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1 Introduction

Anticipated supply/demand shocks are predictable changes in supply or de-

mand. They may be caused by passive investors’ mechanical trading rules1,

scheduled equity or bond issuances (SEOs, bond reopenings), pre-announced

trades, etc. These anticipated shocks are common, relatively frequent, and

often uninformative about fundamentals. Yet, a large body of empirical lit-

erature documents temporary price pressure in the form of V-shaped price

patterns around anticipated shocks. Prices drift away from fundamentals

before the shock, and revert afterwards,2 leading to costs for issuers and in-

vestors. For instance, to reduce tracking errors around index reconstitutions,

passive investors are likely to sell deleted stocks at a deflated price, and buy

added stocks at an inflated price.3

This evidence is hard to explain in frictionless markets. During these

events, returns are partly predictable and are characterized by time-series

momentum and reversal. Moreover, the data shows a diversity of behaviors

by financial institutions, in particular before shocks take place. Some institu-

tions are contrarians (e.g. buy ahead of a positive supply shock), others tend

to trade with the wind or follow non-monotonic strategies. For instance, in-

stitutional investors tend to buy stocks ahead of SEOs (Chemmanur, He, and

1E.g. passive investors must rebalance portfolios around index inclusions/deletions (see
Lynch and Mendenhall (1997), among many others), ETF roll over futures contracts at
expiry (Bessembinder et al., 2016).

2These V-shaped price patterns have been documented around index reconstitutions
(e.g. Lynch and Mendenhall, 1997, Chen, Naronha, and Singal, 2004), flow-induced price
pressure by mutual funds (Coval and Stafford, 2007), SEOs (Kulak, 2008), Treasury is-
suances or reopenings (see Lou, Yan and Zhang (2013) for US evidence, and Sigaux (2016)
for European evidence), corporate bond issuances (Newman and Rierson, 2003) and cor-
porate bond index exclusions following downgrades (Dick-Nielsen and Rossi, 2019). See
Duffie (2010) for a review of the empirical evidence of the price effects of anticipated
shocks.

3In the case of bond index exclusions, Dick-Nielsen and Rossi (2019) state that the
“reluctance to trade away from the exclusion date results in a hidden cost of indexing for
final investors of approximately 34 bps annually”. (p.4) In the case of Treasury issuances,
Lou, Yan, and Zhang (2013) estimate a cost of “over half a billion dollars for note issuance
alone in 2007”.
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Hu, 2009). However, market-makers or liquidity suppliers in futures market

reduce inventories before anticipated liquidations (Cai, 2009) or ETF fu-

tures rolls (Bessembinder et al., 2016). Corporate bond dealers first increase

and then reduce inventories before bond index exclusions (Dick-Nielsen and

Rossi, 2019).

In this paper, I study a model of strategic trading, which qualitatively

accounts for both the V-shaped price pattern and the diversity of trading

behaviors around anticipated shocks. The key feature of the model is the het-

erogeneity in market power, and thus in price impact, between an oligopoly

of strategic traders and a competitive fringe of price-takers. I consider two

versions of the model: in the first one, traders compete à la Cournot; in

the second one, they compete in demand schedule. I view Cournot traders

as a proxy for traders using primarily market orders (e.g. opportunistic or

directional traders, see Hagstromer and Norden, 2013) and demand schedule

traders as institutions using mostly limit orders (e.g. market-makers).4

In both versions of the model, anticipated shocks may lead to a V-shaped

price pattern provided there are at least two strategic traders, a competition

effect. However, traders’ strategies before a shock differ depending on the

type of competition. Consistent with empirical evidence, Cournot traders

act as contrarians, while demand schedule traders first trade against, then

with the shock. Despite this potentially destabilizing behaviour, anticipated

shocks have a smaller price impact under demand schedule competition.

Model and competitive benchmark. I consider a dynamic economy with

one risk-free and one risky assets, and two types of investors, price-takers

and strategic traders (traders, for short). All investors have exponential

utility and the liquidating dividend of the risky asset is normally distributed.

4Hagstromer and Norden (2013) show how the use of different types of orders re-
veals the diversity of algorithmic traders. They find that traders following directional
or opportunistic strategies use a large share of market orders, while those engaging in
market-making activities use primarily limit orders. Chan and Lakonishok (1995) discuss
how the investment style and other fund characteristics influence the type of execution
strategies and in particular the type of orders used by the trading desks of institutional
investors.
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Traders and price-takers may differ in risk aversion, but all traders have

identical risk aversion. Investors trade to share risk over T periods before

consuming. They learn in the course of trading that the supply of the risky

asset will increase at a later time, i.e. the announcement and the realization

of the shock are distinct.5 Information is complete. In particular, the supply

shock is publicly announced and is uninformative about the value of the risky

asset.6

Suppose first that all investors, including strategic traders, are compet-

itive. In this case, there is no V-shaped price pattern around anticipated

shocks. Indeed, in the competitive benchmark, gains from trade are realized

in a single trading round, and the price is the sum of the expected dividend

and a risk premium proportional to the risk-bearing capacity of the market.

Thus, when a shock is announced, all investors understand that portfolios

will be adjusted immediately at the realization. To preclude arbitrage op-

portunities, the risk premium immediately adjusts at the announcement.

Imperfect competition. Suppose next that traders are imperfectly com-

petitive, and thus take into account the price impact of their trades.7 Then,

whether traders compete à la Cournot or in demand schedules, the price

includes a liquidity premium in addition to the risk premium. The liquid-

5The positive supply shock is to fix ideas only. The model can also be written with
demand shocks. In the Online Appendix, I show the equivalence between the model with
anticipated supply shocks studied in the text and a model with anticipated shocks to
price-takers’ demand.

6Some shocks such as SEOs or even index reconstitutions (Denis, McConnell, Ovtchin-
nikov, and Yu, 2003) might convey information about fundamentals. However, the V-
shaped price pattern occurs also in indices following mechanical rebalancing rules (e.g.
FTSE, Russell) instead of discretionary rules (S&P500), ruling out a pure information ef-
fect (see Madhavan, 2003). My theory implies that even if the event conveys information,
the mere difference of price impact between price-takers and strategic traders may lead to
a V-shaped price pattern, controlling for the informational content of the shock.

7Price impact arises only due to market power in the model. As an illustration, Gabaix
et al. (2006) calculate that in 2000, the liquidation by the 30th largest mutual fund of
its position in its average stock would represent half of the daily turnover in that stock,
implying that price impact is a concern for large traders even in the absence of superior
information. In practice, strategic traders (e.g. large asset managers, dealers, and trading
desks) rely on order execution techniques to minimize price impact (see, e.g. Chan and
Lakonishok, 1995, Keim and Madhavan, 1995, 1997, and van Kervel and Menkveld, 2019)
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ity premium stems from differences in price impact between traders and

price-takers. It compensates price-takers for imperfect diversification, which

arises as traders shade their bids to limit their price impact, causing delays

in reaching Pareto-optimal allocations. Because of the liquidity premium,

the trades of strategic traders have both a risk-sharing component, whereby

traders progressively liquidate their initial positions and replace them with

Pareto-optimal ones, and a speculative component, as traders take advantage

of the liquidity premium.

Empirical studies typically control for the market factor, which corre-

sponds to the risk premium in the model, hence I focus on the effects of

anticipated shocks on the liquidity premium. To isolate the effects, I assume

that initial endowments are Pareto-optimal, so that there is no reason to

trade and no liquidity premium until the shock is announced.

When the shock is announced, a new trading motive emerges. Indeed,

price-takers anticipate that the shock will not be immediately diversified at

the realization, as traders break up orders. This gives them incentives to sell

ahead of the realization to hedge their future over-exposure to the risky asset.

Between the announcement and the realization, strategic traders trade off

the effects of the anticipated shock on their current marginal trading profits

and on their future marginal utilty. On the one hand, the shock lowers

future prices, which reduces price-takers’ demand today, thereby creating an

opportunity for traders to buy at a lower price today. On the other hand,

the anticipated shock increases future risk and liquidity premia. Thus, it

increases profits from exploiting the liquidity premium in the future and

affects the terms of trade at which traders can share risk in the future. For

instance, a higher liquidity and risk premium make it more costly to liquidate

positions as future prices are lower, and has an ambiguous effect on the cost

of acquiring Pareto-optimal positions: traders must acquire larger positions,

albeit at a lower price due to the higher premia. While the effect on the

current trading profit gives traders incentives to buy ahead of the shock, the

effect on their future marginal utility may induce them to buy less or even
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short. Which effect dominates depends on the type of competition.

Cournot competition. When traders compete à la Cournot, I show that

a monopoly does not trade until the shock takes place, while oligopolistic

traders start trading as soon as the shock is announced. The monopoly trades

in such a way that both effects (on the current profit and on the future

marginal utility) exactly offset each other. Her strategy is thus optimally

myopic, in the sense that it does not depend on the shock, although the

monopoly is aware of it. Instead, competition among oligopolistic traders

induces them to trade ahead of each other to exploit the increase in the

today’s marginal profit. Thus, in equilibrium, all traders start buying from

the announcement, a contrarian behaviour.

These different strategies lead to different liquidity premium dynamics.

With a monopoly, price-takers understand that they cannot hedge their fu-

ture overexposure in advance, so the liquidity premium immediately jumps

at the announcement to the level it will have at realization, and remains con-

stant until then.8 It decreases after the realization, as the monopoly starts

trading towards the new Pareto-optimal allocation. With an oligopoly, price-

takers can start hedging by selling the asset to strategic traders. However,

traders break up their orders to limit price impact. Thus, price-takers sell

progressively as well, and each sale must be associated with a price de-

cline (more precisely, an increase in the liquidity premium) for price-takers’

demand to remain optimal and the market to clear. Indeed, price-takers

are the marginal asset holders, and thus the marginal pricers in the model.

Thus, before the realization, the liquidity premium increases gradually. Af-

ter the realization, traders trade more aggressively towards Pareto-optimal

positions, and the missalocation of the asset susbides, progressively reduc-

ing the liqudity premium. Hence, imperfect competition among strategic

traders generates the gradual pattern observed in the data around antici-

8Strictly speaking, with Pareto-optimal endowments, there is no trading until the re-
alization with a Cournot monopoly, thus the price and liquidity premium should be un-
derstood as price-takers’ marginal valuation of the risky asset.
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pated shocks.

Demand schedule competition. When traders compete in demand sched-

ules, a V-shaped pattern also occurs only when traders are oligopolistic, but

inventory dynamics are different. With oligopolistic traders, the effect of the

anticipated shock on the current marginal profit dominates early on, while

the effect on the future marginal utilty prevails just before the realization.

Hence, traders start to buy from the announcement on, but revert their hold-

ings and short one period before the realization. The reason why the effect

of the shock on the current marginal profit becomes relatively smaller is that

the price becomes less sensitive to the anticipated shock as the realization

date approaches. Indeed, at the realization, traders buy more aggressively

than in the Cournot case. As all traders submit downward-sloping schedules

in equilibrium (instead of horizontal ones under Cournot), the residual de-

mand curve steepens, and each trader faces a deeper market. Competition

for liquidity provision is thus fiercer when traders submit schedules, and this

improved liquidity at realization reduces the sensitivity of the price to the

shock before the realization.

In spite of the different trading dynamics, the liquidity premium remains

V-shaped. However, as traders short ahead of the shock, the liquidity pre-

mium starts shrinking one period ahead of the realization: this is because

price-takers need to be compensated for holding the extra risk when they

buy from traders. With a monopoly submitting a demand schedule, the

price pattern and trading strategy depend on whether the shock occurs in

the final trading round or not, but as under Cournot competition, there is

no V-shaped price pattern.

The prediction that demand schedule traders short ahead of the realiza-

tion and provide liquidity afterwards is in line with the empirical evidence

about futures markets cited above, as well as evidence about dealers’ be-

haviour in Treasury and corporate bond markets (Lou, Yan, and Zhang,

2013, Dick-Nielsen and Rossi, 2019). In all these cases, there is evidence

that liquidity suppliers provide liquidity during shocks but offload inven-
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tories just before. Further, the non-monotonic strategy shown in panel b

of Figure 2 is qualitatively similar to the inventory pattern documented by

Dick-Nielsen and Rossi (2019) ahead of bond index exclusions (Figures 4b,

8b, and 9b in their paper). In their data, bond dealers first raise inventories

some time before an anticipated shock, reduce them just before the shock,

and increase them again during the shock.

Empirical evidence shows that large institutions buy ahead of SEOs, and

that more aggressive buying reduces the SEO discount (Chemanur et al.,

2009).9 A potential test of the theory would thus consist to check whether

these institutional investors make heavy use of market orders.

Related literature. This paper contributes to the literature in three ways.

First, the paper provides a parsimonious mechanism, based only on hetero-

geneity in price impact, to explain the V-shaped price reaction to anticipated

shocks. Second, the model delivers new predictions about inventory dynam-

ics before the realization of anticipated shocks. Third, the paper gives an

explicit comparison of price and trading dynamics in the Cournot and de-

mand schedule cases.

From a theoretical point of view, it is difficult to explain V-shaped pat-

terns, because these patterns imply short-term price predictability, which

in a frictionless economy would be arbitraged away. To the best of my

knowledge, only differences in price impact due to market power, as in this

paper, and search frictions, can generate such price patterns in the absence

of asymmetric information.10

9Chemanur et al. (2009) argue in favor of an informational advantage of institutional
investors. However, many of their results are also consistent with institutions having
market power, so that a combination of informational advantage and market power cannot
be excluded.

10With search frictions, Duffie (2010) is the closest to this paper in terms of theme and
objectives, albeit with at least two differences. First, in Duffie’s paper, diversification is
not immediate due to exogenous delays in finding counterparties. Instead, in my paper
these delays arise endogenously as the outcome of traders’ optimal execution strategies.
Second, in Duffie’s model, the price rises before the V-shaped pattern, a phenomenon
which is observed only for SEOs in the data. There is no such initial price increase in my
setting. Indeed, in Duffie (2010), the price rise compensates traders who will be “stuck”

9



In the literature on trading with market power, the closest papers are

Pritsker (2009) and Rostek and Weretka (2015).11 Pritsker (2009) considers

a Cournot setting with n traders and a competitive fringe, and studies nu-

merically the effects of anticipated firesales by a distressed trader (one of the

strategic traders), who is forced to hold onto his position until the firesale.

In addition to Pritsker’s results, I show that (i) the V-shaped price pat-

tern arises only because of the difference in price impact;12 (ii) competition

among traders determines the occurrence of the V-shaped pattern, in partic-

ular, there is no such pattern with a single trader (this is an analytical result);

and (iii) I relax the assumption that traders use market orders only, leading

to new predictions about inventories. Rostek and Weretka (2015) study the

price effects of anticipated shocks in a demand schedule game with n traders

and no price-takers. The main difference with Rostek and Weretka (2015) is

that I introduce price-takers in the demand schedule game, leading to het-

erogeneity in price impact.13 Without such heterogeneity, the price effects

of anticipated shocks are different and harder to reconcile with the empirical

evidence. In particular, there is no price drift between the announcement

and the realization of the shock, and the price returns to the competitive

with the asset for some time. In my setting, it is always possible to trade, although
imperfect liquidity entails costs.

11The literature on demand schedule competition builds on the static model of Kyle
(1989), extended to the dynamic case by Vayanos (1999). Recently published papers based
on similar frameworks include Rostek and Weretka (2015), Du and Zhu (2017), and Kyle,
Obizhaeva, and Wang (2017). The literature on Cournot competition among large traders,
based on the inventory models of Grossman and Miller (1988), includes Kilhstrom (2000),
Pritsker (2009), DeMarzo and Urosevic (2006), Edelstein, Sureda-Gomill, Urosevic and
Wonder (2010), and Marinovic and Varas (2018). Capponi, Menkveld and Zhang (2019)
consider a model where Cournot traders have only transitory price impact.

12Under Pritsker (2009)’s assumptions, the market anticipates three things: a change
in competition, a change in the total risk-bearing capacity of the market, as the distressed
trader exits the market after the firesale, and a change in supply/demand. Under these
assumptions, even the competitive price reaction can be V-shaped. In my setting, there is
a change in supply/ demand without change in the number of strategic traders, nor in the
total risk-bearing capacity of the market. As a result, the V-shaped price reaction arises
only due to the effect of the anticipated shock on the liquidity premium.

13In Rostek and Weretka’s setting, all traders have identical risk aversion, leading to
the same degree of market power and thus the same price impact.
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level in one trading round after the shock.

Differences in price impact are thus key to explain the V-shaped price

pattern. These differences have been documented at least since Chan and

Lakonishok (1995). Heterogeneity in price impact is an important charac-

teristics of financial markets, where large traders coexist with smaller insti-

tutions, passive investors, and/or retail investors.14

The second contribution of the paper is to provide new predictions about

inventory dynamics around V-shaped price patterns. Several studies predict

that traders sell as the price goes down, and buy when it rebounds. Vayanos

(2001) obtains this prediction in a Cournot setting with a single privately-

informed strategic trader. Papers on predatory trading (e.g. Brunnermeier

and Pedersen, 2005, Carlin et al., 2007), which are based on a Cournot setting

with exogenous demand curves and no asymmetric information, predict a

similar pattern. Instead, in my setting price-takers generate an endogenous

demand, a single Cournot trader abstains from trading before the shock, and

multiple traders buy as the price goes down.

I am not aware of any paper predicting the non-monotonic inventory

pattern of the demand schedule case, although this pattern is observed in

the data. For instance, Rostek and Weretka (2015) predict that strategic

traders do not trade on anticipated shocks until the realization.

Finally, the paper highlights quantitative and qualitative differences be-

14A few recent working papers share this emphasis on differences in price impact, albeit
with different objectives. Glebkin (2016) studies a static model with asymmetric infor-
mation, where price-takers and strategic traders compete in demand schedules. Sannikov
and Skrzypacz (2016) consider a dynamic oligopoly of strategic traders with heteroge-
neous risk aversion and private trading needs. They extend the standard definition of
the demand schedule equilibrium to allow for heterogeneous risk aversion among traders,
allowing them to condition schedules on the outcome of other traders. I retain the stan-
dard equilibrium definition assuming that all strategic traders have identical risk aversion
and focus on the effects of anticipated shocks. Rostek and Yoon (2019) consider a non-
stationary model with n strategic traders competing in demand schedules, where traders
have private information and heterogeneous risk aversion, but do not consider anticipated
shocks in their setting. Note that since all traders have identical risk aversion in my set-
ting, the equilibrium remains recursive in spite of the difference in price impact between
traders and price-takers.
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tween Cournot and demand schedule competitions, which have under-re-

searched in the context of multiperiod financial markets.15 These two set-

tings can be easily tied to the strategies used by different institutions. I

show that even though the price, value functions, and trading strategies are

analytically similar for both types of competition, the coefficients of their

different components are competition-specific, leading to different price and

inventory dynamics.

After describing the setting, I study Cournot competition, and then de-

mand schedule competition. The last section summarizes the main conclu-

sions of the analysis. Proofs of the results on demand schedule competition

are in the Online Appendix. All other results are proved in the Appendix.

2 A model of strategic trading and anticipated

shocks

2.1 Set up

Time is discrete (t = 0, . . . , T ). Investors trade a risk-free asset and a risky

asset between 0 and T − 1, and consume at T . The risk-free asset is in

perfectly elastic supply with return rf normalized to zero. The risky asset,

which trades at price pt, pays off a liquidating dividend at T . The liquidating

dividend is the sum of a fixed component D and a series of iid normally

distributed dividend news εt: DT = D +
∑T
τ=1 ετ , with εt ∼ N (0, σ2), for

1 ≤ t ≤ T , with εu ⊥ εt, u 6= t. All investors observe the dividend news

εt before trading at time t. Let Dt ≡ Et(DT ) = D +
∑t
s=1 εs denote the

conditional expected value of the dividend at time t.

15Vives (2011) provides a quite general albeit static framework to study supply functions
equilibria with private information and their connection with the Cournot outcome. In
their survey, Rostek and Yoon (2020) compare Cournot and demand schedule outcomes in
both static and dynamic models with private information, but without price-takers when
traders compete in demand schedule. They focus on the differences in terms of dynamic
inference instead of the effects of anticipated shocks.
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The risky asset is in net supply st at time t. It is convenient to write st as

the sum of a fixed part and a series of shocks, st = s+
∑t
τ=1 ∆sτ . The supply

shocks are anticipated: at time 0, all investors know the sequence of future

shocks ∆sτ . In the main text, I focus on the effect of an information release,

with a single pre-announced shock. Specifically, I assume that investors

anticipate that the supply is constant (st = s) when they start trading at

time 0. Then at time t1 ≥ 0, there is a public announcement before the

market opens: investors learn that at time t2 ≥ t1, the supply will jump

from s to s + ∆st2 . I refer to t1 as the announcement date, and t2 as

the effective or realization date of the shock. In the special case t1 = t2,

the announcement takes the market by suprise. If, instead, t1 < t2, the

market anticipates the shock. It is easy to map this partition between the

announcement and effective dates to events such as seasoned issuances and

index changes studied by empiricists. The general case with an arbitrary

sequence of shocks is treated in the Appendix.16

Two types of investors share risk in the market. First, there is a contin-

uum mass one of risk-averse price-takers, indexed by m. Price-takers have

exponential utility, u(CmT ) = − exp(−aCmT ), and start with endowments

Y m−1 in the risky asset. Second, there is an oligopoly of n strategic traders

(traders, for short), indexed by i. Traders have market power and under-

stand that their trades move prices. They also have exponential utility with

constant absolute risk aversion b, U(CiT ) = − exp(−bCiT ). Traders start with

endowments Xi
−1 in the risky asset. Given the exponential utilities, we can

normalize all investors’ endowments in the risk-free asset to zero without loss

of generality.

Price-takers enter time t with a total position Yt−1 =
∫ 1

0
Y mt−1dm in the

16Some of my motivating examples, e.g. index reconstitutions, are demand shocks: when
a stock or a bond is deleted from an index, passive index trackers such as index funds
and ETFs liquidate their holdings on or close to the effective deletion date to minimize
tracking errors (Blume and Edelen, 2004, Dick-Nielsen and Rossi, 2019). I show in the
Appendix that the model can be rewritten with demand shocks by introducing endowment
shocks to price-takers. I focus on supply shocks in the body of the paper.
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risky asset and trade yt =
∫ 1

0
ymt dm at t. Their position after trading at t is

Yt = Yt−1 + yt. Similarly, trader i enters time t with a position Xi
t−1 in the

risky asset, trades xit, and ends up holding Xi
t , so that Xi

t = Xi
t−1 + xit. At

each t, market-clearing for the risky asset implies that:

Yt +

n∑
j=1

Xj
t = st (1)

The trading process in each round depends on the type of competition be-

tween traders. In this section, I present the competitive benchmark. Then in

Section 3, I consider Cournot competition, implying that traders use market

or marketable orders. In Section 4, I consider demand schedule competition,

implying that traders use a series of limit orders.

2.2 Momentum and reversal

I use the terms momentum if there is a gradual price adjustment before the

effective date, and reversal when there is a gradual correction after the shock.

In imperfectly competitive markets, the price will be the addition of the

competitive price and a liquidity premium. Thus, in the body of the paper,

I focus on the notion of momentum and reversal in the liquidity premium

only. Additional justification for this weaker notion is that empirical studies

usually evaluate the effects of anticipated shocks against a market factor,

which corresponds to the competitive price in my setting. To fix ideas,

all the results are given for a positive supply shock, but they would all go

through with negative shocks.

Definition 1 (Momentum and Reversal) For a shock ∆st2 > 0, there

is momentum and reversal in the liquidity premium around the effective date

iff

(Momentum): ∃tm ∈ {t1, . . . , t2 − 2} s.t. ptm − p∗tm > · · · > pt2 − p∗t2 , and

(Reversal): pt2 − p∗t2 < · · · < pT−1 − p∗T−1

14



There is momentum and reversal in the price if we replace pt − p∗t by E(pt).

In standard inventory models (e.g. Grosmann and Miller, 1988), a one-period

price decline followed by a one-period rebound may easily occur. Here I am

looking for a gradual price movement followed by a gradual correction of this

movement, which implies a short-term drift in the price or liquidity premium

followed by a reversal of this drift. This notion of momentum and reversal

is in the time-series, different from the classic cross-sectional momentum of

Jegadeesh and Titman (1993).

