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1 Introduction

Anticipated supply/demand shocks are predictable changes in supply or de-
mand. They may be caused by passive investors’ mechanical trading rules',
scheduled equity or bond issuances (SEOs, bond reopenings), pre-announced
trades, etc. These anticipated shocks are common, relatively frequent, and
often uninformative about fundamentals. Yet, a large body of empirical lit-
erature documents temporary price pressure in the form of V-shaped price
patterns around anticipated shocks. Prices drift away from fundamentals
before the shock, and revert afterwards,? leading to costs for issuers and in-
vestors. For instance, to reduce tracking errors around index reconstitutions,
passive investors are likely to sell deleted stocks at a deflated price, and buy
added stocks at an inflated price.?

This evidence is hard to explain in frictionless markets. During these
events, returns are partly predictable and are characterized by time-series
momentum and reversal. Moreover, the data shows a diversity of behaviors
by financial institutions, in particular before shocks take place. Some institu-
tions are contrarians (e.g. buy ahead of a positive supply shock), others tend
to trade with the wind or follow non-monotonic strategies. For instance, in-

stitutional investors tend to buy stocks ahead of SEOs (Chemmanur, He, and

IE.g. passive investors must rebalance portfolios around index inclusions/deletions (see
Lynch and Mendenhall (1997), among many others), ETF roll over futures contracts at
expiry (Bessembinder et al., 2016).

2These V-shaped price patterns have been documented around index reconstitutions
(e.g. Lynch and Mendenhall, 1997, Chen, Naronha, and Singal, 2004), flow-induced price
pressure by mutual funds (Coval and Stafford, 2007), SEOs (Kulak, 2008), Treasury is-
suances or reopenings (see Lou, Yan and Zhang (2013) for US evidence, and Sigaux (2016)
for European evidence), corporate bond issuances (Newman and Rierson, 2003) and cor-
porate bond index exclusions following downgrades (Dick-Nielsen and Rossi, 2019). See
Duffie (2010) for a review of the empirical evidence of the price effects of anticipated
shocks.

3In the case of bond index exclusions, Dick-Nielsen and Rossi (2019) state that the
“reluctance to trade away from the exclusion date results in a hidden cost of indexing for
final investors of approximately 34 bps annually”. (p.4) In the case of Treasury issuances,
Lou, Yan, and Zhang (2013) estimate a cost of “over half a billion dollars for note issuance
alone in 2007”.



Hu, 2009). However, market-makers or liquidity suppliers in futures market
reduce inventories before anticipated liquidations (Cai, 2009) or ETF fu-
tures rolls (Bessembinder et al., 2016). Corporate bond dealers first increase
and then reduce inventories before bond index exclusions (Dick-Nielsen and
Rossi, 2019).

In this paper, I study a model of strategic trading, which qualitatively
accounts for both the V-shaped price pattern and the diversity of trading
behaviors around anticipated shocks. The key feature of the model is the het-
erogeneity in market power, and thus in price impact, between an oligopoly
of strategic traders and a competitive fringe of price-takers. I consider two
versions of the model: in the first one, traders compete a la Cournot; in
the second one, they compete in demand schedule. I view Cournot traders
as a proxy for traders using primarily market orders (e.g. opportunistic or
directional traders, see Hagstromer and Norden, 2013) and demand schedule
traders as institutions using mostly limit orders (e.g. market-makers).*

In both versions of the model, anticipated shocks may lead to a V-shaped
price pattern provided there are at least two strategic traders, a competition
effect. However, traders’ strategies before a shock differ depending on the
type of competition. Consistent with empirical evidence, Cournot traders
act as contrarians, while demand schedule traders first trade against, then
with the shock. Despite this potentially destabilizing behaviour, anticipated
shocks have a smaller price impact under demand schedule competition.
Model and competitive benchmark. I consider a dynamic economy with
one risk-free and one risky assets, and two types of investors, price-takers
and strategic traders (traders, for short). All investors have exponential

utility and the liquidating dividend of the risky asset is normally distributed.

4Hagstromer and Norden (2013) show how the use of different types of orders re-
veals the diversity of algorithmic traders. They find that traders following directional
or opportunistic strategies use a large share of market orders, while those engaging in
market-making activities use primarily limit orders. Chan and Lakonishok (1995) discuss
how the investment style and other fund characteristics influence the type of execution
strategies and in particular the type of orders used by the trading desks of institutional
investors.



Traders and price-takers may differ in risk aversion, but all traders have
identical risk aversion. Investors trade to share risk over T periods before
consuming. They learn in the course of trading that the supply of the risky
asset will increase at a later time, i.e. the announcement and the realization
of the shock are distinct.® Information is complete. In particular, the supply
shock is publicly announced and is uninformative about the value of the risky
asset.’

Suppose first that all investors, including strategic traders, are compet-
itive. In this case, there is no V-shaped price pattern around anticipated
shocks. Indeed, in the competitive benchmark, gains from trade are realized
in a single trading round, and the price is the sum of the expected dividend
and a risk premium proportional to the risk-bearing capacity of the market.
Thus, when a shock is announced, all investors understand that portfolios
will be adjusted immediately at the realization. To preclude arbitrage op-
portunities, the risk premium immediately adjusts at the announcement.
Imperfect competition. Suppose next that traders are imperfectly com-
petitive, and thus take into account the price impact of their trades.” Then,
whether traders compete a la Cournot or in demand schedules, the price

includes a liquidity premium in addition to the risk premium. The liquid-

5The positive supply shock is to fix ideas only. The model can also be written with
demand shocks. In the Online Appendix, I show the equivalence between the model with
anticipated supply shocks studied in the text and a model with anticipated shocks to
price-takers’ demand.

6Some shocks such as SEOs or even index reconstitutions (Denis, McConnell, Ovtchin-
nikov, and Yu, 2003) might convey information about fundamentals. However, the V-
shaped price pattern occurs also in indices following mechanical rebalancing rules (e.g.
FTSE, Russell) instead of discretionary rules (S&P500), ruling out a pure information ef-
fect (see Madhavan, 2003). My theory implies that even if the event conveys information,
the mere difference of price impact between price-takers and strategic traders may lead to
a V-shaped price pattern, controlling for the informational content of the shock.

"Price impact arises only due to market power in the model. As an illustration, Gabaix
et al. (2006) calculate that in 2000, the liquidation by the 30" largest mutual fund of
its position in its average stock would represent half of the daily turnover in that stock,
implying that price impact is a concern for large traders even in the absence of superior
information. In practice, strategic traders (e.g. large asset managers, dealers, and trading
desks) rely on order execution techniques to minimize price impact (see, e.g. Chan and
Lakonishok, 1995, Keim and Madhavan, 1995, 1997, and van Kervel and Menkveld, 2019)
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ity premium stems from differences in price impact between traders and
price-takers. It compensates price-takers for imperfect diversification, which
arises as traders shade their bids to limit their price impact, causing delays
in reaching Pareto-optimal allocations. Because of the liquidity premium,
the trades of strategic traders have both a risk-sharing component, whereby
traders progressively liquidate their initial positions and replace them with
Pareto-optimal ones, and a speculative component, as traders take advantage
of the liquidity premium.

Empirical studies typically control for the market factor, which corre-
sponds to the risk premium in the model, hence I focus on the effects of
anticipated shocks on the liquidity premium. To isolate the effects, I assume
that initial endowments are Pareto-optimal, so that there is no reason to
trade and no liquidity premium until the shock is announced.

When the shock is announced, a new trading motive emerges. Indeed,
price-takers anticipate that the shock will not be immediately diversified at
the realization, as traders break up orders. This gives them incentives to sell
ahead of the realization to hedge their future over-exposure to the risky asset.
Between the announcement and the realization, strategic traders trade off
the effects of the anticipated shock on their current marginal trading profits
and on their future marginal utilty. On the one hand, the shock lowers
future prices, which reduces price-takers’ demand today, thereby creating an
opportunity for traders to buy at a lower price today. On the other hand,
the anticipated shock increases future risk and liquidity premia. Thus, it
increases profits from exploiting the liquidity premium in the future and
affects the terms of trade at which traders can share risk in the future. For
instance, a higher liquidity and risk premium make it more costly to liquidate
positions as future prices are lower, and has an ambiguous effect on the cost
of acquiring Pareto-optimal positions: traders must acquire larger positions,
albeit at a lower price due to the higher premia. While the effect on the
current trading profit gives traders incentives to buy ahead of the shock, the

effect on their future marginal utility may induce them to buy less or even



short. Which effect dominates depends on the type of competition.
Cournot competition. When traders compete a la Cournot, I show that
a monopoly does not trade until the shock takes place, while oligopolistic
traders start trading as soon as the shock is announced. The monopoly trades
in such a way that both effects (on the current profit and on the future
marginal utility) exactly offset each other. Her strategy is thus optimally
myopic, in the sense that it does not depend on the shock, although the
monopoly is aware of it. Instead, competition among oligopolistic traders
induces them to trade ahead of each other to exploit the increase in the
today’s marginal profit. Thus, in equilibrium, all traders start buying from
the announcement, a contrarian behaviour.

These different strategies lead to different liquidity premium dynamics.
With a monopoly, price-takers understand that they cannot hedge their fu-
ture overexposure in advance, so the liquidity premium immediately jumps
at the announcement to the level it will have at realization, and remains con-
stant until then.® It decreases after the realization, as the monopoly starts
trading towards the new Pareto-optimal allocation. With an oligopoly, price-
takers can start hedging by selling the asset to strategic traders. However,
traders break up their orders to limit price impact. Thus, price-takers sell
progressively as well, and each sale must be associated with a price de-
cline (more precisely, an increase in the liquidity premium) for price-takers’
demand to remain optimal and the market to clear. Indeed, price-takers
are the marginal asset holders, and thus the marginal pricers in the model.
Thus, before the realization, the liquidity premium increases gradually. Af-
ter the realization, traders trade more aggressively towards Pareto-optimal
positions, and the missalocation of the asset susbides, progressively reduc-
ing the liqudity premium. Hence, imperfect competition among strategic

traders generates the gradual pattern observed in the data around antici-

8Strictly speaking, with Pareto-optimal endowments, there is no trading until the re-
alization with a Cournot monopoly, thus the price and liquidity premium should be un-
derstood as price-takers’ marginal valuation of the risky asset.



pated shocks.

Demand schedule competition. When traders compete in demand sched-
ules, a V-shaped pattern also occurs only when traders are oligopolistic, but
inventory dynamics are different. With oligopolistic traders, the effect of the
anticipated shock on the current marginal profit dominates early on, while
the effect on the future marginal utilty prevails just before the realization.
Hence, traders start to buy from the announcement on, but revert their hold-
ings and short one period before the realization. The reason why the effect
of the shock on the current marginal profit becomes relatively smaller is that
the price becomes less sensitive to the anticipated shock as the realization
date approaches. Indeed, at the realization, traders buy more aggressively
than in the Cournot case. As all traders submit downward-sloping schedules
in equilibrium (instead of horizontal ones under Cournot), the residual de-
mand curve steepens, and each trader faces a deeper market. Competition
for liquidity provision is thus fiercer when traders submit schedules, and this
improved liquidity at realization reduces the sensitivity of the price to the
shock before the realization.

In spite of the different trading dynamics, the liquidity premium remains
V-shaped. However, as traders short ahead of the shock, the liquidity pre-
mium starts shrinking one period ahead of the realization: this is because
price-takers need to be compensated for holding the extra risk when they
buy from traders. With a monopoly submitting a demand schedule, the
price pattern and trading strategy depend on whether the shock occurs in
the final trading round or not, but as under Cournot competition, there is
no V-shaped price pattern.

The prediction that demand schedule traders short ahead of the realiza-
tion and provide liquidity afterwards is in line with the empirical evidence
about futures markets cited above, as well as evidence about dealers’ be-
haviour in Treasury and corporate bond markets (Lou, Yan, and Zhang,
2013, Dick-Nielsen and Rossi, 2019). In all these cases, there is evidence
that liquidity suppliers provide liquidity during shocks but offload inven-



tories just before. Further, the non-monotonic strategy shown in panel b
of Figure 2 is qualitatively similar to the inventory pattern documented by
Dick-Nielsen and Rossi (2019) ahead of bond index exclusions (Figures 4b,
8b, and 9b in their paper). In their data, bond dealers first raise inventories
some time before an anticipated shock, reduce them just before the shock,
and increase them again during the shock.

Empirical evidence shows that large institutions buy ahead of SEOs, and

that more aggressive buying reduces the SEO discount (Chemanur et al.,
2009).” A potential test of the theory would thus consist to check whether
these institutional investors make heavy use of market orders.
Related literature. This paper contributes to the literature in three ways.
First, the paper provides a parsimonious mechanism, based only on hetero-
geneity in price impact, to explain the V-shaped price reaction to anticipated
shocks. Second, the model delivers new predictions about inventory dynam-
ics before the realization of anticipated shocks. Third, the paper gives an
explicit comparison of price and trading dynamics in the Cournot and de-
mand schedule cases.

From a theoretical point of view, it is difficult to explain V-shaped pat-
terns, because these patterns imply short-term price predictability, which
in a frictionless economy would be arbitraged away. To the best of my
knowledge, only differences in price impact due to market power, as in this
paper, and search frictions, can generate such price patterns in the absence

of asymmetric information.!'®

9Chemanur et al. (2009) argue in favor of an informational advantage of institutional
investors. However, many of their results are also consistent with institutions having
market power, so that a combination of informational advantage and market power cannot
be excluded.

LOWith search frictions, Duffie (2010) is the closest to this paper in terms of theme and
objectives, albeit with at least two differences. First, in Duffie’s paper, diversification is
not immediate due to exogenous delays in finding counterparties. Instead, in my paper
these delays arise endogenously as the outcome of traders’ optimal execution strategies.
Second, in Duffie’s model, the price rises before the V-shaped pattern, a phenomenon
which is observed only for SEOs in the data. There is no such initial price increase in my
setting. Indeed, in Duffie (2010), the price rise compensates traders who will be “stuck”



In the literature on trading with market power, the closest papers are
Pritsker (2009) and Rostek and Weretka (2015).'! Pritsker (2009) considers
a Cournot setting with n traders and a competitive fringe, and studies nu-
merically the effects of anticipated firesales by a distressed trader (one of the
strategic traders), who is forced to hold onto his position until the firesale.
In addition to Pritsker’s results, I show that (i) the V-shaped price pat-
tern arises only because of the difference in price impact;'? (ii) competition
among traders determines the occurrence of the V-shaped pattern, in partic-
ular, there is no such pattern with a single trader (this is an analytical result);
and (iii) I relax the assumption that traders use market orders only, leading
to new predictions about inventories. Rostek and Weretka (2015) study the
price effects of anticipated shocks in a demand schedule game with n traders
and no price-takers. The main difference with Rostek and Weretka (2015) is
that I introduce price-takers in the demand schedule game, leading to het-
erogeneity in price impact.'® Without such heterogeneity, the price effects
of anticipated shocks are different and harder to reconcile with the empirical
evidence. In particular, there is no price drift between the announcement

and the realization of the shock, and the price returns to the competitive

with the asset for some time. In my setting, it is always possible to trade, although
imperfect liquidity entails costs.

11 The literature on demand schedule competition builds on the static model of Kyle
(1989), extended to the dynamic case by Vayanos (1999). Recently published papers based
on similar frameworks include Rostek and Weretka (2015), Du and Zhu (2017), and Kyle,
Obizhaeva, and Wang (2017). The literature on Cournot competition among large traders,
based on the inventory models of Grossman and Miller (1988), includes Kilhstrom (2000),
Pritsker (2009), DeMarzo and Urosevic (2006), Edelstein, Sureda-Gomill, Urosevic and
Wonder (2010), and Marinovic and Varas (2018). Capponi, Menkveld and Zhang (2019)
consider a model where Cournot traders have only transitory price impact.

12Under Pritsker (2009)’s assumptions, the market anticipates three things: a change
in competition, a change in the total risk-bearing capacity of the market, as the distressed
trader exits the market after the firesale, and a change in supply/demand. Under these
assumptions, even the competitive price reaction can be V-shaped. In my setting, there is
a change in supply/ demand without change in the number of strategic traders, nor in the
total risk-bearing capacity of the market. As a result, the V-shaped price reaction arises
only due to the effect of the anticipated shock on the liquidity premium.

13In Rostek and Weretka’s setting, all traders have identical risk aversion, leading to
the same degree of market power and thus the same price impact.

10



level in one trading round after the shock.

Differences in price impact are thus key to explain the V-shaped price
pattern. These differences have been documented at least since Chan and
Lakonishok (1995). Heterogeneity in price impact is an important charac-
teristics of financial markets, where large traders coexist with smaller insti-
tutions, passive investors, and/or retail investors. 4

The second contribution of the paper is to provide new predictions about
inventory dynamics around V-shaped price patterns. Several studies predict
that traders sell as the price goes down, and buy when it rebounds. Vayanos
(2001) obtains this prediction in a Cournot setting with a single privately-
informed strategic trader. Papers on predatory trading (e.g. Brunnermeier
and Pedersen, 2005, Carlin et al., 2007), which are based on a Cournot setting
with ezxogenous demand curves and no asymmetric information, predict a
similar pattern. Instead, in my setting price-takers generate an endogenous
demand, a single Cournot trader abstains from trading before the shock, and
multiple traders buy as the price goes down.

I am not aware of any paper predicting the non-monotonic inventory
pattern of the demand schedule case, although this pattern is observed in
the data. For instance, Rostek and Weretka (2015) predict that strategic
traders do not trade on anticipated shocks until the realization.

Finally, the paper highlights quantitative and qualitative differences be-

14 A few recent working papers share this emphasis on differences in price impact, albeit
with different objectives. Glebkin (2016) studies a static model with asymmetric infor-
mation, where price-takers and strategic traders compete in demand schedules. Sannikov
and Skrzypacz (2016) consider a dynamic oligopoly of strategic traders with heteroge-
neous risk aversion and private trading needs. They extend the standard definition of
the demand schedule equilibrium to allow for heterogeneous risk aversion among traders,
allowing them to condition schedules on the outcome of other traders. I retain the stan-
dard equilibrium definition assuming that all strategic traders have identical risk aversion
and focus on the effects of anticipated shocks. Rostek and Yoon (2019) consider a non-
stationary model with n strategic traders competing in demand schedules, where traders
have private information and heterogeneous risk aversion, but do not consider anticipated
shocks in their setting. Note that since all traders have identical risk aversion in my set-
ting, the equilibrium remains recursive in spite of the difference in price impact between
traders and price-takers.

11



tween Cournot and demand schedule competitions, which have under-re-
searched in the context of multiperiod financial markets.'®> These two set-
tings can be easily tied to the strategies used by different institutions. I
show that even though the price, value functions, and trading strategies are
analytically similar for both types of competition, the coefficients of their
different components are competition-specific, leading to different price and
inventory dynamics.

After describing the setting, I study Cournot competition, and then de-
mand schedule competition. The last section summarizes the main conclu-
sions of the analysis. Proofs of the results on demand schedule competition

are in the Online Appendix. All other results are proved in the Appendix.

2 A model of strategic trading and anticipated

shocks
2.1 Set up
Time is discrete (t = 0,...,T). Investors trade a risk-free asset and a risky

asset between 0 and T — 1, and consume at T. The risk-free asset is in
perfectly elastic supply with return r; normalized to zero. The risky asset,
which trades at price p;, pays off a liquidating dividend at T'. The liquidating
dividend is the sum of a fixed component D and a series of #d normally
distributed dividend news ¢;: Dy = D + Zf:l er, with g, ~ N(0,0?), for
1<t<T, with e, L &, u # t. All investors observe the dividend news
¢ before trading at time ¢. Let Dy = E(Dy) = D + 22:1 €s denote the

conditional expected value of the dividend at time t.

15Vives (2011) provides a quite general albeit static framework to study supply functions
equilibria with private information and their connection with the Cournot outcome. In
their survey, Rostek and Yoon (2020) compare Cournot and demand schedule outcomes in
both static and dynamic models with private information, but without price-takers when
traders compete in demand schedule. They focus on the differences in terms of dynamic
inference instead of the effects of anticipated shocks.

