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Abstract

The purpose of the paper is to enable inference in case of quantile regression with en-
dogenous covariates and clustered data. We prove that the instrumental variable quantile
regression estimator is consistent where there is correlation of errors within clusters. We
derive an asymptotic distribution for the estimator, which may be used for inference for a
given τ . As regards inference based on the entire instrumental variable quantile regression
process, we prove that cluster-based bootstrapping of a statistic of a certain class offers a
computationally tractable approach for implementing asymptotic tests. Our theoretical
results concerning the asymptotic properties of the instrumental variable quantile regres-
sion estimator for clustered data are supported by simulation analysis. The empirical part
of the paper applies the technique to estimation of the earning equations of US men and
women where female labor supply is endogenous and subject to the shock of World War II.

JEL Classification Codes: C21, C23, C26, D12

Keywords: quantile regression, endogeneity, clustered data, instrumental variables

∗National Research University Higher School of Economics, Moscow, Pokrovsky blvd. 11, gbesstremyan-
nya@hse.ru; The paper was prepared in the framework of the HSE University’s Basic Research Program.

∗∗New Economic School, Moscow, Skolkovskoe shosse, 45; sgolovan@nes.ru

2



1 Introduction

Empirical research often deals with datasets where observations come from a number of clusters,
so that observations can be considered independent across clusters but correlation is assumed
within each cluster. Clusters may be defined by geographic location (countries, regions, or
municipalities), economic activity or peer groups (industries, establishments, classes), or kinship
(families).

The assumption of independence of observations does not hold for clustered data. So infer-
ence requires generalization of estimators into the versions with cluster-robust standard errors,
and this has been implemented for a range of least-squares methods (Cameron and Miller,
2011). As regards the quantile regression approach, to the best of our knowledge, cluster-
robust standard errors were introduced only for the estimator in the model with exogenous
covariates (Parente and Santos Silva, 2016, Hagemann, 2017). However, quantile regression is
often applied to study heterogeneous response of the dependent variable to endogenous covari-
ates. The instrumental variable quantile regression model of Chernozhukov and Hansen (2005)
and Chernozhukov and Hansen (2006) has proved to be a widely used and computationally
convenient econometric technique for this purpose.1 But, the asymptotic properties of the es-
timator are developed in Chernozhukov and Hansen (2006) only under the assumption of i.i.d.
observations.

The purpose of our paper is to extend the results of Chernozhukov and Hansen (2006)
and enable inference in case of quantile regression with endogenous covariates and clustered
data. We prove that the instrumental variable quantile regression estimator is consistent where
there is correlation of errors within clusters, and we derive the asymptotic distribution for the
estimator. As regards inference based on the instrumental variable quantile regression process as
a whole, we extend the methodology of Chernozhukov and Hansen (2006) which uses bootstrap
to compute critical values of the test statistics. We propose resampling by clusters and prove
that it offers an approach to this computation and, hence, to the implementation of asymptotic
tests. Our theoretical results concerning the asymptotic properties of the instrumental variable
quantile regression estimator for clustered data are supported by the simulation analysis. The
estimator for clustered data is given empirical application to gauge the impact of female labor
supply on the wages of men and women in the US in 1940–1950.

The present paper is structured as follows. Section 2 sets up the model with the quantile
regression with endogenous covariates and clustered data, and derives the asymptotic distribu-
tion for the estimator in the model. Section 3 develops inference for the entire instrumental
variable quantile process for clustered data. The results of the simulations are shown in Section
4. Section 5 presents the results of the empirical study. Proofs are given in the Appendix.

2 The model

2.1. Setup

The instrumental variable quantile regression model of Chernozhukov and Hansen (2005) is
applied to the τth structural quantile of the outcome variable Y as a function of the observed
values x of exogenous covariates X and values d of the endogenous variables D, conditional on
X and an instrumental variable Z. The conditional structural quantile Qτ (Y,X,D|X,Z) is a

1As of May 2022, combined citations of the seminal paper of Chernozhukov and Hansen (2005) and of related
work on instrumental variable quantile regression (Chernozhukov and Hansen, 2004, 2006, 2008) are close to
2,500.
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function q(d, x, τ) which is assumed to be linear in covariates:

q(d, x, τ) = d′α(τ) + x′β(τ). (1)

Let the following assumption hold:

Assumption 1 (Chernozhukov and Hansen (2005), P. 248. Main conditions of the instrumental
variable quantile regression model). Given a common probability space (Ω, F, P ) for P -almost
every value of X, Z, the following conditions A1–A5 hold jointly:

A1 (Potential outcomes) Given X = x, for each d, Yd = q(d, x, Ud), where Ud ∼ U(0, 1) and
q(d, x, τ) is strictly increasing in τ .

A2 (Independence) Given X = x, {Ud} is independent of Z.

A3 (Selection) Given X = x, Z = z, for unknown function δ and random vector ν, D ≡
δ(z, x, ν).

A4 (Rank invariance or rank similarity) For each d and d′, given (ν,X, Z), either (a) Ud = U ′
d

or (b) Ud ∼ U ′
d.

A5 Observed variables consist of Y ≡ q(D,X,UD); D ≡ δ(Z,X, ν), X, Z.

Under these regularity conditions, a set of moment equations expresses the quantiles of the
outcome variable Y , conditional on exogenous covariates X and a vector of instruments Z, as a
linear function of q(D,X, τ) (Theorem 1 in Chernozhukov and Hansen (2005)). The solution to
these structural equations is the population-level estimator in the instrumental variable quantile
regression model. The finite-sample analogue of the population-level estimator in Chernozhukov
and Hansen (2005) and the theory for the general inference in Chernozhukov and Hansen (2006)
are developed under the assumption that (Yi, Di, Xi, Zi) are i.i.d. for all observations i in the
sample.

In our model we keep the aforementioned setup by Chernozhukov and Hansen (2005)2 but
relax the i.i.d. assumption and consider that observations are sampled from data generating
process with clusters:3

Yt = D′
tα(UDt) +X ′

tβ(UDt), Dt = δ(Zt, Xt, νt), t = 1, . . . , T,

where t is the index within a cluster, νt is a random variable, and UDt ∼ U [0, 1] conditionally
on Zt, Xt.

2.2. Identification of the finite-sample estimator with clustered standard errors

The set of conditions for identification of the estimator for clustered data modifies the cor-
responding assumptions of Chernozhukov and Hansen (2006)4 to account for the fact that
observations are sampled in clusters. In clustered data, condition R1 assumes the existence of
intra-cluster correlation of observations but considers that observations are i.i.d. across clusters.
Conditions of full rank and continuity of the Jacobian matrices in the moment conditions (R3),
and uniformity and smoothness of instruments and weights (R4) are formulated for the data-
generating process with clusters. The condition for compactness and convexity of the space for
the vector of coefficients (R2) is taken directly from Chernozhukov and Hansen (2006). Index
i denotes clusters in the assumptions below.

2For the reader’s convenience, we keep the original notations from Chernozhukov and Hansen (2005) and
Chernozhukov and Hansen (2006) throughout this paper.