2.3 Competitive benchmark

The competitive equilibrium is a useful benchmark to understand the effects

of traders’ market power. From now on, a “ ∗ ” superscript denotes the

competitive outcome. Price-takers solve the following problem:

P∗ : max
Yt
−E0 (exp(−awT ))

wt = wt−1 + Yt−1(pt − pt−1)

where wt denotes price-takers’ wealth. Price-takers’ optimal demand at time

t is

Yt =
Et(pt+1)− pt

aσ2
(2)

When they are competitive, traders solve a similar problem, but have ab-

solute risk aversion b, and choose position Xi
t . The solutions to P∗ for

each type of investor and market-clearing (1) define a competitive equilib-

rium. Note that price-takers’ risk-bearing capacity (or risk tolerance) is 1
a ,

whereas trader’s total risk-bearing capacity is n
b .

Proposition 1 (Competitive equilibrium with constant supply) In

the competitive equilibrium, investors hold the risky asset in proportion of

their risk tolerances: Xt = 1/b
1/a+n/bs = a

na+bs ≡ X
∗. The competitive price is
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the sum of the conditional expected value of the dividend and a risk premium:

p∗,cst = Dt − bσ2(T − t)X∗ (3)

Equation (3) shows that the risk premium has a drift: this is because as

time passes, uncertainty about the fundamental is gradually realized.

Corollary 1 (Fundamental effect of information release) Let

∆X∗t2 ≡
a

na+b∆st2 denote the change in Pareto-optimal holdings induced by

the shock.

In a competitive market, there is no momentum and reversal: investors ad-

just positions once and for all at the realization of the shock, and prices

adjust as soon as the shock is announced.

for t < t1, p
∗,as
t = p∗,cst and X∗,ast = X∗,

for t1 ≤ t < t2, p
∗,as
t = p∗,cst −bσ2(T − t2)∆X∗t2 and X∗,ast = X∗,

for t > t2, p
∗,as
t = p∗,cst −bσ2(T − t)∆X∗t2 and X∗t = X∗ + ∆X∗t2 ,

In a competitive economy, the price immediately reflects the increase

in the risk premium that will take place at the effective date (Figure 3).

The risk premium increases, because the quantity of risk increases, while

the risk-bearing capacity remains unchanged. When the shock takes place,

investors increase their holdings to absorb the extra supply and ask for an

extra risk premium bσ2(T − t2)∆X∗t2 to do so. At the announcement, the

price drops by exactly this amount by the logic of absence of arbitrage.

In line with Rostek and Weretka (2015), I refer to the competitive price

reaction as the fundamental effect of the information release. The logic of

absence of arbitrage implies that this effect is fixed (i.e. independent of t) and

independent of how far in advance the shock is announced (i.e. independent

of t1, or t2 − t1). Thus, the competitive price reaction to an information

release is hard to reconcile with the pattern observed in the data.
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3 Cournot competition

I now relax the assumption of price-taking behaviour for traders, assuming

Cournot competition instead.

3.1 Definitions

Equilibrium. In each trading round, price-takers submit a demand curve,

while traders submit market orders to a Walrasian auctioneer, who deter-

mines the market-clearing price. Traders choose orders given the price sched-

ule implied by the price-takers’ demand and market-clearing. A price sched-

ule pt

(
xit;
∑
j 6=i x

j
t

)
: R→ R maps the effect of the order of trader i on the

equilibrum price, given other traders’ orders. Using (2) and (1), we obtain

pt

xit;∑
j 6=i

xjt

 = Et(pt+1)− aσ2

st − n∑
j=1

Xj
t

 =

Et(pt+1)− aσ2

st − n∑
j=1

Xj
t−1 −

n∑
j 6=i

xjt − xit

 (4)

Traders’ price impact is permanent: the price increases in traders’ positions,

Xi
t = Xi

t−1 + xit. Hence, the price depends on past and current trades.

Definition 2 (Cournot equilibrium) A dynamic Cournot equilibrium is

a collection of subgame-perfect Cournot Nash equilibria, which consists in

prices and trades such that (i) given the anticipated price path, price-takers’

demand maximizes the expected utility of final consumption. (ii) given other

traders’ orders, x−it , and the price schedule, trader i chooses a quantity xit

to maximize expected utility.17

17The superscript −i denotes the actions taken by all traders, except trader i. I rule out
deviations by a non-zero mass of price-takers. This restriction is standard in the durable
goods literature (see, e.g. Gul, Sonnenschein, and Wilson, 1986). In the strategic trading
literature, Kihlstrom (2000), Pritsker (2009), DeMarzo and Urosevic (2007), and Vayanos
and Wang (2012) consider a similar notion of equilibrium.
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Price-takers’ problem is still given by P∗, as in the competitive case. A

trader’s problem is now:

PC : max
xit

E0

(
− exp(−bW i

T )
)

s.t. W i
T = Xi

TDT +BiT

where Bit = Bit−1 − xitpt

xit;∑
j 6=i

xjt

 and Xi
t = Xi

t−1 + xit

We can restate PC as a dynamic programming problem, introducing the

value function (post-trade certainty equivalent) Ωit:

Ωit = max
xit

xit

Dt − pt

xit;∑
j 6=i

xjt

− bσ2

2

(
Xi
t

)2
+ Ωit+1 s.t. (4) (5)

The state variable for problem PC is traders’ aggregate positions
∑n
j=1X

j
t .

However, the model has a more intuitive form if we express the price and

value function with an affine transformation of this state variable. To avoid

moving the price against themselves, traders will trade less aggressively than

in the competitive market, leading to imperfect and delayed risk-sharing.

The key indicator of the imperfect risk-sharing in the model is the distance

Λt between traders’ aggregate positions when they enter time t and Pareto-

optimal positions. With constant supply, Λt is simply a scalar and boils

down to Λt ≡ nX∗ −
∑n
j=1X

j
t−1. With anticipated shocks, the Pareto-

optimal position X∗τ changes over time. Thus, the liquidity factor depends

on the term structure of deviations from Pareto-optimal holdings:

Λt ≡
(

Λt,t, . . . ,Λt,T−1

)>
, with Λt,τ = nX∗τ −

n∑
j=1

Xj
t−1 (6)

The elements Λt,τ of Λt measure the distance between traders’ current ag-

gregate position and time-τ aggregate Pareto-optimal holdings. Note that
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I use bold font for vectors and matrices. The guesses for the price pt and

traders’ value function Ωit, expressed as affine and quadratic functions of Λt,

are:

pt = p∗t − aσ2α>t Λt, (7)

Ωit
σ2

= − b
2
q1,t(X

i
t−1)2 −Xi

t−1

(
q>2,tΛt + q>3,tX

∗)+

1

2
Λ>t q4,tΛt + Λ>t q5,tX

∗ +X∗>q6,tX
∗ (8)

where q4,t is a (T − t)× (T − t) upper diagonal matrix, and q5,t and q6,t

are (T − t) × (T − t) matrices. Since the Cournot price departs from the

competitive price due to market thinness, I refer to aσ2α>t Λt as the liquidity

premium and to Λ as the liquidity factor. Given this price and value function,

the trade can be decomposed into a risk-sharing and speculative component:

xit =

T−1∑
τ=t

ct,τ (X∗τ −Xi
t−1) +

T−1∑
τ=t

ηt,τΛt,τ (9)

The coefficients ct,τ measure how aggressively traders trade towards future

Pareto-optimal positions. Similarly, the coefficients ηt,τ measure how aggres-

sively traders take advantage of future liquidity premia. The first compo-

nent is standard in the strategic trading literature (see, e.g. Vayanos, 1999,

Rostek and Weretka, 2015, Kyle et al., 2017), except for the anticipated

suppy changes: traders target the Pareto-optimal portfolio, but shade bids

to smooth their price impact, so that the coefficients ct,τ will be smaller than

one; the second component arises because of the asymmetry in market power

between traders and price-takers, which leads to a temporary misallocation

of the asset between the two groups. This misallocation generates a liquidity

premium, offering traders the opportunity to make trading profits.
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3.2 Equilibrium

I now provide conditions under which the guesses are correct in equilibrium.

First note that for a vector xt =
(
xt,t, . . . , xt,T−1

)>
, x̄t denotes the

sum of its elements, i.e. x̄t =
∑T−1
τ=t xt,τ . The same applies to matrices (see

Appendix A for a summary of the vector and matrix notations).

Proposition 2 (Dynamic Cournot Equilibrium) For all n ≥ 1, there

exists a unique equilibrium in which the price, trade, and post-trade certainty

equivalent (value function) are given by equations (7), (8), and (9) if the

price and value function coefficients are defined recursively by the system

S(qk, α) given in Lemma 2, and if for t ∈ {1, . . . , T − 1}, the second-order

condition holds

2a(1 + ᾱt+1) +Qt+1 > 0, (10)

where Qt+1 ≡ Q̄1,2
t+1 − nQ̄

2,4
t+1 measures the curvature of the value function,

with Q̄1,2
t+1 ≡ bσ2(1 + q1,t+1) − σ2q̄2,t+1 and Q2,4

t+1,τ ≡ σ2 (q̄2,t+1 + q̄4,t+1).

Boundary conditions for α and qi given by the static version of the model in

Proposition 6.

Proposition 2 provides a recursive characterization of the equilibrium. The

equilibrium as a function of primitives takes a simple form in the special

case of constant supply:

pcst = p∗,cst − aσ2ᾱtlt−1Λ0 (11)

X∗ −Xi
t = cπt (X∗ −Xi

−1)− πη,c,lt Λ0, (12)

With constant supply, the liquidity premium is determined by the distance

between Pareto-optimal holdings and traders’ endowments, Λ0 ≡ nX∗ −∑n
i=1X

i
−1. Further, the coefficients ᾱtlt−1 depend on the number of strategic

traders, n, and the number of remaining trading rounds, T−t. When Λ0 = 0,

the price matches the competitive price. Hence, only the initial distribution

of asset ownership between price-takers and traders matters for pricing. If

we set Λ0 = 0 but Xi
−1 6= X∗ in equation (12), we see that some trade
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happens, but these trades do not move the price away from the competitive

price, although the market is illiquid. Hence, risk-sharing within group does

not affect the equilibrium price, but risk-sharing between groups does.

If Λ0 6= 0, traders start with inefficient positions, and the price converges

gradually towards the competitive price. For instance, if Λ0 > 0, traders ini-

tially hold smaller than efficient positions, so price-takers require a liquidity

premium to hold the extra supply, and the price is below the competitive

price. As time passes, traders gradually increase their positions and the price

converges towards the competitive price. Equation (12) shows that traders

target the Pareto-optimal holdings at rate cπt when the asset is correctly al-

located between the two groups. When it is not the case, the convergence

can be slower or faster, as the liqudity premium induces traders to exploit

the price distortion and earn trading profits.

3.3 Information release

With a single anticipated shock, we have X∗τ = X∗ for τ < t2 and X∗τ =

X∗ + ∆X∗t2 for τ ≥ t2. Until the announcement, the equilibrium is the one

with constant supply. After the announcement, trades and prices can be

expressed as deviations from the constant supply case.

Trade decomposition. Trades can be written as if traders were trading

on different accounts based on the constant supply, the anticipated shock,

and the realized shock. Between the announcement and the realization of the

shock, traders trade against the anticipated shock. After the realization, they

treat the realized shock as a new layer of constant supply, simply starting

from different endowments, i.e. the inventory accumulated on the anticipated

shock account is transferred to the realized shock account and serves as its

starting position.

When there is a single shock, it is either anticipated or realized, so that

there is anticipated shock trading only between the announcement and the
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realization, and realized shock trading only after the realization of the shock:

For t < t1, x
i
t =xi,cst ,

For t1 ≤ t < t2, x
i
t =xi,cst + xi,ast (t2)︸ ︷︷ ︸

anticipated shock trading

For t ≥ t2, xit =xi,cst + xi,cst (t2)︸ ︷︷ ︸
realized shock trading

, with Xcs
t2−1(t2) = Xas

t2−1(t2)

(13)

The notation xi,cst (t2) emphasizes that the realized shock becomes a new

constant supply after t2, and will generate similar dynamics, nothwith-

standing the different endowments. This partition of the trades implies the

same partition for individual and aggregate holdings, with Xi,cs
−1 = Xi

−1, and

Xas
−1(t2) = Xcs

−1(t2) = 0. The partition of aggregate holdings leads to three

types of liquidity factors Λcst , Λast (t2), and Λcst (t2). The first factor is the

same as in the constant supply case given in Proposition 8. By analogy,

Λcst (t2) denotes the liquidity factor associated with the realized shock afer

t2, Λcst (t2) ≡ n∆X∗t2 −H
cs
t (t2), where Hcst is a shorthand to denote traders’

aggregate position in the realized shock account, i.e. Hcst =
∑
iX

i,cs
t (t2).

Finally, Λas
t (t2) is the vector of liquidity factors associated with the an-

ticipated shock of time t2, with Λt,j(t2) ≡ −Hast (t2) for t ≤ j < t2, and

Λast,j(t2) ≡ n∆X∗t2 −H
as
t for t2 ≤ j ≤ T − 1.

Fundamental and liquidity effects. Theorem 1 in the Appendix provides

conditions under which trades, holdings and liquidity factors can be split as

in equation (13) for an arbitrary sequence of shocks. This partition of trades

yields a simple decomposition of the price effects of anticipated shocks in

fundamental and liquidity effects.

Proposition 3 (Effects of Information Release under Cournot) Before

the announcement, the price and holdings are the same as in the constant
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supply case: ∀t < t1, pt = pcst , and Xi
t = Xi,cs

t .

1. After the announcement, an information release leads to both a funda-

mental and a liquidity effect:

for t1 ≤ t ≤ t2, pt = pcst − bσ2(T − t)∆X∗t2 − aσ
2α>t Λas

t (t2)

for t > t2, pt = pcst − bσ2(T − t)∆X∗t2 − aσ
2ᾱtΛ

cs
t (t2) (14)

2. The liquidity effect gradually decreases after the realization.

3. The price reaction between the announcement and the realization de-

pends on competition:

(a) It is optimal for a monopoly to trade myopically, ignoring the

anticipated shock, i.e. xast (t2) = 0, t < t2; the liquidity effect is

constant over time between the announcement and the realization:

α>t Λas
t (t2) = ᾱt2∆X∗t2 , and there is no momentum. There is

always reversal in at least the liquidity premium after the effective

date if Λ0 and ∆X∗t2 have the same sign.

(b) With an oligopoly, there is momentum and reversal iff

Cmr :

{
∀t ∈ {tm, . . . , t2} , ltΛ0 < St2,Tt1,t2(δ, l)n∆X∗t2

for t > t2, ltΛ0 + lt2,t

[
1− St2,Tt1,t2(δ, l)

]
n∆X∗t2 > 0,

where St2,Tt1,t (δ, l) is the fraction of the supply shock that has been

acquired by traders before the shock and δ = c+ nη.

Just as the price can be split between the competitive price and the

liquidity premium, the effect of the anticipated or realized shock can be

decomposed into the fundamental (i.e. competitive) and the liquidity (i.e.

imperfectly competitive) effects. While this partition is standard (Rostek

and Weretka, 2015), the difference in market power between traders and

price-takers generates new dynamics for the liqudity effect. Equation (14)
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shows that after the shock, the liquidity premium will simply contract over

time as in the constant supply case. The realized shock liquidity factor is

Λcst (t2) = lt2,t−1

[
1− St2,Tt1,t2(δ, l)

]
n∆X∗t2 , so it contracts at rate lt2,t/lt2,t−1.

The exact price pattern before the shock, in particuler the occurence of

momentum, depends on the degree of competition among traders. There

is no momentum ahead of the shock with a monopoly, while Cmr shows

that momentum and reversal occur under mild conditions with an oligopoly.

The first condition corresponds to momentum, the second to reversal. Each

condition has two terms (from left to right) corresponding to the change

over two consecutive periods in (i) the constant supply liquidity premium,

(ii) either the anticipated shock, or the constant shock liquidity premium.The

conditions show that there is a trade-off between the trend in the constant

supply and the anticipated shock liquidity premium. Further, if we add

that the numerical result that 0 < St2,Tt1,t2(δ, l) < 1, it is easy to observe that

momentum and reversal occurs for a wide range of parameters.

Claim 1 (Analytical / Numerical) Consider an anticipated increase in

supply (∆st2 > 0):

1. With Pareto-optimal endowments (Λ0 = 0), there is momentum and

reversal in the liquidity premium for any anticipated shock.

2. When traders start from inefficient positions (Λ0 6= 0), then there is

momentum and reversal in the liquidity premium if the shock is suf-

ficiently large relative to the liquidity premium that prevailed at the

announcement. Momentum occurs mechanically when Λ0 < 0, but not

reversal, and vice versa when Λ0 > 0.

The conditions in this result are mild: supply shocks simply need to be large

enough relative the existing liquidity factor to trigger a V-shaped pattern in

the liquidity premium when Λ0 6= 0, and the conditions are automatically

satisfied for Λ0 = 0. Suppose, for instance, that the shock and Λ0 have

different signs. If the shock is sufficiently small, its effect will be dwarfed

by the constant supply premium and the V shape in the liquidity premium
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disappears. Conditions for price momentum (instead of liquidity premium

momentum) given in the Appendix are similar but stricter, since there is an

additional trend in the risk premium to take into account.

The occurence of momentum before the realization of the shock is linked

to the anticipated shock trading by strategic traders. The intuition is sim-

ple. Price-takers understand that due to market power, the shock will not be

optimally diversified at the realization, so that they will have to hold more

than they desire for some time. For this reason, they are willing to hedge

in advance of the shock. A monopoly does not trade based on the antici-

pated shock. Thus, the price – more precisely, price-takers’ valuation for the

risky asset – drops immediately to the level it will reach at the realization:

hence the liquidity effect is α>t Λas
t (t2) = ᾱt2∆X∗t2 at any time betwen the

announcement and the realization; this is its level at the realization. Instead,

oligopolistic traders do trade before the realization and xi,ast (t2) > 0 in all

the numerical solutions I examined. As a result, price-takers can hedge to

some extent in advance the fact that they will have to hold an extra supply

at t2. Although traders are buying before the realization, numerical simu-

lations show that the anticipated shock liquidity premium keeps increasing.

The reason is that traders break up their orders. As price-takers are the

marginal holders of the asset and therefore the marginal price-setters, the

liquidity premium must increase each time they sell the asset to traders to

ensure that their demand is optimal. After the shock, traders trade towards

the new Pareto-optimal portfolio more aggressively, so that the liquidity pre-

mium progressively shrinks. The more aggressive trading cannot take place

earlier, or it would eliminate the liquidity premium at the realization, and

traders would have an incentive to deviate and trade more slowly.18 Note

that the average price pattern is predictable, but given that the market is

18This is why each buy by the traders pushes the liquidity premium up before the re-
alization and down after the realization. Before the shock takes place, each trade brings
price-takers closer to the suboptimal diversification that occurs at the realization, increas-
ing the liquidity premium. After the realization, each trade brings postions closer to
Pareto-optimal ones, reducing the liqudity premium.
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thin, this pattern cannot be arbitraged away. Any deviating trader seek-

ing to exploit the gradual price movement would adversely move the price,

eliminating the benefit of deviating in the first place.19

To understand better the trading dynamics before the shock, it is useful

to consider the expression of the trading on anticipated shocks:

xi,ast (t2) =

T−1∑
k=t2

(ct,k + nηt,k)∆X∗t2 − η̄tH
as
t−1(t2)− c̄tXi,as

t−1 (t2), t1 ≤ t ≤ t2

(15)

The first term is a sum, because each coefficient ct,k and ηt,k is associated

with the supply of time k. Since the shock is permanent, affecting the supply

from t2 to the end, we must sum all the coefficients to compute the total

effect. The second and third terms are related to smoothing price impact

and sharing inventory risk. Quantitatively, however, the first term seems to

drive the trading dynamics. It is easy to show that the terms related to the

anticipated shock in equation (15) can be expressed as folllows, for τ ≥ t+1:

ct,τ + nηt,τ = κt
∂

∂X∗τ

Dt − pt

xit;∑
j 6=i

xjt

+
∂Ωit+1

∂xit

 ,
with κt =

1

(n+ 1)λCt +QCt+1

(16)

where κ is a liquidity adjustment and λCt = aσ2(1 + ᾱt+1) is a trader’s price

19Note that if an additional trader were to enter unexpectedly at the announcement, the
total risk-bearing capacity of the market would increase. This would reduce the liquidity
premium but not eliminate momentum and reversal around the shock. If a positive mass of
price-takers were to enter unexpectedly, this would also increase the risk-bearing capacity,
leading to a more muted V-shaped price pattern, but risk aversion would prevent price-
takers from arbitraging it away. Below I consider comparative statics with respect to a
and n, holding the total risk-bearing capacity constant.
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impact. The marginal continuation value is

∂Ωit+1

∂xit
= −

(
bσ2(q1,t+1 − q̄2,t+1)Xi

t +

T−1∑
τ=t+1

Q2,4
t+1,τΛt+1,τ +

T−1∑
τ=t+1

Q3,5
t+1,τX

∗

)
(17)

Thus, we can write:

ct,τ + nηt,τ = κt

[
aσ2θt+1,τ − (nQ2,4

t+1,τ +Q3,5
t+1,τ )

]
(18)

This equation shows that traders trade off the effect of the shock on the

current marginal trading profit (via the price schedule) vs the effect on their

future marginal utility. The first term in (18) is the total effect of the shock

on next period’s price, as θt+1,τ =
b+naαt+1,τ

a includes both the effect on the

risk premium and on the liquidity premium. An anticipated shock lowers

future prices, which pushes price-takers’ demand down today, and therefore

pushes the price schedule down today (see (4)). As the first term shows,

traders take advantage of this downward shift in price-takers’ demand by

taking the other side. Note that while traders submit price-insensitive or-

ders under Cournot, they can condition them on future shocks. The effect

on the price schedule is indirect, as it occurs through price-takers’ demand

and market-clearing. The anticipated shock, however, also has a direct ef-

fect on traders’ future marginal utility, as shown by the second term of (18).

Traders internalize the effect of their trades on their future investment op-

portunity sets, taking into account the impacts on both the risk-sharing and

the speculative components. Since the shock increases future risk and liq-

uidity premia, traders have an incentive to reduce their trades now to take

advantage of future premia. However, the increase in future liquidity and risk

premia also increases the cost of liquidating positions in the future, as prices

will be lower than if there were no shocks. Similarly the shock increases the

target Pareto-optimal positions X∗τ , which, however, can be bought at lower

prices than in the absence of shocks.

In the proof of Proposition 3, I show that with a Cournot monopoly,
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the two effects in (18) exactly cancel each other; namely bσ2 = Q3,5
t+1,τ and

aσ2αt+1τ = Q2,4
t+1,τ . Hence the monopoly trades in such a way that the

increase in the time-τ risk premium caused by the shock affects today’s

marginal profit and tomorow’s marginal utility in exactly the same way.

Similarly the increase the time-τ liquidity premium/factor has exactly the

same impact on the current marginal profit and tomorrow’s marginal utility.

When there are multiple Cournot traders, however, the effect of the antici-

pated shock on today’s marginal profit is larger than its effect on tomorrow’s

marginal utility (see Figure 5). As a result, traders rush to buy ahead of the

shock. To sum up, imperfect competition among Cournot traders induces

them to trade against the shock and leads under mild conditions to a V-

shaped pattern in the liquidity premium. The gradual increase and decrease

of the liquidity premium around the realization of the shock is due to traders

breaking up their orders to smooth price impact. I next turn to comparative

statics.

Comparative statics. The model delivers comparative statics with respect

to competition, risk aversion, announcement date, and traders’ endowments

(see Figures 9-11). For the first two, it is necessary to normalize the risk-

bearing capacity of the market, R = 1
a + n

b . For instance, an increase in

n increases both competition and the risk-bearing capacity, so it is neces-

sary to adjust b as n increases to keep R constant. I show in the Appendix

that anticipated shock trading is highest for n = 2 when traders are risk-

neutral. Numerical simulations show that the same holds when traders are

risk-averse. Numerical analysis also shows that the V-shaped price pattern

is more pronounced when price-takers are more risk averse (holding the total

risk-bearing capacity constant) and when there are fewer trading rounds be-

tween the announcement and the realization (t2−t1 shorter, holding T fixed).