12



The risky asset is in net supply s; at time ¢. It is convenient to write s; as
the sum of a fixed part and a series of shocks, s; = s—i—ZtT:l As.. The supply
shocks are anticipated: at time 0, all investors know the sequence of future
shocks As.. In the main text, I focus on the effect of an information release,
with a single pre-announced shock. Specifically, I assume that investors
anticipate that the supply is constant (s; = s) when they start trading at
time 0. Then at time ¢; > 0, there is a public announcement before the
market opens: investors learn that at time to > t;, the supply will jump
from s to s + Asy,. I refer to t; as the announcement date, and ty as
the effective or realization date of the shock. In the special case t; = to,
the announcement takes the market by suprise. If, instead, t; < to, the
market anticipates the shock. It is easy to map this partition between the
announcement and effective dates to events such as seasoned issuances and
index changes studied by empiricists. The general case with an arbitrary
sequence of shocks is treated in the Appendix.!'©

Two types of investors share risk in the market. First, there is a contin-
uum mass one of risk-averse price-takers, indexed by m. Price-takers have
exponential utility, u(C7) = —exp(—aC¥), and start with endowments

" in the risky asset. Second, there is an oligopoly of n strategic traders
(traders, for short), indexed by i. Traders have market power and under-
stand that their trades move prices. They also have exponential utility with
constant absolute risk aversion b, U(C%) = — exp(—bC%.). Traders start with
endowments X, in the risky asset. Given the exponential utilities, we can
normalize all investors’ endowments in the risk-free asset to zero without loss
of generality.

Price-takers enter time ¢ with a total position Y;_; = fol Y™ dm in the

16Some of my motivating examples, e.g. index reconstitutions, are demand shocks: when
a stock or a bond is deleted from an index, passive index trackers such as index funds
and ETFs liquidate their holdings on or close to the effective deletion date to minimize
tracking errors (Blume and Edelen, 2004, Dick-Nielsen and Rossi, 2019). I show in the
Appendix that the model can be rewritten with demand shocks by introducing endowment
shocks to price-takers. I focus on supply shocks in the body of the paper.

13



risky asset and trade y; = fol y;'dm at t. Their position after trading at t is
Y; = Yi_1 + y;. Similarly, trader i enters time ¢ with a position X;_; in the
risky asset, trades x%, and ends up holding X}, so that X} = X;_; + z¢. At

each ¢, market-clearing for the risky asset implies that:

Yi+) Xl =s (1)

j=1

The trading process in each round depends on the type of competition be-
tween traders. In this section, I present the competitive benchmark. Then in
Section 3, I consider Cournot competition, implying that traders use market
or marketable orders. In Section 4, I consider demand schedule competition,

implying that traders use a series of limit orders.

2.2 Momentum and reversal

I use the terms momentum if there is a gradual price adjustment before the
effective date, and reversal when there is a gradual correction after the shock.
In imperfectly competitive markets, the price will be the addition of the
competitive price and a liquidity premium. Thus, in the body of the paper,
I focus on the notion of momentum and reversal in the liquidity premium
only. Additional justification for this weaker notion is that empirical studies
usually evaluate the effects of anticipated shocks against a market factor,
which corresponds to the competitive price in my setting. To fix ideas,
all the results are given for a positive supply shock, but they would all go

through with negative shocks.

Definition 1 (Momentum and Reversal) For a shock Asy, > 0, there

is momentum and reversal in the liquidity premium around the effective date

uf

(Momentum):  3t,, € {t1,...,to =2} s.t. p;, —pi > > py, —pi,, and
(Reversal):  py, —pf, <--- <pr-1—Dpr_1

14



There is momentum and reversal in the price if we replace p; — p; by E(p;).

In standard inventory models (e.g. Grosmann and Miller, 1988), a one-period
price decline followed by a one-period rebound may easily occur. Here I am
looking for a gradual price movement followed by a gradual correction of this
movement, which implies a short-term drift in the price or liquidity premium
followed by a reversal of this drift. This notion of momentum and reversal
is in the time-series, different from the classic cross-sectional momentum of

Jegadeesh and Titman (1993).

2.3 Competitive benchmark

The competitive equilibrium is a useful benchmark to understand the effects

ok

of traders’ market power. From now on, a superscript denotes the

competitive outcome. Price-takers solve the following problem:

P max —Eo (exp(—awr))
wy = w1 + Yio1(pt — pi—1)

where w; denotes price-takers’ wealth. Price-takers’ optimal demand at time
t is I ( )
t\Pt+1) — Pt

v, = 2By )
When they are competitive, traders solve a similar problem, but have ab-
solute risk aversion b, and choose position X;. The solutions to P* for
each type of investor and market-clearing (1) define a competitive equilib-
rium. Note that price-takers’ risk-bearing capacity (or risk tolerance) is %,

whereas trader’s total risk-bearing capacity is 7.

Proposition 1 (Competitive equilibrium with constant supply) In

the competitive equilibrium, investors hold the risky asset in proportion of

—_a

their risk tolerances: X; = U;T/i/bs e

s = X*. The competitive price is

15



the sum of the conditional expected value of the dividend and a risk premium:
p; % = Dy — bo*(T —t)X* (3)

Equation (3) shows that the risk premium has a drift: this is because as

time passes, uncertainty about the fundamental is gradually realized.

Corollary 1 (Fundamental effect of information release) Let

AXF, = 55 Asy, denote the change in Pareto-optimal holdings induced by
the shock.

In a competitive market, there is no momentum and reversal: investors ad-
just positions once and for all at the realization of the shock, and prices

adjust as soon as the shock is announced.

ort <ti, p;* =py” and X% = X*,
t t t
forty <t <ty, pp® =p; @ —bo*(T — t2) AX], and X% = X*,
fort > ty, p;** = p; " —bo*(T — t)AX], and X[ = X"+ AX},

In a competitive economy, the price immediately reflects the increase
in the risk premium that will take place at the effective date (Figure 3).
The risk premium increases, because the quantity of risk increases, while
the risk-bearing capacity remains unchanged. When the shock takes place,
investors increase their holdings to absorb the extra supply and ask for an
extra risk premium bo?(T — t2) AX}, to do so. At the announcement, the
price drops by exactly this amount by the logic of absence of arbitrage.
In line with Rostek and Weretka (2015), T refer to the competitive price
reaction as the fundamental effect of the information release. The logic of
absence of arbitrage implies that this effect is fixed (i.e. independent of t) and
independent of how far in advance the shock is announced (i.e. independent
of t1, or to — t1). Thus, the competitive price reaction to an information

release is hard to reconcile with the pattern observed in the data.
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3 Cournot competition

I now relax the assumption of price-taking behaviour for traders, assuming

Cournot competition instead.

3.1 Definitions

Equilibrium. In each trading round, price-takers submit a demand curve,
while traders submit market orders to a Walrasian auctioneer, who deter-
mines the market-clearing price. Traders choose orders given the price sched-
ule implied by the price-takers’ demand and market-clearing. A price sched-
ule p; (x%, Dk xi) : R — R maps the effect of the order of trader i on the

equilibrum price, given other traders’ orders. Using (2) and (1), we obtain

n
pi| et al | =Bulperr) —ao® s — Y X[ | =
i j=1

e R R DL R SE R IO
J=1 j#i

Traders’ price impact is permanent: the price increases in traders’ positions,

X} = X} | + i Hence, the price depends on past and current trades.

Definition 2 (Cournot equilibrium) A dynamic Cournot equilibrium is
a collection of subgame-perfect Cournot Nash equilibria, which consists in
prices and trades such that (i) given the anticipated price path, price-takers’
demand mazimizes the expected utility of final consumption. (#) given other
traders’ orders, x;i, and the price schedule, trader i chooses a quantity xi

to mazimize expected utility.'”

17The superscript —i denotes the actions taken by all traders, except trader i. I rule out
deviations by a non-zero mass of price-takers. This restriction is standard in the durable
goods literature (see, e.g. Gul, Sonnenschein, and Wilson, 1986). In the strategic trading
literature, Kihlstrom (2000), Pritsker (2009), DeMarzo and Urosevic (2007), and Vayanos
and Wang (2012) consider a similar notion of equilibrium.
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Price-takers’ problem is still given by P*, as in the competitive case. A

trader’s problem is now:

PY: max By (— exp(—bW74.))

K3
Ty

s.t. Wk = X4“Dr + BL

i _ pi i i. J i _ oy i
where Bi = B} | —zip; | =i E zy | and X;=X; ,+ux;
J#i

We can restate P¢ as a dynamic programming problem, introducing the

value function (post-trade certainty equivalent)

_bo?

. (X)) +Q,, st (4) (5)

i_ i i. J
Q= max ;| Dy —py | 2 E xy
o i

The state variable for problem P¢ is traders’ aggregate positions Z;L:1 th .
However, the model has a more intuitive form if we express the price and
value function with an affine transformation of this state variable. To avoid
moving the price against themselves, traders will trade less aggressively than
in the competitive market, leading to imperfect and delayed risk-sharing.
The key indicator of the imperfect risk-sharing in the model is the distance
A; between traders’ aggregate positions when they enter time ¢ and Pareto-
optimal positions. With constant supply, A; is simply a scalar and boils
down to Ay = nX* — Z?Zl th_l. With anticipated shocks, the Pareto-
optimal position X* changes over time. Thus, the liquidity factor depends

on the term structure of deviations from Pareto-optimal holdings:
T n .
At = (At»h Ce ,At’Tfl) s with At’-,— = ’I’L‘X—;.IK — Z Xi771 (6)
j=1

The elements A; - of A; measure the distance between traders’ current ag-

gregate position and time-7 aggregate Pareto-optimal holdings. Note that
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I use bold font for vectors and matrices. The guesses for the price p; and

traders’ value function Q¢, expressed as affine and quadratic functions of Ay,

are:
pe = p; —ac’al Ay, (7)
Q b i\2 i T T o+
2 *Qth(Xt—l) —Xi (‘b,tAt +4q3,X )JF

1 * * *
GA Qi A+ A g5 X+ X g, X (8)

where g, ; is a (T' —t) x (T —t) upper diagonal matrix, and g5, and qg ,
are (T —t) x (T — t) matrices. Since the Cournot price departs from the
competitive price due to market thinness, I refer to ac?a] A; as the liquidity
premium and to A as the liquidity factor. Given this price and value function,

the trade can be decomposed into a risk-sharing and speculative component:

T-1 T-—1
rp = Z (X7 — Xiq)+ Z YIRS (9)
T=t T=t

The coefficients c;, measure how aggressively traders trade towards future
Pareto-optimal positions. Similarly, the coefficients 7; » measure how aggres-
sively traders take advantage of future liquidity premia. The first compo-
nent is standard in the strategic trading literature (see, e.g. Vayanos, 1999,
Rostek and Weretka, 2015, Kyle et al., 2017), except for the anticipated
suppy changes: traders target the Pareto-optimal portfolio, but shade bids
to smooth their price impact, so that the coefficients ¢; » will be smaller than
one; the second component arises because of the asymmetry in market power
between traders and price-takers, which leads to a temporary misallocation
of the asset between the two groups. This misallocation generates a liquidity

premium, offering traders the opportunity to make trading profits.
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3.2 Equilibrium

I now provide conditions under which the guesses are correct in equilibrium.

&
First note that for a vector x; = (mt,t, ,xt,T_l) , T denotes the
. . T—1 . .
sum of its elements, i.e. Z, = > __, x4 ,. The same applies to matrices (see

Appendix A for a summary of the vector and matrix notations).

Proposition 2 (Dynamic Cournot Equilibrium) For all n > 1, there
ezists a unique equilibrium in which the price, trade, and post-trade certainty
equivalent (value function) are given by equations (7), (8), and (9) if the
price and value function coefficients are defined recursively by the system
S(qr, ) given in Lemma 2, and if for t € {1,...,T — 1}, the second-order
condition holds

2a(1 + apq1) + Qeq1 > 0, (10)

where Q11 = Qifl — anfl measures the curvature of the value function,
LoAl2 _ 24 _ _ _

with Q17 = bo*(1 + quis1) — 0°G21 and Q7 = 02 (Ga,e41 + Gayir1).

Boundary conditions for a and q; given by the static version of the model in

Proposition 6.

Proposition 2 provides a recursive characterization of the equilibrium. The
equilibrium as a function of primitives takes a simple form in the special

case of constant supply:

P = p; % — ac?al;_1 Ao (11)
X* = X =cf (X" = X'y) =)' Ao, (12)

With constant supply, the liquidity premium is determined by the distance
between Pareto-optimal holdings and traders’ endowments, Ay = nX™* —
i, X%, Further, the coefficients a;l;—1 depend on the number of strategic
traders, n, and the number of remaining trading rounds, 7'—¢t. When Ag = 0,
the price matches the competitive price. Hence, only the initial distribution
of asset ownership between price-takers and traders matters for pricing. If

we set Ag = 0 but X?, # X* in equation (12), we see that some trade
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happens, but these trades do not move the price away from the competitive
price, although the market is illiquid. Hence, risk-sharing within group does
not affect the equilibrium price, but risk-sharing between groups does.

If Ag # 0, traders start with inefficient positions, and the price converges
gradually towards the competitive price. For instance, if Ay > 0, traders ini-
tially hold smaller than efficient positions, so price-takers require a liquidity
premium to hold the extra supply, and the price is below the competitive
price. As time passes, traders gradually increase their positions and the price
converges towards the competitive price. Equation (12) shows that traders
target the Pareto-optimal holdings at rate cf when the asset is correctly al-
located between the two groups. When it is not the case, the convergence
can be slower or faster, as the liqudity premium induces traders to exploit

the price distortion and earn trading profits.

3.3 Information release

With a single anticipated shock, we have X* = X* for 7 < t3 and X} =
X* + AX;; for 7 > t5. Until the announcement, the equilibrium is the one
with constant supply. After the announcement, trades and prices can be
expressed as deviations from the constant supply case.
Trade decomposition. Trades can be written as if traders were trading
on different accounts based on the constant supply, the anticipated shock,
and the realized shock. Between the announcement and the realization of the
shock, traders trade against the anticipated shock. After the realization, they
treat the realized shock as a new layer of constant supply, simply starting
from different endowments, i.e. the inventory accumulated on the anticipated
shock account is transferred to the realized shock account and serves as its
starting position.

When there is a single shock, it is either anticipated or realized, so that

there is anticipated shock trading only between the announcement and the
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realization, and realized shock trading only after the realization of the shock:

i,c8

For t < t1, x} =z},
For t; <t < to, x; :xi,cs n mi,aS(tQ)

anticipated shock trading

For t > to, x! =2v° + T (ty) . with X£5 () = X221 (t2)
realized shock trading

(13)
The notation xi’cs(tg) emphasizes that the realized shock becomes a new
constant supply after t5, and will generate similar dynamics, nothwith-
standing the different endowments. This partition of the trades implies the
same partition for individual and aggregate holdings, with X 1_? = X%,,and
X% (t2) = X (t2) = 0. The partition of aggregate holdings leads to three
types of liquidity factors A%, A%%(ty), and A$®(t2). The first factor is the
same as in the constant supply case given in Proposition 8. By analogy,
A§(t2) denotes the liquidity factor associated with the realized shock afer
to, A (t2) = nAXY, — Hi*(t2), where H{® is a shorthand to denote traders’
aggregate position in the realized shock account, ie. H{® = 3, X, (t2).
Finally, A¢®(t2) is the vector of liquidity factors associated with the an-
ticipated shock of time to, with Ay ;(t2) = —H*(t2) for t < j < to, and
Ag5(t2) =nAXY, —HE for o <j <T —1.
Fundamental and liquidity effects. Theorem 1 in the Appendix provides
conditions under which trades, holdings and liquidity factors can be split as
in equation (13) for an arbitrary sequence of shocks. This partition of trades
yields a simple decomposition of the price effects of anticipated shocks in

fundamental and liquidity effects.

Proposition 3 (Effects of Information Release under Cournot) Before

the announcement, the price and holdings are the same as in the constant
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supply case: Yt < t1, py = p¢*, and X} = X,

1. After the announcement, an information release leads to both a funda-

mental and a liquidity effect:

forty <t <ty, pr=p —bo*(T —t)AX;, —ac’a] Af*(ts)

fort >ta, pr=pi° — b02(T —t)AX] — aazo_ztAgs(tg) (14)

2. The liquidity effect gradually decreases after the realization.

3. The price reaction between the announcement and the realization de-

pends on competition:

(a)

(b)

It is optimal for a monopoly to trade myopically, ignoring the
anticipated shock, i.e. x$°(ta) = 0, t < to; the liquidity effect is
constant over time between the announcement and the realization:
o AP (ts) = ay,AX;,, and there is no momentum. There is
always reversal in at least the liquidity premium after the effective
date if Ao and AX}, have the same sign.

With an oligopoly, there is momentum and reversal iff

mr -

VEE {tmy... b2}, Lho < S (0, 1nAXY,
fort >to, LMo+ Loy [1 — 82T (65,0 nax;y, >0,

where Sff)’tT((S, 1) is the fraction of the supply shock that has been
acquired by traders before the shock and 6 = ¢+ nn.

Just as the price can be split between the competitive price and the

liquidity premium, the effect of the anticipated or realized shock can be

decomposed into the fundamental (i.e. competitive) and the liquidity (i.e.

imperfectly competitive) effects. While this partition is standard (Rostek

and Weretka, 2015), the difference in market power between traders and

price-takers generates new dynamics for the liqudity effect. Equation (14)
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shows that after the shock, the liquidity premium will simply contract over
time as in the constant supply case. The realized shock liquidity factor is
A3 (t2) = lip -1 [1 - Sttf:tj;(& l)} nAX/,, so it contracts at rate I, ¢/ls, 1.
The exact price pattern before the shock, in particuler the occurence of
momentum, depends on the degree of competition among traders. There
is no momentum ahead of the shock with a monopoly, while C,,, shows
that momentum and reversal occur under mild conditions with an oligopoly.
The first condition corresponds to momentum, the second to reversal. Each
condition has two terms (from left to right) corresponding to the change
over two consecutive periods in (i) the constant supply liquidity premium,
(ii) either the anticipated shock, or the constant shock liquidity premium.The
conditions show that there is a trade-off between the trend in the constant
supply and the anticipated shock liquidity premium. Further, if we add
that the numerical result that 0 < Sffg; (6,1) < 1, it is easy to observe that

momentum and reversal occurs for a wide range of parameters.

Claim 1 (Analytical / Numerical) Consider an anticipated increase in
supply (Asy, >0):

1. With Pareto-optimal endowments (Ao = 0), there is momentum and

reversal in the liquidity premium for any anticipated shock.

2. When traders start from inefficient positions (Ao # 0), then there is
momentum and reversal in the liquidity premium if the shock is suf-
ficiently large relative to the liquidity premium that prevailed at the
announcement. Momentum occurs mechanically when Ay < 0, but not

reversal, and vice versa when Ag > 0.

The conditions in this result are mild: supply shocks simply need to be large
enough relative the existing liquidity factor to trigger a V-shaped pattern in
the liquidity premium when Ay # 0, and the conditions are automatically
satisfied for Ag = 0. Suppose, for instance, that the shock and Ay have
different signs. If the shock is sufficiently small, its effect will be dwarfed
by the constant supply premium and the V shape in the liquidity premium
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disappears. Conditions for price momentum (instead of liquidity premium
momentum) given in the Appendix are similar but stricter, since there is an
additional trend in the risk premium to take into account.

The occurence of momentum before the realization of the shock is linked
to the anticipated shock trading by strategic traders. The intuition is sim-
ple. Price-takers understand that due to market power, the shock will not be
optimally diversified at the realization, so that they will have to hold more
than they desire for some time. For this reason, they are willing to hedge
in advance of the shock. A monopoly does not trade based on the antici-
pated shock. Thus, the price — more precisely, price-takers’ valuation for the
risky asset — drops immediately to the level it will reach at the realization:
hence the liquidity effect is of A?%(t2) = @y, AX; at any time betwen the
announcement and the realization; this is its level at the realization. Instead,
oligopolistic traders do trade before the realization and xi’as (t2) > 0 in all
the numerical solutions I examined. As a result, price-takers can hedge to
some extent in advance the fact that they will have to hold an extra supply
at to. Although traders are buying before the realization, numerical simu-
lations show that the anticipated shock liquidity premium keeps increasing.
The reason is that traders break up their orders. As price-takers are the
marginal holders of the asset and therefore the marginal price-setters, the
liquidity premium must increase each time they sell the asset to traders to
ensure that their demand is optimal. After the shock, traders trade towards
the new Pareto-optimal portfolio more aggressively, so that the liquidity pre-
mium progressively shrinks. The more aggressive trading cannot take place
earlier, or it would eliminate the liquidity premium at the realization, and
traders would have an incentive to deviate and trade more slowly.'® Note

that the average price pattern is predictable, but given that the market is

18This is why each buy by the traders pushes the liquidity premium up before the re-
alization and down after the realization. Before the shock takes place, each trade brings
price-takers closer to the suboptimal diversification that occurs at the realization, increas-
ing the liquidity premium. After the realization, each trade brings postions closer to
Pareto-optimal ones, reducing the liqudity premium.
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thin, this pattern cannot be arbitraged away. Any deviating trader seek-
ing to exploit the gradual price movement would adversely move the price,
eliminating the benefit of deviating in the first place.'”