3Without loss of generality the size of all clusters is considered fixed, see Parente and Santos Silva (2016).
4We keep the names of the original assumptions.
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Assumption 2. R1 (Sampling) {(Yi1, . . . , YiT ), (Di1, . . . , DiT ), (Xi1, . . . , XiT ), (Zi1, . . . , ZiT )}
are iid defined on the probability space (Ω, F, P ) and take values in a compact set.

R2 (Compactness and convexity) For all τ , (α(τ), β(τ)) ∈ intA×B, A×B are compact and
convex.

R3 (Full rank and continuity) Data generating process Yt has bounded conditional density,
a.s. supy∈R fYt|Xt,Dt,Zt(y) < K, and for π ≡ (α, β, γ), θ ≡ (α, β), and

Πt(π, τ) ≡ E((τ − 1(Yt < D′
tα +X ′

tβ + Φt(τ)
′γ))Ψt(τ)),

Πt(θ, τ) ≡ E((τ − 1(Yt < D′
tα +X ′

tβ))Ψt(τ)), Ψt(τ) ≡ Vt(τ) · [Φt(τ)
′, X ′

t]
′,

where Φt(τ) = Φt(τ, Zt, Xt) are transformations of instruments, Vt(τ) = Vt(τ, Zt, Xt)
are weights, Jacobian matrices ∂

∂(α,β)
Πt(θ, τ) and ∂

∂(β,γ)
Πt(π, τ) are continuous and have

full rank, uniformly over A × B × G × T and the image of A × B under the mapping
(α, β) 7→ Πt(θ, τ) is simply connected for all t = 1, . . . , T .

R4 (Estimated instruments and weights) Wp → 1, the functions Φ̂t(τ, z, x), V̂t(τ, z, x) ∈ F
and Φ̂t(τ, z, x) →p Φt(τ, z, x), V̂t(τ, z, x) →p Vt(τ, z, x) uniformly in (τ, z, x) over compact
sets, where Φt(τ, z, x) and Vt(τ, z, x) ∈ F , the functions ft(τ, z, x) ∈ F are uniformly
smooth functions in (z, x) with the uniform smoothness order η > dim(d, z, x)/2, and
∥ft(τ ′, z, x)− ft(τ, z, x)∥ < C|τ ′ − τ |a, C > 0, a > 0, for all (z, x, τ, τ ′) and t = 1, . . . , T .

2.3. The estimator for clustered data and its asymptotic properties

Conditions R1–R4 from Assumption 2 and the Chernozhukov and Hansen (2005) set of regular-
ity conditions for the population-level instrumental variable quantile regression make it possible
to find a unique solution to the finite-sample analogue of conditional moment equations with
clustered data.

Theorem 1. Under Assumption 1 and Assumption 2, (α′, β′) = (α(τ)′, β(τ)′) uniquely solves
the system of equations E(τ − I(Yt < D′

tα +X ′
tβ)Ψt(τ)) = 0 over A× B for all t = 1, . . . , T .

The estimation follows the two-step procedure of Chernozhukov and Hansen (2004) which
minimizes the weighted objective function in quantile regression:

QN(τ, α, β, γ) =
1

N

N∑
i=1

T∑
t=1

ρτ (Yit −D′
itα−X ′

itβ − Φ̂it(τ)
′γ)V̂it(τ), (2)

where ρτ (u) = u(τ − I(u ≤ 0)) is the Koenker and Bassett (1978) loss function, Φ̂it(τ) =
Φ̂t(τ,Xit, Zit) and V̂it(τ) = V̂t(τ,Xit, Zit) are weights.

Note that owing to clustered data, the weighted sums of the values of the loss function are
taken over clusters t and observations i within each cluster.

The first step requires the estimate(
β̂(α, τ), γ̂(α, τ)

)
= argmin

β,γ
QN(τ, α, β, γ). (3)

At the second step, the value of α that minimizes the norm of γ̂(α, τ) is found:

α̂(τ) = argmin
α∈A

∥γ̂(α, τ)∥2A(τ), where ∥γ̂(α, τ)∥2A(τ) = γ̂(α, τ)′A(τ)γ̂(α, τ), (4)

5



where A(τ) is a uniformly positive definite matrix in the set T . Finally, β̂(τ) = β̂(α̂(τ), τ).5

Next, we derive the asymptotic distribution for the instrumental variable quantile regression
estimator for clustered data.

Theorem 2. Given Assumption 1 and Assumption 2, for εit(τ) = Yit −D′
itα(τ) +X ′

itβ(τ) and
lit(τ, θ(τ)) = τ − I(εit(τ) < 0):

√
N(θ̂(·)− θ(·)) = −J(·)−1 1√

N

N∑
i=1

T∑
t=1

lit(·, θ(·))Ψit(·) + op(1) ⇒ b(·) (5)

for N → ∞, where b(·) is a mean zero Gaussian process with covariance function E(b(τ)b(τ ′)′) =
J(τ)−1S(τ, τ ′)J(τ ′)−1,

J(τ) = E

(
T∑
t=1

fεt(τ)(0|Xt, Dt, Zt)Ψt(τ)[D
′
t, X

′
t]

)
,

S(τ, τ ′) = E

(
T∑
t=1

T∑
s=1

lt(τ, θ(τ))ls(τ
′, θ(τ ′))Ψt(τ)Ψs(τ

′)′

)
.

Following Powell (1986), the estimator of J(τ) is

Ĵ(τ) =
1

2NhN

N∑
i=1

(
T∑
t=1

I(|ε̂it(τ)| ≤ hN)Ψ̂it(τ)[D
′
it, X

′
it]

)
,

where ε̂it = Yit−D′
itα̂(τ)−X ′

itβ̂(τ) and bandwidth hN is chosen so that hN → 0 and Nh2
N → ∞

(see Parente and Santos Silva (2016)).
The matrix S(τ, τ ′) is estimated by its sample analogue:

Ŝ(τ, τ ′) =
1

N

N∑
i=1

(
T∑
t=1

T∑
s=1

lit(τ, θ(τ))lis(τ
′, θ(τ ′))Ψ̂it(τ)Ψ̂is(τ

′)′

)
.

It should be noted that Theorem 2 makes it possible to derive asymptotics of the instru-
mental variable quantile regression estimator for clustered data for each quantile index τ :

√
N(θ̂(τ)− θ(τ))

d→ N (0, J(τ)−1S(τ, τ)(J(τ)−1)′). (6)

It also gives the joint limiting distribution of the estimator for several quantiles {τ ∈ J},
where J is a finite subset of (0, 1):

{
√
N(θ̂(τ)− θ(τ))}τ∈J

d→ N (0, {J(τ)−1S(τ, τ ′)(J(τ ′)−1)′}τ,τ ′∈J). (7)

5Note that both the instrumental variable quantile regression estimator and the instrumental variable quantile
regression estimator for clustered data depend on A(τ). Although any positive definite matrix can be employed
in this context, Chernozhukov and Hansen (2006) recommend to use the asymptotic variance-covariance matrix
of γ̂(α(τ), τ) as A(τ). But the asymptotic variance-covariance matrix of γ̂(α(τ), τ) in quantile regression without
clusters is different from this matrix in presence of clusters. Hence, the estimator for clustered data may differ
numerically from the Chernozhukov and Hansen (2006) instrumental variable quantile regression estimator.
However, we focus on the asymptotic properties of the estimator for clustered data and these properties do not
depend on A(τ).
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2.4. General inference

Consider uniform inference for a set of quantiles τ ∈ T . We use the general form of the null
hypotheses in the notations of Chernozhukov and Hansen (2006):

R(τ)(θ(τ)− r(τ)) = 0, for each τ ∈ T , (8)

where R(τ) is a given q×p matrix of rank q, q ≤ p = dim θ(τ), and r(τ) ∈ Rp, θ(τ) and r(τ) are
functions to be estimated. The tests are based on the inference process: vN(·) = R(·)(θ̂(·)−r̂(·)).