Furter, in line with Claim 1, the V-shaped pattern is more pronounced if the

traders hold smaller endowments in the risky asset (for a positive shock,

and vice versa for a negative shock), because the initial misallocation rein-

forces price-takers’ reluctance to hold the risky asset in anticipation of the
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shock. When traders hold more than the Pareto-optimal endowments, the

price impact of the shock decreases, the V-shaped price pattern becomes

more muted, and may entirely disappear as endowments become very large.

Intuitively, price-takers would like to hold more of the asset and the misallo-

cation of the shock is likely to bring them closer to this position. Consistent

with this prediction of the model, Chemmanur, He, and Hu (2009) study the

price effects of SEO and find a smaller SEO discount if institutional traders

buy more (and thus hold larger inventories) before the offering.20

4 Demand schedule competition

Under Cournot competition traders are restricted to use market orders. I

now relax this assumption by introducing competition in demand schedules,

which we can interpret as series of limit orders. Analytically, the two models

are very close. However, there are qualitative and quantitative differences

between the two types of competition.

4.1 Definitions

I introduce price-takers in the standard framework of demand schedule com-

petition (Vayanos, 1999, Rostek and Weretka, 2015). I consider the following

schedules as candidate equilibrium strategies:

ymt (pt) = βyt (Dt − pt)− cyt Y mt−1 + dyt

n∑
j=1

Xj
t−1 +

T−1∑
τ=t

fy,τt X∗τ , m ∈ [0, 1]

(19)

20These comparative statics are specific to a model with price-takers. Without price-
takers, and assuming that traders compete in demand schedules, Rostek and Weretka
(2015) find a different price effect of anticipated shocks, without drift between the an-
nouncement and the effective dates, and an immediate reversal afterwards. Further, in
their model the price effect is independent of traders’ risk-aversion and of the number of
trading rounds between the announcement and the effective date.
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xit(pt) = βt(Dt − pt)− ctXi
t−1 + dt

n∑
j=1

Xj
t−1 +

T−1∑
τ=t

fτt X
∗
τ , i = 1, . . . , n,

with βt > 0 (20)

Unlike traders, price-takers do not internalize the effects of their strate-

gies on the equilibrium price. A Walrasian auctioneer collects all demand

schedules and determines the market-clearing price. I use the standard as-

sumptions in case of ties, etc. (see, e.g. Kyle, 1989). It is well-known from

the double auctions literature that, when information is complete, there is

a continuum of equilibria in the standard demand schedule game with n

traders, as slopes are indeterminate. The usual solution in the literature is

to use a “trembling hand” refinement to select an equilibrium (Klemperer

and Meyer, 1989, Vayanos, 1999). Similarly, I focus on the robust Nash

equilibrium.

Definition 3 (Demand Schedule Equilibrium) A dynamic equilibrium

in downward-sloping demand schedules is a collection of subgame-perfect ro-

bust Nash equilibria in linear, downward-sloping demand schedules of the

form (19)-(20) such that

� ymt (pt) maximizes the expected utility of price-taker m, given pt, the an-

ticipated price path, other price-takers’ schedules y−mt (pt), and traders’

schedules,

� trader is’ schedule, xit(pt), maximizes his expected utility, given price-

takers’ schedules, other strategic traders’ schedules, x−it (pt), and his

and other traders’ impact on the price.

4.2 Equilibrium

Proposition 4 For any n ≥ 1, if for all t ∈ {1, . . . , T − 1}, Qt ≥ 0, there

exists an equilibrium in demand schedules, where the price and value function

are the same as in the Cournot case, the system defining value function
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coefficients qk,t remains the same, but the equilibrium vectors ct, ηt, and αt

and their boundary conditions are competition-specific.

The decomposition of price effects in fundamental and liquidity effects

and the decomposition of trades in constant supply and anticipated/realized

shock trading remain the same.

Equilibrium demand schedule coefficients are

βt =
1

λt +Qt+1
, ct =

Q̄1,2
t+1

λt + Q̄1,2
t+1

, dyt = ᾱt+1λtβt,

ft,τ = −βt(nQ2,4
t+1,τ +Q3,5

t+1,τ ), βyt =
1

aσ2
+ nᾱt+1βt, cyt = 1,

dt = (1− ct)βtQ̄2,4
t+1, fyt,τ = nᾱt+1ft,τ − θt+1,τ , ft,t = fyt,t = 0

(21)

where λt is the equilibrium price impact, λt ≡ ∂pt
∂xit

, defined by equation (131)

in the Online Appendix.

In a standard framework without price-takers, existence requires at least

three traders. This amount of competition ensures that traders do not have

“too much” market power and do not bid too aggressively. When there are

price-takers, the equilibrium may exist even for n = 1, provided that Q

remains positive, i.e. that the value function remains sufficiently concave.

In practice, this is the case if traders are sufficiently risk averse relative to

price-takers.21

The equilibrium keeps the same form as in the Cournot case, because

the residual demand curve remains linear under both types of competition,

with traders’ positions being a state variable. The differences between the

Cournot and demand schedule competitions lie in the slope of the residual

demand curve, i.e. the market depth, and in the initial conditions of the re-

cursive system. The derivation of the equilibrium as a function of primitives

21Value function coefficients are defined by the same system as under Cournot, but are
functions of competition-specific parameters, and thus their values differ from the Cournot
case too.
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does not rely on initial conditions, nor on the definitions of the equilibrium

trade and price parameters. Therefore, the main results, in particular the

first two points of Proposition 3 and Theorem 1, hold under demand schedule

competition. The results that do not hold are Lemma 3 about the signs of

value function and price coefficients under Cournot competition and Propo-

sition 9 about the myopic trading of a single Cournot trader (as discussed in

the nextion section, a weaker result holds).

Numerical solutions show that the liquidity premium is systematically

smaller under demand schedule competition. Convergence to the competitive

price seems to be always faster. Perhaps not surprisingly, market depth is

larger. We can think of market orders as horizontal demand curves in the

(p, x(p)) space. If strategic traders post downward-sloping schedules, the

slope of the residual demand curve becomes steeper, reducing price impact.

Risk-sharing is faster, in the sense that cDt,τ ≥ cCt,τ for any t, τ . Instead, the

speculative motive may or may not be larger, depending on the point in

time.

Further, market depth dynamics are reversed. Under Cournot, market

depth improves over time, while it is the opposite under demand schedule

competition. Two effects determine the dynamics of market depth: on the

one hand, the asset becomes conditionally less risky, which improves liquidity

as demands becomes more elastic; on the other hand, the number of trading

opportunities decreases, which worsens liquidity, as demands become less

elastic. Under Cournot, the first effect dominates, while it is opposite under

demand schedule competition.

While the equilibrium may exist even with a single trader, the monopoly

case does not typically correspond to the Cournot case, except in the one-shot

version of the model (see Corollary 4 in the Online Appendix). The reason is

that the slope chosen today by the monopolist affects the current trade and

thus tomorrow’s equilibrium allocation, and therefore the future price via the

liquidity factor. For instance, a slight increase in the price (e.g. some price-

takers trembled and acquired more shares than expected) leads to a decrease
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in the demand from trader i, but also from all other traders; this widens

tomorrow’s liquidity factor, which pushes tomorrow’s price down and distorts

the expected return on the asset; this distortion induces price-takers to adjust

their demand as well. Instead, under Cournot, if some price-takers tremble,

traders do not adjust their demand, because they submit price-insensitive

orders. This mechanism involves future allocations and is thus inherently

dynamic, which is why demand schedule and Cournot competitions yield

the same outcome only in the static case.

4.3 Information release

As in the Cournot case, there is a sharp difference between the monopo-

listic and oligopolistic cases. A V-shaped pattern occurs only when there

are at least two traders; however, the price rebounds one period before the

realization, not from the realization. This is because traders buy from the

announcement but sell right before the shock takes place. After the realiza-

tion, traders buy as in the Cournot case, albeit more aggressively, due to the

stronger emphasis on risk-sharing (Figure 8). As traders sell right before the

realization, the liquidity premium must shrink to compensate price-takers

for increasing their holdings. The V-shaped pattern nevertheless remains a

consequence of competition.

The total trading on anticipated shock is given by (18) as in the Cournot

case, but the coefficients of the first term are:

ct,τ + nηt,τ =
βyt ft,τ − βtf

y
t,τ

nβt + βyt

Under Cournot competition, traders condition their order on the anticipated

shock. Under demand schedule competition, traders condition the intercept

of their schedule on the anticipated shock. However, since all investors sub-

mit price-dependent schedules, the effect of the shock on xast (t2) is not given

directly by the sensitivities of the schedule to the shocks, ft and fyt . These

sensitivities are weighted by the price-elasticity of each type of investor as a
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fraction of the total price elasticity βy

βy+nβ and β
βy+nβ . Yet, as in the Cournot

case, we can write

cDt,τ + nηDt,τ = κDt
∂

∂X∗τ

Dt − pt

xit;∑
j 6=i

xjt

+
∂Ωit+1

∂xit

 ,
with κDt =

β

aσ2(βyt + nβt)
=

1

λDt +QDt+1 + naσ2(1 + ᾱDt+1)

where κDt is the demand schedule competition-specific liquidity adjustment.

Thus, as before, we get

cDt,τ + nηDt,τ = κDt

[
aσ2θDt+1,τ − (nQ2,4,D

t+1,τ +Q3,5,D
t+1,τ )

]
,

When traders are oligopolistic, the anticipated shock trade has initially the

same pattern as under Cournot, i.e. traders buy from the announcement and

their inventories increase. However, traders short just before the realization.

Figure 5 (panel b) shows that the effect of the shock on today’s profit first

dominates and then declines, while the effect on the marginal utility terms

remains increasing (see also Figure 6 for a term-by-term decomposition).

The reason why the effect of the shock on the current profit declines is that

the price becomes less sensitive to the anticipated shock. This is because

traders compete more fiercely at realization to supply liquidity than under

Cournot. As a result, the price becomes less sensitive to the liquidity factor.

Quantitatively, it is the coefficients of the next period that dominate, so

that at time t2 − 1, the sign of
∑T−1
τ=t2

(cDt,τ + nηDt,τ ) is the same as that of

cDt,t2 + nηDt,t2 .

This effect relies on the market being imperfectly liquid at the realization,

and is thus stronger when traders have more market power, i.e. when n is

small, or when price-takers have a lower risk-bearing capacity, holding the

total risk-bearing capacity constant.

This effect is also present with a single trader, except if the shock takes

place in the final trading round (see Corollary 5 in the Online Appendix).
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Indeed, in this case, the Cournot and demand schedule equilibria coincide.

Thus, the effect of the shock on the current profit does not decrease and the

monopolist behaves as under Cournot:s he does not trade on the anticipated

shock before the realization.

The prediction of the model about inventory dynamics in the oligopolis-

tic model is consistent with anecdotal and empirical evidence about market-

makers and liquidity suppliers in various markets. In the Treasury futures

market, Cai (2009) finds that market-makers trade in the same direction as

impending liquidation trades from LTCM. In the oil futures market, Bessem-

binder et al. (2016) show that liquidity suppliers reduce inventories in an-

ticipation of large ETF futures’ rolls, while providing liquidity on the day

of the roll. Interestingly, there is evidence of a similar behaviour by dealers

ahead of seasoned issuances or index exclusions. Lou, Yan and Zhang (2013)

discuss how dealers in the Treasury market reduce inventories in anticipation

of scheduled bond issuances. Dick-Nielsen and Rossi (2019) study corporate

bond index exclusions due to downgrades. They find that aggregate dealers’

inventories first rise and then decline just before the scheduled exclusion, in

particular for investment-grade bonds. This pattern is qualitatively similar

to the prediction of the model.

5 Conclusion

In this paper, I study how markets absorb anticipated supply or demand

schocks when investors differ in price impact. I consider a purposedly styl-

ized setting, in which all investors optimize, to emphasize the effects of the

market structure. The first main insight is about competition. The average

price reactions to shocks in my model are qualitatively consistent with the

V-shaped patterns observed in the data only if there is some competition

among strategic traders. The second main insight of the model is about how

traders with price impact trade in anticipation of shocks. Traders submit-

ting market orders only – i.e. resembling investors following opportunistic or
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directional strategies in actual markets – trade against anticipated shocks.

Instead, traders submitting demand schedules – i.e. investors comparable to

market-makers or liquidty providers submitting series of limit orders – first

trade against, then with the anticipated shock, just before it occurs. The

empirical evidence is consistent with these predictions about inventory dy-

namics. Empiricist and practitioners alike should thus take into account the

effects of the market structure: empiricists, by including proxies for traders’

market power in studies on shock absorption and market resiliency; prac-

titioners, by studying the market structure before launching ETFs, index

funds, or issuing securities.
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Proofs

A Notations

Notation 1 (Scalar / Vector notations)

1. While xt denotes a scalar, xt denotes a vector of length T − t, with

elements xt,τ , τ = t, . . . , T − 1.

2. Let x̄t denote the sum of the elements of xt, i.e. x̄t =
∑T−1
τ=t xt,τ .

3. Let yt =
(

0,xt+1

)
denote the vector in which the first element is zero,

and the other elements those of xt+1.

Guesses for the price and value function

pt = p∗t − aσ2α>t Λt, (22)

σ−2Ωit = − b
2
q1,t(X

i
t−1)2 −Xi

t−1

(
q>2,tΛt + q>3,tX

∗)+
1

2

T−1∑
τ=t

T−1∑
j=τ

qτ,j4,tΛt,τΛt,j

+

T−1∑
τ=t

T−1∑
j=t

qτ,j5,tΛt,τX
∗
j −

T−1∑
τ=t

T−1∑
j=τ

qτ,j6,tX
∗
τX
∗
j (23)

Under these guesses, it is possible to write trades as

xit =

T−1∑
τ=t

ct,τ (X∗τ −Xi
t) + η>t Λt (24)
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Notation 2 Price, trade and value function coefficients:

Q̄1,2
t+1 ≡ bσ2(1 + q1,t+1)− σ2q̄2,t+1,

Q2,4
t+1,τ ≡ σ2

(
qτ2,t+1 +

1

2
(ιt+1,τ + ι̂t+1,τ )

)
,

ιt+1,τ ≡
T−1∑
j=τ

qτ,j4,t+1,

ι̂t+1,τ =

τ∑
j=t+1

qj,τ4,t+1,

Q3,5
t+1,τ ≡ σ2

qτ3,t+1 +

T−1∑
j=t+1

qj,τ5,t+1

 ,

θt+1,τ ≡
b+ naαt+1,τ

a
,

Qt+1 ≡ Q̄1,2
t+1 − nQ̄

2,4
t+1,

At+1 ≡ aσ2(n(1 + ᾱt+1)− 2)

ht = b1−
(

0,q3,t+1

)
− 0.5b(1 + q1,t+1)ct, (25)

gt = aαt − 0.5b(1 + q1,t+1)ηt −
(

0,q2,t+1

)
+ q̄2,t+1δt (26)

δt,τ = ct,τ + nηt,τ , γt,τ = 1− δt,τ
(27)

B Competitive equilibrium

Lemma 1 Price-takers’ demand at time t is given by equation (2).

Proof. Let’s show by induction that the price-takers’ post-trade certainty

equivalent is given by

CEt = wt +

T−1∑
s=t

(Es(p̂s+1)− p̂s)2

2aV ars(p̂s+1)
(28)
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where wt is the price-takers wealth at t, and p̂t denotes the equilibrium price

(in this proof only). At T − 1, the price-takers’ objective is

max
YT−1

−ET−1 [exp−a(wT−1 + YT−1(DT − pT−1))]

⇔ max
YT−1

− exp
[
− a
(
wT−1 + YT−1(ET−1(DT )− pT−1)

− a

2
V arT−1(DT )Y 2

T−1

)]
Therefore, the price-takers’ demand is YT−1 = ET−1(DT )−pT+1

aV arT−1(DT ) . Substituting

back the demand, we obtain the certainty equivalent after trading at T−1 as

a function of the equilibrium price p̂T−1: CET−1 = wT−1 + ET−1(DT−p̂T−1)
2aV arT−1(DT ) .

Thus the property holds at T − 1.

Let’s now assume that at t, the post-trade certainty equivalent of the price-

taker is given by (28) and show that this property holds at t− 1. Let’s first

substitute the dynamic budget constraint, wt = wt−1 +Yt−1(p̂t− pt−1), into

(28) to obtain the price-takers’ objective at t− 1:

max
Yt−1

−Et−1 exp

[
−a(wt−1 + Yt−1(p̂t − pt−1) +

T−1∑
s=t

Es(p̂s+1)− ps)2

2aV ars(p̂s+1)

]

As we will verify below, for both types of competition among strategic traders,

for any s ≥ t, Es(p̂s+1) − p̂s is non-stochastic and V ars(p̂s+1) = σ2. Thus,

the objective function boils down to

max
Yt−1

− exp

[
–a(wt−1 + Yt−1(Et−1(p̂t)− pt−1)− a

2
V art−1(p̂t)Y

2
t−1+

T−1∑
s=t

(Es(p̂s+1)− p̂∗s)2

2aV ars(p̂s+1)

]

From the first order condition, we get Yt−1 = Et−1(p̂t)−pt−1

aV art−1(p̂t)
. Substituting
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back into the objective function, we get the certainty equivalent of the price-

taker at t−1, CEt−1 = wt−1 +
∑T−1
s=t−1

(Es(p̂s+1)−p̂s)2
2aV ars(p̂s+1) . So the property holds

at t− 1, and thus it holds for any t ∈ {0, . . . , T − 1}.

B.1 Proposition 5

The proposition in the text is a special case of the following result:

Proposition 5 (Competitive Equilibrium) In the competitive

equilibrium:

� Traders hold a Pareto-optimal position in the risky asset, in proportion

of their risk-bearing capacity, at any time: Xi
t =

1
b

1
a+n

b

= a
na+bst ≡ X

∗
t .

� When the supply changes, traders immediately adjust their portfolios

by trading

xi,∗t = Xi,∗
t −X

i,∗
t−1 =

a

na+ b
(st − st−1) =

a

na+ b
∆st ≡ ∆X∗t (29)

� The competitive price is the expected value of the dividend minus a risk

premium, which is proportional to supply shocks:

p∗t = Dt − bσ2(T − t)

(
X∗ +

t∑
τ=1

∆X∗τ

)
− bσ2

T−1∑
τ=t+1

(T − τ)∆X∗τ ,

where X∗ ≡ a
na+bs. (30)

Proof. The strategic trader’s optimal demand is analogous to price tak-

ers’, except that traders’ risk aversion is b. Hence Lemma 1 applies, and a

strategic trader’s demand at time t is Xi
t = Et(pt+1)−pt

bσ2 . Thus using market

clearing (1) and solving for pt, we obtain the equilibrium price stated in

the proposition. Substituting the equilibrium price in the strategic trader’s

demand yields X∗t .
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When there are shocks, equation (30) shows that the risk premium has

two components. The first one is the risk premium related to the current

supply, including shocks that have already occured. The second one is the

risk premium due to future shocks. Because future shocks will be absorbed

only later, when uncertainy will be smaller than today, they command a

smaller premium today (since T − τ < T − t for τ ≥ t+ 1).

C Cournot competition

C.1 Static model

Proposition 6 In the static Cournot model, there exists a unique equilib-

rium for all n ≥ 1, where the price, trade and holding of trader i are

pT−1 = p∗T−1 − aσ2αT−1ΛT−1 (31)

xiT−1 = ηT−1ΛT−1 + cT−1

(
X∗ −Xi

T−2

)
(32)

Xi
T−1 = ηT−1ΛT−1 + cT−1X

∗ + (1− cT−1)Xi
T−2 (33)

with parameters are αT−1 = a
(n+1)a+b , ηT−1 = a

a+bαT−1, cT−1 = b
a+b .

The post-trade equilibrium certainty equivalent (value function) is given by

(8), with t = τ = T − 1. The coefficients of the value function are q1,T−1 =

(1 − cT−1)2, q2,T−1 = acT−1αT−1 + b(1 − cT−1)ηT−1, q3,T−1 = bcT−1(2 −
cT−1), 1

2q4,T−1 = ηT−1

(
aαT−1 − b

2ηT−1

)
, q5,T−1 = q2,T−1, and q6,T−1 =

bc(1− c
2 ).

Proof. Since price-takers’ demand is given by Lemma 1, to solve for the

equilibrium, we simply need to solve strategic traders’ optimization problem.

Price schedule. The first step is to derive the price schedule faced by

traders. By inverting price-takers’ demand, and imposing market clearing
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(setting t = T − 1 in equation (1)), we obtain:

pT−1 = DT−1 − aσ2

sT−1 −
n∑
j=1

Xj
T−1

 (34)

Traders’ optimization problems. Traders’ wealth at T − 1 is given by

W i
T = BiT +Xi

TDT = BiT−2 − xiT−1pT−1 +Xi
T−1DT−1

Therefore, trader i solves the following problem, taking as given other traders’

orders,
∑
−i x

−i
T−1:

max
xiT−1

−E
(
− exp(−bW i

T )
)

s.t. (34)

After substituting the price schedule into the maximand, and using the

project theorem for normal variables, the problem boils down to:

max
xiT−1

− exp

[
− b

(
BiT−2 +Xi

T−2DT−1 + aσ2xiT−1

sT−1 −
n∑
j=1

Xj
T−1

−
bσ2

2
(Xi

T−1)2

)]
(35)

where
∑n
j=1X

j
T−1 =

∑n
j=1X

j
T−2 +

∑n
j=1 x

j
T−1 =

∑n
j=1X

j
T−2 +

∑
−i x

−i
T−1 +

xiT−1. From the FOC, we obtain:

a

sT−1 −
∑
j

Xj
T−2 −

∑
i

x−iT−1 − 2xiT−1

 = bXi
T−1 (36)

Equilibrium trade and price. Summing over all i, and using Xi
T−1 =
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Xi
T−2 + xiT−1, we get:

n∑
j=1

xjT−1 =
ansT−1 − (na+ b)

∑n
j=1X

j
T−2

(n+ 1)a+ b
(37)

We then rewrite (36) as (a+ b)xiT−1 = −bXi
T−2 + a

(
sT−1 −

∑n
j=1X

i
T−2−∑n

j=1 x
i
T−1

)
. Substituting (37) into this equation, we obtain the equilibrium

of the subgame:

xiT−1 =
a

(n+ 1)a+ b

sT−1 −
a

a+ b

n∑
j=1

Xj
T−2

− b

a+ b
Xi
T−2 (38)

We can rewrite the equilibrium trade as in the proposition by adding

( b
na+bsT−1 − b

na+bsT−1), recognizing X∗ (defined in Proposition 5) and re-

arranging the terms.

Then from (37), we get the total time-T-1 position of the traders:

n∑
j=1

Xj
T−1 =

nasT−1

(n+ 1)a+ b
+

a

(n+ 1)a+ b

n∑
i=1

Xi
T−2 (39)

Substituting into the price schedule (34) yields the equilibrium price of the

subgame:

pT−1 = ET−1(DT )− aσ2 (a+ b)sT−1 − a
∑n
i=1X

i
T−2

(n+ 1)a+ b
(40)

To write the price as in the proposition, note that from (30), we can write

DT−1 = p∗T−1 + bσ2X∗T−1. Substituting this expression into (40) and rear-

ranging the terms gives

pT−1 = p∗T−1 − aσ2 a

na+ b

nX∗ − n∑
j=1

Xj
t−1


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which we can write as in the proposition using the definition of the liqudity

factor ΛT−1 = nX∗ −
∑n
j=1X

j
t−1.

Equilibrium certainty equivalent. The traders’ expected utility at time

1 is given by

Eu(CiT ) = − exp

{
−b
[
BiT−2+Xi

T−2DT−1+aσ2xi1

sT−1 −
n∑
j=1

Xj
T−1

−
bσ2

2
Xi2
T−1

]}
(41)

Substituting for the equilibrium trade (32) and the price (31), we can write

ΩiT−1 ≡ aσ2xi1

(
sT−1 −

∑n
j=1X

j
T−1

)
− bσ2

2 Xi2
T−1 as (8) by defining the co-

efficients as in the proposition.