To understand better the trading dynamics before the shock, it is useful

to consider the expression of the trading on anticipated shocks:

S

—1
zy " (t) = (ce +nne ) AX7 — HE ( (t2) — & X% (t2), t1 <t <ty

ta
(15)
The first term is a sum, because each coefficient ¢ and 7 is associated

=~
Il

with the supply of time k. Since the shock is permanent, affecting the supply
from t5 to the end, we must sum all the coefficients to compute the total
effect. The second and third terms are related to smoothing price impact
and sharing inventory risk. Quantitatively, however, the first term seems to
drive the trading dynamics. It is easy to show that the terms related to the

anticipated shock in equation (15) can be expressed as folllows, for 7 > ¢+ 1:

0 4 ; o0
Ctor +Mtr = Kt Dy —pu | @i Z i | + a;zﬂ )
T i#i ¢
1
with #, = (16)

where & is a liquidity adjustment and \¢ = ao?(1 + @;41) is a trader’s price

19Note that if an additional trader were to enter unexpectedly at the announcement, the
total risk-bearing capacity of the market would increase. This would reduce the liquidity
premium but not eliminate momentum and reversal around the shock. If a positive mass of
price-takers were to enter unexpectedly, this would also increase the risk-bearing capacity,
leading to a more muted V-shaped price pattern, but risk aversion would prevent price-
takers from arbitraging it away. Below I consider comparative statics with respect to a
and n, holding the total risk-bearing capacity constant.
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impact. The marginal continuation value is

891’ T-1 T—1
t+1 . j 2,4 3,5 *
8j = — 00 (@01 — Gae) X + D Qi A+ Y, QX
Ty T=t+1 T=t+1

(17)

Thus, we can write:

Cr + NNt r = Ky [0029t+1,r - (”Q?fl,f + fom)} (18)

This equation shows that traders trade off the effect of the shock on the
current marginal trading profit (via the price schedule) vs the effect on their
future marginal utility. The first term in (18) is the total effect of the shock
on next period’s price, as Opy1» = % includes both the effect on the
risk premium and on the liquidity premium. An anticipated shock lowers
future prices, which pushes price-takers’ demand down today, and therefore
pushes the price schedule down today (see (4)). As the first term shows,
traders take advantage of this downward shift in price-takers’ demand by
taking the other side. Note that while traders submit price-insensitive or-
ders under Cournot, they can condition them on future shocks. The effect
on the price schedule is indirect, as it occurs through price-takers’ demand
and market-clearing. The anticipated shock, however, also has a direct ef-
fect on traders’ future marginal utility, as shown by the second term of (18).
Traders internalize the effect of their trades on their future investment op-
portunity sets, taking into account the impacts on both the risk-sharing and
the speculative components. Since the shock increases future risk and lig-
uidity premia, traders have an incentive to reduce their trades now to take
advantage of future premia. However, the increase in future liquidity and risk
premia also increases the cost of liquidating positions in the future, as prices
will be lower than if there were no shocks. Similarly the shock increases the
target Pareto-optimal positions X, which, however, can be bought at lower
prices than in the absence of shocks.

In the proof of Proposition 3, I show that with a Cournot monopoly,
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the two effects in (18) exactly cancel each other; namely bo? = Q?fl,f and

ac’ay i1, = fol)T. Hence the monopoly trades in such a way that the
increase in the time-7 risk premium caused by the shock affects today’s
marginal profit and tomorow’s marginal utility in exactly the same way.
Similarly the increase the time-7 liquidity premium/factor has exactly the
same impact on the current marginal profit and tomorrow’s marginal utility.
When there are multiple Cournot traders, however, the effect of the antici-
pated shock on today’s marginal profit is larger than its effect on tomorrow’s
marginal utility (see Figure 5). As a result, traders rush to buy ahead of the
shock. To sum up, imperfect competition among Cournot traders induces
them to trade against the shock and leads under mild conditions to a V-
shaped pattern in the liquidity premium. The gradual increase and decrease
of the liquidity premium around the realization of the shock is due to traders
breaking up their orders to smooth price impact. I next turn to comparative
statics.

Comparative statics. The model delivers comparative statics with respect
to competition, risk aversion, announcement date, and traders’ endowments
(see Figures 9-11). For the first two, it is necessary to normalize the risk-
bearing capacity of the market, R = % + 7. For instance, an increase in
n increases both competition and the risk-bearing capacity, so it is neces-
sary to adjust b as n increases to keep R constant. I show in the Appendix
that anticipated shock trading is highest for n = 2 when traders are risk-
neutral. Numerical simulations show that the same holds when traders are
risk-averse. Numerical analysis also shows that the V-shaped price pattern
is more pronounced when price-takers are more risk averse (holding the total
risk-bearing capacity constant) and when there are fewer trading rounds be-
tween the announcement and the realization (t2 —t; shorter, holding T fixed).
Furter, in line with Claim 1, the V-shaped pattern is more pronounced if the
traders hold smaller endowments in the risky asset (for a positive shock,
and vice versa for a negative shock), because the initial misallocation rein-

forces price-takers’ reluctance to hold the risky asset in anticipation of the
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shock. When traders hold more than the Pareto-optimal endowments, the
price impact of the shock decreases, the V-shaped price pattern becomes
more muted, and may entirely disappear as endowments become very large.
Intuitively, price-takers would like to hold more of the asset and the misallo-
cation of the shock is likely to bring them closer to this position. Consistent
with this prediction of the model, Chemmanur, He, and Hu (2009) study the
price effects of SEO and find a smaller SEO discount if institutional traders
buy more (and thus hold larger inventories) before the offering.?’

4 Demand schedule competition

Under Cournot competition traders are restricted to use market orders. I
now relax this assumption by introducing competition in demand schedules,
which we can interpret as series of limit orders. Analytically, the two models
are very close. However, there are qualitative and quantitative differences

between the two types of competition.

4.1 Definitions

I introduce price-takers in the standard framework of demand schedule com-
petition (Vayanos, 1999, Rostek and Weretka, 2015). I consider the following

schedules as candidate equilibrium strategies:

n T—1
' (pe) = BY(Dy —po) — Y 4 A > X] 4> fTXE me0,1]
7j=1 T=t
(19)

20These comparative statics are specific to a model with price-takers. Without price-
takers, and assuming that traders compete in demand schedules, Rostek and Weretka
(2015) find a different price effect of anticipated shocks, without drift between the an-
nouncement and the effective dates, and an immediate reversal afterwards. Further, in
their model the price effect is independent of traders’ risk-aversion and of the number of
trading rounds between the announcement and the effective date.
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n T-1
"E;(pt) = ﬂt(Dt _pt) — CtXtifl —+ dt ZX571 =+ Z ftTX:j, Z = 1, R AN

Jj=1 T=t

with 3, >0 (20)

Unlike traders, price-takers do not internalize the effects of their strate-
gies on the equilibrium price. A Walrasian auctioneer collects all demand
schedules and determines the market-clearing price. I use the standard as-
sumptions in case of ties, etc. (see, e.g. Kyle, 1989). It is well-known from
the double auctions literature that, when information is complete, there is
a continuum of equilibria in the standard demand schedule game with n
traders, as slopes are indeterminate. The usual solution in the literature is
to use a “trembling hand” refinement to select an equilibrium (Klemperer
and Meyer, 1989, Vayanos, 1999). Similarly, I focus on the robust Nash

equilibrium.

Definition 3 (Demand Schedule Equilibrium) A dynamic equilibrium
in downward-sloping demand schedules is a collection of subgame-perfect ro-
bust Nash equilibria in linear, downward-sloping demand schedules of the
form (19)-(20) such that

e y"(p) mazximizes the expected utility of price-taker m, given p, the an-
ticipated price path, other price-takers’ schedules y, ™ (pt), and traders’

schedules,

e trader is’ schedule, xi(p;), mazimizes his expected utility, given price-
takers’ schedules, other strategic traders’ schedules, x;"(p;), and his

and other traders’ impact on the price.

4.2 Equilibrium

Proposition 4 For any n > 1, if for allt € {1,...,T — 1}, Q¢ > 0, there
exists an equilibrium in demand schedules, where the price and value function

are the same as in the Cournot case, the system defining value function
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coefficients qi + remains the same, but the equilibrium vectors c:, 1., and o
and their boundary conditions are competition-specific.

The decomposition of price effects in fundamental and liquidity effects
and the decomposition of trades in constant supply and anticipated/realized
shock trading remain the same.

Equilibrium demand schedule coefficients are

By = # Cr = % 4 = g\ f
TN +Qiv1’ ' At —|—Qt1fl7 ! e
Jtr = —575(”@?3:1177 + fou)a By = afiQ + naiy1 P, cf =1,
dy =(1— Ct)ﬂt@fﬁp flr=nafir —01qr, fro=fli=0

(21)

where \; is the equilibrium price impact, \y = 2%, defined by equation (131)

7
oz}

in the Online Appendiz.

In a standard framework without price-takers, existence requires at least
three traders. This amount of competition ensures that traders do not have
“too much” market power and do not bid too aggressively. When there are
price-takers, the equilibrium may exist even for n = 1, provided that @
remains positive, i.e. that the value function remains sufficiently concave.
In practice, this is the case if traders are sufficiently risk averse relative to
price-takers.?!

The equilibrium keeps the same form as in the Cournot case, because
the residual demand curve remains linear under both types of competition,
with traders’ positions being a state variable. The differences between the
Cournot and demand schedule competitions lie in the slope of the residual
demand curve, i.e. the market depth, and in the initial conditions of the re-

cursive system. The derivation of the equilibrium as a function of primitives

21yalue function coefficients are defined by the same system as under Cournot, but are
functions of competition-specific parameters, and thus their values differ from the Cournot
case too.
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does not rely on initial conditions, nor on the definitions of the equilibrium
trade and price parameters. Therefore, the main results, in particular the
first two points of Proposition 3 and Theorem 1, hold under demand schedule
competition. The results that do not hold are Lemma 3 about the signs of
value function and price coefficients under Cournot competition and Propo-
sition 9 about the myopic trading of a single Cournot trader (as discussed in
the nextion section, a weaker result holds).

Numerical solutions show that the liquidity premium is systematically
smaller under demand schedule competition. Convergence to the competitive
price seems to be always faster. Perhaps not surprisingly, market depth is
larger. We can think of market orders as horizontal demand curves in the
(p,x(p)) space. If strategic traders post downward-sloping schedules, the
slope of the residual demand curve becomes steeper, reducing price impact.
Risk-sharing is faster, in the sense that CE,,_ > ch for any ¢, 7. Instead, the
speculative motive may or may not be larger, depending on the point in
time.

Further, market depth dynamics are reversed. Under Cournot, market
depth improves over time, while it is the opposite under demand schedule
competition. Two effects determine the dynamics of market depth: on the
one hand, the asset becomes conditionally less risky, which improves liquidity
as demands becomes more elastic; on the other hand, the number of trading
opportunities decreases, which worsens liquidity, as demands become less
elastic. Under Cournot, the first effect dominates, while it is opposite under
demand schedule competition.

While the equilibrium may exist even with a single trader, the monopoly
case does not typically correspond to the Cournot case, except in the one-shot
version of the model (see Corollary 4 in the Online Appendix). The reason is
that the slope chosen today by the monopolist affects the current trade and
thus tomorrow’s equilibrium allocation, and therefore the future price via the
liquidity factor. For instance, a slight increase in the price (e.g. some price-

takers trembled and acquired more shares than expected) leads to a decrease

32



in the demand from trader 4, but also from all other traders; this widens
tomorrow’s liquidity factor, which pushes tomorrow’s price down and distorts
the expected return on the asset; this distortion induces price-takers to adjust
their demand as well. Instead, under Cournot, if some price-takers tremble,
traders do not adjust their demand, because they submit price-insensitive
orders. This mechanism involves future allocations and is thus inherently
dynamic, which is why demand schedule and Cournot competitions yield

the same outcome only in the static case.

4.3 Information release

As in the Cournot case, there is a sharp difference between the monopo-
listic and oligopolistic cases. A V-shaped pattern occurs only when there
are at least two traders; however, the price rebounds one period before the
realization, not from the realization. This is because traders buy from the
announcement but sell right before the shock takes place. After the realiza-
tion, traders buy as in the Cournot case, albeit more aggressively, due to the
stronger emphasis on risk-sharing (Figure 8). As traders sell right before the
realization, the liquidity premium must shrink to compensate price-takers
for increasing their holdings. The V-shaped pattern nevertheless remains a
consequence of competition.

The total trading on anticipated shock is given by (18) as in the Cournot

case, but the coefficients of the first term are:

Bglft,‘r - Btfty,r

Ctr M = e By

Under Cournot competition, traders condition their order on the anticipated
shock. Under demand schedule competition, traders condition the intercept
of their schedule on the anticipated shock. However, since all investors sub-
mit price-dependent schedules, the effect of the shock on x¢°(t3) is not given
directly by the sensitivities of the schedule to the shocks, f; and f/. These

sensitivities are weighted by the price-elasticity of each type of investor as a
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fraction of the total price elasticity ﬂyﬁjn 5 and 57 -Bm 5- Yet, as in the Cournot

case, we can write

004,

D D p 0 i j
Cir 10, Dy —pe | x3; E T o |
Ty

= K/t 7*
0X3 i

B B 1
ac?(B +nB) AP+ QP +nac?(1+alf,)

with kP =

where xP is the demand schedule competition-specific liquidity adjustment.

Thus, as before, we get
D D _ D 24D 2,4,D 3,5,D
Cir TN = Ky [ag 01, — (NQii, + Qt+1,7):| )

When traders are oligopolistic, the anticipated shock trade has initially the
same pattern as under Cournot, i.e. traders buy from the announcement and
their inventories increase. However, traders short just before the realization.
Figure 5 (panel b) shows that the effect of the shock on today’s profit first
dominates and then declines, while the effect on the marginal utility terms
remains increasing (see also Figure 6 for a term-by-term decomposition).
The reason why the effect of the shock on the current profit declines is that
the price becomes less sensitive to the anticipated shock. This is because
traders compete more fiercely at realization to supply liquidity than under
Cournot. As a result, the price becomes less sensitive to the liquidity factor.
Quantitatively, it is the coefficients of the next period that dominate, so
that at time ¢ — 1, the sign of Zf;tlz (¢, + nnP,) is the same as that of
CEtz + ”77352~

This effect relies on the market being imperfectly liquid at the realization,
and is thus stronger when traders have more market power, i.e. when n is
small, or when price-takers have a lower risk-bearing capacity, holding the
total risk-bearing capacity constant.

This effect is also present with a single trader, except if the shock takes

place in the final trading round (see Corollary 5 in the Online Appendix).
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Indeed, in this case, the Cournot and demand schedule equilibria coincide.
Thus, the effect of the shock on the current profit does not decrease and the
monopolist behaves as under Cournot:s he does not trade on the anticipated
shock before the realization.

The prediction of the model about inventory dynamics in the oligopolis-
tic model is consistent with anecdotal and empirical evidence about market-
makers and liquidity suppliers in various markets. In the Treasury futures
market, Cai (2009) finds that market-makers trade in the same direction as
impending liquidation trades from LTCM. In the oil futures market, Bessem-
binder et al. (2016) show that liquidity suppliers reduce inventories in an-
ticipation of large ETF futures’ rolls, while providing liquidity on the day
of the roll. Interestingly, there is evidence of a similar behaviour by dealers
ahead of seasoned issuances or index exclusions. Lou, Yan and Zhang (2013)
discuss how dealers in the Treasury market reduce inventories in anticipation
of scheduled bond issuances. Dick-Nielsen and Rossi (2019) study corporate
bond index exclusions due to downgrades. They find that aggregate dealers’
inventories first rise and then decline just before the scheduled exclusion, in
particular for investment-grade bonds. This pattern is qualitatively similar

to the prediction of the model.

5 Conclusion

In this paper, I study how markets absorb anticipated supply or demand
schocks when investors differ in price impact. I consider a purposedly styl-
ized setting, in which all investors optimize, to emphasize the effects of the
market structure. The first main insight is about competition. The average
price reactions to shocks in my model are qualitatively consistent with the
V-shaped patterns observed in the data only if there is some competition
among strategic traders. The second main insight of the model is about how
traders with price impact trade in anticipation of shocks. Traders submit-

ting market orders only — i.e. resembling investors following opportunistic or
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directional strategies in actual markets — trade against anticipated shocks.
Instead, traders submitting demand schedules — i.e. investors comparable to
market-makers or liquidty providers submitting series of limit orders — first
trade against, then with the anticipated shock, just before it occurs. The
empirical evidence is consistent with these predictions about inventory dy-
namics. Empiricist and practitioners alike should thus take into account the
effects of the market structure: empiricists, by including proxies for traders’
market power in studies on shock absorption and market resiliency; prac-
titioners, by studying the market structure before launching ETFSs, index

funds, or issuing securities.
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Proofs

A Notations

Notation 1 (Scalar / Vector notations)

1. While x; denotes a scalar, x; denotes a vector of length T — t, with

elements x¢ ,, T =1,...,T — 1.
2. Let Ty denote the sum of the elements of x, i.e. Ty = Zz;tl Tt r-

3. Lety, = (07 Xt+1) denote the vector in which the first element is zero,

and the other elements those of X¢41.

Guesses for the price and value function

pe =pf —ac’a) Ay, (22)
_ b ' ' | To1T-1
o 20 = *§Q1,t(XtZ—1)2 — X{_y (az,A¢ + a3, X%) + 3 DO ariAA
T=t j=t
T—1T-1 T—1T-1
LD IDISAES D DD I AR (23)
T=t j=t =t j=r
Under these guesses, it is possible to write trades as
T—1
2= 3 eor (X2 = X]) + ) A, (24)
T=t
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Notation 2 Price, trade and value function coefficients:

=1,2 _
Qi = bo? (14 qii41) — 022,041,

24 _ of + 1 .
Qi1 =0 <QQ,t+1 + §(Lt+1,7' + Lt+1,7-)) ,
T—1
— T,J
bi1,r = Ay t4+1>
i=r

-
~ _ JsT
bi+1,7 = Q111>

j=t-+1
T-1
3,5 _ 2 T JsT
Qi =0" @G + E 45441 | »
j=t+1

_b+nacyqr
a

_ Al2 ~2,4
Qi1 = Qt+1 - th+1a

At+1 = a02(n(1 + dt+1) - 2)

0t+1,7’

)

h; = b1 — (07013,t+1) — 0.56(1 + q1,¢41)Cts (25)
gt = ac; — 0.56(1 + q1 441)M; — (0, Q2,t+1) + q2,0+10¢ (26)
5t,‘r = Ct,r + Nt,ry Ve =1-— 5t,-r
(27)

B Competitive equilibrium
Lemma 1 Price-takers’ demand at time t is given by equation (2).

Proof. Let’s show by induction that the price-takers’ post-trade certainty

equivalent is given by

T-1
(ES(ﬁerl) - ﬁs)2
FE, = E 2
C t wy + s 2aVa1“s(]A73+1) ( 8)
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where wy is the price-takers wealth at ¢, and p; denotes the equilibrium price

(in this proof only). At T — 1, the price-takers’ objective is

max —Er_1 [exp —a(wr—1 + Yr_1(Dr — pr—1))]
T—1

& max — exp [— a(wT_1 +Yr_1(Er—1(Dr) — pr—1)

Yr_1

a
— §VarT_1(DT)Yﬁ_1)}
Therefore, the price-takers’ demand is Ypr_1 = %. Substituting

back the demand, we obtain the certainty equivalent after trading at T—1 as

Er_1(Dr—pr—1)

a function of the equilibrium price pr_1: CEr_1 = wr_1 + 5aVarr 1(D1)

Thus the property holds at T — 1.

Let’s now assume that at ¢, the post-trade certainty equivalent of the price-
taker is given by (28) and show that this property holds at ¢ — 1. Let’s first
substitute the dynamic budget constraint, wy = w1 + Y;—1(P: — pt—1), into

(28) to obtain the price-takers’ objective at ¢ — 1:

max —IE exp CL(’LU 1Y, (ﬁ » ) + Til E, (ﬁs+1) — ps)2
-1 - t—1 t—1\Pt — Pt—1 —_—
et p— 2aVars(Ps+1)

As we will verify below, for both types of competition among strategic traders,
for any s > t, Es(psy1) — Ps is non-stochastic and Vars(psi1) = o?. Thus,

the objective function boils down to

t—1

o a o
max — exp [G(wt1 + Y1 (Ei—1(Pr) — pe—1) — ivartfl(Pt)Yffl—f'

71 . "
Z (Es(Pst1) — PE)?
2aVars(Psi1)

5=t

E¢_1(Pe)—pe—1

aVari—1(pt) ° SUbstltutmg

From the first order condition, we get Y;—1 =
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back into the objective function, we get the certainty equivalent of the price-
o L\2

takerat t—1, CE;_1 = wy_1 —I—Zi}lﬁl %. So the property holds

at t — 1, and thus it holds for any t € {0,...,T — 1}.