Let the following assumption hold:

Assumption 3 (Chernozhukov and Hansen (2006), P. 501. Conditions for inference).

I1. R(·)(θ(·) − r(·)) = g(·), where the functions g(τ), R(τ), r(τ) are continuous and either
(a) g(τ) = 0) for all τ (the null hypothesis) or (b) g(τ) ̸= 0 for some τ (the alternative
hypothesis).

I2.
√
N(θ̂(·)− θ(·)) ⇒ b(·) and

√
N(r̂(·)− r(·)) ⇒ d(·) jointly in ℓ∞(T ), where b(·) and d(·)

are jointly zero mean Gaussian functions that may have different laws under the null and
the alternative.

Assume that along with conditions I1 and I2 from Assumption 3, the estimates in quantile
regression for clustered data admit the linear representations below.

Assumption 4. I3. Linear representations:

√
N(θ̂(·)− θ(·)) = −J(·)−1 1√

N

N∑
i=1

T∑
t=1

lit(·, θ(·))Ψit(·) + op(1)

and
√
N(r̂(·)− r(·)) = −H(·)−1 1√

N

N∑
i=1

T∑
t=1

dit(·, r(·))Υit(·) + op(1)

in ℓ∞(T ), where J(·) and H(·) are constant invertible matrices, and vectors
(li1(·, θ(·))Ψi1(·), . . . , liT (·, θ(·))ΨiT (·)) and (di1(·, r(·))Υi1(·), . . . , diT (·, r(·))ΥiT (·)) are i.i.d.
mean zero for each τ .

I4. (a) The estimates lit(·, θ̂(·))Ψ̂it(·) and dit(·, r̂(·))Υ̂it(·) take realizations in a Donsker class
of functions with a constant envelope and are uniformly consistent in τ in the L2(P )
norm. (b) Wp → 1, E(lit(τ, θ(τ)Ψ̂it(τ))) = 0 and E(dit(τ, r(τ)Υ̂it(τ))) = 0 for each i, t.
(c) E∥lit(τ, θ)− lit(τ, θ

′)∥ < C∥θ− θ′∥, E∥dit(τ, r)− dit(τ, r
′)∥ < C∥r− r′∥, uniformly in

τ ∈ T and in (θ, θ′, r, r′) over compact sets.

Then the inference process in instrumental variable quantile regression for clustered data
admits a linear representation.

Proposition 1. Under Assumptions 1, 3, and 4

√
N(vN(·)− g(·)) = 1√

N

N∑
i=1

(
T∑
t=1

zit(·)

)
+ op(1) in ℓ∞(T ),

where zit(·) = R(·)(J(·)−1lit(·, θ(·))Ψit(·)−H(·)−1dit(·, r(·))Υit(·)).
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The estimate of zit(·) becomes ẑit(·) = R(·)(Ĵ(·)−1lit(·, θ̂(·))Ψ̂it(·)− Ĥ(·)−1dit(·, r̂(·))Υ̂it(·)),
where Ĵ(·) and Ĥ(·) are any uniformly consistent estimates of J(·) and H(·).

An approach for implementing the asymptotic tests with the help of the Kolmogorov–
Smirnov (KS) and the Cramér–von Mises (CM statistic) is formulated in Theorem 4 in Cher-
nozhukov and Hansen (2006): it develops the asymptotic theory for computation of critical
values for test statistics. The null hypothesis is rejected when the test statistic exceeds its
critical value.

In case of clustered data, we use the aforementioned approach but propose resampling by
clusters in order to obtain the critical values for test statistics for the inference process.6

The inference is then conducted through the following algorithm.
Step 1. Resampling procedure with clustered data: To resample from {ẑit(τ), i = 1, . . . , N, t =

1, . . . , T, τ ∈ T }, randomly select BN subsets of 1, . . . , N of size b without replacement, each
of these subsets is denoted Ii, i = 1, . . . , BN . Define the inference process for the jth subset of
data Ij as vj,b,N(τ) ≡ 1/b

∑
i∈Ij

∑T
t=1 ẑit(τ). Denote Ŝj,b,N ≡ f(

√
bvj,b,N(·)) as

Ŝj,b,N ≡ sup
τ∈T

√
b∥vj,b,N(τ)∥Λ̂(τ) or Ŝj,b,N ≡

∫
T

√
b∥vj,b,N(τ)∥2Λ̂(τ)dτ,

where SN is, respectively, the KS or CM statistic. Note that resampling is conducted by clusters
i and not by individual observations.

Step 2. Computation of the critical value of the test statistic based on the resampling proce-
dure with clustered data: The step fully follows Chernozhukov and Hansen (2006). Specif-
ically, for each statistic S = f(v(·)), it defines Γ(x) ≡ P (S ≤ x) and suggests the es-
timate of Γ(x) as Γ̂b,N(x) = 1/BN

∑bN
j=1 I(Sj,b,N ≤ x). The critical value for the test is

cb,N(1 − α) = inf{c : Γ̂b,N(c) ≥ 1 − α}, i.e. (1 − α)th quantile of Γ̂b,N(x). The null hypothesis
is rejected by the test of level α when SN > cb,N(1− α).

Theorem 3 justifies the above described procedure.

Theorem 3 (Score subsampling inference for clustered data). Suppose Assumptions 1, 3, and 4
hold, and that Ĵ(τ) = J(τ) + op(1) and Ĥ(τ) = H(τ) + op(1) uniformly in τ over T . Then as
BN → ∞, b → ∞, N → ∞:

(1) Under the null hypothesis, if Γ is continuous at Γ−1(1 − α): cb,N(1 − α)
p→ Γ−1(1 − α),

P (SN > cb,N(1− α)) → α;

(2) Under the alternative hypothesis, SN
d→ ∞, cb,N(1−α) = Op(1), P (SN > cb,N(1−α)) → 1;

(3) Γ(x) is absolutely continuous at x > 0 when the covariance function of v is nondegenerate
a.e. in τ .

The application of the approach is demonstrated below using examples of hypotheses from
Chernozhukov and Hansen (2006), for which we formulate scores in case of instrumental variable
quantile regression for clustered data and dimα ≡ 1.