C.2 Anticipated supply shocks

C.2.1 Recursive characterization

I providea more detailed result than in the text:

Proposition 7 (Dynamic Cournot Equilibrium)

1. For all n ≥ 1, there exists a unique equilibrium in which the price,

trade, and post-trade certainty equivalent (value function) are given by

equations (7), (8), and (9) with, for all t ∈ {0, . . . , T − 1}

Pas : q̄2,t = q̄5,t, and bq1,t + q̄3,t = (T − t)b,

if the price and value function coefficients are defined recursively by the

system S(qk, α) given in Lemma 2, and if for t ∈ {1, . . . , T − 1}, the

second-order condition holds

2a(1 + ᾱt+1) +Qt+1 > 0, (42)
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where Qt+1 ≡ Q̄1,2
t+1−nQ̄

2,4
t+1 measures the curvature of the value func-

tion, with Q̄1,2
t+1 ≡ bσ2(1 + q1,t+1)− σ2q̄2,t+1 and

Q2,4
t+1,τ ≡ σ2 (q̄2,t+1 + q̄4,t+1). Boundary conditions for α and qi given

by the static version of the model in Proposition 6.

2. The liquidity factor evolves as follows:

for τ = t, . . . , T − 1, Λt+1,τ = Λt,τ −
T−1∑
j=t

δt,jΛt,j (43)

3. The parameters are defined as follows:

ηt,t =
a− (a+ µ̄t+1)δt,t

ϑt
,ηt,τ ≡

µt+1,τ − (a+ µ̄t+1)δt,τ
ϑt

, τ ≥ t+ 1

(44)

ct,t ≡
b

ϑt
, ct,j ≡

b−
∑T−1
τ=t+1 q

τ,j
5,t+1 − q

j
3,t+1

ϑt
for j ≥ t+ 1

(45)

δt,t ≡
na
ϑt

+ ct,t

ϑ̃t
, δt,τ ≡

nµt+1,τ

ϑt
+ ct,τ

ϑ̃t
, for τ ≥ t+ 1 (46)

ϑt = a(1 + ᾱt+1) + b(1 + q1,t+1)− q̄2,t+1, (47)

ϑ̃t ≡ 1 +
n(a+ µ̄t+1)

ϑt
(48)

µt+1,τ = aαt+1,τ − qτ2,t+1 −
1

2
(ιt+1,τ + ι̂t+1,τ ) (49)

Note: For the sake of comparison with demand schedule competition, pa-
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rameters can be rewritten using Notation 2 as

λCt ≡ aσ2(1 + ᾱt+1), η̄t = − λCt

λCt + Q̄1,2
t+1

aσ2(1 + ᾱt+1)− Q̄2,4
t+1

(n+ 1)λCt +Qt+1

ct,t =
bσ2

λCt + Q̄1,2
t+1

, ct,τ =
bσ2 −Q3,5

t+1,τ

λCt + Q̄1,2
t+1

Lemma 2 (Recursive system S(qk, α)) The price and value function co-

efficients are defined recursively by the following system for t ∈ {0, . . . , T − 2}:

αt,t = 1− (1 + ᾱt+1)δt,t (50)

αt,τ = αt+1,τ − (1 + ᾱt+1)δt,τ (51)

q1,t = (1 + q1,t+1)(1− ct)2

q2,t = ac̄tαt + (1− c̄t)
[
b(1 + q1,t+1)ηt +

(
0,q2,t+1

)>
− q̄2,t+1δt

]
q3,t = bc̄t1 + (1− c̄t)

[
b(1 + q1,t+1)ct +

(
0,q3,t+1

)>]
1

2
qt,t4,t = ηt,tgt,t +

1

2
q̄4,t+1δ

2
t,t

1

2
qt,τ4,t = ηt,tgt,τ + gt,tηt,τ + δt,t

(
q̄4,t+1δt,τ −

1

2
(ιt+1,τ + ι̂t+1,τ )

)
,

for t+ 1 ≤ τ ≤ T − 1

1

2
qτ,τ4,t = ηt,τgt,τ +

1

2

[
qτ,τ4,t+1 + q̄4,t+1δ

2
t,τ − δt,τ (ιt+1,τ + ι̂t+1,τ )

]
,

for t+ 1 ≤ τ ≤ T − 1

1

2
qτ,j4,t = ηt,τgt,j + gt,τηt,j +

1

2

[
qτ,j4,t+1 + 2q̄4,t+1δt,τδt,j − δt,τ (ιt+1,j + ι̂t+1,j)−

δt,j (ιt+1,τ + ι̂t+1,τ )
]
, for t+ 1 ≤ τ ≤ T − 2, and τ + 1 ≤ j ≤ T − 1
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qt,t5,t = ηt,tht,t + ct,tgt,t

qt,j5,t = ηt,tht,j + ct,jgt,t − δt,t
T−1∑
u=t+1

qu,j5,t+1, for j ≥ t+ 1

qτ,j5,t = ηt,τht,j + gt,τ ct,j + qτ,j5,t+1 − δt,τ
T−1∑
u=t+1

qu,j5,t+1,

for τ ≥ t+ 1, and j ≥ t+ 1

qτ,t5,t = ηt,τht,t + gt,τ ct,t, for τ ≥ t+ 1

qt,t6,t =
b

2
(1 + q1,t+1)(ct,t)

2

qt,τ6,t = ct,tq
τ
3,t+1, for τ ≥ t+ 1

qτ,τ6,t = qτ3,t+1ct,τ +
b

2
(1 + q1,t+1)(ct,τ )2 + qτ,τ6,t+1, for τ ≥ t+ 1

qτ,j6,t = b(1 + q1,t+1)ct,τ ct,j + ct,τq
j
3,t+1 + qτ,j6,t+1,

for t+ 1 ≤ τ ≤ T − 2, τ + 1 ≤ j ≤ T − 1

Proof. The proof is by induction. Let’s assume that the expression of the

price and value function, (7) and (8), and the properties Pas hold at t + 1

and all periods up to T − 1. We can now show that this implies that they

also hold at t. The main steps of the derivation are: (i) obtaining the price

schedule; (ii) solving the traders’ optimization problem at t; (iii) calculating

the equilibrium price and traders’ value function at t, and (iv) showing that

Pas holds at t.
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Step 1: Price schedule. First, let’s invert the price-takers’ demand (lemma

1) and impose market-clearing (1) to get pt = Et(p
∗
t+1) − aσ2α>t+1Λt+1 −

aσ2
(
st −

∑n
j=1X

j
t

)
. Proposition 5 implies that

p∗t = E(p∗t+1)− bσ2X∗t , (52)

Substituting (52) and grouping terms, we obtain the price schedule:

pt(·) = p∗t − aσ2
(
Λt+1,t + α>t+1Λt+1

)
, with Λt+1,t = nX∗t −

∑
j X

j
t . (53)

Step 2: Traders’ optimization. Using (53), and (52), we can write trader

i’s time t maximization problem as follows:

max
xit

σ2xit

b T−1∑
j=t

X∗j + a(Λt+1,t + α>t+1Λt+1)

− 0.5bσ2(Xi
t)

2 + Ωit+1

where trader i takes the orders of other traders,
∑
−i x

−i
t , as given. From

the FOC, we obtain:

− [b(1 + q1,t+1)− q̄2,t+1]Xi
t−1 − ϑtxit +Dt − pt(·)

− q>2,t+1Λt+1 −
1

2

T−1∑
τ=t+1

T−1∑
j=τ

qτ,j4,t+1 (Λt+1,τ + Λt+1,j)−

T−1∑
j=t+1

(
T−1∑
τ=t+1

qτ,j5,t+1 + qj3,t+1

)
X∗j = 0 (54)

where Dt−pt(·) =
∑T−1
j=t bX

∗
j +a

(
Λt+1,t + α>t+1Λt+1

)
and ϑt = a(1+ᾱt+1)+

b(1 + q1,t+1) − q̄2,t+1. From the SOC, xit is a maximum if inequality (42)

holds.

Step 3: Equilibrium trade, liquidity factor, price, and value func-

tion. We first rearrange the terms in q4,t+1 in the FOC. After some algebra,
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we get:

T−1∑
τ=t+1

T−1∑
j=τ

qτ,j4,t+1 (Λt+1,τ + Λt+1,j) =

T−1∑
τ=t+1

(ιt+1,τ + ι̂t+1,τ ) Λt+1,τ

where ιt+1,τ =
∑T−1
j=τ q

τ,j
4,t+1 and ι̂t+1,τ =

∑τ
j=t+1 q

j,τ
4,t+1. Therefore, using

this expression and the induction hypothesis, we can write

xit =
1

ϑt

[
aΛt+1,t +

T−1∑
τ=t+1

µt+1,τΛt+1,τ

]
+

T−1∑
j=t

ct,j
(
X̄∗j −Xi

t−1

)
(55)

where ct and µt+1,τ are given by equations (45) and (49). From (55), we can

obtain the trader’s aggregate equilibrium trade by summing over i. We have

n∑
i=1

xit =
n

ϑt

[
aΛt+1,t +

T−1∑
τ=t+1

µt+1,τΛt+1,τ

]
+

T−1∑
j=t

(
nX∗j −

n∑
i=1

Xi
t−1

)

Since Λt+1,τ = Λt,τ −
∑
iX

i
t and nX∗j −

∑n
i=1X

i
t−1 = Λt,j , the equilibrium

aggregate trade is:
n∑
j=1

xjt =

T−1∑
τ=t

δt,τΛt,τ (56)

where δt is defined by (46). Thus we can express Λt+1,τ as a function of Λt,τ

Λt+1,τ = Λt,τ −
T−1∑
j=t

δt,jΛt,j (57)

From (57) and (53), we can derive the equilibrium price. To do so, we first

need to compute Λt+1,t + α>t+1Λt+1. From (57), we have:

α>t+1Λt+1 =

T−1∑
τ=t+1

αt+1,τΛt+1,τ =

T−1∑
τ=t+1

αt+1,τΛt,τ −
T−1∑
τ=t+1

αt+1,τ

T−1∑
j=t

δt,jΛt,j

=
(

0, α>t+1

)
Λt − ᾱt+1δ

>
t Λt
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Therefore, Λt+1,t +α>t+1Λt+1 = Λt,t +
{(

0, α>t+1

)
− (1 + ᾱt+1)δ>t

}
Λt. So

we can write the equilibrium price as (7) if we define αt by (51). Then

combining (55) and (57), we get the equilibrium trade. First, note that

aΛt+1,t +

T−1∑
τ=t+1

µt+1,τΛt+1,τ = aΛt,t +

{(
0, µt+1

)>
− (a+ µ̄t+1)δ>t

}
Λt

Then we can write the equilibrium trade as

xit = η>t Λt +
∑T−1
τ=t ct,τ

(
X∗τ −Xi

t−1

)
by defining ηt as in the proposition.

Value function. Next, we use the equilibrium trade, holding, and liquidity

factor to calculate the value function. Ωit is the sum of equilibrium J it and

equilibrium (post-trade) Ωit+1:

Ωit = max
xit

J it + Ωit+1

with J it ≡ σ2xit

(
b
∑T−1
j=t X

∗
j + a

(
Λt+1,t + α>t+1Λt+1

))
− 1

2bσ
2(Xi

t)
2. Substi-

tuting the equilibrium trade and holding, and the liquidity factor (57) into

this expression, and rearranging terms, we get:

J it =
(
η>t Λt + c>t X∗

) [
b
(
1> − 0.5c>

)
X∗ +

(
aα>t − 0.5bη>t

)
Λt

]
−Xi

t−1

[(
bc̄t1

> + b(1− c̄t)c>t
)
X∗ +

(
ac̄tα

>
t + b(1− c̄t)η>t

)
Λt

]
− b

2
(1− c̄t)2

(
Xi
t−1

)2
(58)

Next, we compute the equilibrium value of Ωit+1 as a function of Xi
t−1 and
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Λt. Starting with the terms in Xi
t , we get:

−
[
η>t Λt + c>t X∗

] [(
0.5bq1,t+1η

>
t +

(
0q>2,t+1

)
− q̄2,t+1δ

>
t

)
Λt+{

0.5bq1,t+1c
>
t +

(
0q>3,t+1

)}
X∗
]

−Xi
t−1(1− c̄t)

[{
bq1,t+1η

>
t − q̄2,t+1δ

>
t +

(
0q>2,t+1

)}
Λt+{

bq1,t+1c
>
t +

(
0q>3,t+1

)
X∗
}]
− b

2
(1− c̄t)2q1,t+1

(
Xi
t−1

)2
(59)

Then we can compute the terms in q4,t+1 and q5,t+1. Using (57), developing

and rearranging terms, we get (skipping a few lines of algebra):

Q4 ≡
1

2

T−1∑
τ=t+1

T−1∑
j=τ

qτ,j4,t+1Λt+1,τΛt+1,j

=
1

2
q̄4,t+1δ

2
t,tΛ

2
t,t + δt,tΛt,t

T−1∑
τ=t+1

{
q̄4,t+1δt,τ −

1

2
(ιt+1,τ + ι̂t+1,τ )

}
Λt,τ

+
1

2

T−1∑
τ=t+1

{
qτ,τ4,t+1 + q̄4,t+1δ

2
t,τ − δt,τ (ιt+1,τ + ι̂t+1,τ )

}
Λ2
t,τ

+
1

2

T−2∑
τ=t+1

T−1∑
j=τ+1

{
qτ,j4,t+1 − (δt,τ (ιt+1,j + ι̂t+1,j) + δt,j (ιt+1,τ + ι̂t+1,τ )) +

2q̄4,t+1δt,τδt,j
}

Λt,τΛt,j

where ιt+1,j ≡
∑T−1
u=j q

j,u
4,t+1 and ι̂t+1,j ≡

∑j
u=t+1 q

u,j
4,t+1. Similarly, we com-
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pute the terms in q5,t.

Q5 =

T−1∑
τ=t+1

T−1∑
j=t+1

qτ,j5,t+1Λt+1,τX
∗
j

= −δt,tΛt,t
T−1∑
j=t+1

(
T−1∑
u=t+1

qu,j5,t+1

)
X∗j +

T−1∑
τ=t+1

T−1∑
j=t+1

{
qτ,j5,t+1 − δt,τ

(
T−1∑
u=t+1

qu,j5,t+1

)}
Λt,τX

∗
j

Thus, adding terms in Xi
t−1 and Q4 and Q5, we obtain

Ωit+1 =

−
[
η>Λt + c>t X∗

] [ {
0.5bq1,t+1η

>
t +

(
0,q>2,t+1

)
− q̄2,t+1δ

>
t

}
Λt+{

0.5bq1,t+1c
>
t +

(
0,q>3,t+1

)}
X∗
]

−Xi
t−1(1− c̄t)

[{
bq1,t+1η

>
t +

(
0,q>2,t+1

)
− q̄2,t+1δ

>
t

}
Λt+{

bq1,t+1c
>
t +

(
0,q>3,t+1

)}
X∗
]

− b
2

(1− c̄t)2
(
Xi
t−1

)2
+Q4 +Q5 (60)
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Thus, adding (58) and (60), we obtain the value function

Ωit =
[
η>t Λt + c>t X∗

]
×[{

aα>t − 0.5b(1 + q1,t+1)η>t −
(

0,q>2,t+1

)
+ q̄2,t+1δ

>
t

}
Λt

+
{
b
(
1> − 0.5(1 + q1,t+1)c>t

)
−
(

0q>3,t+1

)}
X∗
]

−Xi
t−1

[{
ac̄tα

>
t + b(1− c̄t)

[
(1 + q1,t+1)η>t +

(
0,q>2,t+1

)
− q̄2,t+1δ

>
t

]}
Λt

+
{
bc̄t1

> + b(1− c̄t)
[
(1 + q1,t+1)c>t +

(
0,q>3,t+1

)]}
X∗
]

− b
2

(1 + q1,t+1)(1− c̄t)2
(
Xi
t−1

)2
+Q4 +Q5

(61)

Let’s define g and h as in (25)-(26).Using this notation, we can rewrite (61)

as (8) by defining the coefficients qi,t, i = 1, . . . , 5 as in the proposition.

Step 4: Property Pas. To complete the proof, we need to show that

property Pas holds at time t. Using the recursive definition of q5,t given in

the proposition, we have:

T−1∑
τ=t

T−1∑
j=t

qτ,j5,t =

T−1∑
τ=t

T−1∑
j=t

(ηt,τht,j + ct,τgt,j) +

T−1∑
τ=t+1

T−1∑
j=t+1

(
qτ,j5,t+1 − δt,τ

T−1∑
u=t+1

qu,j5,t+1

)
− δt,t

T−1∑
j=t+1

(
T−1∑
u=t+1

qu,j5,t+1

)
(62)

We first calculate the first term, using the definitions of ht and gt,

T−1∑
j=t

ht,j = (T − t)b− 0.5bc̄t(1 + q1,t+1)− q̄3,t+1

T−1∑
j=t

gt,j = aᾱt − 0.5b(1 + q1,t+1)η̄t − q̄2,t+1 + q̄2,t+1δ̄t
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Thus, we have
∑T−1
τ=t

∑T−1
j=t (ηt,τht,j + ct,τgt,j) = (T−t)bη̄t−b(1+q1,t+1)c̄tη̄t−

q̄3,t+1η̄t + aᾱtc̄t − q̄2,t+1c̄t(1 − δ̄t). Further, the second and third terms are

equal to

T−1∑
τ=t+1

T−1∑
j=t+1

qτ,j5,t+1 −
T−1∑
τ=t+1

δt,τ

T−1∑
j=t+1

T−1∑
u=t+1

qu,j5,t+1 − δt,t
T−1∑
j=t+1

T−1∑
u=t+1

qu,j5,t+1

= q̄5,t+1 −
T−1∑
τ=t+1

δt,τ q̄5,t+1 − δt,tq̄5,t+1

= q̄5,t+1

(
1−

T−1∑
τ=t

δt,τ

)
= q̄5,t+1(1− δ̄t)

Therefore, adding the two terms, we get:

q̄5,t ≡
T−1∑
τ=t

T−1∑
j=t

qτ,j5,t = b(T − t)η̄t − b(1 + q1,t+1)c̄tη̄t − q̄3,t+1η̄t + aᾱtc̄t

− q̄2,t+1c̄t(1 + δ̄t) + q̄5,t+1(1− δ̄t)

Then, by summation, we have from the definition of q2,t: q̄2,t = ac̄tᾱt+ (1−
c̄t)
[
b(1 + q1,t+1)η̄t + q̄2,t+1(1− δ̄t)

]
. Hence, using the induction hypothesis

q̄2,t+1 = q̄5,t+1 we get that q̄2,t = q̄5,t is equivalent to

η̄t [(T − t)b− b(1 + q1,t+1)− q̄3,t+1], which is equal to 0 by Pas. Thus q̄2,t =

q̄5,t.

Then, we show the second property of Pas. From the recursive definitions of

q1,t and q3,t:

b(1 + q1,t) + q̄3,t = b
[
1 + (1− c̄t)2(1 + q1,t+1)

]
+ bc̄t(T − t) + (1− c̄t)b(1 + q1,t+1)c̄t + (1− c̄t)q̄3,t+1

= b+ (1− c̄t) [b(1 + q1,t+1) + q̄3,t+1] + bc̄t(T − t)

= b+ (T − t)b− c̄t (b(T − t)− b(T − t))
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Thus, bq1,t + q̄3,t = (T − t)b. This completes the proof.

C.3 Constant supply

C.3.1 Recursive characterization

Using Proposition 2 in the special case of constant supply, the system S(α, q)

boils down to

ᾱt = γ̄t(1 + ᾱt+1) (63)

q1,t = (1− c̄t)2(1 + q1,t+1) (64)

q̄2,t = ac̄tγ̄t(1 + ᾱt+1) + bη̄t(1− c̄t)(1 + q1,t+1) + (1− c̄t)γ̄tq̄2,t+1 (65)

q̄3,t = bc̄t(T − t) + (1− c̄t) (q̄3,t+1 + bc̄t(1 + q1,t+1)) (66)

1

2
q̄4,t =

1

2
γ̄2
t q̄4,t+1 + aη̄tᾱt − γ̄tη̄tq̄2,t+1 −

b

2
η̄2
t (1 + q1,t+1) (67)

The coefficients of the trade and liquidity factors are given by:

η̄t ≡
a(1 + ᾱt+1)− q̄2,t+1 − q̄4,t+1

ϑt
γ̄t, c̄t ≡

b(1 + q1,t+1)− q̄2,t+1

ϑt
(68)

ϑt ≡ a(1 + ᾱt+1) + b(1 + q1,t+1)− q̄2,t+1, γ̄t ≡
ϑt(1− c̄t)

ϑ̄t
, (69)

ϑ̂t ≡ ϑt + n (a(1 + ᾱt+1)− q̄2,t+1 − q̄4,t+1) (70)

Proof. The expressions of the recursive system and equilibrium parameters

derive from summing the corresponding expressions in Proposition 7.

Equilibrium parameters. Let’s first define ϑ̂t ≡ ϑt + n(a + µ̄t+1), with

µ̄t+1 = aᾱt+1−q̄2,t+1−q̄4,t+1, so that we can rewrite ϑ̃t = 1+ n(a+µ̄t+1)
ϑt

= ϑ̂t
ϑt

.
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Then, using the definitions of Proposition 2, we compute:

δ̄t = δt,t +

T−1∑
τ=t+1

δt,τ =
c̄t + n(a+µ̄t+1)

ϑt

ϑ̃t

γ̄t = 1− δ̄t =
ϑ̃t − ct − n(a+µ̄t+1)

ϑt

ϑ̃t
=
ϑt(1− c̄t)

ϑ̂t
, from the definition of ϑ̂t

η̄t =
a(1− δt,t)− µ̄t+1δt,t + µ̄t+1 − (a+ µ̄t+1)

∑T−1
τ=t+1 δt,τ

ϑt
=

(a+ µ̄t+1)

ϑt
γt

c̄t =
b+ b(T − t− 1)− q̄3,t+1 − q̄5,t+1

ϑt
=
b(1 + q1,t+1)− q̄2,t+1

ϑt
, from Pas

Further, Λt+1,τ = Λt,τ −
∑T−1
j=t δt,jΛt,j = nX∗τ −

∑
iX

i
t −

∑T−1
j=t δt,j(nX

∗
j −∑

iX
i
t). So when sτ = s, X∗τ = X∗, Λt+1,τ = Λt+1 = (1 − δ̄t)(nX

∗ −∑
iX

i
t) = λ̄t(nX

∗ −
∑
iX

i
t) = γ̄tΛt.

Recursive system. For q1, q̄2, q̄3, the computation is straightforward. For

q̄4, let’s proceed by adding groups of terms. First, the terms in gη give:

ηt,t

(
gt,t +

T−1∑
τ=t+1

gt,τ

)
+

T−1∑
τ=t+1

gt,τηt,τ +

T−2∑
τ=t+1

T−1∑
j=τ+1

ηt,τgt,j

+

T−2∑
τ=t+1

T−1∑
j=τ+1

ηt,jgt,τ + gt,t

T−1∑
τ=t+1

ηt,τ

= ηt,t

T−1∑
τ=t

gt,τ +

T−1∑
τ=t+1

gt,τηt,τ +

T−1∑
τ=t+1

ηt,τ

 T−1∑
j=t+1,j 6=τ

gt,j

+ gt,t

T−1∑
τ=t+1

ηt,τ

= ηt,t

T−1∑
τ=t

gt,τ +

T−1∑
τ=t+1

ηt,τ

 T−1∑
j=t+1

gt,j

+ gt,t

T−1∑
τ=t+1

ηt,τ

= ηt,t

T−1∑
τ=t

gt,τ +

T−1∑
τ=t+1

ηt,τ

T−1∑
j=t

gt,j

 = ḡtη̄t (71)

The second line follows from adding the fourth and fifth terms together, the
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third line from adding the second and third terms. The terms in δ2 give

1

2
q̄4,t+1

δ2
t,t + 2

T−1∑
τ=t+1

δt,tδt,τ +

T−1∑
τ=t+1

δ2
t,τ + 2

T−2∑
τ=t+1

T−1∑
j=τ+1

δt,τδt,j


=

1

2
q̄4,t+1

T−1∑
τ=t

δ2
t,τ + 2

T−2∑
τ=t+1

T−1∑
j=τ+1

δt,τδt,j

 =
1

2
q̄4,t+1

(
T−1∑
τ=t

δt,τ

)2

(72)

Next, denote It+1,τ ≡ 1
2 (ιt+1,τ + ι̂t+1,τ ), and note that

∑T−1
τ=t+1 It+1,τ =

q̄4,t+1. Then summing the terms in It+1,τ gives:

T−1∑
τ=t+1

δt,tIt+1,τ +

T−1∑
τ=t+1

δt,τIt+1,τ +

T−2∑
τ=t+1

T−1∑
j=τ+1

δt,τIt+1,j

+

T−2∑
τ=t+1

T−1∑
j=τ+1

δt,jIt+1,τ =

T−1∑
τ=t+1

δt,tIt+1,τ +

T−1∑
τ=t+1

δt,τIt+1,τ

+

T−1∑
τ=t+1

δt,τ

T−1∑
j=t+1,j 6=τ

It+1,j =

T−1∑
τ=t+1

δt,tIt+1,τ +

T−1∑
τ=t+1

δt,τ

T−1∑
j=t+1

It+1,j

=

T−1∑
τ=t+1

δt,τ q̄4,t+1 (73)

The remaining terms are
∑T−1
τ=t+1

1
2q
τ,τ
4,t+1+

∑T−2
τ=t+1

∑T−1
j=τ+1

1
2q
τ,τ
4,t+1 = 1

2 q̄4,t+1.