B.1 Proposition 5

The proposition in the text is a special case of the following result:

Proposition 5 (Competitive Equilibrium) In the competitive
equilibrium:
e Traders hold a Pareto-optimal position in the risky asset, in proportion
. 1
of their risk-bearing capacity, at any time: X} = ﬁ = samgst = X[
o When the supply changes, traders immediately adjust their portfolios
by trading

a a

xi,* — XZ7* _ thfl = m(st — St—l) = s b

e The competitive price is the expected value of the dividend minus a risk

premium, which is proportional to supply shocks:

t T-1
pi =Dy — bo*(T —t) (X* + ZAXj) —bo® Y (T —7)AXT,

T=1 T=t+1

where X* = s, (30)

Proof. The strategic trader’s optimal demand is analogous to price tak-

b

ers’, except that traders’ risk aversion is b. Hence Lemma 1 applies, and a
strategic trader’s demand at time ¢ is X} = W. Thus using market
clearing (1) and solving for p;, we obtain the equilibrium price stated in
the proposition. Substituting the equilibrium price in the strategic trader’s

demand yields X;.
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When there are shocks, equation (30) shows that the risk premium has
two components. The first one is the risk premium related to the current
supply, including shocks that have already occured. The second one is the
risk premium due to future shocks. Because future shocks will be absorbed
only later, when uncertainy will be smaller than today, they command a

smaller premium today (since T — 7 < T — ¢ for 7 > ¢+ 1).

C Cournot competition

C.1 Static model

Proposition 6 In the static Cournot model, there exists a unique equilib-

rium for all n > 1, where the price, trade and holding of trader i are

pr—1=pp_y — ac’ar_1Ap_ (31)
Ty =nr_iAro1 4 epo1 (X* = XG_y) (32)
Xi i =nr—1Ar_1+ o X+ (1—er_1)Xh_, (33)

with parameters are ap_1 = m, nr—-i1= aLerO‘T*h cr_1 = aLer'
The post-trade equilibrium certainty equivalent (value function) is given by
(8), witht =7 =T — 1. The coefficients of the value function are g1 7—1 =
(1 —cr-1)?, gar—1 = acr—1ar—1 + b(1 — cr—1)nr—1, q3,0—1 = ber—1(2 —
CTfl); %Q4,T71 = Nr-1 (GOZTA - %UTA), g5,7—1 = q2,7—1, and geT7—1 =
be(1—3).

Proof. Since price-takers’ demand is given by Lemma 1, to solve for the

equilibrium, we simply need to solve strategic traders’ optimization problem.

Price schedule. The first step is to derive the price schedule faced by

traders. By inverting price-takers’ demand, and imposing market clearing
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(setting t =T — 1 in equation (1)), we obtain:
n .
pr-1=Dr_1—ao® | sp_; — ZX%,l (34)
j=1

Traders’ optimization problems. Traders’ wealth at 7" — 1 is given by
Wi = By + X3 Dr = By — @p_ypr—1 + Xp_ D1

Therefore, trader i solves the following problem, taking as given other traders’

orders, Y . xr'

max —IE (—exp(—bW5))  s.t. (34)

3
Tr_1

After substituting the price schedule into the maximand, and using the

project theorem for normal variables, the problem boils down to:

n
max — exp [ —-b (B%Q + Xh_oDr 1 +ac’zl | | sr_1 — Z X%71
j=1

5
Tr_1

bo?

2(X:%_1)2>] (35)

where 350 Xg =300 X o +3 0 v =30 Xp o+, orl+
z%_,. From the FOC, we obtain:

alsro1 =Y Xp o= aply —2a% | =bX} (36)
7 i

Equilibrium trade and price. Summing over all i, and using X% | =
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X’%72 + x’il“flv we get:

(n+1)a+bd (37)

zn: g anst_1 — (na +b) Z?Zl X7
T-1

j=1
We then rewrite (36) as (a + b)zh_; = —bX%H_, +a(sr—1 — Z?Zl Xi .-
2?11 z¥._;). Substituting (37) into this equation, we obtain the equilibrium

of the subgame:

a b

i a < j i
=——|sra1—-—> X - —X 38
Tp_q (n+1)a+b ST—1 a+bj:1 T—2 a+b T-2 ( )

We can rewrite the equilibrium trade as in the proposition by adding
(%_H)ST_l — %%ST_l), recognizing X* (defined in Proposition 5) and re-
arranging the terms.

Then from (37), we get the total time-T-1 position of the traders:

- i nasr_1 a 2 ;
X = X 39
; T (n+1)a+b+(n+1)a+b; T2 (39)

Substituting into the price schedule (34) yields the equilibrium price of the

subgame:

2 (a+b)sr—1—a Z:‘L:l X”EF—2
(n+1)a+b

Pr—1 = ET—I(DT) — ao (40)
To write the price as in the proposition, note that from (30), we can write
Dr_1 = ph | + bo?X}%_,. Substituting this expression into (40) and rear-

ranging the terms gives

n
. . 2 a * 7
Pr—1=PpPr—1 — a0 na+b nX ;thl
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which we can write as in the proposition using the definition of the liqudity
factor Ap—y =nX* =377 | X/ .

Equilibrium certainty equivalent. The traders’ expected utility at time
1 is given by

n
FEu(Ch) = —exp { —b [B%_Q—FX%_QDT_l tac’st | sp_1 — ZXjT_l -

j=1
bo? i
Pt

Substituting for the equilibrium trade (32) and the price (31), we can write
Qb = ac’s} (ST_1 — > X%_1> — 22 X312 | as (8) by defining the co-
efficients as in the proposition.

C.2 Anticipated supply shocks

C.2.1 Recursive characterization

I providea more detailed result than in the text:

Proposition 7 (Dynamic Cournot Equilibrium)

1. For all n > 1, there exists a unique equilibrium in which the price,
trade, and post-trade certainty equivalent (value function) are given by
equations (7), (8), and (9) with, for allt € {0,...,T —1}

Pas : 52,1& = (j5,t7 and bql,t + QS,t = (T - t)bv
if the price and value function coefficients are defined recursively by the

system S(qi, ) given in Lemma 2, and if for t € {1,...,T — 1}, the

second-order condition holds
2a(1 + @p41) + Qey1 > 0, (42)
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where Qi1 = Qtlfl — nQ_ffl measures the curvature of the value func-
. L A12 9 2~

tion, with Q.37 = bo* (14 q1,t41) — 0°G2,041 and

Q?flﬁ = 02 (Ga.4+1 + Qat+1). Boundary conditions for a and q; given

by the static version of the model in Proposition 6.

. The liquidity factor evolves as follows:
T—1

fO’f’ T = t7 N ,T — 1, At+1’7- = At’-,— — Z 6t,jAt,j (43)
j=t

. The parameters are defined as follows:

a—(a+ figy1)0: 4 s = P, — (@ + fies1)0e -

- T= >t+1
Tt t ﬁt St Q9t T>t+
(44)
T—1 T,7 1
b b— - |
Crp = —, crj = ZT—t-i-l Q5341 — 93 t+1 forj>t41
9 ’lgt , ’Lgt
(45)
na 4 e WS SR
5t,t5u7 Orr = “9‘~7t’, forT>t+1 (46)
ﬁt rﬁt
Y =a(l+a1) +0(1+ qre41) — 2,041, (47)
g, =14 Mot ) (48)
Uy
.1 :
Ht+1,7r = Q0417 — 42 441 — 5(%4,.177 + Lt+1,7') (49)

Note: For the sake of comparison with demand schedule competition, pa-
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rameters can be rewritten using Notation 2 as

)\g a02(1 + &t-‘rl) — Qthl
AS + Qtlfl (n+ 1A + Qi
bo? o bo* — Q?fln’

Ct,‘r

= ~1,2 = ~1,2
)‘tc + Qt+1 )‘tc + Qt+1

X =ao?(1+ @), m=—
Ctt

Lemma 2 (Recursive system S(qx,«)) The price and value function co-

efficients are defined recursively by the following system fort € {0,...,T —2}:

Q¢ = 1-— (1 + O_ft-&-l)ét,t (50)
e =pp1,r — (14 0y1)0s 7 (51)

G =1+ qree)(1 — )’

.
d2,¢ = aciay + (1 —¢) {b(l + q1,t41)M; + (0» Q2,t+1) - Q2,t+15t}

.
g3 = bel + (1 —¢) [b(l +qier1)ee + <O,q3,t+1> }

1 1

tt i 5
30a = Metgee + 504,410 ¢

2
fort+1<7<T -1

1 _ 1 .
gqi’; = Nt,49t,7 + Ge.eNer + et (q4,t+15t,'r — = (1,7 + Lt+1,7)) )

1 1 _ .
EQZ,}T =Nt,7Gt,r + B} [QZ,’ZH + Q4,t+151:2,7— — 0t,7 (btg1,7 + Lt+1,r)] ;

fort+1<7<T -1

1 1 ; _ .
5%1,’? = et T g+ 5 (43741 + 2Ga61100701 5 — 017 (benr g + Bey1g) —

6t,j(LHLT—!—ZHLT)],fort—i—lSTST—Z, and T+1<57<T -1
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it _
I5t = Methee + ceegee

T-1
t,j _ u,j .
qs,]t = Nethej + crjgee — Oue E q5,tj+17 forj>t+1
u=t+1
T-1
T T,J u,j
45 = Mtrheg + gerce + 45700 — O r E s it1s
u=t+1

form>t+1,andj>t+1

qgf =Nt 7l + Grrcee, forT 2141

b
qé’; = 5(]. + ql,tJrl)(Ct’t)z

t,
%; = Ct,tQ?:ter forT>t+1

b
T =@ e+ 50+ q)(en)? + a5, form>t+1

-
g, )

T J T.J
G677 = (L + quat1)ce,rCej + Ctr@3 11 + 467415

fort+1<7<T-274+1<;<T-1

Proof. The proof is by induction. Let’s assume that the expression of the
price and value function, (7) and (8), and the properties P,s hold at t + 1
and all periods up to T'— 1. We can now show that this implies that they
also hold at ¢. The main steps of the derivation are: (i) obtaining the price
schedule; (ii) solving the traders’ optimization problem at ¢; (iii) calculating
the equilibrium price and traders’ value function at ¢, and (iv) showing that
P.s holds at .
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Step 1: Price schedule. First, let’s invert the price-takers’ demand (lemma
1) and impose market-clearing (1) to get p; = E¢(pj, ;) — ac?ay 1 Avy1 —
ao? (st — Z?zl Xg) Proposition 5 implies that

pi = E(pi,) — b0’ X7, (52)
Substituting (52) and grouping terms, we obtain the price schedule:
pe(-) = pi — ao? (At+1,t + 06,5T+1At+1) , with Aepq . =nX] — Zj th. (53)

Step 2: Traders’ optimization. Using (53), and (52), we can write trader

i’s time ¢t maximization problem as follows:

T-1
m&}xa2xi bZX; +a(At+1,t +a;r+1At+1) —0.5[)0’2(XZ)2 +Qi+1
Tt i

j=t
where trader i takes the orders of other traders, > .z, ¢ as given. From

the FOC, we obtain:

— (14 q1,41) — 1] X{_y — Ve + Dy — pi(-)
T—1 T—1

1 .
T :
— g1 A1 — By E E 4111 (Megrr + Mgy ) —
T=t+1 j=1

T-1 /T-1 4
5 (5 o) x50 60
j=t+1 \r=t+1

where Dt *pt(') = Zf;fl bXJ*+a (At+1,t + Oé;_lAt—o—l) and 1925 = a(1+dt+1)+
b(1 4+ q1,t41) — @24+1. From the SOC, z! is a maximum if inequality (42)
holds.

Step 3: Equilibrium trade, liquidity factor, price, and value func-

tion. We first rearrange the terms in ¢4 11 in the FOC. After some algebra,
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we get:

T—1 T—-1 T—1
7. - )
> a4t Meprr +Aviag) = Y (e 1) A s
T=t+1 j=1 T=t+1

_ T-1 7,5 ~ _ T 7T .
where tiy17 = D5 qiipq and Lepir = 3o, @ipyq- Therefore, using

this expression and the induction hypothesis, we can write

T-1 T-1
Ty = 7 ahppre+ Y perrhepe |+ ey (X7 —X[,)  (55)
T=t+1 j=t

where ¢; and g 41, are given by equations (45) and (49). From (55), we can

obtain the trader’s aggregate equilibrium trade by summing over ;. We have

n n T-1 T-1 n
> owi= o, |afhere + > hrr e |+ )0 [ nXF =Y X[
i=1 t T=t+1 Jj=t i=1

Since Apy1, = Aty — >, X and nX; — S Xi = Ay, the equilibrium

aggregate trade is:
n ) T-1
Z 1"2]5 = Z 5t,TAt,T (56)
j=1 T=t

where 0, is defined by (46). Thus we can express A1, as a function of A -
T—1

At+1,7' = At,‘r - Z 5t,jAt,j (57)
j=t

From (57) and (53), we can derive the equilibrium price. To do so, we first

need to compute Ayi1,¢ + o/ 1 Ayy1. From (57), we have:

T—-1 T-1 T-1 T—-1
T
Oét+1At+1: E at+1,'rAt+1,'r: E at+1,‘rAt,‘r_ E at+1,r§ 5t,jAt,j
j=t

T=t+1 T=t+1 T=t+1

= (O7 Oé;l:i—l) At - O_[t_;,_l(;;rAt
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Therefore, Apy1 ¢+ a:ﬂAtH =Ny + { (0, a:ﬂ) -1+ @t+1)6;r} A;. So
we can write the equilibrium price as (7) if we define a; by (51). Then

combining (55) and (57), we get the equilibrium trade. First, note that

T-1

.
alir1e+ Z Mir1,r N1 = aly s + {(0, ,UtJrl) —(a+ Ht+1)5;} Ay
T=t+1

Then we can write the equilibrium trade as
i =n Ay + ZZ;; Ct,r (X;k — Ll) by defining 7, as in the proposition.
Value function. Next, we use the equilibrium trade, holding, and liquidity

factor to calculate the value function. Q¢ is the sum of equilibrium J; and

equilibrium (post-trade) Qi ;:

0 = max Jti + Qi+1
with J} = o2a! (b Zf:_tl X+ a (Mg + atT+1At+1)) — 1bo%(X})%. Substi-
tuting the equilibrium trade and holding, and the liquidity factor (57) into

this expression, and rearranging terms, we get:

J= (il At eI X7) [ (17 = 05¢T) X + (aa — 0.500]) A
= X{ o [(bedT 01— e)el) X+ (aza) + (1~ e)n) Ad

) (X)) (58)

Next, we compute the equilibrium value of Qf_; as a function of X;_; and
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A;. Starting with the terms in X}, we get:

— [ Ay + e/ X*] {(0-5bQ1,t+177tT + (Oq;tﬂ) - Q2,t+15tT) A+
{0.51)(]1_’254,102— + (Oq;t-‘,—l) } X*]
X/ 1(1-¢&) [ {bQ1,t+177tT — G2.4416; + (0(12T,t+1) } At

{bQI,t+1C2— + (Oqg’)r,H»l) X*H - g(l —a)qreen (XP2))" (59)

Then we can compute the terms in g4 441 and g5 ¢+1. Using (57), developing

and rearranging terms, we get (skipping a few lines of algebra):

T-1 T-1

1 ,
Q=3 > Z ARy R VR
T=t+1 j=7
1 = 1
= 5(74,t+15,52,t1\it + 0t s Z {Q4,t+15t,r ~5 (bt41.+ + Zt+1,’r)} Aer
T=t+1
L T2
+3 {9071 + @a,e4107 7 = Ot (beprr +ieg10) AL,
T=t+1
| T2 Tl _
T3 > {‘JZ:?H = (Otr (beg1,5 + Ceg1,5) + 05 (er,r + leg1,r)) +
T=t+1j=7+1
2Ga,0410t,761,5 } Ao e Ay

_ T-1 ju A — \J w,j CR
where ¢ 11,7 =30, g1y and Gey1 = 30541 Qaiyq- Similarly, we com-
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pute the terms in gs ;.

Qs Z Z Q5t+1At+17—

T=t+1 j=t+1

T-1
:*5t,tAt,t Z (Z ds t+1>

j*t+1 u=t+1
T-1 - T—1
T, u,j *
E E q5,t+1—5t,r E ds5 t+1 At,TXj
T=t+1j=t+1 u=t+1

Thus, adding terms in X;_; and Q4 and @5, we obtain
Q1 =
— [T A + ¢ X*] |:{0.5bQ17t+177;r + (0, q{tﬂ) — q2,t+10; }AH-
{0.5bq1,t+1ct (0 al t+1)} }
-X;,(1- Et)[{quthT + (O,q;tﬂ) Go.t410; }AH-
fmco] + o)}

*g(lféty( t— 1) + Qs+ Qs  (60)
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Thus, adding (58) and (60), we obtain the value function

Q= [n/ Ay + ¢/ X*] x
Haa; — 0.5b(1 + qru41)n — (O7q;t+1) + @2,t+15:}At
{7 =050+ qri)el) - (0af 1) X7
—Xi, HaétatT +b(1—¢c) [(1 g + <O,q§,t+1) — 62,t+15ﬂ } Ay
+{pe T+ 01— @) [+ el + (0.a8) |} X7
fg(l ) (1= @) (X 1)+ Qu+ Qs
(61)

Let’s define g and h as in (25)-(26).Using this notation, we can rewrite (61)
as (8) by defining the coefficients ¢; 4, ¢ = 1,...,5 as in the proposition.
Step 4: Property P,s. To complete the proof, we need to show that

property P,s holds at time ¢. Using the recursive definition of g5+ given in

the proposition, we have:

T-1T7-1 T-17-1
T,7
> ql] = (Me,rhe g + corgeg) +

T=t j=t T=t j=t

T-1 T-1 T-1 T-1 T-1
7,J w,j u,j
qs,t+1_5t,7 E ds5 i+1 — Ot t E E ds5i+1 (62)

T=t+1j=t+1 u=t+1 j=t+1 \u=t+1

We first calculate the first term, using the definitions of h; and gy,

T-1
Z hij = (T — )b — 0.5bc(1 + q1,t+1) — G3,¢+1
j=t

T-1

Z gr.; = ady — 0.5b(1 + q1.441)T — G2,041 + G2,¢+101
J=t
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Thus, we have Z ZJ t (77t rhi +corge ) = (T—t)bi—b(14q1 14+1)C T —
G3,t+17M¢ + aqucy — q2¢+1Ct(1 — 5t). Further, the second and third terms are

equal to

T-1 - T-1 — T—1 —
Z Z (J5t+1 Z Ot,r Z Z q5t.+1 Ot Z Z q5tJrl

r=t+1j=t+1 r=t+1  j=t+1u=t+1 j=t+1 u=t+1
T-1
= Q5,041 — Z Ot 7Q5 141 — O ¢Q5 t+1
r=t+1
T-1
= G5,t+1 (1 - Z 5t,7’> = G5,041(1 — &)
=t
Therefore, adding the two terms, we get:
T-1T-1
Tt = Z Z qgf =b(T" — )i — b(1 + qu,041) 8T — @3,¢417¢ + A0y
r=t j=t

— @416 (1 +6) + G041 (1 — &)

Then, by summation, we have from the definition of qo 4 o+ = acdy + (1 —
Ct) [b(l + q1e+1)7 + G241 (1 — St)]. Hence, using the induction hypothesis
G2,t+1 = (5,141 We get that ga; = @5, is equivalent to

T (T — t)b — b(1 + q1 441) — §3,4+1], which is equal to 0 by Pgs. Thus §or =
ds,t-

Then, we show the second property of P,s. From the recursive definitions of

q1,¢ and g3 4

b(L4qie) + @ =b[14+ (1 —2)*(1+ qris1)]
+06 (T —t)+ (1 —E)b(1+ gre41)8 + (1 — €)F3,041
=b+ (1 —¢)[b(1+ q1,e41) + @3,e41] + b (T —t)
=b+ (T —t)b—¢ (b(T —t) —b(T —t))
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Thus, bq1 ¢ + g3, = (T — t)b. This completes the proof.

C.3 Constant supply
C.3.1 Recursive characterization

Using Proposition 2 in the special case of constant supply, the system S(«, q)

boils down to

dt == ’Vt(]. + 64t+1) (63)
qie=1-2)*(1+q41) (64)
G2t = acyi (1 + ) +00e(1 — ) (1 + qre41) + (1 = C)Ve@o,e41 (65)
@30 = b (T —t) + (1 — &) (G3,041 + bC (1 + q1,641)) (66)

1 1 b
20at = 5%2@4,t+1 + afe@y — Yo i1 — 5773(1 +q1,e41) (67)
The coeflicients of the trade and liquidity factors are given by:
a1+ uq1) — Goe41 — Qa1 _ _ b1+ qig41) — G241
Nt = Vi Ct =
1975 1975
(68)
(1l —¢
U =a(l+ o) +0(1+que1) — Ger1, Y= %7 (69)
t
Dy =9 +n (a(l 4+ ayt1) — G241 — Gai41) (70)

Proof. The expressions of the recursive system and equilibrium parameters

derive from summing the corresponding expressions in Proposition 7.