6An alternative to the below modified approach of Chernozhukov and Hansen (2006) is the modification
of the bootstrap procedure, proposed in Hagemann (2017) for quantile regression with clustered data under
exogeneity. Indeed, Hagemann (2017) introduces the methodology for general inference (the null hypothesis is
for instance, α(τ) = 0 under all τ ∈ T ) and uses the statistics similar to those of Kolmogorov-Smirnov. But
there are differences in the implementation of the procedures, proposed in Hagemann (2017) and Chernozhukov
and Hansen (2006). Specifically, Chernozhukov and Hansen (2006) estimate quantile regression once, compute
the scores for each observation and then bootstrap these scores. At the same time, Hagemann (2017) uses a
conventional bootstrap approach and estimates a large number of quantile regressions: a regression for each
sample. Such approach implies computational burden in case of instrumental variable quantile regression, and
hence is not employed in the present paper.
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1. No effect of the endogenous variable.

H0: α(τ) = 0 for all τ ∈ T , R(·) ≡ R = [1, 0, . . . , 0], r(·) ≡ 0.

In this case, ẑit(τ) = R(τ)[Ĵ(τ)−1lit(τ, θ̂(τ))Ψ̂it(τ)], where lit(τ, θ̂(τ)) = (τ − I(Yit <
D′

itα̂(τ) +X ′
iβ̂(τ))), Ψ̂it(τ) = V̂it[Φ̂it(τ), X

′
it]

′.

2. Constant effect of the endogenous variable across quantiles.

H0: α(τ) ≡ α = const, for all τ ∈ T , R(·) ≡ R = [1, 0, . . . , 0] and r(·) = [α, 0, . . . , 0]′.

In this case, [α̂(1/2), 0, . . . , 0] can be taken for r̂(·), and ẑit(τ) = R(τ)[Ĵ(τ)−1lit(τ, θ̂(τ))Ψ̂it(τ)−
Ĵ(1/2)−1lit(1/2, θ̂(1/2))Ψ̂it(1/2)], for lit(·,θ̂(·)) defined in the example with the hypothesis
of no effect.

3. Exogeneity hypothesis.

H0: The coefficient for the endogenous variable in instrumental variable quantile regres-
sion equals the coefficient for this variable in the quantile regression under exogeneity,
R(·) ≡ R = [1, 0, . . . , 0], r(·) = ϑ(·), where r(·) is estimated using quantile regression
under exogeneity.

Then, the score is given by ẑit(τ) = R(τ)[Ĵ(τ)−1lit(τ, θ̂(τ))Ψ̂it(τ) − Ĥ(τ)−1dit(τ, ϑ̂(τ))],
where dit(τ, ϑ̂(τ)) = (τ − I(Yit < X̃ ′

itϑ̂(τ)))X̃it, X̃it = [D′
it, X

′
it]

′, and following Parente

and Santos Silva (2016), Ĥ(τ) = 1/(2NhN)
∑N

i=1

(∑T
t=1 I(|ϵ̂it| ≤ hN)X̃itX̃

′
it

)
.

2.5. Simulations

The present section shows the results of simulation analysis of performance of the estimator of
the covariance matrix in the instrumental variable quantile regression for clustered data. The
data-generating process is

Yit = Dit · α · Uit + β0 · Uit +Xit · β1 · Uit,

i = 1, . . . , N, t = 1, . . . , T,

where i is the index for cluster, t is the index for observation within a cluster, α, β0, β1 ∈ R,
so α(τ) = α · τ , β0(τ) = β · τ , β1(τ) = β · τ .

The intra-cluster correlation of errors is introduced by adding random variable ξit, which
varies across clusters and observations, and ζi, which denotes individual effect of clusters. For
this purpose, we draw variables ξit and ζi from Gamma distribution:

ξkit ∼ Γ(1, 1), k = 1, . . . , 5,

ζki ∼ Γ(2, 1), k = 1, . . . , 5.

The covariates D,X, the excluded instrument Z and the error term U are then constructed as
follows:

Dit = d · (ξ1it + ζ1i) + ξ2it + ξ3it + ζ2i + ζ3i ∼ Γ(9, 1),

Zit = ξ3it + ξ4it + ζ3i + ζ4i ∼ Γ(6, 1),

Xit = ξ4it + ξ5it + ζ4i + ζ5i ∼ Γ(6, 1),

Uit = FΓ(3,1)(ξ1it + ζ1i) ∼ U(0, 1).

The number of clusters N ∈ {100, 200, 500, 1000, 2000} and the size of cluster T ∈ {2, 5, 10}.
The values of d = 1 and d = 0 are used to model endogenous and exogenous D, respectively.
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The performance of the instrumental variable quantile regression estimator with clustered
standard errors is evaluated for three quantile indices: τ ∈ {0.25, 0.50, 0.75}.

For each τ we estimate the conditional τth quantile regression of Yit on Dit, Xit and a
constant, using Zit as an instrument for Dit. Then, we focus on the basic inference process and
test whether the slope coefficients are equal to their true values: namely, whether α(τ) = α · τ
and β1(τ) = β1 · τ . The performance of the Chernozhukov and Hansen (2006) estimator is
contrasted with the performance of the instrumental variable quantile regression estimator for
clustered data.

Next, we conduct inference based on the entire instrumental variable quantile regression
process (approximating it by a set of three quantiles T = {0.25, 0.5, 0.75}). Specifically, we
test each of the three hypotheses: α ≡ 0, α ≡ const, D is exogenous. For each hypothesis
we contrast the results of the test based on the Chernozhukov and Hansen (2006) bootstrap
(i.e. resampling observations) and the bootstrap which resamples clusters. We simulated 500
samples, and used 10,000 bootstrap draws in each case.

The estimations are performed using custom code in Python.
Table 1 shows the true sizes of the basic inference concerning the coefficient for the endoge-

nous variable α at the 10% level. The standard errors for the Chernozhukov and Hansen (2006)
instrumental variable quantile regression estimator yield excessive rejection of the null hypoth-
esis about equality of α to its true value: the rejection rates exceed 0.2 for T = 5 and 0.3 for
T = 10. However, the rejection rate is close to 0.1 in case of the instrumental variable quantile
regression estimator with clustered standard errors. Note that for each τ and each combination
of the values of N and T , the rejection rate is higher for the estimator with standard errors
based on i.i.d assumption than for the estimator with clustered standard errors. This fact points
to underestimation of standard errors under application of Chernozhukov and Hansen (2006)
resampling to the data generating-process with positive correlation of errors within clusters.
Note that the asymptotic theory for the instrumental variable quantile regression estimator for
clustered data requires a fairly large number of clusters. The results in Table 1 are in line with
this requirement: the rejection rates of the null hypothesis are slightly overstated at 0.13–0.15
when N is 100 or 200.

Table 2 gives results concerning the basic inference about the vector of coefficients for
exogenous covariates. Similarly to basic inference about α, the rejection rate of the null hy-
pothesis of equality of the vector β1 to its true value is excessively high with standard errors
for the Chernozhukov and Hansen (2006) instrumental variable quantile regression estimator.
But the rejection rate is close to 0.1 in case of the estimator with clustered standard errors.

The performance of the i.i.d. resampling procedure for implementation of the general infer-
ence is contrasted with resampling of clusters in Table 3. The results point to wrong conclusions
that may be associated with using the Chernozhukov and Hansen (2006) resampling procedure
where there is within-cluster correlation of errors. For each of the process tests the rejection
rate of the null hypothesis is much higher in case of bootstrap under the i.i.d. assumption
than in case of bootstrap based on clustering. While the i.i.d. resampling yields rejection rates
which well exceed the significance level of the test, the resampling of clusters leads to better
results, which confirms the implications of our Theorem 3.