Adding (71), (72), and (73), we get

1

2
q̄4,t = η̄tḡt +

1

2
q̄4,t+1

1 +

(
T−1∑
τ=t

δt,τ

)2

− 2

T−1∑
τ=t

δt,τ


= η̄tḡt +

1

2
q̄4,t+1

(
1−

T−1∑
τ=t

δt,τ

)2

= η̄tḡt +
1

2
q̄4,t+1λ̄

2
t (74)

Substituting for ḡt yields the expression given in the proposition. Finally,

ᾱt = αt,t +
∑T−1
τ=t+1 αt,τ = (1 + ᾱt+1)(1− δ̄t) = (1 + ᾱt+1)γ̄t.
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C.3.2 Signs of value function coefficients with constant supply

Lemma 3 (Coefficients Signs in the Cournot Equilibrium) Under

Cournot competition, if ∀t ∈ {0, . . . , T − 1}, a(1 + ᾱt) > q̄2,t + q̄4,t, then for

any n ≥ 1

c̄t ∈ ]0, 1[ , η̄t ∈ ]0, 1[ , γ̄t ∈ ]0, 1[

q1,t, q̄2,t, q3,t > 0, ᾱt > 0, b(1 + q1,t) ≥ q̄2,t

Proof. The proof is by induction. It is sufficient to show that under our

assumption, the following conditions hold:

C1 :

{
b(1 + q1,t) ≥ q2,t

q1,t, q2,t, q3,t, ᾱt > 0

At T − 1, from proposition 6, for any a, b > 0, and n ≥ 1, we have cT−1 =
b

a+ b
∈ ]0, 1[ and αT−1 =

a

(n+ 1)a+ b
> 0. This implies that ηT−1 =

(1− cT−1)αT−1 > 0, q1,T−1 = (1− cT−1)2 > 0, q2,T−1 = acT−1αT−1 + b(1−
cT−1)ηT−1 > 0, and q3,T−1 = bcT−1(2− cT−1) > 0. Further b(1 + q1,T−1) ≥
q2,T−1 is equivalent to b(1 − cT−1)2 (1− αT−1) ≥ acT−1αT−1. Substituting

for cT−1 and αT−1 and simplifying, this condition boils down to (n−1)a ≥ 0,

which holds for any n ≥ 1. Thus C1 holds at T − 1.

Next, let’s assume that C1 holds at t + 1, for a given t, and show that this

implies it also holds at t. First, note that if C1 holds at t+ 1, then from the

definition of ϑt and ϑ̄t in Proposition ??

ϑ̂t > ϑt > 0, ct =
b(1 + q1,t+1)− q2,t+1

ϑt
∈ ]0, 1[ , γt =

ϑt(1− ct)
ϑ̄t

∈ ]0, 1[

Further, ct ∈ ]0, 1[ and a(1+αt+1)−q2,t+1−q4,t+1 > 0 imply that ηt ∈ ]0, 1[.

Since γt > 0 and αt+1 > 0, αt = γt(1 +αt+1) > 0. And ct ∈ ]0, 1[, q1,t+1 > 0

imply that q1,t > 0. Thus we also have q2,t > 0 (as a sum of positive terms)

and q3,t > 0 (for the same reason). It remains to show that b(1+ q1,t) ≥ q2,t.
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Using the recursive definition of q1,t and q2,t, we compute:

b(1 + q1,t)− q2,t = b− actγt(1 + αt+1)

+ b(1− ct)(1− ct − ηt)(1 + q1,t+1)− γt(1− ct)q2,t+1 (75)

It is sufficient to show that −actγt(1 + αt+1) + b(1 − ct)(1 − ct − ηt)(1 +

q1,t+1) − γt(1 − ct)q2,t+1 > 0. Since ctγt =
(1− ct)(b(1 + q1,t+1)− q2,t+1)

ϑ̄t
,

we get

− actγt(1 + αt+1) + b(1− ct)(1− ct − ηt)(1 + q1,t+1)− γt(1− ct)q2,t+1

= (1− ct)
[
b(1 + q1,t+1)

(
1− ct − ηt −

a(1 + αt+1)

ϑ̄t

)
− q2,t+1

(
γt −

a(1 + αt+1

ϑ̄t

)]
By definition, γt = 1− ct − nηt. Hence, ηt > 0 implies that 1− ct − ηt ≥ γt
for any n ≥ 1. Thus, given that q1,t+1 > 0 and q2,t+1 > 0 (induction

hypothesis),

b(1 + q1,t+1)

(
1− ct − ηt −

a(1 + αt+1)

ϑ̄t

)
− q2,t+1

(
γt −

a(1 + αt+1)

ϑ̄t

)
>

(
γt −

a(1 + αt+1)

ϑ̄t

)
(b(1 + q1,t+1)− q2,t+1)

But from the definition of ct, γt and dt, γt −
a(1 + αt+1)

ϑ̄t
= 0. Thus −a(1 +

αt+1)ctγt + b(1 − ct)(1 − ct − ηt)(1 + q1,t+1) − γt(1 − ct)q2,t+1 > 0, and so

b(1 + q1,t) > q2,t.
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C.3.3 Equilibrium price and holdings as a function of primitives

with constant supply

To express the price and trading dynamics, it is convenient to define cπk,t and

lk,t as

cπk,t ≡
t∏

τ=k

(1− c̄τ ) and lk,t ≡
t∏

τ=k

γ̄τ , (76)

with the convention that ct+1,t = lt+1,t = 1. For brevity, I write cπt and lt

when k = 0. Lemma 3 implies that ck,t and lk,t belong to the interval (0, 1),

and decrease as time passes.

Proposition 8 (Constant Supply Equ. as a Function of Primitives)

With constant supply (cs), the equilibrium price and quantities are

Λcst = lt−1Λ0 (77)

pcst = p∗,cst − aσ2ᾱtlt−1Λ0 (78)

X∗ −Xi
t = cπt (X∗ −Xi

−1)− πη,c,lt Λ0, (79)

where πη,c,lt ≡
[∑t

k=0 η̄kc
π
k+1,tlk−1

]
. Thus, the liquidity factor contracts at

rate γ̄t and the price converges to the competitive price at rate aσ2ltΛ0.

Proof. Equation (77) follows from iterating equation (43), which recursively

defines the liquidity factor in the constant supply case. Substituting the

liquidity factor in equation (22) gives the equilibrium price (78). From (120),

we have

X∗ −Xi
t = −η̄tΛt + (1− c̄t)(X∗ −Xi

t−1)

Iterating backward this equation and substituting (77) for Λt gives equilib-

rium holdings (79). Given that ᾱt = λ̄t(1 + ᾱt+1) (from equation (63)), the

convergence to the competitive price is Et(pt+1−p∗t+1)−(pt−p∗t ) = aσ2ltΛ0.
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C.4 T liquidity factors and T -account separation (The-

orem 1)

To generalize the discussion in the text to an arbitrary sequence of shocks,

it is useful to decompose time t-supply as a series of permanent shocks,

st = s +
∑t
l=1 ∆sl. Then following the same logic as in the text, we can

decompose the trade xit as follows:

xit = xi,cst +

t∑
τ=1

xi,cst (τ) +

T−1∑
τ=t+1

xi,ast (τ) (80)

where xi,cst (τ) denotes the part of the time-t trade based on the shock realized

at τ ≤ t, and xi,ast (τ) the part based on the anticipated shock, which will

occur at τ > t. This partition of the trades implies the same partition for

individual and aggregate holdings, with

Xi
t = Xi,cs

t +

t∑
τ=1

Xi,cs
t (τ) +

T−1∑
τ=t+1

Xi,as
t (τ) (81)

Ht = Hcst +

t∑
τ=1

Hcst (τ) +

T−1∑
τ=t+1

Hast (τ) (82)

where Xi,cs
t =

∑t
l=0 x

i,cs
l + Xi,cs

−1 , Xi,cs
t (τ) =

∑t
l=0 x

i,cs
l (τ) + Xi,cs

−1 (τ), and

Xi,as
t (τ) =

∑t
l=0 x

i,as
l (τ)+Xi,as

−1 (τ), and denoting aggregating holdingsHt ≡∑n
j=1X

j
t for brevity. The initial holdings of the different accounts are a

trader’s endowment for the constant supply account, and zero for the others:

Xi,cs
−1 ≡ Xi

−1 and Xi,cs
−1 (τ) = Xi,as

−1 (τ) ≡ 0, τ ≥ 1 (83)

This partition of aggregate holdings leads to three types of liquidity factors

Λcst , Λcst (τ), and Λast (τ). The first factor, Λcst – that I sometimes denote

Λcst (0) – is the same as in the constant supply case given in Proposition 8.

By analogy, Λcst (τ) denotes the liquidity factor associated with the constant
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shock which occurred at time τ ≤ t, Λcst (τ) ≡ n∆X∗τ − Hcst (τ). Finally,

Λas
t (τ) is the vector of liquidity factors associated with the anticipated shock

that will occur at time τ , with Λt,j(τ) ≡ −Hast (τ) for t ≤ j < τ , and

Λast,j(τ) ≡ n∆X∗τ −Hast for τ ≤ j ≤ T − 1.

To split the trades, holdings, and liquidity factors into T parts as in

equations (80), (81), and (82) it is sufficient to set initial endowments as in

(83), and define recursively individual holdings as follows:

X∗ −Xi,cs
t = (1− c̄t)(X∗ −Xi,cs

t−1)− η̄tΛcst (84)

∆X∗τ −X
i,cs
t (τ) = (1− c̄t)(∆X∗τ −X

i,cs
t−1(τ))− η̄tΛcst (τ), τ ≤ t,

with Xi,cs
τ−1(τ) = Xi,as

τ−1(τ) and Xi,cs
k (τ) = 0, for k ≤ τ − 2 (85)

Xi,as
t (τ) =

(
T−1∑
k=τ

ct,k

)
∆X∗τ + η>t Λas

t (τ) + (1− c̄t)Xi,as
t−1 (τ), τ ≥ t+ 1

(86)

Equation (84) is the same as in the constant supply case. Equation (85)

says that the account for the shock occurred at time τ ≤ t evolves as in

the constant supply case as soon as the shock takes place, but with different

initial conditions due to anticipated trading before the shock. Equation (86)

describes the dynamics of the account due to anticipated trading on the

shock that will occur at time τ , starting from a zero position. These account

dynamics lead to the following separation result.

Theorem 1 (T Liquidity Factors and T -Account Separation) If we

set initial inventories as in (83), then it suffices to define individual hold-

ings recursively as in (84)-(86) to decompose the trade of time t into T + 1
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accounts, where, at time t,

� Account 0 (constant supply account) is similar to the constant supply

holdings of Prop. 8.

� Accounts 1 to t (constant shock accounts) contain a trader’s positions

with respect to constant shocks realized up to time t. These account

remains empty until one period before the shock takes place, where the

inventory due to anticipated trading is transferred to the corresponding

account. From the time the shock takes place until T − 1, the account

dynamics are given by equation (85).

� Accounts t+1 to T −1 (anticipated shocks accounts) contain a trader’s

positions with respect to future shocks, due to past and current trading

against anticipated shocks. These accounts start with a zero position

and their dynamics are given by equation (86) up to one period before

the shock takes place, where inventories are transferred to a constant

shock account.

As a result, the equilibrium price is the sum of the competitive price and T

liquidity premia associated with past and future shocks:

pt = p∗t − aσ2ᾱt

t∑
τ=0

Λcst (τ)− aσ2
T−1∑
τ=t+1

α>t Λas
t (τ), (87)

where p∗t is given by (30) and the equilibrium liquidity factors are equation

(77) for Λcst , and equations (96) and (97) for Λcst (τ) and Λas
t (τ).

Proof. The proof is by induction. The induction hypothesis is that the

partition (80) of the trade holds for all dates from 0 to t − 1. Further,

assume that inventories are given by (83). This implies that equations (81)-

(82) for individual and aggregate inventories also hold between 0 and t −
1. We will show that equations (80), (81), and (82) then also hold until

t, and derive equilibrium holdings and liquidity premia from the recursive

definitions obtained during the induction.
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Aggregate holdings. The starting point is the recursive definition of aggre-

gate trades (56) in Proposition 2, which says that
∑n
j=1 x

j
t =

∑T−1
τ=t δt,τΛt,τ .

Using the definition of Λt,τ (equation (6)), adding
∑n
j=1X

j
t−1, and using the

notation Ht for brevity, we obtain the following recursive relationship for

traders’ aggregate holdings:

Ht = n

T−1∑
τ=t

δt,τX
∗
τ + (1− δ̄t)Ht−1 (88)

Since X∗τ = X∗ +
∑τ
l=1 ∆X∗l , we can rewrite the first term of (88) as

n

T−1∑
τ=t

δt,τX
∗
τ = nδ̄t

(
X∗ +

t∑
τ=1

∆X∗τ

)
+ n

T−1∑
τ=t+1

(
∆X∗τ

(
T−1∑
k=τ

δt,k

))

Then using the induction hypothesis, we can rewrite aggregate holdings as

follows:

Ht = nδ̄tX
∗ + (1− δ̄t)Hcst−1 +

t∑
τ=1

(
∆X∗τ + (1− δ̄t)Hcst−1(τ)

)
+

T−1∑
τ=t+1

(
∆X∗τ

(
T−1∑
k=τ

δt,k

)
+ (1− δ̄t)Hast−1(τ)

)
(89)

Then it is enough to identify terms by terms and define aggregate holdings

recursively as:

Hcst = nδ̄tX
∗ + (1− δ̄t)Hcst−1, Hcs−1 = H−1 (90)

Hcst (τ) = nδ̄t∆X
∗
τ + (1− δ̄t)Hcst−1(τ), with Hcsτ−1(τ) = Hasτ−1(τ) (91)

Hast (τ) = n

(
T−1∑
k=τ

δt,k

)
∆X∗τ + (1− δ̄t)Hast−1(τ), with Has−1(τ) = 0 (92)

Liquidity premia. We can then use this partition of aggregate holdings

and the recursive definitions to split liquidity premia into T parts and obtain
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their expression as a function of primitives. The defintion of the liquidity

premium is
∑T−1
τ=t αt,τΛt,τ =

∑T−1
τ=t αt,τ (nX∗τ −Ht−1). Developing the terms

in X∗τ as before, and splittingHt−1 in T parts using the induction hypothesis,

we obtain:

T−1∑
τ=t

αt,τΛt,τ = ᾱtn

(
X∗ +

t∑
τ=1

∆X∗τ

)
+ n

T−1∑
τ=t+1

(
∆X∗τ

(
T−1∑
k=τ

αt,k

))

− ᾱt

[
t−1∑
τ=0

Hcst−1(τ) +

T−1∑
τ=t

Hast−1(τ)

]
(93)

where we denote Hcst−1(0) = Hcst−1. Then by grouping terms and using

the definitions of the liquidity factors Λcst , Λcst (τ), and Λast (τ), we get

T−1∑
τ=t

αt,τΛt,τ = ᾱt

t∑
τ=0

Λcst (τ) +

T−1∑
τ=t+1

α>t Λast (τ)

To obtain the liquidity premia as a function of primitives, we need to iterate

the recursive definitions of the equilibrium aggregate holdings. Starting from

(91), we get:

n∆X∗τ −Hcst (τ) ≡ Λcst+1(τ) = (1− δ̄t)Λcst (τ) = lτ,tΛ
cs
τ (τ)

= lτ,t(n∆X∗τ −Hcsτ−1(τ)) (94)

Since Hcsτ−1(τ) = Hasτ−1(τ), we need to derive Hasτ−1(τ). Starting from equa-

tion (92), iterating backward, and using the fact that anticipated shocks

account start from zero inventoriy, we get:

Hast−1(τ) = n

T−1∑
k=τ

(
t∑

q=0

δq,klq+1,t

)
∆Xτ (95)

Thus, Hasτ−1(τ) = n
∑T−1
k=τ

(∑τ−1
q=0 δq,klq+1,τ−1

)
∆Xτ . Substituting this ex-
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pression in (94), we obtain the equilibrium constant shock liquidity factor:

Λcst (τ) = lτ,t−1Λcsτ (τ) = lτ,t−1

[
1−

T−1∑
k=τ

(
τ−1∑
q=0

δq,klq+1,τ−1

)]
n∆X∗τ (96)

We have α>t Λast = n∆X∗τ

(∑T−1
k=τ αt,k

)
−ᾱtHast−1. Substituting (95) for Hast−1

gives the equilibrium anticipated shock liquidity factor

α>t Λas
t (τ) =

T−1∑
k=τ

(
αt,k − ᾱt

t−1∑
q=0

δq,klq+1,t−1

)
n∆X∗τ , τ > t (97)

The constant supply liquidity factor is given in Proposition 8. The compet-

itive price is given by (30).

Individual trade/holding. To complete the induction, it remains to show

that these consequences for aggregate holdings and liquidity premia lead

to the same partition for individual holdings or trades as in the induction

hypothesis. We start from equation (??), develop terms in X∗τ as before,

use the induction hypothesis to subsitute for the different components of

aggregate holdings, and the different liquidity factors. This gives

xit = c̄t(X
∗ −Xi,cs

t−1) + η̄tΛ
cs
t +

t∑
τ=1

(
c̄t(∆X − τ∗ −Xi,cs

t−1(τ)) + η̄tΛ
cs
t (τ)

)
+

T−1∑
τ=t+1

(
T−1∑
k=τ

ct,k∆X∗τ − c̄tX
i,as
t−1 (τ) + η>t Λas

t (τ)

)
(98)

which we can indenfy term by term as xit = xi,cst +
∑t
τ=1 x

i,cs
t (τ)

+
∑T−1
τ=t+1 x

i,as
t (τ). Hence, the induction hypothesis holds at time t. Further,
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adding Xi
t−1 and grouping terms, we obtain:

X∗ −Xi,cs
t−1 +

t∑
τ=1

(∆X∗τ −X
i,cs
t−1(τ))−

T−1∑
τ=t+1

Xi,as
t−1 (τ) =

(1− c̄t)(X∗ −Xi,cs
t−1)− η̄tΛcst

+

t∑
τ=1

(
(1− c̄t)(∆X − τ∗ −Xi,cs

t−1(τ))− η̄tΛcst (τ)
)

−
T−1∑
τ=t+1

(
T−1∑
k=τ

ct,k

)
∆X∗τ + (1− c̄t)Xi,as

t−1 (τ) + η>t Λas
t (τ)

Then, it suffices to define recursively individual holdings as in (84)-(86). It-

erating these equations gives the equilibrium holdings given in the Theorem.

It is simple to verify that by aggregating (84)-(86), we get back the recursive

relationships for aggregate holdings (90)-(92).

C.5 Myopic trading by a Cournot monopoly

To establish the main result, I first prove an auxiliary lemma about price

and value function coefficients. The result is based on three properties.

Lemma 4 If n = 1:

bq1,t = q̄2,t (99)

∀j ≥ t, b−
T−1∑
τ=t

qτ,j5,t − q
j
3,t = 0 (100)

∀τ ≥ t, µt,τ = aαt,τ − qτ2,t −
1

2
(ιt,τ + ι̂t,τ ) = 0 (101)

Proof. All three properties are proved by induction.

Initial values. Property 99 holds at T − 1, as can be verified from Propo-

sition 6. Further, when n = 1, q3,T−1 = b2(2a+b)
(a+b)2 . Since q5,T−1 = q2,T−1 =

ba2

(a+ b)2
(Proposition 6), we have q3,T−1 + q5,T−1 = b. So Property 100

67



holds at T − 1. Further, µT−1,T−1 = aαT−1 − q2,T−1 −
1

2
(ιT−1 + ι̂T−1).

Since
1

2
(ιT−1 + ι̂T−1) = q4,T−1 and q4,T−1 =

a4

(a+ b)2(2a+ b)
, we have

aαT−1 − q2,T−1 − q4,T−1 =
a2

2a+ b
− a2b

(a+b)2 −
a4

(a+ b)2(2a+ b)
= 0, so Prop-

erty 101 holds at T − 1.

Preliminary remarks. Assume now that the three properties hold at some

time t+1. I will show that this implies that they hold at t. First, notice that

if Properties 99, 100, 101 hold at t, then they imply that ∀τ ≥ t+ 1, ct,τ =

ηt,τ = δt,τ = 0 (this can be seen by using the definitions of c, η and δ given

in Proposition 2). The properties further imply that

c̄t = ct,t =
b

ϑt
, ϑt = b+ a(1 + ᾱt+1), ϑ̃t = 1 +

a

ϑt
,

δ̄t = δt,t =
a+ b

a+ ϑt
, η̄t = ηt,t =

a(1− δ̄t)
ϑt

Thus for any τ ≥ t+ 1, equation (120) becomes

xt =

T−1∑
τ=t

(ct,τ + ηt,τ )Λt,τ = (ηt,t + ct,t)(X
∗
t −Xt−1),

with ct,t + ηt,t =
b+ aγ̄t

b+ a(1 + ᾱt+1)
. (102)

Besides, we have from Proposition 2, γ̄t = 1 − δ̄t. Since when n = 1,

γ̄t = 1− c̄t − η̄t, we obtain δ̄t = c̄t + η̄t. (This can also be verified by direct

calculation). Further, δt,τ = 0 implies that

αt,t = 1− δ̄t(1 + ᾱt+1), αt,τ = αt+1,τ , ∀τ ≥ t+ 1

The latter implies that αt,τ = ατ,τ , which in turn means that

T−1∑
τ=t

αt,τΛt,τ = αt,tΛt,t +

T−1∑
τ=t+1

ατ,τΛt,τ =

T−1∑
τ=t

ατ,τΛt,τ .
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Induction from t+ 1 to t. Given these preliminary remarks, we can now

show that Properties 99, 100 and 101 hold at t.

� Property 99: First, from the definitions of q1,t and q2,t given in propo-

sition 2, we get

q̄2,t = bq1,t ⇔ ac̄tᾱt + (1− c̄t)
[
b(1 + q1,t+1)(c̄t + η̄t − 1)

+ (1− δ̄t)q̄2,t+1

]
= 0

Using γ̄t = 1 − δ̄t = 1 − c̄t − η̄t, ᾱt = γ̄t(1 + ᾱt+1), and the induction

hypothesis bq1,t+1 = q̄2,t+1, we can simplify this expression as follows:

γ̄t(ac̄t(1+ ᾱt+1)−b(1− c̄t)) = 0. This equality holds true since c̄t =
b

ϑt
and ϑt = b+ a(1 + ᾱt+1). Thus ∀t ∈ {0, . . . , T − 1}, bq1,t = q̄2,t.

� Property 100: We must show that ∀j ≥ t, qj3,t +
∑T−1
τ=t q

τ,j
5,t = b.

– First case: j = t. Let’s first compute
∑T−1
τ=t q

τ,t
5,t = qt,t5,t+

∑T−1
τ=t+1 q

τ,t
5,t .