Equilibrium parameters. Let’s first define J; = 9; + n(a + ft41), with

B o _ _ 3 n(at+pi41) _ 9
flit1 = Q0441 —G2,t4+1—Ga,t+1, S0 that we can rewrite ¥, = l—l—ﬁit”r =3
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Then, using the definitions of Proposition 2, we compute:

T—1 — n(a+iii41)
_ ¢, + Mathiee)
0p = 0p ¢ + Z Oty = -
T=t+1 s
O — e Matiiten) 9.(1—¢ A
HB=1-04= ’ ’ I = « - Ct), from the definition of ¥
Iy ¢
a(1=8ey) — fes10s + fiesr — (@ fier1) Sor 1 Ot (a+ [
n = = Yt
¢ ¢
b+b(T—-t—1)—q —q b(1 — G
& — + b( )19 93,4+1 — Q5,t41 _ 1+ Q1,t;;1) (12,t+17 from P,
t t

Further, Apy1r = Mg — 31— Orjhey =nXf— 5, Xi = S0 6, 5(nX

> X}{). So when s, = s, X = X* A1 = A1 = (1 — 0)(nX* —
S XD = (nX* =30, X)) = Yl

Recursive system. For ¢;, @2, ¢3, the computation is straightforward. For

G4, let’s proceed by adding groups of terms. First, the terms in gn give:

T-2 T-—
<gtt+ Z 9tr>+ Z Gt Mt,r + Z Z Nt,r9t,5

T=t+1 T=t+1 T= t+1j T7+1

T—2 T—
+ Z Z Nt Gt + Gt Z Nt,r

T=t+1j=7+1 T=t+1
T-1 T-1
—thgtTJr Z gt Mt + Z N7 Z 9t | T et Z N7
T=t+1 T=t+1 J=t+1,j#1 T=t+1
T-1 T-1
—nttzgtr+ Z Mt,r Z gt | + 9et Z Ne,r
T=t+1 Jj=t+1 T=t+1
—nttzgtr+ Z Ne,r th,g =g (71)
T=t+1

The second line follows from adding the fourth and fifth terms together, the
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third line from adding the second and third terms. The terms in §2 give

1 T—1 T—1 T—2 T-1
Fdt+1 0 +2 ) Guabrrt Y, 07,42 ) Y Sir6i;
T=t+1 T=t+1 T=t+1j=7+1

1 T—1 T2 T-1 1 T—1 2
= a1 ;@%ﬂr? D> Gusdy | = S0t (; 5t,7> (72)

T=t+1 j=741

Next, denote Iiy1 . = %(LHLT + it+1,7), and note that ZZ:;H Liji, =

da,t+1- Then summing the terms in I, » gives:

T-1 T-1 T—2 T-1
Z Ot elipr,+ + Z Ot rliy1,r + Z Z Ot rltq1,5

T=t+1 T=t+1 T=t+1j=7+1
T-2 T-1 T-1 T-1
+ E E Ot ilii1,r = E Ot tle1,r + E Ot rdiy1,r
T=t+1j=7+1 T=t+1 T=t+1
T-1 T-1 T-1 T-1 T-1
+ E Ot~ E Iy = g Ol + E Ot,r E Tiy1
T=t+1 j=t+1,j#T T=t+1 T=t+1 j=t+1
T-1
= E OtrQuer1  (73)
T=t+1
.. T-—1 1 7,7 T—-2 T—1 1 7,7 1=
The remaining terms are ZthH §q4’t+1+27:t+1 j=r+1 24,t+1 = 394,t+1-

Adding (71), (72), and (73), we get

1 1 T-1 2 T-1
5@4,t =gt + 5@4,t+1 1+ (Z 5t,7-> -2 Z oy
T=t

T=t

1 L= 1
[ _ e v
=Gt + 50041 (1 > 5t,r) =G + 5aer1hi (74)

T=t

Substituting for g; yields the expression given in the proposition. Finally,
Q= s+ Y g @ = (14 @) (1= 6;) = (1 + Gg1) %
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C.3.2 Signs of value function coefficients with constant supply

Lemma 3 (Coefficients Signs in the Cournot Equilibrium) Under
Cournot competition, if V¢ € {0,...,T — 1}, a(l + &) > Got + Ga e, then for
anyn > 1

EtE}O,l[, T_]tE]O,l[, ’_}/tE]O,l[
Qe @2 @36 >0, @ >0, b(14qi:) > Goy

Proof. The proof is by induction. It is sufficient to show that under our

assumption, the following conditions hold:

b(1+qie) > qos
C1 . _
q1,¢,92,¢,G3,¢, 0 > 0

At T — 1, from proposition 6, for any a,b > 0, and n > 1, we have cp_; =
a

a+b (n+la+bd
(1—cr—1)ar—1 >0, g1r—1=1—cr-1)> >0, g27—1 = acp—1ap_1 + b(1 —
CT,1)’I7T,1 > 0, and Q3,71 = bCT,1(2 - CT,1) > 0. Further b(l + ql’Tfl) >

€ 10,1] and ar_; = > 0. This implies that nr_; =

q2.7—1 is equivalent to b(1 — er_1)% (1 — ar_1) > acy_1ar—;1. Substituting
for ¢p—1 and ap_; and simplifying, this condition boils down to (n—1)a > 0,
which holds for any n > 1. Thus C; holds at T'— 1.

Next, let’s assume that C; holds at ¢ + 1, for a given ¢, and show that this
implies it also holds at ¢. First, note that if C; holds at ¢t + 1, then from the

definition of ¥; and ¥, in Proposition ??

b(1 - vl =
(1+q1e41) — @241 €10,1[, v = M €]0,1[

Oy >0 >0, ¢ =
t t C¢ 0, 0,

Further, ¢; € ]0,1[ and a(1+ ai4+1) — g2,141 — qa,e+1 > 0 imply that n, € 10, 1].
Since ¢ > 0 and a1 > 0, oy = v (1+41) > 0. And ¢; €10, 1], q1,¢41 > 0
imply that ¢; ; > 0. Thus we also have ¢2; > 0 (as a sum of positive terms)

and ¢3¢ > 0 (for the same reason). It remains to show that b(1+¢1¢) > go.
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Using the recursive definition of ¢;; and g2+, we compute:

b(1+qi1,e) — qoe = b —aceye(1 4+ agq1)
+o(1 =) —ce —me)(L+ quigr) — (1 —c)geerr  (75)
It is sufficient to show that —acyy:(1 + aip1) + 0(1 —c)(1 — ¢ — ne) (1 +

(1 =c)(b(1 4+ q1,041) — q2,041)
9y ’

qie41) — Ye(1 = ¢e)g2,041 > 0. Since ¢y =
we get

—acyye(1+ ogq1) +0(1 —c)(1 —co =) (L + qrs1) — 7e(1 — ) qze1

a(l+ «
= (]. — Ct) [b(]. —+ q17t+1) (1 —Ct — M — (1§tt+1)>
a(l + aa
—q2t+1 \ YVt — T }

By definition, v; = 1 — ¢; — nn;. Hence, n; > 0 implies that 1 —¢; — m; >
for any n > 1. Thus, given that ¢ 4+1 > 0 and g2¢41 > 0 (induction

hypothesis),
a(l+ « a(l 4+ «
b(l + q17t+1) (1 —Ct — Mt — (1§t+1)> —q2,t+1 (’Yt - (1§t+1)>
t t
a(l+ «
> <% - (z9tt+1)> (01 + q1,641) — g2,641)

a(l+ agq1)

t
atpr)erye + (1 —ce) (1 — e —me)(L+ qrer1) — (1 — ¢)gze41 > 0, and so

b(1+qie) > qoy-

But from the definition of ¢;, v; and dy, v¢ — = 0. Thus —a(1+
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C.3.3 Equilibrium price and holdings as a function of primitives

with constant supply

To express the price and trading dynamics, it is convenient to define k¢ and

lpt as
t

t
Chi = H(l —¢r) and g, = H Yrs (76)

T=k T=k
with the convention that ¢;41: = li41+ = 1. For brevity, I write ¢[ and l;
when k = 0. Lemma 3 implies that ¢ ; and Ij ¢ belong to the interval (0, 1),

and decrease as time passes.

Proposition 8 (Constant Supply Equ. as a Function of Primitives)

With constant supply (cs), the equilibrium price and quantities are

AL = 1,1 Ay (77)
pfs = pz«,cs — aUQ(jétlt_le (78)
X*— X} =l (X = X)) —apllAg, (79)

where w?’c’l = [Z};:O MkChy1,le—1|- Thus, the liquidity factor contracts at

rate ¥, and the price converges to the competitive price at rate ac’l;Ag.

Proof. Equation (77) follows from iterating equation (43), which recursively
defines the liquidity factor in the constant supply case. Substituting the
liquidity factor in equation (22) gives the equilibrium price (78). From (120),
we have

X* = X{ = =i + (1 — ) (X" = X[_y)

Tterating backward this equation and substituting (77) for A; gives equilib-
rium holdings (79). Given that &; = A\¢(1 + @&41) (from equation (63)), the

convergence to the competitive price is ¢ (pi+1 —piy1) — (e —pf) = ac?liAg.

60



C.4 T liquidity factors and T-account separation (The-

orem 1)

To generalize the discussion in the text to an arbitrary sequence of shocks,
it is useful to decompose time t-supply as a series of permanent shocks,
St = s+ Z§:1 As;. Then following the same logic as in the text, we can

decompose the trade z¢ as follows:

t T-1
o= a4+ Y ay(r) + > ap®(r) (80)

T=1 T=t+1

where xi’cs (1) denotes the part of the time-¢ trade based on the shock realized

at 7 < t, and (1) the part based on the anticipated shock, which will
occur at 7 > t. This partition of the trades implies the same partition for

individual and aggregate holdings, with

t T—1
XP =X+ X0+ Y, X0 () (81)
T7=1 T=t+1
t T—1
He=Hi+ > HE () + > HE(7) (82)
=1 T=t+1

where X = Z;;o )y + Xz_is, X7 (1) = Yoy (1) + X“°(7), and
X% (1) = S0 _o 2™ (1) + X "5 (1), and denoting aggregating holdings H; =
2?21 X; for brevity. The initial holdings of the different accounts are a

trader’s endowment for the constant supply account, and zero for the others:
X" =X and X"S(r)=X"%(r)=0, 7>1 (83)

This partition of aggregate holdings leads to three types of liquidity factors
Ags) As*(7), and A¢*(7). The first factor, A¢® — that I sometimes denote
A$%(0) — is the same as in the constant supply case given in Proposition 8.

By analogy, A¢*(7) denotes the liquidity factor associated with the constant
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shock which occurred at time 7 < ¢, Af*(7) = nAX} — H{®(7). Finally,
A$2(7) is the vector of liquidity factors associated with the anticipated shock
that will occur at time 7, with A, ;(7) = —H*(r) for t < j < 7, and
AP (1) =nAX; —HE for 7 < j<T - 1.

To split the trades, holdings, and liquidity factors into 7" parts as in
equations (80), (81), and (82) it is sufficient to set initial endowments as in

(83), and define recursively individual holdings as follows:

X7 = X[ = (1= a) (X7 = X[ — A (34

AXE = X[ (1) = (1= &) (AX] = X (r) = A (7), 7 <t,
with X2 (1) = X% (r) and Xp%(1) =0, for k<7 -2 (85)

T-1
Xi(r) = (Z ) AX; 4 AP () 4 (1 - 2) X5 (), 72 41
k=T
(86)

Equation (84) is the same as in the constant supply case. Equation (85)
says that the account for the shock occurred at time 7 < t evolves as in
the constant supply case as soon as the shock takes place, but with different
initial conditions due to anticipated trading before the shock. Equation (86)
describes the dynamics of the account due to anticipated trading on the
shock that will occur at time 7, starting from a zero position. These account

dynamics lead to the following separation result.

Theorem 1 (T Liquidity Factors and T-Account Separation) If we
set initial inventories as in (83), then it suffices to define individual hold-

ings recursively as in (84)-(86) to decompose the trade of time t into T + 1
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accounts, where, at time t,

e Account 0 (constant supply account) is similar to the constant supply
holdings of Prop. 8.

e Accounts 1 to t (constant shock accounts) contain a trader’s positions
with respect to constant shocks realized up to time t. These account
remains empty until one period before the shock takes place, where the
inventory due to anticipated trading is transferred to the corresponding
account. From the time the shock takes place until T — 1, the account

dynamics are given by equation (85).

o Accountst+1 to T —1 (anticipated shocks accounts) contain a trader’s
positions with respect to future shocks, due to past and current trading
against anticipated shocks. These accounts start with a zero position
and their dynamics are given by equation (86) up to one period before
the shock takes place, where inventories are transferred to a constant

shock account.

As a result, the equilibrium price is the sum of the competitive price and T

liquidity premia associated with past and future shocks:

t

pe = pi —ao’ay ZACS — ao? Z JA (T (87)

=0 T=t+1

where p; is given by (30) and the equilibrium liquidity factors are equation

(77) for A¢®, and equations (96) and (97) for A*(7) and AY®(T).

Proof. The proof is by induction. The induction hypothesis is that the
partition (80) of the trade holds for all dates from 0 to ¢ — 1. Further,
assume that inventories are given by (83). This implies that equations (81)-
(82) for individual and aggregate inventories also hold between 0 and ¢ —
1. We will show that equations (80), (81), and (82) then also hold until
t, and derive equilibrium holdings and liquidity premia from the recursive

definitions obtained during the induction.
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Aggregate holdings. The starting point is the recursive definition of aggre-
gate trades (56) in Proposition 2, which says that >7_, al = ZZ:; O+ N r.
Using the definition of A; » (equation (6)), adding ijl thl, and using the
notation H; for brevity, we obtain the following recursive relationship for

traders’ aggregate holdings:

T-—1
He=n Z 5,5,7—X: + (1 — St)Ht—l (88)

T=t
Since X = X* + Y/ AX}, we can rewrite the first term of (88) as

T-1

nzfshx = nd, (X*+ZAX > +n Tz_l (Ax;f CZ?M))

T=t+1

Then using the induction hypothesis, we can rewrite aggregate holdings as

follows:

Hy = nd, X* + (1 — 1+Z AXE+ (1= 6,)HE (1))

+ i (AX* (Z&k) (1—6,)H® ()) (89)

T=t+1

Then it is enough to identify terms by terms and define aggregate holdings

recursively as:

HE = né X* + (1= 6,)HSS |, HES, =H_, (90)
Hi (1) = nd AXT 4 (1= 0)H{ (1), with H> (1) = HI (1) (91)

T—1

T-1
HP (1) =n (Z 5t7k> AXT+ (1= 0)Hi% (), with H2(r) =0 (92)

k=1

Liquidity premia. We can then use this partition of aggregate holdings

and the recursive definitions to split liquidity premia into T" parts and obtain
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their expression as a function of primitives. The defintion of the liquidity
premium is ZZ:; ap Ny = Zz:tl ay,r (NX*—Hi—1). Developing the terms
in X* as before, and splitting H;_1 in T parts using the induction hypothesis,

we obtain:
T-1 t T—1 T—1
> oAy = am (X* +> AXj) +n Y (AX;‘ <Z at,k>>
T=t =1 T=t+1 k=1

_Q_{t

t—1 T—1
Xﬁ&m+2wﬂﬂ<%
7=0 T=t

where we denote H¢®,(0) = H{*,. Then by grouping terms and using
the definitions of the liquidity factors A¢®, A$*(7), and A?*(7), we get

T-1 t T-1

= S T Aas
> ar A =ary AP+ Y al AP(T)
T=t =0 T=t+1

To obtain the liquidity premia as a function of primitives, we need to iterate
the recursive definitions of the equilibrium aggregate holdings. Starting from
(91), we get:

nAXT = HP (1) = Afj (1) = (1= 6)A7 (1) = 1 AT (7)
— Lo (nAXE —HE (1) (94)
Since HE (1) = HE 1 (), we need to derive H%* (7). Starting from equa-
tion (92), iterating backward, and using the fact that anticipated shocks

account start from zero inventoriy, we get:

T-1 / t
HiZy(m) =n Z ( 5q7qu+1,t> AX; (95)
q=0

k=T

T—1 q=

Thus, H2 (1) = nzz:rl (ZT_é §q7qu+177_1) AX,. Substituting this ex-
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pression in (94), we obtain the equilibrium constant shock liquidity factor:

T-1 /r—1
AP () =Lt AP (T) = 1 [1 - Z ( 5q,qu+1,71> nAXz (96)

k=7 \qg=0

We have o] A%* = nAX* (ZZ;TI at’k) —ayHP . Substituting (95) for H*,

gives the equilibrium anticipated shock liquidity factor

T-1 t—1
o AP (r) =) (atk —ay Z(sq,k.zq“,t_l) nAX*, 1>t (97)

k=1 q=0

The constant supply liquidity factor is given in Proposition 8. The compet-
itive price is given by (30).

Individual trade/holding. To complete the induction, it remains to show
that these consequences for aggregate holdings and liquidity premia lead
to the same partition for individual holdings or trades as in the induction
hypothesis. We start from equation (??), develop terms in X* as before,
use the induction hypothesis to subsitute for the different components of
aggregate holdings, and the different liquidity factors. This gives

t
7= a(XT = XU AT+ Y (G(AX — 7 = X[() + AP ()

T=1
T-1 T-1 )
- (zct,mx:atx:ffmmf A;”(ﬂ) (98)
T=t+1 \k=71

which we can indenfy term by term as z = 2} + 0| (1)
+ ZI;;H xy**(7). Hence, the induction hypothesis holds at time ¢. Further,
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adding X;_; and grouping terms, we obtain:

t
tzci+z AX* 1cs Z Xzas _
T=1

T=t+1
(1— ) (X* — X;5) — mAg®

£ (- @)AX — 7 - Xi5() - 7h ()

T— T—
Z (thk> AXT+(1- )Xiff( )+77t AP (T)

=t+1

Then, it suffices to define recursively individual holdings as in (84)-(86). It-
erating these equations gives the equilibrium holdings given in the Theorem.
It is simple to verify that by aggregating (84)-(86), we get back the recursive
relationships for aggregate holdings (90)-(92).

C.5 Myopic trading by a Cournot monopoly

To establish the main result, I first prove an auxiliary lemma about price

and value function coefficients. The result is based on three properties.

Lemma 4 Ifn=1:

bqit = G2t (99)
Vit b= ¢ —dh, =0 (100)
T 1 ~
VT >t e =acy s — g5y — = (b +itr) =0 (101)

2

Proof. All three properties are proved by induction.

Initial values. Property 99 holds at T'— 1, as can be verified from Propo-

2
sition 6. Further, when n =1, g3 7—1 = b(é%f;)'f). Since g5, 7-1 = g2, 7—1 =
b 2
( _(:b)z (Proposition 6), we have gz r—1 + ¢gs7—1 = b. So Property 100
a
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1
holds at T"— 1. Further, pr_17-1 = aqr—_1 — q2,r—1 — 3 (b1 + ip—1)-

al

(a+b)%2(2a+b)

aq — — = a* —ab o’ =0, so Pro
T-1—42,7-1 —q44T-1 = 2atb  (@th)? (a+0)2(2a + b) =Y, %
erty 101 holds at T — 1.

1 .
Since §(LT—1 +ir_1) = qar—1 and qap_1 = , we have

Preliminary remarks. Assume now that the three properties hold at some
time ¢+ 1. I will show that this implies that they hold at ¢. First, notice that
if Properties 99, 100, 101 hold at ¢, then they imply that V7 >t + 1, ¢;r =
M- = 0t = 0 (this can be seen by using the definitions of ¢, 7 and § given

in Proposition 2). The properties further imply that

b ~ a
Et = Ct,t = -, 'l9t :b+a(1+c_yt+1), 1915 = 1+ -,
191/ 7915
_ a+ b _ (l(]. — St)
5 = 5 = = = —
t t,t a+19t, M = Nt 9,
Thus for any 7 > ¢ + 1, equation (120) becomes
T—1
Ty = Z(Ct,r + ) At r = (e + ) (X7 — Xi—1),
T=t
. b + (1’775
with ¢; ¢ + =———— (102
BT T 50 + dur) (102)
Besides, we have from Proposition 2, 4y = 1 — ;. Since when n = 1,

¥ = 1 — ¢ — 1y, we obtain oy =¢ + 7. (This can also be verified by direct

calculation). Further, d; » = 0 implies that
at,t = 1 — 5{»(1 + O_[t+1), Oétﬂ— = Oét_;'_lﬂ—, VT Z t+ 1

The latter implies that ot » = a, -, which in turn means that

T-1 T-1 T-1
E at,TAt,T = at,tAt,t + E aT,TAt,T = E aT,TAt,T-
T=t T=t

T=t+1
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Induction from ¢ + 1 to ¢t. Given these preliminary remarks, we can now
show that Properties 99, 100 and 101 hold at t.

e Property 99: First, from the definitions of ¢; ;+ and q»; given in propo-

sition 2, we get

Gt = bqry & acdy 4+ (1 — &) [b(1+ q1e41) (@ + 7 — 1)
+ (]. - St)CjQ’t+1] = 0

Using 4y =1 —0; = 1 — & — 7, & = 7¢(1 + @41), and the induction
hypothesis b1 ++1 = G2,t+1, we can simplify this expression as follows:
b
J(ac (14 az41) —b(1—¢&)) = 0. This equality holds true since ¢; = 5

t

and ¥, = b+ a(l 4+ ay41). Thus Ve € {0,..., T — 1}, bq1 ¢ = Goz-

e Property 100: We must show that Vj > ¢, q3 R i, gi =b.