The results of the process tests with clustered bootstrap show that rejection rates of null
hypotheses are close to 0.1 (Table 3).

The probabilities of rejecting the null hypothesis under the alternative at the 10% level of
significance of the test are shown in Table 4. The rejection rates exceed 0.1, rise with increase
in the size of sample NT , and become close to 1 with large N .
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Table 1: Simulated true sizes for basic inference tests at 10% level (H0 : α(τ) = 1 · τ , where 1 · τ
is the true value of α(τ))

standard errors under i.i.d. clustered standard errors

T N τ = 0.25 τ = 0.50 τ = 0.75 τ = 0.25 τ = 0.50 τ = 0.75

2

100 0.082 0.128 0.118 0.066 0.096 0.096
200 0.118 0.110 0.160 0.080 0.080 0.118
500 0.150 0.116 0.154 0.112 0.086 0.112
1000 0.150 0.132 0.136 0.106 0.088 0.098
2000 0.148 0.160 0.138 0.108 0.102 0.100

5

100 0.230 0.294 0.258 0.084 0.122 0.128
200 0.280 0.308 0.296 0.102 0.102 0.138
500 0.282 0.248 0.268 0.098 0.092 0.110
1000 0.238 0.278 0.268 0.088 0.092 0.102
2000 0.244 0.274 0.276 0.104 0.102 0.116

10

100 0.376 0.400 0.436 0.108 0.124 0.154
200 0.402 0.436 0.434 0.132 0.108 0.138
500 0.426 0.446 0.388 0.110 0.098 0.098
1000 0.358 0.412 0.396 0.098 0.094 0.102
2000 0.410 0.418 0.384 0.110 0.096 0.110

Table 2: Simulated true sizes for basic inference tests at 10% level (H0 : β1(τ) = 2 · τ , where
2 · τ is the true value of β1(τ))

standard errors under i.i.d. clustered standard errors

T N τ = 0.25 τ = 0.50 τ = 0.75 τ = 0.25 τ = 0.50 τ = 0.75

2

100 0.094 0.104 0.128 0.074 0.070 0.082
200 0.118 0.120 0.112 0.070 0.078 0.080
500 0.128 0.116 0.126 0.080 0.066 0.082
1000 0.134 0.144 0.134 0.086 0.084 0.084
2000 0.142 0.170 0.154 0.100 0.110 0.098

5

100 0.216 0.246 0.246 0.094 0.094 0.094
200 0.272 0.254 0.268 0.100 0.088 0.092
500 0.234 0.252 0.248 0.090 0.088 0.084
1000 0.222 0.272 0.272 0.094 0.096 0.100
2000 0.254 0.280 0.240 0.094 0.100 0.076

10

100 0.360 0.394 0.370 0.092 0.094 0.082
200 0.356 0.386 0.396 0.088 0.092 0.072
500 0.368 0.390 0.370 0.098 0.082 0.108
1000 0.354 0.402 0.412 0.096 0.096 0.116
2000 0.376 0.408 0.366 0.090 0.084 0.076
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Table 3: Simulated true sizes for process inference tests for τ ∈ {0.25, 0.5, 0.75} at 10% level
under null hypotheses

i.i.d. bootstrap clustered bootstrap

T N α(τ) ≡ 0 α(τ) ≡ const D is exog. α(τ) ≡ 0 α(τ) ≡ const D is exog.

2

100 0.144 0.058 0.110 0.124 0.054 0.090
200 0.158 0.088 0.106 0.120 0.076 0.084
500 0.170 0.110 0.100 0.112 0.080 0.070
1000 0.174 0.140 0.088 0.096 0.104 0.054
2000 0.208 0.152 0.100 0.116 0.122 0.042

5

100 0.324 0.188 0.280 0.170 0.122 0.112
200 0.376 0.236 0.250 0.164 0.132 0.096
500 0.370 0.216 0.242 0.124 0.106 0.048
1000 0.348 0.242 0.218 0.122 0.112 0.052
2000 0.338 0.222 0.220 0.136 0.114 0.058

10

100 0.550 0.322 0.422 0.188 0.156 0.138
200 0.584 0.374 0.472 0.182 0.182 0.102
500 0.570 0.382 0.384 0.138 0.138 0.068
1000 0.526 0.374 0.374 0.118 0.122 0.048
2000 0.558 0.358 0.382 0.136 0.132 0.062

Notes: No effect and constant effect hypotheses are tested in the model with α(τ) ≡ 0 and
endogeneous D. Exogeneity of D is tested in a model with α(τ) = 1 · τ and exogeneous D.

Table 4: Simulated true sizes for process inference tests for τ ∈ {0.25, 0.5, 0.75} at 10% level
under alternative hypotheses

clustered bootstrap

T N α(τ) ≡ 0 α(τ) ≡ const D is exog.

2

100 0.458 0.132 0.908
200 0.530 0.190 0.996
500 0.770 0.354 1.000
1000 0.938 0.538 1.000
2000 0.998 0.842 1.000

5

100 0.554 0.236 0.998
200 0.658 0.326 1.000
500 0.890 0.530 1.000
1000 0.984 0.792 1.000
2000 1.000 0.966 1.000

10

100 0.584 0.286 0.998
200 0.702 0.394 1.000
500 0.920 0.662 1.000
1000 0.996 0.876 1.000
2000 1.000 0.996 1.000

Notes: All three hypotheses are tested in the model with α(τ) = 1 · τ and endogeneous D.
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3 The impact of female labor participation on the wages

of men and women in the United States in 1940–1950

Female participation in the labor market has attracted the interest of labor economists since the
1930s and early reviews on the subject appeared in the 1970s–1980s (Mincer, 1962, Heckman,
1978, Killingsworth and Heckman, 1986, Psacharopoulos and Tzannatos, 1989). The amount
of female labor was shown to affect the wages of both men and women (Juhn and Kim, 1999,
Cain and Dooley, 1976). In particular, increasing presence of married women in the labor force
caused a decline, on average, in the women’s wages (Cain and Dooley, 1976).

It should be noted that the amount of labor is likely to be endogenous in the wage equation.
Endogeneity occurs because both the amount of labor and wages are found as a solution of the
system of demand and supply equations. A pioneering work Acemoglu and Autor (2011) uses
an instrumental variable approach to account for endogeneity in the female labor force in time
of war, estimating least-squares models and using mobilization rate in World War II to capture
state-level exogenous variation in female labor supply in the US. The same instrument was
employed in subsequent papers which focused on groups of women by their fertility, ethnicity,
marital status (see review in (Rose, 2018)) or studied the effect in the longer run (e.g. employ-
ment by women in 1960, assessed in Fernández et al. (2004)). Note that a related approach is
used in Boehnke and Gay (2020) for World War I where the instrument for female labor force
is the military fatality rate.