Using the recursive definition of qτ,j5,t (Proposition 2) and the fact

that ∀τ ≥ t+ 1 ηt,τ = 0, we get

T−1∑
τ=t

qτ,t5,t = ηt,tht,t + ct,tgt,t + ct,t

T−1∑
τ=t+1

gt,τ

= η̄t

(
b− b

2
c̄t(1 + q1,t+1)

)
+ c̄tḡt (103)

= bη̄t + ac̄tᾱt − q̄2,t+1c̄t(1− δ̄t)− bc̄tη̄t(1 + q1,t+1)

The second step follows from using the definition of ht,t and the

last one from using the definition of ḡt (both given in Proposition

2). Then we use the recursive definition of q3,t (Proposition 2),

and the facts that γ̄t = 1− c̄t− η̄t = 1− δ̄t, and group terms. We
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get:

qt3,t +
∑
τ=t

qτ,t5,t = b(c̄t + η̄t) + bc̄tγ̄t(1 + q1,t+1)

+ ac̄tγ̄t(1 + ᾱt+1)− γ̄tc̄tq̄2,t+1

Then using the induction hypothesis bq1,t+1 = q̄2,t+1, and simpli-

fying, we obtain

T−1∑
τ=t

qτ,t5,t + qt3,t = b+ γ̄t [b(c̄t − 1) + ac̄t(1 + ᾱt+1)] ,

where we used the fact that γ̄t = 1− c̄t− η̄t. Given the definition

of c̄t and ϑt, the term in bracket equals 0. Thus, property 100

holds at t for j = t.

– Second case: j ≥ t + 1. Since ∀τ ≥ t + 1, ct,τ = ηt,τ = δt,τ =

0, using the definition of qτ,j5,t we get
∑T−1
τ=t q

τ,j
5,t = η̄tht,j + (1 −

δ̄t)
∑T−1
u=t+1 q

u,j
5,t+1. So substituting for ht,j and adding qj3,t, we

obtain

qj3,t +

T−1∑
τ=t

qτ,j5,t = b(c̄t + η̄t) + γ̄t

(
qj3,t+1 +

T−1∑
u=t+1

qu,j5,t+1

)

Thus, using c̄t + η̄t = 1 − γ̄t and the induction hypothesis, we

obtain ∀j ≥ t+1,
∑T−1
τ=t q

τ,j
5,t +qj3,t = b. Hence Property 100 holds

∀t ∈ {0, . . . , T − 1} and ∀ j ≥ t.

� Property 101: We must show that ∀τ ≥ t, µt,τ = aαt,τ − qτ2,t −
1

2
(ιt,τ + ι̂t,τ ) = 0
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– First case: τ = t. We first compute

1

2
ιt,t =

1

2

T−1∑
u=t

qu,t4,t =
1

2
qt,t4,t +

1

2

T−1∑
τ=t+1

qt,τ4,t

= ηt,tgt,t +
1

2
δ̄2
t q̄4,t+1 +

T−1∑
τ=t+1

(
ηt,tgt,τ −

1

2
δ̄t(ιt+1,τ + ι̂t+1,τ )

)

= η̄tḡt +
1

2
δ̄2
t q̄4,t+1 − δ̄t

1

2

T−1∑
τ=t+1

(ιt+1,τ + ι̂t+1,τ ) , (104)

where we used the fact that δt,τ = ηt,τ = 0 and ηt,t = η̄t and

δt,t = δ̄t. Note that

T−1∑
τ=t+1

(ιt+1,τ + ι̂t+1,τ ) =

T−1∑
τ=t+1

T−1∑
u=τ

qτ,u4,t+1 +

T−1∑
τ=t+1

τ∑
u=t+1

qu,τ4,t+1

= q̄4,t+1 + qt+1,t+1
4,t+1

+
(
qt+1,t+2
4,t+1 + qt+2,t+2

4,t+1

)
+ · · ·+

(
qt+1,T−1
4,t+1 + · · ·+ qT−1,T−1

4,t+1

)
= q̄4,t+1 +

T−1∑
τ=t+1

T−1∑
j=τ

qτ,j4,t+1 = 2q̄4,t+1

Thus, substituting (105) into (104), we get
1

2
ιt,t = η̄tḡt + δ̄t

(
1

2
δ̄t − 1

)
q̄4,t+1. Since

1

2
ι̂t,t =

1

2
qt,t4,t = ηt,tgt,t +

1

2
δ̄2
t q̄4,t+1, we obtain

1

2
(ιt,t + ι̂t,t) = η̄t (gt,t + ḡt)+δ̄t

(
δ̄t − 1

)
q̄4,t+1.

Then using the definition of gt (Proposition 2), we get gt,t + ḡt =

aᾱt+aαt,t−bη̄t(1+q1,t+1)+(2δ̄t−1)q̄2,t+1. Since qt2,t = ac̄tαt,t+
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(1− c̄t)
[
bη̄t(1 + q1,t+1)− δ̄tq̄2,t+1

]
, we compute

µt,t = aαt,t − qt2,t −
1

2
(ιt,t + ι̂t,t)

= a(1− c̄t)αt,t − (1− c̄t)bη̄t(1 + q1,t+1) + (1− c̄t)δ̄tq̄2,t+1

− η̄t(gt,t + ḡt) + δ̄tγ̄tq̄4,t+1

= a(1− c̄t − η̄t)αt,t − aη̄tᾱt − bη̄t(1− c̄t − η̄t)(1 + q1,t+1)

+ γ̄t(δ̄t + η̄t)q̄2,t+1 + δ̄tγ̄tq̄4,t+1

= aγ̄tαt,t − aη̄tᾱt − bη̄tγ̄t + δ̄tγ̄t (q̄2,t+1 + q̄4,t+1)

The first step follows from substituting qt2,t and ιt,t + ι̂t,t, the

second step from substituting gt,t + ḡt, the third step from using

bq1,t+1 = q̄2,t+1.

Then using αt,t = 1 − δ̄t(1 + ᾱt+1) and ᾱt = γ̄t(1 + ᾱt+1) and

grouping terms, we obtain

µt,t = aγ̄t(1− δ̄t)− aδ̄tγ̄tᾱt+1 − aη̄tγ̄t(1 + ᾱt+1)− bη̄tγ̄t
+ δ̄tγ̄t(q̄2,t+1 + q̄4,t+1) = aγ̄2

t − aη̄tγ̄t(1 + ᾱt+1)

− bη̄tγ̄t + γ̄tδ̄t (q̄2,t+1 + q̄4,t+1 − aᾱt+1) (105)

Note that by summing from τ = t+ 1 to T − 1, and using (105),

the induction hypothesis implies that
∑T−1
τ=t+1 µt+1,τ = aᾱt+1 −

q̄2,t+1 − q̄4,t+1 = 0, thus the previous expression boils down to

µt,t = γ̄t [aγ̄t − aη̄t(1 + ᾱt+1)− bη̄t]. Since η̄t =
a(1− δ̄t)

ϑt
=
aγ̄t
ϑt

and ϑt = b + a(1 + ᾱt+1), we get: aγ̄t − aη̄t(1 + ᾱt+1) − bη̄t =

aγ̄t − η̄tϑt = aγ̄t

(
1− ϑt

ϑt

)
= 0. Thus µt,t = 0.

– Second case: τ ≥ t + 1. We compute µt,τ = aαt,τ − qτ2,t −

72



1

2
(ιt,τ + ι̂t,τ ). First, let’s compute the terms in ι

1

2
ιt,τ =

1

2

T−1∑
j=τ

qτ,j4,t =
1

2
qτ,τ4,t +

1

2

T−1∑
j=τ+1

qτ,j4,t =
1

2

T−1∑
j=τ

qτ,j4,t+1

The last equality follows from substituting qτ,τ4,t and qτ,j4,t and using

δt,τ = ηt,τ = 0 for τ ≥ t+ 1. We now compute

1

2
ι̂t,τ =

1

2
qt,τ4,t +

τ−1∑
j=t+1

1

2
qj,τ4,t +

1

2
qτ,τ4,t

= η̄tgt,τ −
1

2
δ̄t (ιt+1,τ + ι̂t+1,τ ) +

τ−1∑
j=t+1

1

2
qj,τ4,t+1 +

1

2
qτ,τ4,t+1

= η̄tgt,τ −
1

2
δ̄t (ιt+1,τ + ι̂t+1,τ ) +

τ∑
j=t+1

1

2
qj,τ4,t+1

Thus, we obtain, for τ ≥ t+ 1,

1

2
(ιt,τ + ι̂t,τ ) = η̄tgt,τ −

1

2
δ̄t (ιt+1,τ + ι̂t+1,τ )

+
1

2

T−1∑
j=τ

qτ,j4,t+1 +

τ∑
j=t+1

qj,τ4,t+1

 = (1−δ̄t)
1

2
(ιt+1,τ + ι̂t+1,τ )+η̄tgt,τ

(106)

Substituting for gt,τ , we get

1

2
(ιt,τ + ι̂t,τ ) =

1

2
(1− δ̄t) (ιt+1,τ + ι̂t+1,τ ) + η̄t

(
aαt,τ − qτ2,t+1

)
Then using the recursive definition qτ2,t = ac̄tαt,τ − (1− c̄t)qτ2,t+1

and substituting the expressions of
1

2
(ιt,τ + ι̂t,τ ), we obtain, after
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simplifying:

µt,τ = (c̄t + η̄t − 1) qτ2,t+1 − (1− δ̄t)
1

2
(ιt+1,τ + ι̂t+1,τ )

+ aαt,τ (1− c̄t − η̄t) = γ̄t

[
aαt,τ − qτ2,t+1 −

1

2
(ιt+1,τ + ι̂t+1,τ )

]
Since for n = 1, αt,τ = αt+1,τ , the induction hypothesis implies

that ∀τ ≥ t+ 1, µt,τ = 0. This completes the proof.

Proposition 9 (“Myopic” Trading by a Cournot Monopoly) For a

Cournot single trader:

1. It is optimal to trade “myopically”, ignoring anticipated shocks. In

equilibrium, the anticipated shock accounts remain zero, and the con-

stant shock accounts start from a zero inventory, i.e. Xcs
τ−1(τ) = 0 for

the shock occuring at τ .

2. As a result, the effects of anticipated shocks on the liquidity premium

are constant until their realization

T−1∑
τ=t

αt,τΛt,τ = ᾱt

[
Λcst +

t∑
τ=1

Λcst (τ)

]
+

T−1∑
τ=t+1

ᾱτ∆X∗τ (107)

with Λcst (τ) = lτ,t−1∆X∗τ .

Proof. We can now use Lemma 4 to prove the main result. Proceeding by

induction as in the proof of Theorem 1, it is easy to show that xast (τ) = 0

for any τ ≥ t+ 1.

Constant liquidity premium. Next, we derive the liquidity factor and

the liquidity premium. Starting from (102), we have

xt = (ct,t + ηt,t)

[
X∗ +

t∑
τ=1

∆X∗τ −Xi
t−1

]
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From this equation, we obtain Λcst+1 +
∑t
τ=1 Λcst+1(τ) =

λt,t

(
Λcst +

∑t
τ=1 Λcst (τ)

)
. So, proceeding as in the proof of Theorem 1, it is

sufficient to define recursively

Λcst+1 = γt,tΛ
cs
t , Λcst+1(τ) = γt,tΛ

cs
t (τ), 1 ≤ τ ≤ t

In equilibrium, Λcst (τ) = lτ,t−1Λcsτ (τ). But since there is no trading on antic-

ipated shocks Hcsτ−1(τ) = Hasτ−1(τ) = 0. Thus Λcst (τ) = lτ,t−1∆X∗τ . The liq-

uidity premium is, by definition,
∑T−1
τ=t αt,τΛt,τ = ᾱt

(
X∗ +

∑t
τ=1 ∆X∗τ

)
+∑T−1

τ=t+1

(∑T−1
k=τ αt,k

)
∆X∗τ − ᾱtHt−1. From Lemma 4, for any τ ≥ t + 1,

αt,τ = αt+1,τ , so αt,τ = ατ,τ . Thus,
∑T−1
k=τ αt,k =

∑T−1
k=τ αk,k = ᾱτ . There-

fore, splitting Ht in two pieces, substituting and rearranging the terms, we

obtain (107).

First-order condition when n = 1. Starting from the first-order condi-

tion(54), and using n = 1, we get

aσ2(1 + ᾱt+1)xt + bσ2 [1 + q1,t+1 − q̄2,t+1]Xt

+

T−1∑
τ=t+1

(Qt+1,τ
2,4 +Qt+1,τ

3,5 )X∗τ − Q̄t+1
2,4 Xt = Dt − pt (108)

Applying Properties 99 and 101, we simplify the expression further to

obtain

aσ2xt + bσ2Xt +

T−1∑
τ=t+1

(Qt+1,τ
2,4 +Qt+1,τ

3,5 )X∗τ − Q̄t+1
2,4 Xt−1 = Dt − pt

Subsituting forQt+1,τ
2,4 +Qt+1,τ

3,5 using Properties 100 and 101, and rearranging

the terms, we get

aσ2xt + bσ2Xt = Dt − pt − bσ2
T−1∑
τ=t+1

X∗τ − aσ2
T−1∑
τ=t+1

αt+1,τΛt+1,τ
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Then, we simply have to recognize that the right-hand side is equal to

Et(pt+1)− pt.

C.6 Information release under Cournot

In this section, I prove the rest of the results given in Proposition 3 and

Claim 1.

C.6.1 Momentum and reversal with a single trader

Proof. The absence of price and liquidity premium momentum is obvious

given definition 1 and Proposition 3. After the shock, Λcst (0) and Λcst (t2)

follow the same dynamics if Λ0 and ∆st2 have the same sign.

C.6.2 Conditions for momentum and reversal with multiple traders

The full result is:

Corollary 2 (Momentum and Reversal under Cournot Oligopoly)

Let St,Tt1,t2(δ, l) ≡
∑T−1
k=t2

∑t
q=t1

δq,klq+1,t. There is momentum and reversal

(for ∆X∗t2 ≥ 0) iff

Cmr :


∀t ∈ {tm, . . . , t2} , bX∗ + altΛ0 < aSt2,Tt1,t2(δ, l)n∆X∗t2
for t > t2, b(X∗ + ∆X∗t2) + altΛ0

+alt2,t

[
1− St2,Tt1,t2(δ, l)

]
n∆X∗t2 > 0

If ∆X∗t2 < 0, the conditions have the opposite sign. For momentum and

reversal in the liquidity premium only, the conditions are the same, but with-

outh the first term.

Proof. Momentum conditions. Let’s first determine the change in the
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competitive price and liquidity premium before t2. For t1 ≤ t ≤ t2,

Et(p
∗
t+1 − p∗t ) = −abσ

2(T − t− 1)

na+ b
s+

abσ2(T − t)
na+ b

s = bσ2X∗

(109)

ᾱtΛ
cs
t (0)− ᾱt+1Λcst+1(0) = ᾱtlt−1Λ0 − ᾱt+1ltΛ0 = λ̄tlt−1Λ0 = ltΛ0 (110)

In the second line, the first equality follows from the definition of the liquidity

premium, the second from the recursive definition of ᾱt, and the third from

the definition of lt in equation (76).

Let’s now determine the change in the anticipated shock liquidity premium.

For t ≤ t2,

α>t Λast (t2)− α>t+1Λast+1(t2) =

T−1∑
k=t2

(
αt,k − αt+1,k + ᾱt+1

t∑
q=t1

δq,klq+1,t

− ᾱt
t−1∑
q=t1

δq,klq+1,t−1

T−1∑
k=t2

)
n∆X∗t2

Using (51) and rearranging terms, the terms in parenthesis become

− (1 + ᾱt+1)δt,k +

t−1∑
q=t1

(ᾱt+1δq,klq+1,t − ᾱtδq,klq+1,t−1) + ᾱt+1δt,klt+1,t

= −δt,k − γ̄t
t−1∑
q=t1

δq,klq+1,t−1

The equality follows from the convention that lt+1,t = 1, and the recursive

definition of ᾱt. Then, since by definition λ̄tlq+1,t−1 = lq+1,t, and using

again the convention that lt+1,t = 1, the change in anticipated shock liquidity

premium boils down to

α>t Λast (t2)− α>t+1Λast+1(t2) = −St,Tt1,t2(δ, l)n∆X∗t2 (111)
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For t1 ≤ t ≤ t2, the price change is Et(pt+1 − pt) = Et(p
∗
t+1 − p∗t ) +

aσ2
(
ᾱtΛ

cs
t (0)− ᾱt+1Λcst+1(0)

)
+aσ2

(
α>t Λast (t2)− α>t+1Λast+1(t2)

)
. Substitut-

ing (109), (110), and (111) gives the first condition in Cmr.

Reversal conditions. The price change over two consecutive periods after

the realization is again the sum of three terms: the change in p∗, the change in

Λcs(0), and the change in Λcs(t2). For t > t2, the change in the competitive

price is Et(p
∗
t+1− p∗t ) = bσ2(X∗+ ∆X∗t2). The change in Λcs(0) is still given

by (110). The change in Λcs(t2) can be computed using (??)

ᾱtΛ
cs
t (t2)− ᾱt+1Λcst+1(t2) = (ᾱtlt2,t−1 − ᾱt+1lt2,t)

[
1− St2−1,T

t1,t2 (δ, l)
]
n∆X∗t2

= lt2,t

[
1− St2−1,T

t1,t2 (δ, l)
]
n∆X∗t2

Adding these three changes gives the second condition in Cmr.

C.6.3 Competition effect under risk neutrality

Corollary 3 Suppose that there are only two trading rounds (t = 0, 1, so

t1 = 0, t2 = 1) and that traders are risk-neutral (b = 0). Then xi,cs0 = η̄0Λcs0

and xi,as0 (1) = nη0,1∆X∗1 . Holding H−1 constant, xi,cs0 always decreases with

competition. However, the anticipated shock trade first increases and then

decreases with competition, with a maximum for n = 2. Further, xas0 (1) = 0

for n = 1 and limn→∞ xi,as0 (1) = 0.

Proof. With b = 0, the vectors c, h, q2, q3 and q5 are equal to the

vector of zeros. Further, the vectors δ, η, q4 and auxiliary parameters ϑ, ϑ̃,

µ and g simplify as follows:

ϑ = a(1 + ᾱt+1), ϑ̃t =
1 + n(a+ µ̄t+1)

ϑt
,

µt+1,τ = (n+ 1)a(1 + ᾱt+1)− 1

2
(ιt+1,τ + ι̂t+1,τ ) (112)
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This implies that ϑtϑ̃t = (n+ 1)a(1 + ᾱt+1)− nq̄4,t+1. Then we have:

δt,t =
na

ϑtϑ̃t
, δt,τ =

nµt+1,τ

ϑtϑ̃t
, ηt,t =

a− (a+ µ̄t+1)δt,t
a(1 + ᾱt+1)

,

ηt,τ =
µt+1,τ − (a+ µ̄t+1)δt,τ

a(1 + ᾱt+1)
(113)

The initial conditions are η1 = α1 = 1
n+1 , 1

2q4,1 = aη2
1 = a

(n+1)2 . Then

substituting initial conditions into the parameter defintions and using nota-

tion φn = n3 + 4n2 + 2n+ 1, we get:

δ0,0 =
n(n+ 1)2

φn
, δ0,1 =

n(n− 1)

φn
, α0,0 =

n2 + n+ 2

φn
, α0,1 =

3n+ 2

φn
,

η0,0 =
(n+ 1)2

φn
, η0,1 =

n− 1

φn
(114)

From Theorem 1, xi0 = xi,cs0 + xi,as0 , with xi,cs0 = η̄0Λcs0 and xi,as0 =

nη0,1∆X∗1 . For n = 1, η0,1 = 0. Further, nη0,1 increases from n = 1 to

n = 2 and decreases afterwards, and limn→∞ nη0,1 = 0. When b = 0,

Λcs0 = s − H−1. Thus, holding H−1 constant,
∂|xi,cs0 |
∂n = ∂η̄0

∂n ≤ 0, for all

n ≥ 1.
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Online Appendix

D Demand schedule competition

Definition 4 (Linear schedules) With demand schedule competition, we

consider schedules of the form

ymt (pt) = βyt (Dt − pt)− cyt Y mt−1 + dyt
∑
j

Xj
t−1 +

∑
τ≥t+1

fyt,τX
∗
τ (115)

xit(pt) = βt(Dt − pt)− ctXi
t−1 + dt

∑
j

Xj
t−1 +

∑
τ≥t+1

ft,τX
∗
τ ,with βt > 0

(116)

As usual, the equilibrium is not assumed to be linear; rather, as others submit

linear schedules, it is optimal for an investor to submit a linear schedule as

well. Note that unlike the Cournot case, ymt (pt) and xit(pt) do not depend on

X∗t . This is without loss of generality: if schedules were allowed to depend

on the current supply, the coefficient would be zero in equilibrium. This

implies that Similarly, allowing for different coefficient for the impact of Dt

and −pt would yield that these coefficients are equal in equilibrium.

Definition 5 (Demand Schedule Equilibrium) A Nash equilibrium in

demand schedule competition is such that (i) every price-taker’s demand

schedule ymt (pt) is optimal given prices; (ii) every strategic trader’s schedule

xi(pt) is optimal given price-takers’ and other strategic traders’ schedules,

(iii) markets clear.

Following Rostek and Weretka (2015) and Rostek and Yoon (2020), we can

equivalently derive the equilibrium as one in which strategic traders optimize

given their assumed price impact, provided price impacts are consistent. Ad-

ditionally here, price-takers’s schedules must be optimal given prices. Be-

cause price-takers are competitive, they do not take into account their price

impact, and the consistency condition thus concerns only strategic traders.
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Lemma 5 (Rostek and Yoon, 2020) A collection of demand schedules

ymt (·), xit(·) is a Nash equilibrium if and only if (i) each price-taker’s schedule

satisfies pointwise the price-taker’s first-order condition; (ii) each strategic

trader’s schedule satisfies pointwise his best-response function, given his as-

sumed price impact λi; (iii) strategic trader’s price impacts are consistent,

i.e. each strategic trader’s price impact is equal to the slope of his inverse

supply function,

λit = λt ≡
∂pt
∂xit

= − 1
∂
∫ 1
0
ymt dm

∂pt
+
∑
j 6=i

∂xj

∂pt

, ∀i (117)

All strategic traders have the same price impact due to identical preferences

and information set.

Guesses for the price and value function

pt = p∗t − aσ2α>t Λt, (118)

σ−2Ωit = − b
2
q1,t(X

i
t−1)2 −Xi

t−1

(
q>2,tΛt + q>3,tX

∗)+
1

2

T−1∑
τ=t

T−1∑
j=τ

qτ,j4,tΛt,τΛt,j

+

T−1∑
τ=t

T−1∑
j=t

qτ,j5,tΛt,τX
∗
j −

T−1∑
τ=t

T−1∑
j=τ

qτ,j6,tX
∗
τX
∗
j (119)

Under these guesses, it is possible to write trades as

xit =

T−1∑
τ=t

ct,τ (X∗τ −Xi
t) + η>t Λt (120)

D.1 Static model

Proposition 10 (Static Demand Schedule Equilibrium) Suppose T =

1. Then,
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1. In equilibrium, the schedules are

ym(p) =
D − p
aσ2

− Y m (121)

xi(p) =
1

bσ2 + λ
(D − p− bσ2Xi), (122)

i.e. βy = 1
aσ2 , cy = 1, dy = fy = d = f = 0, β = 1

bσ2+λ , and c = bσ2β.

2. A trader’s price impact is

λ =

{
aσ2 if n = 1
√
ϕ−(b+(n−2)a)

2 σ2 if n ≥ 2

where ϕ = b2 + (n− 2)2a2 + 2nab.

3. Similar to the Cournot case, by defining η and α as follows, we can

decompose equilibrium trades as (120), and write prices and value func-

tions as (118)-(119). The definition of value function coefficients is the

same as in the Cournot case.

ηT−1 =
acT−1(1− cT−1)

b+ nacT−1
(123)

αT−1 =
b(1− cT−1)

b+ nacT−1
(124)

Proof. With linear schedules, the price impact function will depend lin-

early on xi +
∑
j 6=i x

j . Given the residual supply S = s1 −
∑
j 6=i x

j(p), the

maximisation problems are

max
xi

(Xi + xi)(D − p(xi))− bσ2

2
(Xi + xi)2 (125)

max
ym

(Y m + ym)(D − p)− aσ2

2
(Y m + ym)2 (126)
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The first-order conditions give

D − p− aσ2ym − aσ2 − Y m = 0 (127)

D − p− bσ2Xi − (bσ2 +
∂p

∂xi
)xi = 0 (128)

So we obtain the following relationships for every p

ym(p) =
1

aσ2
(D − p)− Y m

xi(p) =
1

bσ2 + λ
(D − p− bσ2Xi)

By pointwise identification, we obtain the demand schedule coefficients.

