆u0,c1
0

Substituting into (20), we obtain

Ucf1
0 =

(
6
5
s
)2

+ (∆u0,c1
1 )2

8aσ2
− s

2

(
6

5
s+ ∆u0,c1

1

)
Therefore, Ucf1

0 < Uu0,c1
0 can be simplified into 27

25
> 3

4
, which holds true.

Counterfactual 2. The quantities are xu0,c1
0 = s

2
and Xcf2

1 = Xu0,u1
1 = 7

10
s,

implying that ∆cf2
1 = ∆u0,u1

1 = 3
5
aσ2s, ∆cf2

0 − ∆cf2
1 = aσ2(s − xu0,c1

0 ) = aσ2s,

and ∆cf2
0 = aσ2s + ∆cf2

1 = 8
5
aσ2s. Substituting these spreads into equation

(20), we get Ucf2
0 = − 63

100
aσ2s2. Comparing this welfare level to Uu0,u1

0 , we get

Ucf2
0 < Uu0,u1

0 < Uu0,c1
0 .

F.4 Proposition 10

See Internet Appendix.
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F.5 Corollary 3

Proof. Recall that margins (on long positions) are given by mt = ē − 1
2
(∆t −

∆t+1) = ē−aσ2(s−Xt). Besides, the VaR at time t is the product of the position

and the margin: V aRt = mtXt. Thus, at time 0, V aRl0 = ωl0, l ∈ {∗, u, p}.
Thus, with competitive arbitrageurs, when the constraint is slack, X∗t = s, m∗t = ē

and V aR∗t = ω∗. When the constraint binds, the position is reduced and the

margins and thus the VaR increase: X∗t = X̄t < s, m∗t = ē − aσ2(s − X̄t), and

V aR∗t = X̄tē − aσ2(s − X̄t) < ω∗. With market power, if the risk benefit ratio

is low enough (ρ < 7/10), a drop in capital switches the equilibrium from u0, u1

to c0, u1. Since Xc0,u1
t < Xu0,u1

t , mc0,u1
t < mu0,u1

t , and V aRc0,u1
t < V aRu0,u1

t ,

so the comparative statics are the same as with competitive arbitrageurs. When

(7/10 ≤ ρ < 3/4), the equilibrium a drop in capital switches the equilibrium from

u0, u1 to c0, c1, and the analysis is similar. When ρ ≥ 3/4, however, a drop in

capital switches the equilibrium from u0, u1 to u0, c1, and then to c0, c1. Between

u0, c1 and c0, c1, positions decrease following a drop in capital, so margins and VaR

also decrease. However, between u0, u1 and u0, c1, the position always increases at

time 0, and so margins and VaR also increase. At time 1, the position increases

as long as ρ < 23/10 . Indeed in the proof of Proposition 7 shows that r1 < ωp0

on this interval for the time-1 spread to decrease between u0, u1 and u0, c1, and a

decrease in time-1 spread is equivalent to an increase in time-1 position.
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Figure 2: Equilibria with slack time-1 constraint. The parameters are a =
σ = 1, ē = 1.5.
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Figure 3: Equilibria with binding time-1 constraint. The parameters are
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Figure 5: Spreads as a function of arbitrage capital for ρ > 1. The parameters
are a = ē = σ = 1 and s = 1.1.
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Figure 6: Spreads as a function of arbitrage capital for 3
4
≤ ρ < 1. The parameters

are a = ē = σ = 1 and s = 1.76.
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≤ ρ < 3

4
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. The parameters
are a = ē = σ = 1 and s = 2.2.
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