In the present paper we extend the analysis for the case when the effect of labor supply
on earnings is heterogeneous. Indeed, it is plausible to assume that the effect differs across
high-wage and low-wage workers. Specifically, shortage of highly-skilled labor causes increase
of wages in that segment, which do not decline despite subsequent increase of supply of highly
skilled labor (see evidence for France, Germany, Austria, the US and the UK in respectively,
(Abowd et al., 1999, Andrews et al., 2012, Borovičková and Shimer, 2017, van Reenen, 2011)).

We employ a quantile regression approach with endogeneity to estimate the analogue of
the least-squares wage equation of Acemoglu et al. (2004). Quantile regression is a technique,
widely used by labor economists to capture heterogeneous impact of the explanatory variables
on the tails of conditional distribution of the dependent variable. Early applications of quan-
tile regression models under exogeneity in the analysis of wages include Abadie (1997) and
Buchinsky (1998).

We use the data of Acemoglu et al. (2004) available at MIT Economics: David Autor’s Data
Archive http://economics.mit.edu/faculty/dautor/data/autacemly06.7 The data consist
of one-percent random draws from the 1940 and 1950 censuses. For each census, the Acemoglu
et al. (2004) analysis of the wage equation uses samples with white individuals aged 14–64,
who were not self-employed or employed in farming, did not reside in prisons or barracks, and
received wages and salaries (the range of hourly earnings in the previous year is 0.5–250 in 1990
US dollars). Total number of observations in the pooled data with samples from the 1940 and
1950 censuses numbered 198,385 men and 69,335 women. Census sampling weights are used in
all estimations.

Following the logic of the two-stage least squares models for men and women, given in
equation (10) of Acemoglu et al. (2004), we estimate their quantile regression analogues as

7Specifically, we use the data and variables for Table 9 on pp.534–535 in Acemoglu et al. (2004):
http://economics.mit.edu/~dautor/www/table5-9-10-11-12-a1_dta.zip and http://economics.mit.

edu/~dautor/www/table9_do_log.zip
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follows:

lnwist = D′
stα(uist) +X ′

istβ(uist), (9)

D′
st = δ(Xist, Zst, νist), (10)

τ 7→ Dstα(τ) +X ′
istβ(τ) is monotonically increasing, (11)

where τ denotes the value of a given quantile for conditional distribution of the log of weekly
earnings – lnwist – for individual i at state s in period t (1940 or 1950), the endogenous
variable Dst is female labor supply (average weeks worked per woman in state s in year t),
Xist = [X1,ist, X2,ist, X3,st, X4,st] is a vector of exogenous variables: X1,ist includes state of
residence of the individual, years of education, marital status, WWII veteran dummy (for men),
a quartic in potential experience; X2,ist is state/country of birth, X3,st is state-level female age
structure, X4,st includes share of farmers and nonwhites, and average schooling structure in the
state in 1940, all exogenous variables are interacted with the 1950 year dummy to account for
the pooled structure of data, Zst – an interaction between the 1950 dummy and mobilization
rate in state s – is an instrument for female labor supply, νist is statistically dependent on uist,
uist⊥(Xist, Zst) ∼ U [0, 1].

The wage equation in Acemoglu et al. (2004) is estimated for each individual but the
endogenous variable – female labor supply – is measured as the state average in a given year.
So the data become clustered at the state-year level and the two-stage least squares models
account for clustered standard errors.

In our quantile regression analysis we similarly account for clustered data. Specifically, we
contrast the standard errors for the coefficient for female labor supply estimated in (9)–(11)
under the assumption of standard errors based om i.i.d. assumption and under standard errors,
clustered at state-year level.

We use 19 values of τ ∈ [0.05, 0.95], starting with τ = 0.05 at the 0.05 step. For the purpose
of comparison we present the coefficient for female labor supply, estimated in conventional
quantile regression, along with the findings in quantile regressions under endogeneity. It should
be noted that the coefficient under the latter approach is mainly insignificant.

The first set of our results describes the impact of female labor supply on women’s earnings.
As is shown in Figures 1–2, the coefficient for the amount of weeks worked per woman is
negative in explaining the log of earnings by women. With an increase in quantile index, the
coefficient becomes smaller in absolute terms. So the effect is weaker for higher-wage workers.
The standard errors for the coefficient estimated under the Chernozhukov and Hansen (2006)
approach are 2–3 times smaller than the standard errors of the estimator for clustered data
(Tables C.1–C.2 of the Appendix).8 This fact implies a positive correlation of errors within
clusters.

Impact of female labor on earnings is significant in the specification with X1,ist, X2,ist and
X3,st as controls both in case of the standard errors based on i.i.d. assumption and under the
standard errors clustered at the state-year level (Figure 1). However, when additional state-level
controls X4,st are included in the list of explanatory variables, the estimators with and without
clusters yield different results related to basic inference. The Chernozhukov and Hansen (2006)
estimator implies that the effect of female labor is significant in regressions with quantile indices
from 0.05 to 0.85, while the estimator for clustered data gives a much smaller range of quantile
indices with significant effect: from 0.05 to 0.55 (Figure 2). In other words, failure to account
for clustered standard errors leads to wrong conclusions for high-wage workers.

The second set of results deals with the effect of female labor supply on men’s earnings.
The findings are similar to those for female earnings: the coefficient for female labor supply is

8For the sake of brevity, Tables C.1–C.4 show the estimated coefficients and their standard errors for τ ∈
[0.1, 0.9], with the 0.1–step.
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negative in explaining men’s earnings, and is inversely related to quantile index (Figures 3–4). In
other words, the negative effect is smaller in absolute terms for higher-wage male workers. The
standard errors for the coefficient are downwards biased under the Chernozhukov and Hansen
(2006) approach in comparison with the estimator for clustered standard errors (Tables C.3–
C.4 of the Appendix). Underestimation of standard errors owing to neglect of clusters does not
affect basic inference in specification with fewer state-level controls (Figure 3), but becomes
important when more controls are added to the list of covariates (Figure 4).

Finally, we carry out inference on the entire instrumental variable quantile regression process
in the models with the richest list of exogenous controls (X1 through X4). We use resampling
of test statistics based on clusters. The results, which are reported in Table 5, show that female
labor supply affects the earnings of both men and women (the hypothesis of no effect is rejected
at the 5% level). Female labor supply is endogenous for both sexes and the effect of the variable
differs across quantiles (each of the hypotheses of exogeneity and of constant effect is rejected
at the 5% level).
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Figure 1: Impact of female labor supply on earnings of women, 1940–50, specification with
X1,ist, X2,ist and X3,st as controls

Table 5: Results of tests based on the instrumental variable quantile regression process (resam-
pling by clusters)

Impact of female labor
supply on female earnings

Impact of female labor
supply on male earnings

Null hypothesis KS statistic P -value KS statistic P -value

No effect (α(·) ≡ 0) 7.047 0.002 3.953 0.026
Constant effect (α(·) ≡ const) 3.562 0.041 3.139 0.001
Exogeneity (D is exogeneous) 6.292 0.000 3.429 0.011
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Figure 2: Impact of female labor supply on earnings of women, 1940–50, specification with
X1,ist, X2,ist, X3,st and X4,st as controls

0.05 0.20 0.35 0.50 0.65 0.80 0.95

Quantile

−0.15

−0.10

−0.05

0.00

C
o
effi

ci
en
t

QR

IV-QR

clustered SE

SE under i.i.d.