Using these relationships, we get for every j 6= i, ∂p
∂xj = − 1

bσ2+λ , and for

every m,
∂ymt
∂pt

= − 1
aσ2 . Substituting into the consistency condition (117), we

get the equation defining price impact:

λ =
1

1
aσ2 + n−1

bσ2+λ

There are two cases. If n = 1, then λ = aσ2. If n > 1, then λ is defined as

λ2 + σ2(b+ (n− 2)a)λ− abσ4 = 0

There are always two roots, one positive and one negative, but λ is required

to be positive, so in equilibrium

λ =

√
ϕ− (b+ (n− 2)a)

2
σ2

where ϕ is given in the result.

We can write the equilibrium price and trade as in the Cournot case,

with ηDT−1 and αDT−1 defined as in the proposition. The expression of the

value function follows, as in the Cournot case.
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D.2 Equivalence with Cournot static model

Corollary 4 If there is a single strategic trader and a single trading round,

the equilibria under Cournot and demand schedule competitions coincide. If

there are multiple traders, then all else equal,

� at the aggregate level, traders trade a larger quantity in absolute value

under demand schedule competition;

� at the individual level, the risk-sharing component of the trade in-

creases, while the speculative component decreases relative to Cournot

competition;

� the market is deeper under demand schedule competition.

Proof. Single trader. Since the qi,t’s are defined similarly under either

type of competition (Proposition 10), it is sufficient to show that c, α, and

η coincide when n = 1 in the static model. Recall that under Cournot

competition, if n = 1,

cT−1 =
b

a+ b
, αT−1 =

a

2a+ b
, ηT−1 =

a2

(a+ b)(2a+ b)

Under demand schedule competition, using Proposition 10, when n = 1, we

get

cDT−1 =
b

a+ b
= cT−1, αDT−1 =

b
a

a+ b

b+ na
b

a+ b

=
a

2a+ b
= αT−1,

ηDT−1 =
ab

a+ b

1

b
αDT−1 =

a2

(a+ b)(2a+ b)
= ηT−1

Mulitple traders. For demand schedule competition, if n ≥ 2, we compute
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using Proposition 10

cDT−1 =
(n− 2)a− b+ ϕ

1
2

2(n− 1)a
, αDT−1 =

b(na+ b− ϕ 1
2 )

a
[
(n− 2)(b+ na) + nϕ

1
2

] ,
ηDT−1 =

a

b
cDT−1α

D
T−1

Then we compute the following inequalities:

Risk-sharing motive: cDT−1 > cT−1 ⇔ b((n+1)a+b)−(n−2)a2

a+b . If a/b is large

enough the RHS is negative and cDT−1 > cT−1. Otherwise, we can raise both

sides to the square. After rearranging and simplifying terms, the condition

becomes a2b(nb+ (n2 − 2n+ 1)a) > 0, which holds true for any a, b > 0 and

n ≥ 2.

Liquidity premium: αDT−1 < αT−1 ⇔ a
(n+1)a+b >

b(na+b−ϕ
1
2 )

a
[
(n−2)(b+na)+nϕ

1
2

] , which

is equivalent to

(na+ b)
[
b((n+ 1)a+ b)− (n− 2)a2

]
<
[
b((n+ 1)a+ b) + na2

]
ϕ

1
2

If a/b is large enough, the LHS is negative and the condition holds true.

Otherwise, raise both sides to the square, and rearrange terms to get

a2(b+ 2na) + a((n+ 1)a+ b) [n(n− 2)a+ (n− 1)b] > 0,

which holds true for any a, b > 0 and n ≥ 2.

Speculative motive: first, note that a
b c
D
T−1 < a

a+b is equivalent to cDT−1 <
b
a+b = cT−1, which was just showed. Further, since αDT−1 < αT−1, we can

write for any a, b > 0 that a
b c
D
T−1α

D
T−1 <

a
a+bαT−1, which, by definition of

the variables, means ηDT−1 < ηT−1.

Aggregate trade: δT−1 = cT−1 + nηT−1 = 1
a+b

na2+b((n+1)a+b)
(n+1)a+b , and δDT−1 =
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(na+b)
[
(n−2)a−b+ϕ

1
2

]
a
[
(n−2)(b+na)+nϕ

1
2

] . The inequality δDT−1 < δT−1 is equivalent to

[
((n+ 1)a+ b)

[
b2 + a(na+ b)

]
− n2a3

]
ϕ

1
2 > (na+ b)(a+ b)

×
[
b((n+ 1)a+ b)− (n− 2)a2

]
This condition can be further simplified to

[
b((n+ 1)a+ b) + na2

]
ϕ

1
2 > (na+ b)

[
b((n+ 1)a+ b)− (n− 2)a2

]
If a/b is large enough, the condition is satisfied. Otherwise, raising both

sides to the square, we obtain

a2
[
(n− 1)b+ (n2 + n− 2)a

]
+ ((n+ 1)a+ b)(n− 1)ab > 0

which is equivalent to (n−1)(n+ 2)ab+ (n2 +n−2)a2 + (n−1)b2 > 0. This

condition holds true for any a, b > 0 and n ≥ 2.

Market depth: under Cournot, price impact (the inverse of depth) in the

static model is aσ2. Under demand schedule competition, price impact is

χ−1
T−1 = 1

(n−1)βT−1+βyT−1
(off-equilibrium), and χ̂−1

T−1 = 1
nβT−1+βyT−1

, on the

equilibrium path. Since βyT−1 = 1
aσ2 , in either case, price impact is lower

and thus market depth larger with demand schedule competition.

D.3 Dynamic model

Lemma 6 (Existence in the dynamic equilibrium) A dynamic equilib-

rium in demand schedules exists if and only if, for every t, (i) there exists a

positive solution λt to the following equation

λ2
t + λt(Qt+1 +At+1)−Qt+1 = 0 (129)
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and (ii) the second-order condition

λt +Qt+1 > 0 (130)

is satisfied.

Proposition 11 (Dynamic equilibrium)

1. Existence and uniqueness:

(a) For any n ≥ 1, if for every t, Qt+1 ≥ 0, there is a unique equilib-

rium in demand schedules, in which price impact is

λt =
1

2
(
√
ϕt+1 − (Qt+1 +At+1)) (131)

where ϕt+1 ≡ (Qt+1 +At+1)2 + 4aσ2Qt+1.

(b) If Qt+1 < 0, then if λt + Qt+1 > 0 and ϕt+1 > 0, there is an

additional equilibrium in which price impact is given by

λt = −1

2
(
√
ϕt+1 + (Qt+1 +At+1)) (132)

Otherwise, there is no equilibrium.

2. Equilibrium coefficients are

βyt =
1

aσ2
+ nᾱt+1βt, ct =

Q̄1,2
t+1

λt + Q̄1,2
t+1

, dyt = ᾱt+1λtβt,

ft,τ = −βt(nQ2,4
t+1,τ +Q3,5

t+1,τ ), βt =
1

λt +Qt+1
, cyt = 1,

fyt,τ = nᾱt+1ft,τ − θt+1,τ , dt = (1− ct)βtQ̄2,4
t+1 (133)

3. When an equilibrium exists, prices, value functions and trades can be

written as in the Cournot case, provided that price coefficients are de-

fined as (??)-(143), trade coefficients are defined as (148)-(150), and

the value function coefficients are defined as in the Cournot case.
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Proof. The proof is by induction. The results hold at T−1 given proposition

10. We then show that if the induction properties hold at t + 1, then they

also hold at t. Specifically, assume that between t+ 1 and T − 1, equations

(118) and (119) for the price and value function, and property Pas hold. The

proof proceeds in three steps.

Step 1: optimization given price impact

Strategic traders. Given his own price impact, a trader solves

max
(xit

xit(Dt − pt(xit;λt))−
bσ2

2
(Xi

t−1 + xit)
2 + Ωit+1

The first-order condition gives

0 = Dt − pt −
(
∂pt
∂xit

+ Q̄1,2
t+1

)
xit − Q̄

1,2
t+1X

i
t−1

− σ2
T−1∑
τ=t+1

{
qτ2,t+1 +

1

2
(ι̂t+1,τ + ιt+1,τ )

}
Λt+1,τ

− σ2
T−1∑
τ=t+1

qτ3,t+1 +

T−1∑
j=t+1

qj,τ5,t+1

X∗τ

Using abbreviations from Notation 2, we can rewrite the FOC as

Dt − pt −
(
λt + Q̄1,2

t+1

)
xit − Q̄

1,2
t+1X

i
t−1

−
T−1∑
τ=t+1

Q2,4
t+1,τΛt+1,τ −

T−1∑
τ=t+1

Q3,5
t+1,τX

∗
τ = 0 (134)

Note that Λt+1,τ = nX∗τ −
∑n
j=1X

j
t−1 −

∑
j 6=i x

j
t−1 − xit, so that this

equation can be rewritten as

M i(pt) =
(
λt + Q̄1,2

t+1

)
xit − Q̄

2,4
t+1

n∑
j=1

xjt (135)
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where M i(pt) = Dt − pt − Q̄1,2
t+1X

i
t −

∑T−1
τ=t+1(nQ2,4

t+1,τ +Q3,5
t+1,τ )X∗τ+

Q̄2,4
t+1

∑n
j=1X

j
t−1. The problem is strictly concave iff condition (130) holds.

Price-takers. From Lemma 3 in the main text, the FOC of price-takers’

problem is Et(pt+1 − pt) = aσ2Y mt . We use the induction hypothesis for

pt+1 and replace p∗t+1 by its value to obtain the following condition:

Dt− pt− aσ2
T−1∑
τ=t+1

αt+1,τΛt+1,τ − aσ2Y mt−1− aσ2ymt − bσ2
T−1∑
τ=t+1

X∗τ = 0

aσ2(Y mt−1 + ymt ) = Dt − pt −
T−1∑
τ=t+1

(bσ2 + naσ2αt+1,τ )X∗τ

+ aσ2ᾱt+1

 n∑
j=1

Xj
t−1 +

n∑
j=1

xjt

 (136)

Solving for optimal schedules. While equation (136) for price-takers depends

on
∑
j x

j
t , equation (135) for strategic traders does not depend on ymt , and

can thus be solved independently. Equation (135) holds for any i and any p.

Then summing equation (135) over i, we get:

n∑
j=1

M j(pt) = n(Dt − pt) + (nQ̄2,4
t+1 − Q̄

1,2
t+1)

n∑
j=1

Xj
t−1

− n
T−1∑
τ=t+1

(nQ2,4
t+1,τ +Q3,5

t+1,τ )X∗τ = (λt +Qt+1)

n∑
j=1

xjt

Substuting back into (135) and rearranging the terms gives the strategic
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trader’s optimal schedule:

xit(pt) =
1

λt +Qt+1

[
Dt − pt −

T−1∑
τ=t+1

(nQ2,4
t+1,τ +Q3,5

t+1,τ )X∗τ

−
λtQ̄

2,4
t+1

λt + Q̄1,2
t+1

n∑
j=1

Xj
t−1

]
−

Q̄1,2
t+1

λt + Q̄1,2
t+1

Xi
t−1, ∀ i, pt (137)

By pointwise identification, we obtain the equilibrium coefficients (133) for

price-takers. Then summing (137) over strategic traders, we get the strategic

traders’ aggregate demand schedules:

n∑
j=1

xjt (pt) =
n

λt +Qt+1

[
Dt − pt −

T−1∑
τ=t+1

(nQ2,4
t+1,τ +Q3,5

t+1,τ )X∗τ

]

− Qt+1

λt +Qt+1

n∑
j=1

Xj
t−1 (138)

Substituting into (136), we obtain the price-takers’ schedules

ymt (pt) =

(
1

aσ2
+

nᾱt+1

λt +Qt+1

)
(Dt − pt) +

ᾱt+1λt
λt +Qt+1

n∑
j=1

Xj
t−1

−
T−1∑
τ=t+1

{θt+1,τ +
nᾱt+1

λt +Qt+1
(nQ2,4

t+1,τ +Q3,5
t+1,τ )}X∗τ , ∀ m, pt (139)

By pointwise identification, we obtain the equilibrium coefficients (133) for

strategic traders.

Step 2: Solving for price impact

This part provides the proof to point (i) in Lemma 6. The second-order

condition is given with strategic traders’ optimization problems in Step 1.
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Given the optimal schedules, we have:

−
∑
j 6=i

∂xjt
∂pt

= (n− 1)βt =
n− 1

λt +Qt+1
, and −

∂
∫ 1

0
ymt dm

∂pt
= βyt

=
1

aσ2
+

nᾱt+1

λt +Qt+1
=

1

aσ2
+ nᾱt+1βt (140)

Substituting these values into the price impact consistency condition (117),

and rearranging terms gives the second-order equation in λt, (129). The

discriminant of the polynomial is ϕt+1 given in Lemma 6. Thus, an equi-

librium exists with positive price impact if and only if there exists at least

one positive root and the second-order condition holds. Thus, there are two

cases:

(a) If Qt+1 ≥ 0, the disciminant is non negative, and there is a single pos-

itive root, given by (131). The second-order condtion (130) is trivially

satisfied.

(b) If Qt+1 < 0, then the discriminant may be negative, so the condition

ϕt+1 ≥ 0 must be added. The second-order condition is also no longer

trivial and must be added. The second positive root is given (132).

Step 3: Equilibrium representation and system of difference equa-

tions

The last step is to to show that equations (118) and (119) for the price and

value function hold at t, that trades can be decomposed as in the Cournot

case, and that property Pas holds. Doing so, we will obtain the recursive

system defining the coefficients α, c, η. Value function coefficients are defined

as a function of these and their prior values, so the system defining them is

similar to the Cournot case.

Equilibrium price. Market clearing requires that
∑
j x

j
t (pt) +

∫ 1

0
ymt dm =
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st − st−1. So from equations (138) and (139), we obtain

Dt − pt =

[
1

aσ2
+
n(1 + ᾱt+1)

λt +Qt+1

]−1

×[
na+ b

a
X∗t +

T−1∑
τ=t+1

{θt+1,τ +
n(1 + ᾱt+1)

λt +Qt+1
(nQ2,4

t+1,τ +Q3,5
t+1,τ )}X∗τ

]

−
[

1

aσ2
+
n(1 + ᾱt+1)

λt +Qt+1

]−1
(1 + ᾱt+1)λt
λt +Qt+1

n∑
j=1

Xj
t−1 (141)

Equation (118) impliesDt−pt =
∑
τ≥t bσ

2X∗t +aσ2
∑
τ≥t(nX

∗
τ−
∑n
j=1X

j
t−1).

Thus, for (118) to hold at time t, we must define:

bσ2 + naσ2αt,t =

[
1

aσ2
+
n(1 + ᾱt+1)

λt +Qt+1

]−1
na+ b

a
(142)

bσ2 + naσ2αt,τ =

[
1

aσ2
+
n(1 + ᾱt+1)

λt +Qt+1

]−1

×[
naαt+1,τ + b

a
+
n(1 + ᾱt+1)(nQ2,4

t+1,τ +Q3,5
t+1,τ )

λt +Qt+1

]
, τ ≥ t+ 1 (143)

Further, it must be that

aσ2ᾱt =

[
1

aσ2
+
n(1 + ᾱt+1)

λt +Qt+1

]−1
λt(1 + ᾱt+1)

λt +Qt+1

Thus, the price can be written in the form of equation (118), if

bσ2 + naσ2αt,t +
T−1∑
τ=t+1

(bσ2 + naσ2αt,τ ) = bσ2(T − t) + aσ2ᾱt

= bσ2(T − t) +

[
1

aσ2
+
n(1 + ᾱt+1)

λt +Qt+1

]−1
λt(1 + ᾱt+1)

λt +Qt+1
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For brevity, denote χt = 1
aσ2 + n(1+ᾱt+1)

λt+Qt+1
. Using (??)-(143) for the left-hand

side and multiplying each side by χtσ
−2, gives

na(1 + ᾱt+1) + b(T − t)
a

+
n(1 + ᾱt+1)(nQ2,4

t+1,τ +Q3,5
t+1,τ )

λt +Qt+1

=
b(T − t)(λt +Qt+1 + naσ2(1 + ᾱt+1)) + na(1 + ᾱt+1)λt

a(λt +Qt+1)
(144)

Putting the left-hand side on the same denominator, several times cancel

out, and we get after a few lines of simple algebra Q1,2
t+1 +Q3,5

t+1 = bσ2(T − t),
which is implied by the property Pas at t+ 1, which is part of the induction

hypothesis.

Equilibrium trade. To decompose trades into the risk-sharing and speculative

components, it is easier to first write the equilibrium price as a function of

the β, c, d, and f coefficients and then to subsitute it back into the schedule

(116). We get:

Dt − pt =
1

nβt + βyt

(na+ b

a
X∗t − (1− ct + ndt + dyt )

n∑
j=1

Xj
t−1

−
∑
τ≥t+1

(nft,τ + fyt,τ )X∗τ

)
(145)

This implies the following equilibrium trade:

xit =
β

nβt + βyt

na+ b

a
X∗t +

∑
τ≥t+1

βyt ft,τ − βtf
y
t,τ

nβt + βyt
X∗τ

+
βt(ct − 1− dyt ) + βyt dt

nβt + βyt

n∑
j=1

Xj
t−1 − ctXi

t−1 (146)
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To write xit =
∑
τ≥t ct,τ (X∗τ −Xi

t−1) +
∑
τ≥t ηt,τΛt,τ , we thus need to define

ct,t + nηt,t =
β

nβt + βyt

na+ b

a
(147)

ct,τ + nηt,τ =
βyt ft,τ − βtf

y
t,τ

nβt + βyt
, τ ≥ t+ 1 (148)

∑
τ≥t

ct,τ = c̄t =
Q̄1,2
t+1

λt + Q̄1,2
t+1

(149)

∑
τ≥t

ηt,τ = η̄t = −βt(ct − 1− dyt ) + βyt dt
nβt + βyt

, (150)

and we need to check that

ct,t + nηt,t +
∑
τ≥t+1

(ct,τ + nηt,τ ) = c̄t + nη̄t

By substituting the equilibrium values of the schedule coefficients for fy as

a function of f , and then substituting for θt+1,τ and summing over τ , we get

for the left-hand side:

ct,t + nηt,t +
∑
τ≥t+1

(ct,τ + nηt,τ )

=
β

nβt + βyt
(n(1 + ᾱt+1) +

b

a
(T − t)− 1

aσ2
(nQ̄2,4

t+1 +Q3,5
t+1)) (151)

To reduce the right-hand side, first note that from the definition of the

schedule coefficients d, dy and c, we can write dyt = −ᾱt+1(ct − ndt − 1),

implying that

c̄t + nη̄t =
Q̄1,2
t+1

λt + Q̄1,2
t+1

+
nβt(1− ct)(1 + ᾱt+1)− 1

aσ2ndt

nβt + βyt
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Then substituting for the equilibrium value of d and 1− c gives

c̄t + nη̄t =
nβt(1 + ᾱt+1)(λt + Q̄1,2

t+1) + 1
aσ2 (Q̄1,2

t+1 − nβtλtQ̄
2,4
t+1)

(λt + Q̄1,2
t+1)(nβt + βyt )

This equation is equal to the left-hand side (151) if and only if

β

nβt + βyt
(n(1 + ᾱt+1) +

b

a
(T − t)− 1

aσ2
(nQ̄2,4

t+1 +Q3,5
t+1))

=
nβt(1 + ᾱt+1)(λt + Q̄1,2

t+1) + 1
aσ2 (Q̄1,2

t+1 − nβtλtQ̄
2,4
t+1)

(λt + Q̄1,2
t+1)(nβt + βyt )

Canceling and regrouping terms then gives

βt
b

a
(T − t) =

1

aσ2
βtQ̄

3,5
t+1 +

1

aσ2

Q̄1,2
t+1

λt + Q̄1,2
t+1

(1 + nβtQ̄
2,4
t+1)

However, the definition of c and β imply that λt+Q̄1,2
t+1 =

1+nβtQ̄
2,4
t+1

βt
, so that

the equation boils down to Q1,2
t+1 + Q3,5

t+1 = bσ2(T − t), which is implied by

Pas at t+ 1, and confirms that we can decompose trades as in the Cournot

case also at time t.

Uniqueness of equilibrium representation. The system given by (147)-(150)

does not uniquely define the two vectors ct and ηt. However, if we define

the vector ct, then the vector ηt is uniquely pinned down. Note that the

equilibrium definition of ct, ct =
Q̄t+1

1,2

λt+Q̄
t+1
1,2

, involves a sum, since Q̄t+1
1,2 is a

sum:

Q̄t+1
1,2 ≡bσ2(1 + q1,t+1)− σ2q̄2,t+1

=bσ2 + bσ2q1,t+1 − σ2q̄5,t+1

=σ2(b+ b(T − t− 1)− q̄5,t+1 − q̄3,t+1)

where the second and third line follow from Pas at t+1. By definition, the

parameter q̄i,t+1 is a sum. Thus, in analogy with the Cournot case, we can
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exhibit a vector ct satisfying (149):

ct,t =
bσ2

λt + Q̄t+1
1,2

ct,τ =
σ2(b− qτ3,t+1 −

∑T−1
j=t+1 q

j,τ
5,t+1)

λt + Q̄t+1
1,2

=
bσ2 −Qt+1,τ

3,5

λt + Q̄t+1
1,2

, τ ≥ t+ 1

Value function. To complete the induction, we need to show that property

Pas holds at time t and that the value function can be expressed as a linear

quadratic function. These two steps are exactly the same as in the Cournot

case.

E Alternative representation

We can rewrite the price, trade, and value function as follows:

xit =

T−1∑
τ=t

νt,τsτ − ηt
n∑
j=1

Xj
t−1 − ctXi

t−1 (152)

pt = Dt − aσ2

T−1∑
τ=t

θ̃t,τsτ − αt
n∑
j=1

Xj
t−1

 (153)

Ωit = −bσ
2

2
r1,t

(
Xi
t−1

)2 − σ2Xi
t−1

r2,t

n∑
j=1

Xj
t−1 +

T−1∑
τ=t

rτ3,tsτ


+
σ2

2
r4,t

 n∑
j=1

Xj
t−1

2

+ σ2
T−1∑
τ=t

rτ5,tsτ

n∑
j=1

Xj
t−1 + σ2

T−1∑
τ=t

T−1∑
u=τ

rτ,u6,t sτsu

(154)

These alternative expressions are useful to prove that (i) the quadratic rep-

resentation is unique, and (ii) that the anticipated shock liquidity premium
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is constant when the shock occurs in the last period, as in the Cournot case

(see Corollary 5 below). In this part, I use the following notation:

Notation 3

γt = 1− ct − nηt, Rt+1
1,2 = bσ2(1 + r1,t+1) + σ2r2,t+1,

Rt+1,τ
3,5 = σ2

(
rτ3,t+1 − rτ5,t+1

)
, Rt+1

2,4 = σ2 (r4,t+1 − r2,t+1)

E.1 Equilibrium

Proposition 12 The equilibrium in demand schedules can be expressed by

(152)-(154) provided we define the price parameters by (170)-(172), the trade

pararmeters by (173)-(175) and the value function coefficients as follows:

r1,t = (1− ct)2(1 + r1,t+1) (155)

r2,t = (1− ct) [γtr2,t+1 − bηt(1 + r1,t+1)]− actαt (156)

rt3,t = actθt,t + (1− ct) [b(1 + r1,t+1) + nr2,t+1] νt,t (157)

rτ3,t = actθt,τ + (1− ct) [b(1 + r1,t+1) + nr2,t+1] νt,τ + (1− ct)rτ3,t+1

(158)

1

2
r4,t =

1

2
r4,t+1γ

2
t − ηt

[
b

2
ηt(1 + r1,t+1)− aαt − γtr2,t+1

]
(159)

rt5,t = −aηtθt,t + νt,t [nγtr4,t+1 + b(1 + r1,t+1)ηt − aαt + r2,t+1(nηt − γt)]
(160)

rτ5,t = γtr
τ
5,t+1 + ηtr

τ
3,t+1 − aηtθt,τ + νt,τ

[
nγtr4,t+1 + b(1 + r1,t+1)ηt

− aαt + r2,t+1(nηt − γt)
]

(161)
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Demand schedule equilibrium parameters are

fyt,τ = −nαt+1βtR
t+1,τ
3,5 − θ̃t+1,τ , dyt = λtαt+1βt, cyt = 1,

βyt =
1

aσ2
+ nαt+1βt, βt = (λt +Rt+1)

−1
, ct =

Rt+1
1,2

λt +Rt+1
1,2

,

ft,τ = −Rt+1,τ
3,5 βt, dt = (1− ct)Rt+1

2,4 βt (162)

The initial conditions are:

cT−1 = bσ2βT−1, θ̃T−1 =
b

b+ nacT−1
, αT−1 =

b(1− cT−1)

b+ nacT−1
,

(163)

νT−1 =
acT−1

b+ nacT−1
, ηT−1 =

acT−1(1− cT−1)

b+ nacT−1
(164)

Existence conditions are the same as in the baseline model (with Q̄t+1
1,2 = Rt+1

1,2

and Q̄t+1
2,4 = Rt+1

2,4 .)