— First case: j = t. Let’s first compute 37} @y =as D D @y

Using the recursive definition of qgg (Proposition 2) and the fact
that V7 > ¢+ 1 1, = 0, we get

T-1 T—1
Z ng =N, thee + ceegee +cop Z Gi.r
T=t T=t+1
_ b_ _
=7 b— §Ct(1 +qies1) | + GG (103)

= b7 + atydy — Qo416 (1 — 6¢) — b&eTe(1 4 que41)

The second step follows from using the definition of h;; and the
last one from using the definition of g; (both given in Proposition
2). Then we use the recursive definition of qs; (Proposition 2),
and the facts that 4, = 1 — & — 7, = 1 — &, and group terms. We
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get:

dhp+ Y aiy =0+ m) +bery(1+ qragn)

T=t

+ acYe (1 + qg1) — V€2 141

Then using the induction hypothesis bgi,;+1 = G2,1+1, and simpli-

fying, we obtain

T—1
G+ g5 = b+ [b(E — 1)+ ae(1+ @)l

T=t
where we used the fact that 4 = 1 — & — 7;. Given the definition
of ¢; and ¥, the term in bracket equals 0. Thus, property 100
holds at ¢ for j =t.
Second case: j > t+ 1. Since V7 > t+ 1, ¢;)p = iyr = 07 =
0, using the definition of qgg we get Zz:tl qg;g' = fhe; + (1 —
5¢) ZZ;;H q5711- So substituting for h;; and adding g3 ,, we

obtain

T—1 T—1
Gt Y a7 =bE+ )+ % (qé,m + > qé‘,’5+1>
=t u=t+1

Thus, using ¢; + 7 = 1 — #4; and the induction hypothesis, we
obtain Vj > t+1, Zf;tl qgg —i—qéyt = b. Hence Property 100 holds
vte{0,....,T—1} and Vj > ¢.

e Property 101: We must show that V7 > ¢, w, = aoyr — g3, —

2

)

(ttyr +itr) =0
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— First case: 7 =t. We first compute

T-1 T-1

1 1 i L 1 t,
Slt =5 a5y = 59T 5 Z a5t
u=t T=t+1
1 = 1
= Nt,t9t,t T 55?@1,t+1 + Z (Ut,tgt,r - §5t(bt+1,r + Zt—i—l,‘r))
T=t+1
1 | =1
= MG + 55?(?4,t+1 - 6t§ ;1 (teg1,7 +lr17), (104)
e

where we used the fact that 6, = n:» = 0 and 1. = 7 and
5,5715 = St. Note that

T—1 T—1 T-1 T-1 7
- T, U w,T
E (Lt+1,r + Lt+1,r) = E E Qa't41 T+ E E dyt+1
T=t+1 T=t+1 u=r1 T=t+1 u=t+1
s t+1,t+1
= Qat41 T da i
t+1,t+42 t42,t+2 t+1,7—1 T—1,T—1
+ <q4,t+1 T a5 ) +eee (q4,t+1 R o/ YR )
T-1 T-1
_ = T 2
= q4,t+1 t+ E E Qa’i+1 = 2q4,6+1
T=t+1 j=7

Thus, substituting (105) into (104), we get

1 = (1< o1 1
ibt,t = MG¢ + Oy <25t - 1) Ja,t+1. Since Sl = iqztfi = Nt,t9t,t +

1- t . _ N _
55152@4,t+1, we obtain 5 (e, + b)) = e (Ge,e + ge)+0y (5t - 1) q4,t+1-
Then using the definition of g; (Proposition 2), we get ¢; ¢+ g1 =
ao‘zt —|—aat7t — bﬁt(l —+ ql,t+1) —+ (2515 — 1)@2’154,1. Since qé,t = aEtOét’t —+
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(1 —¢) [b(1 + q1,¢41) — 0:G2,441], we compute

t 1 -
Pt = a0t =@ — 5 (tt,t + it,t)

=a(l—¢)ogs — (1 —)bip(1 4+ qre41) + (1 — Et)gt(b,tJrl
— 7t (ge.t + Ge) + 07 t41
=a(l — ¢ — M)ony — aneay — b (1 — & — ) (1 + q1,041)
+ 7 (8¢ + M) G2 041 + gﬁt@,ﬂ-l
= a0 — affeOy — by + e (@2.t+1 + Gat+1)

The first step follows from substituting qévt and tt 4 + it 4, the
second step from substituting g:; + g, the third step from using
bqit+1 = q2,t+1-

Then using oy = 1 — 6¢(1 + ayq1) and @y = (1 + @;41) and

grouping terms, we obtain

pree = e (1 — 6¢) — ab s — affeVe (1 + Qeqr) — by
+ 0% (G211 + Qapsr) = a7 — aifye (1 + Gpyr)
— bt 4 Y10t (G241 + Qa1 — adigpr)  (105)

Note that by summing from 7 = ¢+ 1 to T — 1, and using (105),
the induction hypothesis implies that Zf;;_l Mig1,r = b4 —

G2,t+1 — Qat+1 = 0, thus the previous expression boils down to

. _ a(l —o. ay
Bt = ¢ [0y — any(1 + qyqr) — big]. Since 7, = all — %) 5 ) = %
t t

and ’19,5 =b + a(l + @t+1), we get: G/yt — aﬁt(l + dt+1) — bﬁt =

¥
aye — My = afe (1 - Uﬁt =0. Thus g =0.
t

— Second case: 7 > ¢+ 1. We compute ui, = acr — g3, —
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1
3 (tt.r +it,r). First, let’s compute the terms in ¢
1 12 ~ 1w
§Lt,T:§ZqTJ *11415 JF* Z q :§Zq4t+1
Jj=T j =7+1 j=7

The last equality follows from substituting g3’/ and ng and using
Oty =nt,r =0 for 7 > ¢ + 1. We now compute

11,
Sl = 5 a7+ Z :
Jj= t+1
1_ T—1 ] 1
:m%f—gﬁﬂwmﬁﬁwhﬁ+ z:iﬁﬁ4+§ﬂﬁ4
j=t+1

T

_ 1. ) .
= gt §6t Certsr + bvar) & j;l 5(131::+1

Thus, we obtain, for 7 >t + 1,

1 . _ 1- .
) (Lt,r + Lt,r) = NtGt,r — §5t (Lt+1,r + Lt+1,7-)
1 ~ —
*3 Z G+ Z A (1- 5t) (tte41,r + itv1,7)H0eger
Jj=t+1
(106)

Substituting for g; -, we get
1 . 1 - ) ) B
§(LLT‘FLAT)::5(1—'@)(%+1J'+l¢+Lr)4‘nt(aamT“Q2¢+1)

Then using the recursive definition ¢J ; = acioy,» — (1 — )q3 411

1
and substituting the expressions of 5 (tt.r + it.r), we obtain, after
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simplifying:

o . .1 .
par = (Ce+ M —1)q3,1 — (1 — 5t)§(bt+1,r +ity1,7)
1

tac (1 —¢ — M) = a0 r — G441 — 5 (te41,r + btg1,7)

Since for n = 1, a¢,; = as41,, the induction hypothesis implies
that V7 >t + 1, p; - = 0. This completes the proof.

Proposition 9 (“Myopic” Trading by a Cournot Monopoly) For a

Cournot single trader:

1. It is optimal to trade “myopically”, ignoring anticipated shocks. In

equilibrium, the anticipated shock accounts remain zero, and the con-
stant shock accounts start from a zero inventory, i.e. X (1) =0 for

the shock occuring at T.

. As a result, the effects of anticipated shocks on the liquidity premium

are constant until their realization

T-1 t T-1
S oAy =a AP+ AF(T)] + Y a AX; (107)
T=t T=1 T=t+1

with AJ° (1) = 1,1 AXE.

Proof. We can now use Lemma 4 to prove the main result. Proceeding by

induction as in the proof of Theorem 1, it is easy to show that z*(7) = 0
for any 7 > ¢+ 1.

Constant liquidity premium. Next, we derive the liquidity factor and

the liquidity premium. Starting from (102), we have

t
Tr = (ct,t —+ nt,t) X* + Z AX: — Xz—l

T=1
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From this equation, we obtain Af}; + S AfS (1) =
At (Afs + ZT:l Ag® (T)) So, proceeding as in the proof of Theorem 1, it is

sufficient to define recursively
A = 7eaAY, AL (T) = e AP(T), 1<T <t

In equilibrium, A§*(7) = I, ;,—1AS°(7). But since there is no trading on antic-
ipated shocks H (1) = H® (1) = 0. Thus A{*(7) =1, ,—1AX*. The lig-
uidity premium is, by definition, Zf;l o N s = (X* + Zi:l AX;f) +
ZT £+ (Zk e k) AX* — ayHi—1. From Lemma 4, for any 7 > ¢+ 1,

T—1 T—1 _
Qtr = Qil,ry SO O r = Qrr. Thus, D — opp =>4~ o = . There-
fore, splitting H; in two pieces, substituting and rearranging the terms, we
obtain (107).

First-order condition when n = 1. Starting from the first-order condi-

tion(54), and using n = 1, we get

ao?(1 + ayqq)x, + bo? [1 + 41 — Qe41) Xi

+ Z t+1 T t+1,T)X* Qt—‘rl Dt — e (108)
T=t+1

Applying Properties 99 and 101, we simplify the expression further to

obtain
T—1
ao?x; + bo? X; + Z H_l T+ QtH NX: — Qt+1Xt—1 =D; —
T=t+1

Subsituting for QtH o QtJrl '™ using Properties 100 and 101, and rearranging

the terms, we get

T—1 T—1
ac’z, + bo’X, = D, — p, — bo> E X* — ao? E 1,7 My 1
T=t+1 T=t+1
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Then, we simply have to recognize that the right-hand side is equal to

B¢ (pet1) — pe-

C.6 Information release under Cournot

In this section, I prove the rest of the results given in Proposition 3 and
Claim 1.

C.6.1 Momentum and reversal with a single trader

Proof. The absence of price and liquidity premium momentum is obvious
given definition 1 and Proposition 3. After the shock, A{*(0) and A§*(t2)

follow the same dynamics if Ag and As;, have the same sign.

C.6.2 Conditions for momentum and reversal with multiple traders
The full result is:
Corollary 2 (Momentum and Reversal under Cournot Oligopoly)

Let Sff;z(&l) = Zz;tlz Z;:tl Og.klg+1,t- There is momentum and reversal
(for AXE >0) iff

VEE {tm,... 12}, bX*+aliho < a8y (8,)nAXS,
Cor : fort > to, b(X* + AX;;) + alsAg
Fali (1= SP2LGD] nAXE, > 0

If AX}, < 0, the conditions have the opposite sign. For momentum and
reversal in the liquidity premium only, the conditions are the same, but with-
outh the first term.

Proof. Momentum conditions. Let’s first determine the change in the
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competitive price and liquidity premium before t5. For t; <t < to,

_aon(T —t— 1)3 abo?(T —t)
na+b na—+b

Ei(piyr —pi) = s=bo?X*

(109)
A7 (0) — Qg1 ALS 4 (0) = aule—1 Ao — au1liNo = Aely—1Ao = iAo (110)

In the second line, the first equality follows from the definition of the liquidity
premium, the second from the recursive definition of &;, and the third from

the definition of I; in equation (76).

Let’s now determine the change in the anticipated shock liquidity premium.
For t < to,

T-1 t
af AP (ta) — a1 A5 (t2) = ) <04t,k — g1k 01 Y Ogklgiie

k=to q=t1

t—1 T-1
— @t Z 5q,qu+1,t71 Z >TLAX:;

g=t1 k=to

Using (51) and rearranging terms, the terms in parenthesis become

t—1
— (14 ayq1)0e. 1 + Z (C10q,klg+1,t — 0g klgt1,t—1) + Q10e klit1
g=ty
t—1
= =0k — Mt Z Og klgt1,t—1
g=ty

The equality follows from the convention that l;41+ = 1, and the recursive
definition of @&;. Then, since by definition j‘thJrl,tfl = lg+1,¢, and using
again the convention that [, ; = 1, the change in anticipated shock liquidity

premium boils down to
as as T %
O‘tTAt (t2) — azET+1At+1(t2) = _Sttl,tg (9, Z)NAXtQ (111)
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For t; < t < ty, the price change is E;(pry1 — pr) = Ei(py, — pf) +
ao? (A (0) — Q1AL (0)) +ao? (of AP (ta) — a1 AL (t2)). Substitut-
ing (109), (110), and (111) gives the first condition in Cy,,.

Reversal conditions. The price change over two consecutive periods after
the realization is again the sum of three terms: the change in p*, the change in
A°%(0), and the change in A®(t2). For ¢ > t3, the change in the competitive
price is By (p},, —p;) = bo?(X* + AX})). The change in A®(0) is still given
by (110). The change in A°*(¢3) can be computed using (?7)

N (t2) — Q1 AT (t2) = (Qeley i1 — Qagaley r) {1 - 82,7, 1)} nAXy,

=l [1= ST (6.0)] nAX;,
Adding these three changes gives the second condition in C,,,.

C.6.3 Competition effect under risk neutrality

Corollary 3 Suppose that there are only two trading rounds (t = 0,1, so
t1 =0, ty = 1) and that traders are risk-neutral (b =0). Then x5 = 7oA
and x5 (1) = nio 1 AX}. Holding H_1 constant, z5°° always decreases with
competition. However, the anticipated shock trade first increases and then
decreases with competition, with a mazimum for n = 2. Further, §°(1) =0

forn =1 and lim, . z5**(1) = 0.

Proof. With b = 0, the vectors ¢, h, q2, q3 and g5 are equal to the
vector of zeros. Further, the vectors 8, 1, q4 and auxiliary parameters 9, 15,

p and g simplify as follows:

B ~ 1+n(a+ [
9 =a(l+ ap), U= %’
t

1 .
prerr = (R4 1)a(l+ar) = 5 (rrr + i) (112)
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This implies that 9;9; = (n + 1)a(l + @11) — ndar11. Then we have:

5. - na Mg a—(a+ fi41)0es
tt = =, tr— =5 Mt -
0,0, 9,0, a(l+ ayq1)
T [l 6 T
Ner = Hi41, (CL T ,u‘t-‘rl) t, (113)
a(l+ aiy1)

The initial conditions are 71 = a; = n%_l, g1 = ani = ipz- Then
substituting initial conditions into the parameter defintions and using nota-
tion ¢, = n3 +4n? + 2n + 1, we get:

n(n + 1)2 nn—1 n24+n+2 3n+2

50,0((25), 50,1(¢), O‘O,OZTa Qo1 = P s
n+ 1)2 n—1

To,0 = w, No,1 = (114)

i,cS i,as

From Theorem 1, z} = z3° + z;

, with xé’cs = foA§® and xé’as =
nno1AX7. For n =1, o1 = 0. Further, nno increases from n = 1 to
n = 2 and decreases afterwards, and lim, ,oonno1 = 0. When b = 0,
A§® = s —H_1. Thus, holding H_; constant, a‘g‘il I %ino < 0, for all
n>1.
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Online Appendix

D Demand schedule competition

Definition 4 (Linear schedules) With demand schedule competition, we

consider schedules of the form

(o) = BY(Dy —po) — Y +dE Y X+ Y X (115)
j T>i+1
2y (pe) = Be(Dy — pt) — er X{_y + ZX5_1 + Z fer X7, with B >0
7 T>t+1
(116)

As usual, the equilibrium is not assumed to be linear; rather, as others submit
linear schedules, it is optimal for an investor to submit a linear schedule as
well. Note that unlike the Cournot case, ¥ (p;) and z%(p;) do not depend on
X; . This is without loss of generality: if schedules were allowed to depend
on the current supply, the coefficient would be zero in equilibrium. This
implies that Similarly, allowing for different coefficient for the impact of Dy

and —p; would yield that these coefficients are equal in equilibrium.

Definition 5 (Demand Schedule Equilibrium) A Nash equilibrium in
demand schedule competition is such that (i) every price-taker’s demand
schedule y*(py) is optimal given prices; (i) every strategic trader’s schedule
x(py) is optimal given price-takers’ and other strategic traders’ schedules,

(iii) markets clear.

Following Rostek and Weretka (2015) and Rostek and Yoon (2020), we can
equivalently derive the equilibrium as one in which strategic traders optimize
given their assumed price impact, provided price impacts are consistent. Ad-
ditionally here, price-takers’s schedules must be optimal given prices. Be-
cause price-takers are competitive, they do not take into account their price

impact, and the consistency condition thus concerns only strategic traders.
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Lemma 5 (Rostek and Yoon, 2020) A collection of demand schedules
Yy (), 2i(+) is a Nash equilibrium if and only if (i) each price-taker’s schedule
satisfies pointwise the price-taker’s first-order condition; (i) each strategic
trader’s schedule satisfies pointwise his best-response function, given his as-
sumed price impact \; (#i) strategic trader’s price impacts are consistent,
i.e. each strategic trader’s price impact is equal to the slope of his inverse
supply function,

)\i:/\tza—mzf ! . Vi (117)

ox? 8 [y yprdm dzi
t o Yt .
Opt + Zﬂ?ﬂ Opt

All strategic traders have the same price impact due to identical preferences
and information set.

Guesses for the price and value function

Dt =D; — aazatTAt, (118)
b [T
o2 = —§Q17t(XZ;1)2 — X{ 1 (a9 4As +a3,X*) + B DD iy
T=t j=T1
T-1T-1 T-1T-1
LD ID I AL ES D PPN eb (119)
T=t j=t T=t j=T

Under these guesses, it is possible to write trades as

S

—1
=) e (XF - X)) +n A (120)

T=t

D.1 Static model

Proposition 10 (Static Demand Schedule Equilibrium) Suppose T =
1. Then,
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1. In equilibrium, the schedules are

m D_p m
)= 2p oy (121)
P ) = gy (D p oY), (122

i.e. By:#,cyzl,dy: y:d:f:(),ﬁ:ﬁ,andc:ba26.

2. A trader’s price impact is

5= ac?® if n=1
- \/6_(13"!‘2(71—2)(1) 0_2 Zf n Z 2

where ¢ = b + (n — 2)%a® + 2nab.

3. Similar to the Cournot case, by defining n and « as follows, we can
decompose equilibrium trades as (120), and write prices and value func-
tions as (118)-(119). The definition of value function coefficients is the

same as in the Cournot case.

acr—1(1 —cr—1)

= 123
r-1 b+ nacr_1 (123)
b(l — CT71)
= 124
ar-1 b+ nacr_1 (124)

Proof. With linear schedules, the price impact function will depend lin-
early on 2 + ZJ—# 27, Given the residual supply S = s; — Zj# 27 (p), the

maximisation problems are

_bo?
2

m m G’UQ m m\2

max(Y™ +y™)(D —p) = 5= (Y™ +y™) (126)

max(X" + 2')(D - p(z")) (X' +a")? (125)
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The first-order conditions give

D—p—ac’y™ —ac® —Y™ =0 (127)

D —p—bo’X' = (bo® + =7

=0 (128)

So we obtain the following relationships for every p

1
m -~ (D— _ym
y"(p) = —5 (D —p)
2i(p) = ——— (D —p— bo? X!
() = joax (D —p—bo" X
By pointwise identification, we obtain the demand schedule coefficients.
Using thsse relationships, we get for every j # i, 25 = — 553y and for
every m, %?;ft = _Ti‘z' Substituting into the consistency condition (117), we

get the equation defining price impact:

1

1 n—1
ao? + bo2+ A

A=

There are two cases. If n = 1, then A = ao?. If n > 1, then ) is defined as
N 4+ 02(b+ (n—2)a)\ — abo* =0

There are always two roots, one positive and one negative, but A is required

to be positive, so in equilibrium

where ¢ is given in the result.
We can write the equilibrium price and trade as in the Cournot case,
with 7771371 and alTll defined as in the proposition. The expression of the

value function follows, as in the Cournot case.
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D.2 Equivalence with Cournot static model

Corollary 4 If there is a single strategic trader and a single trading round,
the equilibria under Cournot and demand schedule competitions coincide. If

there are multiple traders, then all else equal,

e at the aggregate level, traders trade a larger quantity in absolute value

under demand schedule competition;

e at the individual level, the risk-sharing component of the trade in-
creases, while the speculative component decreases relative to Cournot

competition;
e the market is deeper under demand schedule competition.