(a) 90% confidence intervals for IV-QR estimates

0.05 0.20 0.35 0.50 0.65 0.80 0.95

Quantile

−0.03

−0.02

−0.01

0.00

0.01

C
o
effi

ci
en
t

QR

clustered SE

(b) 90% confidence intervals for QR estimates

Figure 3: Impact of female labor supply on earnings of men, 1940–50, specification with
X1,ist, X2,ist and X3,st as controls

16



0.05 0.20 0.35 0.50 0.65 0.80 0.95

Quantile

−0.10

−0.05

0.00

0.05

C
o
effi

ci
en
t

QR

IV-QR

clustered SE

SE under i.i.d.

(a) 90% confidence intervals for IV-QR estimates

0.05 0.20 0.35 0.50 0.65 0.80 0.95

Quantile

−0.02

−0.01

0.00

0.01

0.02
C
o
effi

ci
en
t

QR

clustered SE

(b) 90% confidence intervals for QR estimates

Figure 4: Impact of female labor supply on earnings of men, 1940–50, specification with
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4 Conclusion

The present paper deals with robust inference in conditional quantile regression model with en-
dogenous covariates and within-cluster correlation of error terms. We show that the widely used
Chernozhukov and Hansen (2006) instrumental variable quantile regression estimator is con-
sistent and asymptotically normal when applied to the data-generating process with clustered
data. We derive the asymptotic distribution of the instrumental variable quantile regression
estimator for clustered data, and the consistent estimator of the covariance matrix enables ba-
sic inference where there is intra-cluster correlation. As regards inference based on the entire
instrumental variable quantile regression process, we extend the approach of Chernozhukov and
Hansen (2006) and prove that resampling by clusters offers an approach to implementation of
asymptotic tests.

Our theoretical results are supported by simulation analysis, where we compare the asymp-
totic behavior of the instrumental variable quantile regression estimator for clustered data and
the behavior of the Chernozhukov and Hansen (2006) estimator. The empirical illustration
of the instrumental variable quantile regression estimator under clustered standard errors uses
the data from Acemoglu et al. (2004). We quantify the quantile regression analogues of the
two-stage least squares models for wage equations for men and women, and data are clustered
at state-year level. The results demonstrate that failure to incorporate the clustered structure
of data leads to wrong conclusions about the effect of female labor supply on the earnings of
high-wage male and female workers.
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Appendix A Theorems from Chernozhukov and Hansen

(2005) and Chernozhukov and Hansen (2006)

Theorem 1 in Chernozhukov and Hansen (2005) (P. 249. Main implication). Suppose
conditions A1–A5 hold, then for any τ ∈ (0, 1), a.s.

P (Y ≤ q(D,X, τ)|X,Z) = P (Y < q(D,X, τ)|X,Z) = τ, (A.1)

and UD is independent of Z and X.

Theorem 4 in Chernozhukov and Hansen (2006) (P. 506. Inference). For f denoting the
two- and one-sided KS or CM statistics:

1. Under Assumption 1, I1(a), and I2 SN
d→ S ≡ f(v(·)), where v(·) = R(·)(b(·) − d(·)).

If v(·) has nondegenerate covariance kernel, then for α < 1/2, P (SN > c(1− α)) → α =
P (f(v(·)) > c(1− α)), where c(1− α) is chosen so that P (f(v(·)) > c(1− α)) = α.

2. Under Assumption 1 and I1(b) SN
d→ ∞, and P (SN > c(1− α)) → 1.

Appendix B Proofs

Define for Wt = (Yt, Dt, Xt, Zt), ϑ ≡ (β, γ) and φτ (u) = I(u < 0)− τ

f̂(Wt, α, ϑ, τ) ≡ φτ (Yt −D′α−X ′β − Φ̂t(τ)
′γ)Ψ̂t(τ),

f(Wt, α, ϑ, τ) ≡ φτ (Yt −D′α−X ′β − Φt(τ)
′γ)Ψt(τ),

Ψt(τ) ≡ Vt(τ) · [Φt(τ)
′, X ′

t]
′, Φt(τ) = Φt(τ,Xt, Zt), Vt(τ) = Vt(τ,Xt, Zt), Ψ̂t(τ) ≡ V̂t(τ) ·

[Φ̂t(τ)
′, X ′

t]
′, Φ̂t(τ) = Φ̂t(τ,Xt, Zt), V̂t(τ) = V̂t(τ,Xt, Zt); for ρτ (u) = (τ−I(u < 0))u = −φτ (u)u

ĝ(Wt, α, ϑ, τ) ≡ ρτ (Yt −D′α−X ′β − Φ̂t(τ)
′γ)V̂t(τ),

g(Wt, α, ϑ, τ) ≡ ρτ (Yt −D′α−X ′β − Φt(τ)
′γ)Vt(τ).

Denote EN(ξ) ≡ 1
N

∑N
i=1 ξi, GN(ξ) ≡

√
N(EN(ξ)− E(ξ)). Define

QN(α, ϑ, τ) ≡ EN

(
T∑
t=1

ĝ(Wt, α, ϑ, τ)

)
=

1

N

N∑
i=1

T∑
t=1

ĝ(Wit, α, ϑ, τ),

Q(α, ϑ, τ) ≡ E

(
T∑
t=1

g(Wt, α, ϑ, τ)

)
,

and

ϑ̂(α, τ) ≡ (β̂(α, τ)′, γ̂(α, τ)′) = argmin
ϑ∈B×G

QN(α, ϑ, τ),

ϑ(α, τ) ≡ (β(α, τ)′, γ(α, τ)′) = argmin
ϑ∈B×G

Q(α, ϑ, τ),

α̂(τ) = argmin
α∈A

∥γ̂(α, τ)∥2A(τ),

α(τ) = argmin
α∈A

∥γ(α, τ)∥2A(τ),

ϑ̂(τ) ≡ (β̂(τ)′, γ̂(τ)′) ≡ ϑ̂(α̂(τ), τ),

ϑ(τ) ≡ (β(τ)′, 0) ≡ ϑ(α(τ), τ).
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Proof of Theorem 1. See proof of Theorem 2 in Chernozhukov and Hansen (2006), P.514.

Proof of Theorem 2. Step 1 (Identification): See step 1 in the proof of Theorem 3 in Cher-
nozhukov and Hansen (2006), P.514–516.

Step 2 (Consistency): Apply step 2 in the proof of Theorem 3 in Chernozhukov and Hansen

(2006), P.516 to QN(α, ϑ, τ) ≡ EN

(∑T
t=1 ĝ(Wt, α, ϑ, τ)

)
= 1

N

∑N
i=1

∑T
t=1 ĝ(Wit, α, ϑ, τ).

Step3 (Asymptotics):
We adapt Step 3 in the proof of Theorem 3 in Chernozhukov and Hansen (2006), P.516–518.

Consider a set of closed balls BδN (α(τ)) centered at α(τ) for each τ . The radius of balls δN
is independent of τ and δN → 0 slowly enough. Denote by αN(τ) any value inside BδN (α(τ)).
Following the argument in Theorem 3.3 in Koenker and Bassett (1978),

O(1/
√
N) =

√
NEN

(
T∑
t=1

f̂(Wt, αN(·), ϑ̂(αN(·), ·), ·)

)
.