Proof. The proof is by induction. I first show that (152)-(154) hold in the

static model (at T − 1), and then show that if these expessions hold at t+ 1,

they also hold at t.

Final period (T − 1)

We simply need to rewrite the equilibrium price, trade, and value function

from Proposition 10. Using the definition of the equilibrium demand schedule

parameters and the expression of the implied equilibrium price, we obtain

pT−1 = DT−1 − aσ2

 b

b+ nacT−1
sT−1 −

b(1− cT−1)

b+ nacT−1

n∑
j=1

Xj
T−2

 ,
from which we obtain the definitions of θT−1 and αT−1. Similarly, substi-

98



tuting the equilibrium parameters into the implied equilibrium trade gives

xiT−1 =
acT−1

b+ nacT−1

sT−1 − (1− cT−1)

n∑
j=1

Xj
T−2

− cT−1X
i
T−2,

from which we get the definitions of νT−1 and ηT−1. Substituting the equi-

librium price and trade into a strategic trader’s certainty equivalent yields

(154) (evaluated at T − 1), with coefficients

r1,T−1 = (1− cT−1)2 ≡ q1,T−1,

r2,T−1 = −bηT−1(1− cT−1)− aαT−1cT−1,

r3,T−1 = acT−1θ̃T−1 + b(1− cT−1)νT−1,

1

2
r4,T−1 = aαT−1ηT−1 −

b

2
η2
T−1,

r5,T−1 = −aθ̃T−1ηT−1 − aαT−1νT−1 + bνT−1ηT−1

Induction from t+ 1 to t

First note that by using the definition of Λt,τ , we can rewrite the price, trade

and value function of the model as (152), (153) and (154). Rearranging the

terms implies the following equivalence:

νt,τ ≡
a

na+ b
(ct,τ + nηt,τ ), θ̃t,τ ≡

b+ naαt,τ
na+ b

, r1,t ≡ q1,t,

rτ3,t ≡
a

na+ b
(nqτ2,t + qτ3,t), r2,t ≡ −q̄2,t, r4,t ≡ q̄4,t,

rτ5,t ≡ −
a

na+ b

T−1∑
j=t

qj,τ5,t +
n

2
(ιt,τ + ι̂t,τ )


We thus simply need to rewrite the equilibrium coefficients as a function

of the new value function and price parameters, and derive the recursive

definition of the value function and price parameters. The steps are the

same as for the quadratic representation of the equilibrium.
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Optimization given price impact. The optimization problem of price-takers

is unchanged, so using the price expression (153) at t + 1, their first-order

condition is

Dt − pt − aσ2
∑
τ≥t+1

θt+1,τsτ + aσ2αt+1

∑
j

Xj
t−1 +

∑
j

xjt


− aσ2(Y mt−1 + ymt ) = 0 (165)

Given the new expression for the value function, and using Notation 3 strate-

gic traders’ first-order conditions become, for all i:

Dt − pt −
(
λt +R1,2

t+1

)
xit −R

1,2
t+1X

i
t−1

−
∑
τ≥t+1

R3,5
t+1,τsτ +R2,4

t+1

∑
j

Xj
t−1 +

∑
j

xjt

 = 0 (166)

We proceed as before and sum over i, which gives:

(λt +Rt+1)
∑
j

xjt = n

Dt − pt −
∑
τ≥t+1

R3,5
t+1,τsτ

−Rt+1

∑
j

Xj
t−1 (167)

Substituting back into the first-order conditions gives the equilibrium sched-
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ules of strategic traders and price-takers:

xit =
1

λt +Rt+1

Dt − pt −
∑
τ≥t+1

R3,5
t+1,τsτ


+

λtR
2,4
t+1

(λt +R1,2
t+1)(λt +Rt+1)

∑
j

Xj
t−1

−
R1,2
t+1

λt +R1,2
t+1

Xi
t−1y

m
t =

(
1

aσ2
+

nαt+1

λt +Rt+1

)
(Dt − pt)

−
∑
τ≥t+1

(
θ̃t+1,τ +

nαt+1R
3,5
t+1,τ

λt +Rt+1

)
sτ +

λtαt+1

λt +Rt+1

∑
j

Xj
t−1 − Y mt−1

(168)

Identifying pointwise with the schedules (115)-(116) gives equilibrium coef-

ficients (162).

Price impact. This step is exactly the same as in the previous case, with

Q̄t+1
1,2 = Rt+1

1,2 and Q̄t+1
2,4 = Rt+1

2,4 .

Recursive system. The final step consists in deriving recursive relationships

for the price and value function parameters and show that the equilibrium

trade can be written as postulated.

The equilibrium price follows from market-clearing and using (167) and

(168), and using Yt−1 +
∑
j X

j
t−1 = st−1. We get:

Dt − pt =

(
1

aσ2
+

nαt+1

λt +Rt+1

)−1

×st +
∑
τ≥t+1

(θ̃t+1,τ + n(1 + αt+1)Rt+1,τ
3,5 βt)sτ − (1 + αt+1)λtβt

∑
j

Xj
t−1


(169)
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Thus, we simply need to define:

aσ2θ̃t,t =

(
1

aσ2
+

nαt+1

λt +Rt+1

)−1

(170)

aσ2θ̃t,τ =

(
1

aσ2
+

nαt+1

λt +Rt+1

)−1

(θ̃t+1,τ + n(1 + αt+1)Rt+1,τ
3,5 βt),

τ ≥ t+ 1 (171)

aσ2αt =

(
1

aσ2
+

nαt+1

λt +Rt+1

)−1

(1 + αt+1)λtβt (172)

Then substituting the equilibrium price into the equilibrium demand sched-

ule gives the equilibrium trade:

xit =
aσ2

λt +Rt+1 + naσ2(1 + αt+1)
st+

∑
τ≥t+1

aσ2θ̃t+1,τ −Rt+1,τ
3,5 βt

λt +Rt+1 + naσ2(1 + αt+1)
sτ

− λt

λt +R1,2
t+1

(
aσ2(1 + αt+1)−Rt+1

2,4

)
λt +Rt+1 + naσ2(1 + αt+1)

∑
j

Xj
t−1 −

R1,2
t+1

λt +R1,2
t+1

Xi
t−1

Thus, it suffices to define

νt,t =
aσ2

λt +Rt+1 + naσ2(1 + αt+1)
(173)

νt,τ =
aσ2θ̃t+1,τ −Rt+1,τ

3,5 βt

λt +Rt+1 + naσ2(1 + αt+1)
(174)

ηt =
λt

λt +R1,2
t+1

(
aσ2(1 + αt+1)−Rt+1

2,4

)
λt +Rt+1 + naσ2(1 + αt+1)

(175)

ct =
R1,2
t+1

λt +R1,2
t+1

(176)
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Value function. Finally, we calculate the value function. We start by calcu-

lating J it = xit(Dt − pt)−
bσ2

2
(Xi

t)
2. We obtain:

σ−2J it =

T−1∑
τ=t

νt,τsτ − ηt
n∑
j=1

Xj
t−1

[ T−1∑
τ=t

(aθ̃t,τ −
b

2
νt,τ )sτ

+

(
b

2
ηt − aαt

) n∑
j=1

Xj
t−1

]

−Xi
t−1

T−1∑
τ=t

(
actθ̃t,τ + b(1− ct)νt,τ

)
sτ − (actαt + b(1− ct)ηt)

n∑
j=1

Xj
t−1


− b

2
(1− ct)2(Xi

t−1)2

We now express Ωit+1 as a function of time T − 1 variables. We break Ωit+1

in two parts. First, we have Ωit+1 = −bσ
2

2

(
Xi
j

)2 −Xi
t

(
r2,t+1

∑n
j=1X

j
t

+
∑T−1
τ=t+1 r

τ
3,t+1sτ

)
. Using

∑n
j=1X

j
t = n

∑T−1
τ=j νt,τsτ

+(1 − ct − nηt)
∑n
j=1X

j
t−1 by summing the equilibrium trade over i, we
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obtain after a few lines of algebra:

σ−2Ωit+1 = − b
2

(1− ct)2r1,t+1(Xi
t−1)2 − (1− ct)Xi

t−1

×
[ T−1∑
τ=t

(br1,t+1 + nr2,t+1)νt,τsτ

+

T−1∑
τ=t+1

rτ3,t+1sτ + {(1− ct − nηt)r2,t+1 − br1,t+1ηt}
n∑
j=1

Xj
t−1

]

−

T−1∑
τ=t

νt,τsτ − ηt
n∑
j=1

Xj
t−1

[T−1∑
τ=t

(
b

2
r1,t+1 + nr2,t+1

)
νt,τsτ +

T−1∑
τ=t

rτ3,t+1sτ

+

{
r2,t+1(1− ct − ηtn)− b

2
r1,t+1ηt

} n∑
j=1

Xj
t−1

 (177)

Next, we calculate the terms in r4,t+1 and r5,t+1.

1

2
r4,t+1

 n∑
j=1

Xj
t

2

=
1

2
r4,t+1

[
n2

(
T−1∑
τ=t

νt,τsτ

)2

+ (1− ct − nηt)2

×

 n∑
j=1

Xj
t−1

2

+ 2n(1− ct − nηt)

(
T−1∑
τ=t

νt,τsτ

) n∑
j=1

Xj
t−1

] (178)

T−1∑
τ=t+1

rτ5,t+1sτ

 n∑
j=1

Xj
t

 =

(
T−1∑
τ=t+1

rτ5,t+1sτ

)

×

n T−1∑
τ=t

νt,τsτ + (1− ct − nηt)
n∑
j=1

Xj
t−1

 (179)

Adding these two terms to (177), and simplifying, we obtain (154) by
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defining the coefficients ri,t as in the proposition. This completes the induc-

tion.

E.2 Special case: supply shock in the final period

Corollary 5 Suppose that n = 1. If the anticipated shock occurs at T − 1,

then (i) the monopoly does not trade on the shock, i.e. for any t, νt,T−1 = 0,

(ii) the anticipated shock liquidity premium is the same as under Cournot;

and thus (iii) there is no momentum in the price or liquidity premium.

Proof. The proof has two parts. I first rewrite the equilibrium in a more

compact way, then prove the result (point (i)) by induction. The two other

points are direct consequences of (i).

Rewriting the equilibrium

To show this result, it is convenient to rederive the alternative representation

of the equilibrium in the special case n = 1. With a monopoly, the candidate

equilibrium strategies boil down to

ymt (pt) = βyt (Dt − pt)− cyt Y mt−1 + dytXt−1 +

T−1∑
τ=t

fyt,τsτ , m ∈ [0, 1] (180)

xit(pt) = βt(Dt − pt)− ĉtXt−1 +

T−1∑
τ=t

ft,τsτ , i = 1, . . . , n,with βt > 0

(181)

with ĉ = c − nd = c − d. Further, the value function and equilibrium trade

become Ωt = − 1
2 Q̂t (Xt)

2−
(∑T−1

τ=t R̂t,τsτ

)
Xt and xt =

∑T−1
τ=t νt,τsτ−η̂tXt,

where Q̂t ≡ Rt1,2 − Rt2,4 − bσ2, R̂t,τ = Rt,τ3,5 to simplify the notation, and

η̂t = ct + nηt = ct + ηt. The equilibrium price is unchanged. With these
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notations, the equilibrium parameters become

dyt = αt+1(ĉt − 1), ĉt = (bσ2 + Q̂t+1)βt,

βt

(
λt + bσ2 + Q̂t+1

)
= 1, η̂t =

aσ2(1 + αt+1)βt + ĉt
1 + aσ2(1 + αt+1)βt

(182)

The recursive system becomes

αt =
(1 + αt+1)(1− ĉt)

1 + aσ2(1 + αt+1)βt
1

2
Q̂t = −aσ2αtη̂t +

1

2
(bσ2 + Q̂t+1)(1− η̂t)2

R̂t,t = aσ2η̂tθ̃t,t + aσ2αtνt,t + (bσ2 +Qt+1)(1− η̂t)νt,t
R̂t,τ = aσ2η̂tθ̃t,τ + aσ2αtνt,τ + (bσ2 + Q̂t+1)(1− η̂t)νt,τ + (1− η̂t)R̂t+1,τ

(183)

The initial conditions are η̂T−1 = a+b
2a+b , R̂T−1 = aσ2(θ̃T−1η̂T−1+αT−1νT−1)+

bσ2νT−1(1− η̂T−1), and 1
2 Q̂T−1 = bσ2

2 (1− η̂T−1)2−aσ2η̂T−1αT−1. The other

equilibrium parameters and initial conditions keep the same form.

Showing that for all t < T − 1, νt,T−1 = 0

The proof is by induction. It is easy to check using the initial conditions

that νT−2,T−1 = 0.

Then suppose that νt+1,T−1 = 0 for some t. Since νt,τ =
βt(aσ2θ̃t+1,τ−R̂t+1,τ)

1+aσ2(1+αt+1)βt
,

νt+1,T−1 = 0 implies that aσ2θ̃t+2,T−1 − R̂t+2,T−1 = 0. The induction hy-

pothesis also implies that R̂t+1,T−1 = aσ2η̂t+1θ̃t+1,T−1 +(1− η̂t+1)R̂t+2,T−1.

Thus the numerator of νt,T−1 is (1− η̂t+1)(aσ2θ̃t+1,T−1 − R̂t+2,T−1) = (1−
η̂t+1)aσ2(θ̃t+1,T−1− θ̃t+2,T−1). But the recursive definition of θ̃ implies that

θ̃t+1,T−1 =
θt+2,T−1 + (1 + αt+1)βtR̂t+2,T−1

1 + aσ2(1 + αt+1)βt

=
θ̃t+2,T−1(1 + aσ2(1 + αt+1)βt)

1 + aσ2(1 + αt+1)βt
= θ̃t+2,T−1 (184)
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Therefore νt,T−1 = 0, and the induction hypothesis for any t, and θ̃t,T−1 =

θ̃t+1,T−1 = θ̃T−1.

Consequences for the quadratic representation of the model and

the liquidity premium

By definition, θ̃t,τ =
b+naαt,τ
b+na , where αt,τ is the coefficient of the quadratic

model. First note that αT−2,T−1 = αT−1. The previous induction implies

that αt,T−1 = αt+1,T−1 = αT−1.

This further implies that the anticipated shock liquidity premium is constant

over time, and since when n = 1, Cournot and demand schedule initial

conditions coincide (Corollary 4 in the main appendix), the anticipated shock

liquidity premium is the same for both types of competition when the shock

occurs at T − 1, which implies that there is no momentum.

F Equivalence between endowment and sup-

ply shock models

Suppose that the risky asset is in fixed supply s and that price-takers receive

endowment shocks ∆sτ ετ+1 at time τ , where ∆sτ is known by all investors

from time 0. Because these endowment shocks are correlated with the div-

idend news, they mechanically increase price-takers’ exposure to the risky

asset, reducing their demand. Tracking error constraints work in a simi-

lar way on index trackers. In this interpretation of the model, endowment

shocks to price-takers proxy for demand for immediacy of index trackers.22 I

22Given their passive strategies and mechanical trading rules, index trackers are often
unable to strategically manage their price impact. ETFs rolling over futures contracts,
may be forced to “fire-sell” or “fire-purchase” assets to satisfy institutional constraints. For
instance, Bessembinder, Carrion, Tuttle, and Ventakaram (2016) note that the oil-future
ETF USO rolls over its front-month contract in less than a day, with the total volume to
be rebalanced often exceeding the average daily volume. Similarly, funds replicating bond
indices “for most bonds, spread their selling activity within the exclusion date” (Nick-
Nielsen and Rossi, 2019, p. 8), and thus require a high level of immediacy during these
events.
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show in the online appendix that, for any type of competition, the model with

endowment shocks is equivalent to the model with supply shocks. The equiv-

alence between the two settings relies on the fact that the endowment shocks

affect price-takers. Without price-takers, supply and endowment shocks are

not equivalent (Rostek and Weretka, 2015).

I consider two specifications for the model with endowment shocks.

� Model 1: The risky asset is in positive net supply s. At time t, price-

tackers receive endowment shocks
(∑t−1

l=1 ∆sl

)
εt at time t.

� Model 2: The risky asset is in zero net supply. Price-takers receive

endowment shocks st−1εt at time t.

Proposition 13

1. With Cournot competition, the model with supply shocks is equivalent

to both endowment shocks models.

2. With demand schedule competition, the model with supply shocks and

the second specification of the endowment shocks model are equivalent.

I first prove the following auxiliary result.

Lemma 7 (Price-takers’ optimal demand with endowment shocks)

� Under Model 1, price-takers’ optimal demand at t is

Yt =
Et(pt+1)− pt

aσ2
−

t∑
l=1

∆sl (185)

� Under Model 2, it is

Yt =
Et(pt+1)− pt

aσ2
− st (186)
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Proof. Price-takers’ dynamic budget constraint is

wt+1 = wt + Yt(pt+1 − pt) +

t∑
l=1

∆slεt+1 under Model 1

wt+1 = wt + Yt(pt+1 − pt) + stεt+1 under Model 2

Then we can show by induction that price takers’ post-trade certainty equiv-

alent is

CEt = wt +

T−1∑
q=t

[
(Eq(p̂q+1)− p̂q)2

2avarq(p̂q+1)
−

q∑
l=1

∆sl (Eq(p̂q+1)− p̂q)

]
in Model 1

CEt = wt +

T−1∑
q=t

[
(Eq(p̂q+1)− p̂q)2

2avarq(p̂q+1)
− sq (Eq(p̂q+1)− p̂q)

]
in Model 2

Where p̂q denotes the equilibrium price. From these certainty equivalents

and the dynamic budget constraints, taking the first-order conditions yields

the demands (185) and (186). The rest of the induction is the same as in

Lemma 3 in the main appendix.

We can then prove Proposition 13.

Proof.

Cournot Competition. From (185) and (186), we obtain the same price sched-

ule as in the supply shock model. In Model 1, market clearing implies that∑n
j=1X

k
t + Yt = s so

Et(pt+1 − pt) +

n∑
j=1

Xj
t = aσ2

(
s+

t∑
l=1

∆sl

)
= aσ2st

In Model 2, market-clearing implies that
∑n
j=1X

j
t + Yt = 0, so

Et(pt+1)− pt +

n∑
j=1

Xj
t = aσ2st
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In either case, we recognize the recursive definition of the price schedule.

The rest of the steps are the same as in the supply shock model.

Demand schedule competition. Under Model 2, market clearing requires∑
i x

i
t(pt) +

∫
ymt (pt)dm = 0. Price-takers will now condition their schedule

on the current endowment shock, so our candidate linear schedule must be

adjusted as follows:

ymt (pt) = βyt (Dt − pt) − cyt Y
m
t−1 + dyt

∑
j

Xj
t−1 +

∑
τ≥t

fyt,τX
∗
τ (187)

There is now a coefficient fyt,t. For strategic traders, schedules are unchanged.

Their optimization problem also remains the same. Their equilibrium sched-

ules do not change. Price-takers’ first-order conditions must be adjusted for

the endowment shock:

Dt − pt − aσ2
∑
τ≥t+1

θt+1,τsτ + aσ2αt+1

∑
j

Xj
t−1 +

∑
j

xjt


− aσ2(Y mt−1 + ymt )− aσ2st = 0 (188)

If we substitute (167), we get:

ymt =

(
1

aσ2
+

nαt+1

λt +Rt+1

)
(Dt − pt)−

na+ b

a
X∗t

−
∑
τ≥t+1

(
θ̃t+1,τ +

nαt+1R
3,5
t+1,τ

λt +Rt+1

)
sτ +

λtαt+1

λt +Rt+1

∑
j

Xj
t−1 − Y mt−1 (189)

All the coefficients are the same as before, and fyt,t = −na+b
a . Then, using

market clearing, and substituting equilibrium schedules we get the equilib-

rium price, which corresponds to (7). Since the strategic traders’ schedules

and the equilibrium price are both the same as in the supply shock model, it

is possible to write the equilibrium trade as before, and the rest of the proof

proceeds as in the supply shock model.
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Figure 1: Liquidity premium and aggregate holdings under Cournot compe-
tition: monopoly vs oligopoly (n = 2). The risk-bearing capacity is fixed
at 5 in both cases, with a = 10. The liquidity premium is defined as the
distance between the market price and the competitive price. The shock
is announced at t1 = 5 and occurs at t2 = 11. Traders start with Pareto-
optimal endowments.
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Figure 2: Liquidity premium and Inventories under Cournot and Demand
Schedule competition, with multiple traders (n ≥ 2). The shock is announced
at t1 = 5 and occurs at t2 = 11 (a = 5, b = 2). All traders start with Pareto-
optimal endowments.
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Figure 3: Price and inventory effects of an anticipated shock in a competitive
market. Parameters are D = 0, T = 15, a = 5, b = 2, n = 2, t1 = 5, t2 = 11,
s = σ = 1, ∆st2 = 2.
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Figure 4: Liquidity premium and inventory effects of an anticipated shock:
Cournot monopoly vs oligopoly. Parameters are D = 0, T = 15, a = 5,
b = 2, t1 = 5, t2 = 11, s = σ = 1, ∆st2 = 1, n = 1 for panel (a) and n = 2
for panel (b).
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Figure 5: Two different partitions of equation (18). On the left panel, the

graph shows
∑T−1
τ=t2

κkt (bσ2−Q3,5,k
t+1,τ ) (denoed HPO for Pareto-optimal related

terms) and
∑T−1
τ=t2

κkt (naσ2αkt+1,τ−nQ
2,4,k
t+1,τ ) (denoted LF for liquidity factor-

related terms), in the Cournot (k = C) and Demand schedule (k = D) cases.

On the right panel, the graph shows
∑T−1
τ=t2

κkt aσ
2αkt+1,τ (abbreviated as θ)

and
∑T−1
τ=t2

κkt (Q3,5,k
t+1,τ ) +nQ2,4,k

t+1,τ ), denoted MU for marginal utility. In both
panels, t1 = 5, t2 = 11, s = σ = 1, ∆st2 = 2, n = b = 2, a = 4.
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Figure 6: Term-by-term decomposition of equation (18). Parameters are the
same as in Figure 5.
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Figure 7: Liquidity premium and aggregate trades in the demand schedule
case. In panel a, there is a single trader (n = 1, a = 2 = b = 2). In
panel b, there are multiple traders (n = 2, b = 2, a = 5). In both cases,
t1 = 5, t2 = 10, s = σ = 1, ∆st2 = 2. All traders start with Pareto-optimal
endowments.
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Figure 8: Both panels show the previous a zoomed version of the previous
graphs.
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Figure 9: Liquidity premium and trades as a function of price-takers’ risk-
aversion a. The total risk-bearing capacity is fixed at R = 5. Parameters
are D = 0, T = 15, n = 2, b = n

R−1/a , t1 = 5, t2 = 10, s = σ = 1, ∆st2 = 2.

Holdings are shown only between t = 4 and t = 10.
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Figure 10: Liquidity premium and trades as a function of the announcement
date t1. The realization date is fixed at t2 = 11. Parameters are D = 0,
T = 15, n = 3, a = b = 1, s = σ = 1, ∆st2 = 2. Aggregate holdings are
shown only between t = 5 and t = 10.
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Figure 11: Liquidity premium as a function of traders’ initial endowments
Xi
−1. Parameters are D = 0, T = 10, n = 2, a = b = 2, s = σ = 1,

∆st2 = 0.1. The realization of dividend news is 0 for all εt, so prices and
average prices coincide.
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