Proof. Single trader. Since the g¢;,’s are defined similarly under either
type of competition (Proposition 10), it is sufficient to show that ¢, a, and
7 coincide when n = 1 in the static model. Recall that under Cournot

competition, if n =1,

. b N _a _ a?
T vy T T 2 T T (@ b)(2a + b)

Under demand schedule competition, using Proposition 10, when n = 1, we

get
a
b at+tb _ a
CT_l—a+b—CT—17 Qp_1 = 72a+b—OZT—1,
b+ na
+b
p _ ab 1 p a? _
T Ry T T Gy y(2a b)Y

Mulitple traders. For demand schedule competition, if n > 2, we compute
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using Proposition 10

D (n—2)a—b+ @2 D b(na +b— p?)
CT 1= o =

B 2n—1a T T [(n — 2)(b+ na) + ne* 7

p _20p D
Nr—-1= ECT—lo‘T—l

Then we compute the following inequalities:

b((n+1)a+b)—(n—2)a?
a-+b ‘

enough the RHS is negative and ¢®_, > cr_;. Otherwise, we can raise both

Risk-sharing motive: C?_l > cr_1 & If a/b is large
sides to the square. After rearranging and simplifying terms, the condition
becomes a?b(nb+ (n? — 2n + 1)a) > 0, which holds true for any a,b > 0 and
n > 2.

1
a b(na+b—p2) hich
(n+1)a+b > a[(?’b—Z)(b-ﬁ-na)-ﬁ-ny}%] , whic

Liquidity premium: of | < ar_, &

is equivalent to
(na+b) [b((n+1)a+b) — (n — 2)a*] < [b((n+ 1)a+b) + na?] ©?

If a/b is large enough, the LHS is negative and the condition holds true.

Otherwise, raise both sides to the square, and rearrange terms to get
a®(b + 2na) + a((n + 1)a + b) [n(n — 2)a + (n — 1)b] > 0,

which holds true for any a,b > 0 and n > 2.

a

a+b
= ¢r_1, which was just showed. Further, since agﬁfl < ar_1, we can

Speculative motive: first, note that ¢cP_; < is equivalent to cP_; <

_b_
a-+b

write for any a,b > 0 that $cP_,af | < 43ar—1, which, by definition of
the variables, means nf_, < nr_i.

2
Aggregate trade: d7_1 = cp_1 +nnr_1 = $%7 and 0F | =
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(na+b) [(n—z)a_bﬂ,%]

a[(nf2)(b+na)+mp%] . The inequality 6% | < §7_1 is equivalent to

[((n+ 1)a+b) [b* + a(na + b)] — n%a®] p= > (na + b)(a +b)
x [b((n+ 1)a+b) — (n— 2)a’]

This condition can be further simplified to
[b((n + 1)a + b) + na?] 9= > (na +b) [b((n + 1)a +b) — (n — 2)a?]

If a/b is large enough, the condition is satisfied. Otherwise, raising both

sides to the square, we obtain
a*[(n—1)b+ (n* +n—2)a] + ((n+ L)a+b)(n — 1)ab >0

which is equivalent to (n —1)(n+2)ab+ (n? +n—2)a® + (n—1)b*> > 0. This
condition holds true for any a,b > 0 and n > 2.

Market depth: under Cournot, price impact (the inverse of depth) in the

2

static model is aoc“. Under demand schedule competition, price impact is

(off-equilibrium), and ;' = on the

I S
nBr_1+8%_,°
in either case, price impact is lower

-1 1
XT—1 = a—D)Br_1+6%_,

equilibrium path. Since 8% _, = #»

and thus market depth larger with demand schedule competition.

D.3 Dynamic model

Lemma 6 (Existence in the dynamic equilibrium) A dynamic equilib-
rium in demand schedules exists if and only if, for every t, (i) there exists a

positive solution A\ to the following equation

A A A (Qra1 + A1) — Qry1 =0 (129)
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and (ii) the second-order condition
At + Qi1 >0 (130)

is satisfied.

Proposition 11 (Dynamic equilibrium)

1. Existence and uniqueness:
(a) For any n > 1, if for every t, Q¢+1 > 0, there is a unique equilib-

rium in demand schedules, in which price impact is

At = %(\/‘PHI —(Qt41 + As11)) (131)

where oi11 = (Qey1 + Ar1)? +4a0?Qry1.

(b) If Qiy1 < 0, then if At + Qry1 > 0 and prp1 > 0, there is an
additional equilibrium in which price impact is given by

At = _%(\/WH‘F (Qi41 + A1) (132)
Otherwise, there is no equilibrium.
2. Equilibrium coefficients are
S1,2
B = # + a1, et = /\5%22123317 d} = arpi\eb,
for = =BnQEL - + Q1 ), Br= )\t%@“’ ¢/ =1,
di = (1= ) BiQ7 Y (133)

fr =naii1frr —Oriar,

)

3. When an equilibrium exists, prices, value functions and trades can be
written as in the Cournot case, provided that price coefficients are de-
fined as (77)-(143), trade coefficients are defined as (148)-(150), and

the value function coefficients are defined as in the Cournot case.
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Proof. The proof is by induction. The results hold at T'—1 given proposition
10. We then show that if the induction properties hold at ¢ + 1, then they
also hold at t. Specifically, assume that between ¢ 4+ 1 and T' — 1, equations
(118) and (119) for the price and value function, and property Pgs hold. The

proof proceeds in three steps.
Step 1: optimization given price impact

Strategic traders. Given his own price impact, a trader solves

i i bo® i i i
rax zi(Dy — pe(ags M) — 5 (Xioq +ay)? +Qf
Ty

The first-order condition gives

dp i
0=D;—p; — (3 Ly Qf+1> T) — Qilet—l

1
—a’ Z {QQ t+1 5 (Lt+1,7' + Lt+1,7-)} Avyrr

T=t+1
T-1 T-1
2 T j,T *
-0 E QS,t+1+§ O | X7
r=t+1 j=t+1

Using abbreviations from Notation 2, we can rewrite the FOC as
Dy —pi— N+ Q) ot - QA XL,

T—1
2,4 X*
N Z Qi1 Aer1r = Z Qt+1 X7=0 (134)
T=t+1 T=t+1
Note that Agy1, = nX; — >0, X/, - Dt a) | — i, so that this
equation can be rewritten as
n
i ~1,2 i A2,4 j
M(p) = (A + Qi) @t = Q3 Y (135)
j=1
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where M(p;) = Dy — Qilei EZ t1+1(”Qt+1 T Qt+1 X5+

t+1 Z] 1 X75 1- The problem is strictly concave iff condition (130) holds.
Price-takers. From Lemma 3 in the main text, the FOC of price-takers’
problem is Ey(pir1 — pi) = ao?Y;™. We use the induction hypothesis for

pe+1 and replace py,; by its value to obtain the following condition:

T-1
Di—pi—ac® Y appr Ay —ao®Y" —ac’y —bo® Y X7 =0
T=t+l r=t+1
T-1
2 2 2
ac” (Y™ +y;") = Dy — pt — Z (bo® 4+ nac a1 ) X
T=t+1

n n
+ac?ayq ZXtJ_l + in (136)
j=1 j=1

Solving for optimal schedules. While equation (136) for price-takers depends
on Y. j x{, equation (135) for strategic traders does not depend on yj*, and
can thus be solved independently. Equation (135) holds for any ¢ and any p.

Then summing equation (135) over i, we get:
ZM] (pe) pe) + (”Qt+1 t+1 ZX,{ 1

-n Z ”Qt+1 T t+1 X7 = A+ Qey1) Z

T=t+1

Substuting back into (135) and rearranging the terms gives the strategic
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trader’s optimal schedule:

T-1

1
- \D,—p, — E
)\t + Qt-i—l [ Lo -,—:f,+1( QtJrl ’ Qt+1 T)

£ 024 n ] 1,2 _
S MO S - G X Vi (137)
At + Qtls-l j=1 At + Qt:'rl

(Pt)

By pointwise identification, we obtain the equilibrium coefficients (133) for
price-takers. Then summing (137) over strategic traders, we get the strategic

traders’ aggregate demand schedules:

T-1

Zl’t Dt) >\t T Qt+1 [Dt — Pt — Z (th+1 -+ Qt+1 T)X:

T=t+1

Qt+l
X (138)
M Qt+1 Z

Substituting into (136), we obtain the price-takers’ schedules

1 no41 at-{-l/\t
mip) = — +—""" ) (D, — X
yi" (pe) (aaz )\t+Qt+1>( t = pt) + >\t+Qt+1 Z t—1

noi; 11
D WBenrr+ 5, — QU + QUL IXT, Ymipr (139)
T=t+1

By pointwise identification, we obtain the equilibrium coefficients (133) for
strategic traders.

Step 2: Solving for price impact
This part provides the proof to point (i) in Lemma 6. The second-order

condition is given with strategic traders’ optimization problems in Step 1.
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Given the optimal schedules, we have:

J ~1 o [l ymd
_ %:(n—l)ﬁtzi)\n , and —7f°ayt m:ﬁg
‘i O ¢+ Q1 Dt
1 O 1
= —5 + % = — + ndt+1ﬂt (140)

ac? A+ Qi1 ac?

Substituting these values into the price impact consistency condition (117),
and rearranging terms gives the second-order equation in A, (129). The
discriminant of the polynomial is ¢;11 given in Lemma 6. Thus, an equi-
librium exists with positive price impact if and only if there exists at least
one positive root and the second-order condition holds. Thus, there are two

cases:

(a) If Qi1 > 0, the disciminant is non negative, and there is a single pos-
itive root, given by (131). The second-order condtion (130) is trivially
satisfied.

(b) If Qi1 < 0, then the discriminant may be negative, so the condition
w¢+1 > 0 must be added. The second-order condition is also no longer

trivial and must be added. The second positive root is given (132).

Step 3: Equilibrium representation and system of difference equa-
tions

The last step is to to show that equations (118) and (119) for the price and
value function hold at ¢, that trades can be decomposed as in the Cournot
case, and that property P,s holds. Doing so, we will obtain the recursive
system defining the coefficients «, ¢, . Value function coefficients are defined
as a function of these and their prior values, so the system defining them is

similar to the Cournot case.

Equilibrium price. Market clearing requires that >, 7(p) + [ yi"dm =
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st — 8$¢—1. So from equations (138) and (139), we obtain

1 TL(]. +O_ét+1):|
Di—pi=|—+——"--—"7">
LT sz )\t + Qi1

na +b n(l+ agy1)

At + Qi1

X+ Z {041, +

T=t+1

1 n(l + 5[,5+1):| 1 + ()ét+1 >\t
—|—=* X7 (141)
|:G/O'2 )\t+Qt+1 )\t+Qt+1 ; t—1

( QtJrl T t+1 T)}X*

Equation (118) implies Dy—p; = > 5, bo* X 4a0® 3" o (nXF =377, X7 ).
Thus, for (118) to hold at time ¢, we must define:

1 n(1+at+1)]_1 na+b

— 142
ao? >\t + Qt+l a ( )

bo? + naazozt,t = [

ac? A+ Qi1
naci41,+ +b + (1 + atJrl)(thJrl T + Qt+1 T)
a At + Q11

bo? + naazam = {

],thﬂ (143)

Further, it must be that

_ 1 _
a0a, = [1+ "(1+at+1)] At(1+ Gg1)
ao? At + Qi At + Qi1

Thus, the price can be written in the form of equation (118), if

T-1
bo? + naaQat’t + Z (ba2 + naozaw) = b02(T —t)+ ac’a
T=t+1
_ 1 _
— bo(T — 1) + [12+ n(14+a1)] M(1+aeya)
ao At + Qi1 At + Qi1
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For brevity, denote x; = -1z + 71/\(}:73:3) Using (?7?)-(143) for the left-hand

side and multiplying each side by x;0 2, gives
_ _ 2,4 3,5
na(l+ &11) + b(T — t) . n(1+ ap1) Qi , + Q7 )
a At + Quy1
b(T - t)()\t + Qt+1 + na02(1 + O_[t—‘,-l)) + na(l + O_Zt+1)>\t

- a(Ae + Qir1) (144

Putting the left-hand side on the same denominator, several times cancel
out, and we get after a few lines of simple algebra Qifl + fol = bo?(T —t),
which is implied by the property P,s at t + 1, which is part of the induction
hypothesis.

Equilibrium trade. To decompose trades into the risk-sharing and speculative
components, it is easier to first write the equilibrium price as a function of
the 3, ¢, d, and f coefficients and then to subsitute it back into the schedule
(116). We get:

1 na+b " ;
D, —p, = X —(1- dy + d? X/
t — Dt ’ﬂﬁt+ﬂty( a ¢ = Ct + ndg + t)]§:1 i—1
= Y (fur + FEDXT)(145)

T>t+1

This implies the following equilibrium trade:

) b L yT
i 153 na + X7+ Z By I, Befti.

Ty = ——+ Xz
T onB+ B el nB + B¢ ’
Be(cr —1—dY) + BYds = ;
X —eX! 146
+ By + A7 Z i1 —aX{y (146)

j=1
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To write 2} = > o, ¢t (X5 — X} 1)+ >, Mt,+ At -, we thus need to define

15} na—+b
N — 147
Ct,t + NNt nBt"‘sz P (147)
BY frr — Befts
Cor+nnp, = —F— >t+1 148
t7 T’t» nﬁt'i’ﬂig T ( )
=0 = @ (149)
T>t )\t +Qt+1
Zn =7 __Bilee—1—di) + Blds (150)
T>t t,T t nﬁt‘f’ﬂf 9

and we need to check that

Ctt + NNt + Z (ct,r +nmer) = C + nijy
T>t+1

By substituting the equilibrium values of the schedule coeflicients for f¥ as

a function of f, and then substituting for 6;,, ; and summing over 7, we get
for the left-hand side:

Ctt+ N0t + Z (ct,r +mne,r)
T>t+1

b 1
- nﬁtiﬁf(n(l + 1) + 5(T —t) — — — @y, + Q) (151)

To reduce the right-hand side, first note that from the definition of the
schedule coefficients d, d¥ and ¢, we can write d/ = —ayy1(c; — ndy — 1),

implying that

Qifl nﬁt(l — Ct)(l + @t+1) — afigndt
+ Q4 np + B¢

Et —+ ’I’L’f]t
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Then substituting for the equilibrium value of d and 1 — ¢ gives

nBi(1+ a) (e + Q) + 222 QY — nBMQry)
(A + Qtlfl)(nﬁt +BY)

Et —+ nﬁt =

This equation is equal to the left-hand side (151) if and only if

B

_ b 1 2.4 55
m(n(l + qq1) + E<T —t) — ﬁ(th“ + QX))
By (L + ) A + Q) + gom (@t — nBNQ)

B (A + Qtlf1)(nﬂt +8Y)

Canceling and regrouping terms then gives

~1,2
1 Qih

b 1 ~3,5 ~2,4
- T - t = —F ’ G 1 )
BT =1 = 0zhQuin + 05— Qtlfl( i)

B ~2.4
However, the definition of ¢ and 8 imply that A, +Q§f1 = %, so that

the equation boils down to Qtlfl + fol = bo?(T — t), which is implied by
P.s at t + 1, and confirms that we can decompose trades as in the Cournot

case also at time ¢.

Uniqueness of equilibrium representation. The system given by (147)-(150)
does not uniquely define the two vectors c¢; and n,. However, if we define

the vector c;, then the vector n, is uniquely pinned down. Note that the
At41

equilibrium definition of ¢;, ¢; = ﬁé‘;ﬂ, involves a sum, since Q’fgl is a
1,2
sum:
St+l g 2 9
12 =00 (1+qi41) — 0 Q41

=bo? + 502(]1,t+1 - U2£75,t+1

=0?(b+b(T =t —1) = G511 — G3,041)
where the second and third line follow from P,s at t+1. By definition, the
parameter g; (41 is a sum. Thus, in analogy with the Cournot case, we can
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exhibit a vector c; satisfying (149):

bo?
Ct,t = ~t+1
At + Q13
2 T T-1 JsT 2 t+1,7
c g (b— 43 ¢+1 — Zj:tJrl ‘J5}t+1) . bo= — 3,5 r>tal
t, T — At+1 - At+1 =
At + QlE A+ QlE

Value function. To complete the induction, we need to show that property
P.s holds at time t and that the value function can be expressed as a linear

quadratic function. These two steps are exactly the same as in the Cournot

case.

E Alternative representation

We can rewrite the price, trade, and value function as follows:

T-1 n
o Z VirSr — M Z X | —eXi, (152)
p— j=1
T-1 n ]
pe = Dy — ao? Z 01787 — oy Z X7 (153)
=t Jj=1

n T—1
0 — bo® xi 2 2 i X7 T
f= e (X{) —0® X[ |ras i1t T3 ST
j=1 T=t

2
2
0_2 n T-1 n T-1T-1
J 2 T J 2 U
+ 5 T4 E X/ | +o E T8 ST g X/ ,+o g E T6't StSu
Jj=1 T=t Jj=1 T=t u=T

(154)

These alternative expressions are useful to prove that (i) the quadratic rep-
resentation is unique, and (ii) that the anticipated shock liquidity premium
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is constant when the shock occurs in the last period, as in the Cournot case

(see Corollary 5 below). In this part, I use the following notation:

Notation 3

v =1—c; —nng, Rﬁf; = b02(1 +r141) + 027’2,t+1,

t+1,7 2 ( T T t+1 2
RS,s =0 (7’3,t+1 - 7"5,t+1) ) R2,4 =0 (7’4,t+1 — 7“2,t+1)

E.1 Equilibrium

Proposition 12 The equilibrium in demand schedules can be expressed by
(152)-(154) provided we define the price parameters by (170)-(172), the trade

pararmeters by (173)-(175) and the value function coefficients as follows:

rie=(1—c)*(1+7r1441) (155)
ror = (1 —ct) [yeroeer — (1 4+ 7r1441)] — acroy (156)
réﬂi =acilp+ (1 —c;) [b(1+ r1441) + 1o iq1] vey (157)
Tg,t = actﬁm + (1 — Ct) [b(]. + T17t+1) —+ 77,7"2725_;,_1] Vi r + (]. - Ct)T§7t+1
(158)
1 1 ) b
5rat = Gras1Ye — 5%(1 + 71 041) — GO — YiT2, 141 (159)
Té,t = —ambi + v nyera 1 + 0(1 4+ r1 1) — acy + o1 (nn — )]
(160)

T34 = VeTg 1 T M5 e1 — aiber + Vi g [nyeraser +b(1+7141)m

—aoy + o1 (nne — )] (161)
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Demand schedule equilibrium parameters are

flr = —napa BiRyE T = Orprr, df = Nearia B, cf =1,

v _
Bl = —5 +naw by, Br=N+Rep1) , o= Nt Rt+1’
Jtr = *Ré?ﬁﬂt’ dy = (1 — Ct)Ré B (162)

The initial conditions are:

~ b b(l — CT_1)
_1=bc?Br_ Op 4 = —— =

Cr-1 o Br-1, T-1 b+ nacr_y ar—1 b+ nacy_;

(163)
acr_1 acr—1(1 — cr—1)

= 1= 164
T T nacr_1 - b+ nacr—1 (164)
Ezistence conditions are the same as in the baseline model (with Qﬁ‘gl = Ri‘gl

t+1 t+1
and Q24 = 24 :

Proof. The proof is by induction. I first show that (152)-(154) hold in the
static model (at T'— 1), and then show that if these expessions hold at ¢ + 1,
they also hold at t.

Final period (T — 1)
We simply need to rewrite the equilibrium price, trade, and value function

from Proposition 10. Using the definition of the equilibrium demand schedule

parameters and the expression of the implied equilibrium price, we obtain

b b(1 —cr—1)
=Dy q—ac® | ——— oy xi .
Pr—1 Ty hacr—1 T T b+ nace 1;

from which we obtain the definitions of f7_1 and a7_y. Similarly, substi-
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tuting the equilibrium parameters into the implied equilibrium trade gives

2 _ acr—1
=17y nacr_1

n
sro1— (L—cro1) Y Xp_y| —cr1Xp s,
j=1
from which we get the definitions of vp_; and np_;. Substituting the equi-
librium price and trade into a strategic trader’s certainty equivalent yields
(154) (evaluated at T — 1), with coefficients

2 _
rir-1=0—cr-1)* =q,r-1,
ror—1 = —bnr_1(1 —cp_1) — aar_1c7-1,
r3r—1 = acr—10r—1 +b(1 — er_1)vr_1,

1 b,

§T4,T—1 =aqr_1Nr—1 — 577T—1,

rsr—1 = —afr_1nr_1 —acr_1vp_1 + bur_1nr_1

Induction from ¢t +1 to ¢

First note that by using the definition of A; -, we can rewrite the price, trade
and value function of the model as (152), (153) and (154). Rearranging the

terms implies the following equivalence:

a ~ b+ naoy ,
Vi = — (Ct,r + 01, Opr = ———, Tt =0qut
5T na+b( T 7')7 T na+b ) N3]
a
T J— T T J— -y — =
r3y = ——(Ng +¢ T2t = —q2.t T4t = qat
3,t na -+ b( 2t 3,t)’ ’ ’
a = n
A 7,7 N
Ty = — E Qs + = (ber + Ut
5,t na + b — 5,t 2( 5T 77')
J:

We thus simply need to rewrite the equilibrium coefficients as a function
of the new value function and price parameters, and derive the recursive
definition of the value function and price parameters. The steps are the

same as for the quadratic representation of the equilibrium.
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Optimization given price impact. The optimization problem of price-takers
is unchanged, so using the price expression (153) at t + 1, their first-order

condition is

Dy — pi — ao? Z Ors125 +ac’aiy ZX;Z_I + in

T>t41 j J

— aoQ(Yﬁl +y")=0 (165)

Given the new expression for the value function, and using Notation 3 strate-

gic traders’ first-order conditions become, for all i:
Dy —pt — (/\t + Rif1) x]f - R%J’i Z—l

LY R B (X 1Y e | =0 (166)
T2t+1 J J
We proceed as before and sum over ¢, which gives:
MARe)> wl=n|Di—p— Y R} s | =Ry X], (167)

J T>t+1 J

Substituting back into the first-order conditions gives the equilibrium sched-
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ules of strategic traders and price-takers:

2,4 .
T R;?f{;; g S
_ )\t}filtlﬁ)(f—ly? = (a; + )\:ft};tlﬂ) (Dy — pe)
2 (ét“” ’ %> RS Y-y

(168)

Identifying pointwise with the schedules (115)-(116) gives equilibrium coef-
ficients (162).

Price impact. This step is exactly the same as in the previous case, with
QS = R and QLY = R

Recursive system. The final step consists in deriving recursive relationships

for the price and value function parameters and show that the equilibrium

trade can be written as postulated.

The equilibrium price follows from market-clearing and using (167) and
(168), and using Y;_1 + Zj th—1 = 5;_1. We get:

-1
1 nog4+q
Dy —py = | — ¢ 1t «
t — Pt <a02 + N+ Rt

st + Z (Ors1,r + (L + ars1) RS B)sr — (14 agsr) Mefy Z X7,

T>t+1 i

(169)
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Thus, we simply need to define:

~ 1 no -1
20, — (- 4 Pl 170
ao Ve ac? * At + Riqq (170)

s

o5 ( 1 Ny

—1
0 t+1,7
ac“0; . = @ /\f+Rf+1> (9t+1,7— + n(l + OétJrl)R?,tr) ﬁt)y

T>t+1 (171)

9 ( 1 Ny

—1
aotoy = | —3 )\t+Rt+1> (14 1) MefBs (172)

Then substituting the equilibrium price into the equilibrium demand sched-

ule gives the equilibrium trade:

2 t+1,7
2 ao“041,7 — Ry 5 B

, ao
xp = St+ Sr
PN 4 Rigp1 Fnac?(1+ agyq) K 7;1 At + Riy1 +nao?(1 + apyr)
M (a0 (1 + ars) = R3Y) X - R _xi
At + Ri7y M+ Regr +nao®(1+ agyr) 5 D VS R =t
Thus, it suffices to define
2
ao
[ 173
BTN+ Riy1 +nao?(l 4 azyq) (173)
400,41, — R55T B,
Vir = - (174)
’ )\t + Rt+1 + naoc (1 + Olt+1)
)\t (CLU2(1 + Oét+1) — Ré:zl)
= 1.2 2 (175)
A+ Ry At Riegr +nao®(1+ o)
RL:2
o= —t (176)
At + Rt+1
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Value function. Finally, we calculate the value function. We start by calcu-

) ) bo? )
lating Ji = zi(D; — pr) — %(X;)Q. We obtain:
] T-1
U_QJZ = Zyt TS — ntZXt 1 [Z aet‘r - Vt T)ST
T=t

+(ntaat>i ]

T-1
= X |3 (aeifr +5(1 = e)uir) 57— (ac +b(1 — co)m Z
T=t

20— AP (XL

We now express f_; as a function of tlme T — 1 variables. We break Q|

b
in two parts First, we have Q| = ; (Xz) — X{(rous1 > X/

+ ET 11175 14157)- Using Z?Zl X! = nZT:j VirSr
+(1 — ¢t — nmy) ijl X! | by summing the equilibrium trade over i, we
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obtain after a few lines of algebra:

9 b i i
o, = —5(1 —c)’rie (X7 )P — (1—e)X]
T-1

X { Z(bﬁ,tﬂ + nro 1)V s Sy

T=t
T-1 n

+ > s +{(L—co =)o — bripam} Zth_l]
T=t+1 Jj=1

T-1

T-1 n T—-1 b
j
- E Vt,TS‘r_T/tE Xi 4 E (2r1,t+1 +m"2,t+1> Vi rSr + E TS 44157
=t j=1

=t T=t

b o
+ {Tz,t+1(1 —ct —mn) — 27“1,t+177t} ZXg—l (177)

j=1
Next, we calculate the terms in 74441 and 75 441.

2 T—1 2
1 tL 1 5 [ )
§T4,t+1 ZXtJ = 57“4,t+1 [n (Z l/t,‘rs7'> + (1 — ¢t — )
j=1 T=t
2

n T-1 n
X ZXg_l +2n(1 —¢; —nny) (Z l/tﬂ—S-,—) ZXg_l ] (178)
j=1 =t j=1

T-1 n T—-1
T J _ T
E Ts5t+157 E Xi | = E T5t+157
Jj=1

T=t+1 T=t+1
T-1 n ]
x | n Z VirSr + (1 — ¢ —nmy) ZXg_l (179)
T=t Jj=1

Adding these two terms to (177), and simplifying, we obtain (154) by
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defining the coefficients 7; ; as in the proposition. This completes the induc-

tion.

E.2 Special case: supply shock in the final period

Corollary 5 Suppose that n = 1. If the anticipated shock occurs at T — 1,
then (i) the monopoly does not trade on the shock, i.e. for anyt, vyp_1 =0,
(ii) the anticipated shock liquidity premium is the same as under Cournot;

and thus (i) there is no momentum in the price or liquidity premium.

Proof. The proof has two parts. I first rewrite the equilibrium in a more
compact way, then prove the result (point (i)) by induction. The two other

points are direct consequences of (i).
Rewriting the equilibrium
To show this result, it is convenient to rederive the alternative representation

of the equilibrium in the special case n = 1. With a monopoly, the candidate

equilibrium strategies boil down to

-1
(o) = BY(Dy—po) — Y + d{ X+ Y s, me[0,1] (180)
T=t
T-1
2i(pe) = Be(De —p1) — & Xo 1+ Y frrsr, i=1,...,n,with B, >0
T=t

(181)

with ¢ = ¢ — nd = ¢ — d. Further, the value function and equilibrium trade
A 2 T—1 3 T— R

become Q; = —%Qt (X)) — (ZT:tl Rt7757> X;and xy = ZT:tl Ve S — X,

where Q; = RY, — Rb 4 — bo?, R, = Rgg to simplify the notation, and

Nt = ¢ + nny = ¢t + ne. The equilibrium price is unchanged. With these

105



notations, the equilibrium parameters become

df = ap1(é — 1), & = (bo? + Qet1)Br,

A~ 2 1 ~
B ()\t + bo? +Qt+1> =1, = ac? (14 ayq1) B + &

1+ a02(1 + Oét+1)5t

(182)

The recursive system becomes

_ (Ato)d—é)
1—|—a02(1 +at+1)ﬁt

. 1 A .
Q¢ = —aaQamt + 5(502 + Qey1)(1 — 77t)2

Ry = a0'2ﬁtét,t + CLUQOétVt,t + (502 + Q1) (1 — )iy

Rir= aazﬁtét,f + GU2at1/t,r + (b02 + Qt+1)(1 — ), + (1 — ﬁt)Rt+1,r
(183)

The initial conditions are 77/?“_1 = %, RT_1 = CLO’2 (éT—lﬁT—1+aT—1VT—1)+
b0'2VT_1(1—77T_1), and %QT—l = b%(l—ﬁ;r_l)z—aﬁﬁ;p_la;r_l. The other

equilibrium parameters and initial conditions keep the same form.

Showing that for all t < T — 1, v, 71 =0

The proof is by induction. It is easy to check using the initial conditions
that vr—orT-1= 0.

Bt(a02§t+1,7——1%1,+1,7—)
g ) 1+ao?(1+as41)Be
Vip1,7—1 = 0 implies that a029t+2,T_1 — Riyo7—1 = 0. The induction hy-

Then suppose that vy1 7—1 = 0 for some ¢. Since vy, =

pothesis also implies that f%t+1,T_1 = aaQﬁt+10~t+1,T_1 +(1- ﬁt+1)Rt+27T_1.
Thus the numerator of v, r_1 is (1 — ﬁt+1)(a029~t+1,gp,1 — RHQ,T,l) =(1-
fpy1)ac? (0~t+1,T,1 — 0~t+2,T,1). But the recursive definition of 8 implies that

Orror1 + (14 avs1)BiReor
1 —+ 00'2(1 + Olt+1)ﬂt
_ Orpor—1(1 4 ac®(1+ au1)By)
1+ aoc?(1+ aip1)Be

Orr1,7-1 =

=021 (184)
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Therefore v; 7_1 = 0, and the induction hypothesis for any ¢, and ét,T—l =

Ory1,7—1 =01_1.

Consequences for the quadratic representation of the model and
the liquidity premium

By definition, 9~t’T = %, where oy - is the coefficient of the quadratic
model. First note that ar_3 71 = ar—_;. The previous induction implies
that o 71 = Qep1,7-1 = p—1.

This further implies that the anticipated shock liquidity premium is constant
over time, and since when n = 1, Cournot and demand schedule initial
conditions coincide (Corollary 4 in the main appendix), the anticipated shock
liquidity premium is the same for both types of competition when the shock

occurs at 7" — 1, which implies that there is no momentum.

F Equivalence between endowment and sup-

ply shock models

Suppose that the risky asset is in fixed supply s and that price-takers receive
endowment shocks As e, 1 at time 7, where As, is known by all investors
from time 0. Because these endowment shocks are correlated with the div-
idend news, they mechanically increase price-takers’ exposure to the risky
asset, reducing their demand. Tracking error constraints work in a simi-
lar way on index trackers. In this interpretation of the model, endowment

shocks to price-takers proxy for demand for immediacy of index trackers.?? I

22Given their passive strategies and mechanical trading rules, index trackers are often
unable to strategically manage their price impact. ETFs rolling over futures contracts,
may be forced to “fire-sell” or “fire-purchase” assets to satisfy institutional constraints. For
instance, Bessembinder, Carrion, Tuttle, and Ventakaram (2016) note that the oil-future
ETF USO rolls over its front-month contract in less than a day, with the total volume to
be rebalanced often exceeding the average daily volume. Similarly, funds replicating bond
indices “for most bonds, spread their selling activity within the exclusion date” (Nick-
Nielsen and Rossi, 2019, p. 8), and thus require a high level of immediacy during these
events.
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show in the online appendix that, for any type of competition, the model with
endowment shocks is equivalent to the model with supply shocks. The equiv-
alence between the two settings relies on the fact that the endowment shocks
affect price-takers. Without price-takers, supply and endowment shocks are
not equivalent (Rostek and Weretka, 2015).

I consider two specifications for the model with endowment shocks.

e Model 1: The risky asset is in positive net supply s. At time ¢, price-

tackers receive endowment shocks (Zf;i Asl) €; at time t.

e Model 2: The risky asset is in zero net supply. Price-takers receive

endowment shocks s;_1¢; at time t.

Proposition 13

1. With Cournot competition, the model with supply shocks is equivalent

to both endowment shocks models.
2. With demand schedule competition, the model with supply shocks and
the second specification of the endowment shocks model are equivalent.
I first prove the following auxiliary result.

Lemma 7 (Price-takers’ optimal demand with endowment shocks)

o Under Model 1, price-takers’ optimal demand at t is

ao?

Eipes) =p1 5
E:M—ZA& (185)
=1

o Under Model 2, it is

E; (pt+1) — Dt

}/t =
ao?

— 5 (186)
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Proof. Price-takers’ dynamic budget constraint is

t
Wip1 = we + Ye(pey1 — i) + Z Asjery1  under Model 1
1=1

Wip1 = Wi + Ye(pey1 — i) + Se€rp1 under Model 2

Then we can show by induction that price takers’ post-trade certainty equiv-

alent is

,thrZ
,thrZ

2avar

qu ZASZ q(Pg+1) — ﬁq)] in Model 1

L2
q(Pg+1) — Pq)
2avarq g+1)

— 8¢ (By(Pgt1) — ﬁq)l in Model 2

Where p, denotes the equilibrium price. From these certainty equivalents
and the dynamic budget constraints, taking the first-order conditions yields
the demands (185) and (186). The rest of the induction is the same as in
Lemma 3 in the main appendix.

We can then prove Proposition 13.
Proof.

Cournot Competition. From (185) and (186), we obtain the same price sched-
ule as in the supply shock model. In Model 1, market clearing implies that
Y X+ Y =550

n t
E¢(pi41 —pe) + ZXg = ac? (s + ZASZ> = ac’s;
Jj=1 =1
In Model 2, market-clearing implies that Z}l:l th +Y:=0,so0

Et(pet1) — pe + ZXtJ = ao?s;

j=1
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In either case, we recognize the recursive definition of the price schedule.

The rest of the steps are the same as in the supply shock model.

Demand schedule competition. Under Model 2, market clearing requires
S zi(pe) + [y (pe)dm = 0. Price-takers will now condition their schedule
on the current endowment shock, so our candidate linear schedule must be

adjusted as follows:

yi*(pe) = BY(Dy — pr) —<%Ym1+—dy§:AV],+ STLXr (187)

T>t

There is now a coefficient ff{t. For strategic traders, schedules are unchanged.
Their optimization problem also remains the same. Their equilibrium sched-
ules do not change. Price-takers’ first-order conditions must be adjusted for

the endowment shock:

Dt Pt —a02 Z 0t+1 TST+GJ Ayl ZX 1+Zx{

T>t+1 J

—ad®(Y™, +y") —ao®s; =0 (188)

If we substitute (167), we get:

1 Ny +1 na—+b
m_ (4 T VD) — X*
Ye <a02 + At + Rt+1) ( t pt) a ¢

3,5
~ nat+1Rt_].1 T >\t04t+1
—E Ori1r+——F | s, §X’ 189
T»ﬂ(”L e+ Riyq &+mﬂ - Y2 (189)

All the coefficients are the same as before, and ff{t = 7%“7

. Then, using
market clearing, and substituting equilibrium schedules we get the equilib-
rium price, which corresponds to (7). Since the strategic traders’ schedules
and the equilibrium price are both the same as in the supply shock model, it
is possible to write the equilibrium trade as before, and the rest of the proof

proceeds as in the supply shock model.
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Figure 1: Liquidity premium and aggregate holdings under Cournot compe-
tition: monopoly vs oligopoly (n = 2). The risk-bearing capacity is fixed
at 5 in both cases, with ¢ = 10. The liquidity premium is defined as the
distance between the market price and the competitive price. The shock
is announced at t; = 5 and occurs at to = 11. Traders start with Pareto-
optimal endowments.
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®apno, Buncenr*.

CrpaTernyeckasi TOproBJIsl B YCJIOBHSIX OXKHMIASMBIX IIIOKOB CITPOCa,/TIPEITOKEeHUS
[DnexTponnsIii pecypce] : mpenpuat WP9/2022/02 / B. ®apno ; Hair. uccnen. yH-T
«BrpIcIIasT IIKO1a 9KOHOMUKM». — DJIEKTPOH. TeKCT. AaH. (850 K6). — M. : U3n. nom
Briciieit mkonsl akoHoMuKH, 2022, — (Cepusa WP9 «McciaenoBaHus 1o 5KOHOMUKE
u (puHaHcaM»). — 128 c. (Ha anr. 513.)

HccnemyeTcs BMusTHAE OXUIAEMbIX IIOKOB CTIPOCA WM TIPEIIOXKEHMS Ha LIEHY,/ KO -
YECTBO B MOJIEJIA CTPATErMYECKOM TOPTrOBJIU, B KOTOPOW TPEHAEPHI C HECOBEPILIEHHOMN KOH-
KypEeHILIMEe IeJiAT PUCK C TEMU, KTO MPUHUMAaeET 1ieHbl. Korma ecTb 1o KpaiiHeit Mepe 1Ba
Tpelinepa, oXunaeMble IIOKU MPUBOASIT K V-00pa3HOi MOsIenu, HaOIoaaeMoi SMITUpU-
YECKMU: LIeHbl OTKJIOHSIOTCS OT (DyHIaMEHTaJIbHbIX ITOKa3aTesel 10 I0Ka M MEIJIEHHO BO3-
Bpauiaiorcs rnocie Hero. To, Kak Tpeliaepsl BeayT ceds 10 I0Ka, 3aBUCUT OT TOT0, KOHKY-
pupyIoT i1 oHU B cTiie KypHo (TO ecTh MonaiT peIHOYHBIE 3aPOChl) WX MO KPUBBIM
crpoca (UCToJib3ys TMMUTHBIE 3aMIPOCHl). B cOOTBETCTBUM € SMIUPUYECKUMU JaHHBIMU,
Tpeiinepsl KypHO neiicTBYIOT KaK MPOTUBHUKH, B TO BpeMsI KaK Tpeiaepsl 1Mo rpaduky
cIpoca cHavajia TOPTYIOT MPOTUB, a 3aTeM B HATIPABJICHUH IIIOKa.

Buncenm @apdo, MexnyHapOIHbI MHCTUTYT 9KOHOMUKHM U (hrHaHCOB HarmoHanb-
HOT'O MCCJIEI0BaTEeIbCKOTO YHUBEpcUTeTa «Bhicias mkosna skoHomuku» (MUDO HUY
BIIID); Poccuiickas @enepauns, Mocksa, [TokpoBckuii OyibBap, a. 11; E-mail: vfardeau@
hse.ru

*[laHHasI CTaThsl OCHOBBIBAETCSI HA M 3aMEHSIET 0oJiee paHHUI TOKYMEHT, pacipocTpa-
HEHHBII o/l Ha3BaHUeM «/IMHaAMUYeCKUii CTpaTernyecKuii apouTpax». CTaThs TOATOTOB-
sieHa B pamkax [Iporpammbl hyHnameHtanbHbix uccnenoBannit HUY BIID npu punan-
COBOI TMoaaepXKe Poccuiickoro mpoekTa akaaeMHUuecKoro mpeBocxoncTBa «5—100».
3a nosie3Hble KOMMEHTAPUU ST XOTeJI Obl Mob1arogapuTh Muresst AHtoHa, bpyHo Bee, Cuiib-
BaHa Kappe, [Ixxepoma Jlioracra (yuactHuk auckyceun), Jenuca [pom6a, Aumurpust JIus-
nana, Cemena Manamyna, Anps6epra MeHkBenbaa, MaptuHa DMKe (YI4aCTHUK 00CyXe-
Hust), FOku Caro, Hopmana Illypxodda, Pobepro Crepu (yuacTHUK IMCKyCcCUM), JIUMUT-
puoca Llomokoca, Kocraca 3axapuaauca v yaacTHUKOB ceMuHapa v KoHdepeH1mu B Boic-
el IIKoJe YKOHOMMKHM, YHuBepcutere Hamiopa, VYHuBepcutere Iliopuxa,
®pankdypTckoii mikose puHaHcoB U MeHemkMeHTa, ADA Can-/Iunero, EDA Ocro, Illec-
Toli MocKoBcKol (hrHaHCOBOM KoH(pepeHuu, JletHero opyma B bapcenone u Espo-
MEeHCKOTo JIETHETO CUMITO3MyMa I10 (PMHAHCOBBIM phIHKaM. Ocobas 61aromapHoCcTb AJeK-
ceto bynarosy, JiImutpuio BassHocy 1 Mapeky BepeTke 3a moapoOHbIe 0OCYKIEHMSI.

Ipenpuntsl HanuoHaIbHOTO HCCIEI0BATEILCKOTO YHUBEPCUTETA
«BbicIIas mMKoJIa 9KOHOMMKH» pa3Memaiorcs o aapecy: http://www.hse.ru/org/hse/wp
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