By Lemma B.1, expand the right hand side for any supτ∈T ∥αN(τ)− α(τ)∥ p→ 0:

O(1/
√
N) =

√
NEN

(
T∑
t=1

f̂(Wt, αN(·), ϑ̂(αN(·), ·), ·)

)

=
√
NE

(
T∑
t=1

f̂(Wt, αN(·), ϑ̂(αN(·), ·), ·)

)
+GN

(
T∑
t=1

f̂(Wt, αN(·), ϑ̂(αN(·), ·), ·)

)

=
√
NE

(
T∑
t=1

f̂(Wt, αN(·), ϑ̂(αN(·), ·), ·)

)
+GN

(
T∑
t=1

f(Wt, α(·), ϑ(α(·), ·), ·)

)
+ op(1) in ℓ∞(T ).

Further expansion of the last line yields

O(1/
√
N) = (Jϑ(·) + op(1))

√
N(ϑ̂(αN(·), ·)− ϑ(·)) + (Jα(·) + op(1))

√
N(αN(·)− α(·))

+GN

(
T∑
t=1

f(Wt, α(·), ϑ(α(·), ·), ·)

)
+ op(1) in ℓ∞(T ), (B.1)

where

Jα(·) =
∂

∂α′ E

(
T∑
t=1

φ·(Yt −D′
tα−X ′

tβ(·))Ψt(·)

)∣∣∣∣∣
α=α(·)

= E

(
T∑
t=1

fεt(τ)(0|Xt, Dt, Zt)Ψt(τ)D
′
t

)
,

Jϑ(·) = [Jβ(·), Jγ(·)],

Jβ(·) =
∂

∂β′ E

(
T∑
t=1

φ·(Yt −D′
tα(·)−X ′

tβ)Ψt(·)

)∣∣∣∣∣
β=β(·)

= E

(
T∑
t=1

fεt(τ)(0|Xt, Dt, Zt)Ψt(τ)X
′
t

)
,

Jγ(·) =
∂

∂γ′ E

(
T∑
t=1

φ·(Yt −D′
tα(·)−X ′

tβ(·)− Φt(·)′γ)Ψt(·)

)∣∣∣∣∣
γ=0

.

So for any supτ∈T ∥αN(τ)− α(τ)∥ p→ 0:

√
N(ϑ̂(αN(·), ·)− ϑ(·)) = −J−1

ϑ (·)GN

(
T∑
t=1

f(Wt, α(·), ϑ(α(·), ·), ·)

)
− Jϑ(·)Jα(·)(1 + op(1))

√
N(αN(·)− α(·)) + op(1) in ℓ∞(T ),
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and specifically

√
N(γ̂(αN(·), ·)− 0) = −J̄−1

γ (·)GN

(
T∑
t=1

f(Wt, α(·), ϑ(α(·), ·), ·)

)
− J̄γ(·)Jα(·)(1 + op(1))

√
N(αN(·)− α(·)) + op(1) in ℓ∞(T ),

where [J̄β(·)′, J̄γ(·)′]′ is the conformable partition of J−1
ϑ (·).

According to Step 2 wp → 1

α̂(τ) = arginf
αN (τ)∈BδN

(α(τ))

∥γ̂(αN(τ), τ)∥2A(τ) for all τ ∈ T .

By Lemma B.1, GN

(∑T
t=1 f(Wt, α(·), ϑ(α(·), ·), ·)

)
= Op(1), and therefore

√
N∥γ̂(αN(·), ·)∥A(·) = ∥Op(1)− J̄γ(·)Jα(·)(1 + op(1))

√
N(αN(·)− α(·))∥A(·) in ℓ∞(T ).

By R3 J̄γ(τ)Jα(τ) and A(τ) have full rank uniformly in τ , so
√
N(α̂(·)−α(·)) = Op(1) in ℓ∞(T ).

Expanding the argument used in the proof of Lemma D.1 in Chernozhukov and Hansen (2006),
P.520,

√
N(α̂(·)− α(·)) = arginf

µ∈Rl

∥∥∥∥∥−J̄γ(·)GN

(
T∑
t=1

f(Wt, α(·), ϑ(α(·), ·), ·)

)
− J̄γ(·)Jα(·)µ

∥∥∥∥∥
2

A(·)

+ op(1) in ℓ∞(T ).

Accordingly, in ℓ∞(T ) jointly
√
N(α̂(·)− α(·)) = −(Jα(·)′J̄γ(·)′A(·)J̄γ(·)Jα(·))−1Jα(·)′J̄γ(·)′A(·)J̄γ(·)

×GN

(
T∑
t=1

f(Wt, α(·), ϑ(α(·), ·), ·)

)
+ op(1) = Op(1),

√
N(ϑ̂(α̂(·), ·)− ϑ(·)) = −J−1

ϑ (·)
(
I − Jα(·)(Jα(·)′J̄γ(·)′A(·)J̄γ(·)Jα(·))−1Jα(·)′J̄γ(·)′A(·)J̄γ(·)

)
×GN

(
T∑
t=1

f(Wt, α(·), ϑ(α(·), ·), ·)

)
+ op(1) = Op(1).

Owing to invertibility of J̄γ(τ)Jα(τ)
√
N(γ̂(α̂(·), ·)− 0) = −J̄γ(·)

(
I − Jα(·)(J̄γ(·)Jα(·))−1J̄γ(·)

)
×GN

(
T∑
t=1

f(Wt, α(·), ϑ(α(·), ·), ·)

)
+ op(1) = 0 ·Op(1) + op(1) in ℓ∞(T ).

Substitute the above expression for
√
N(γ̂(α̂(·), ·)−0) and the expression for (αN(·), ϑ̂(αN(·), ·)) =

(α̂(·), ϑ̂(·)) = (α̂(·), β̂(·), op(1/
√
N)) into expansion (B.1):

−GN

(
T∑
t=1

f(Wt, α(·), ϑ(α(·), ·), ·)

)
= J(·)

√
N

(
α̂(·)− α(·)
β̂(·)− β(·)

)
+ op(1) in ℓ∞(T ),

where J(·) = [Jα(·)′, Jβ(·)′]′. By Lemma B.1, GN

(∑T
t=1 f(Wt, α(·), ϑ(α(·), ·), ·)

)
⇒ G(·) in

ℓ∞(T ), where G(·) is the Gaussian process with covariance function S(τ, τ ′) defined in Theo-
rem 2. Therefore,

√
N

(
α̂(·)− α(·)
β̂(·)− β(·)

)
⇒ J(·)−1G(·) in ℓ∞(T ).
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Proof of Proposition 1. The result follows immediately from assumptions.

Proof of Theorem 3. Use the proof of Theorem 5 in Chernozhukov and Hansen (2006), P.518–
520 for the functions and processes below:

• τ 7→ ẑ(Wt, τ), t = 1, . . . , T ,

• a Donsker set of functions {ξ(Wt, τ), τ ∈ T , ξ ∈ Ξ, t = 1, . . . , T},

• the empirical process (τ, ξ) 7→ GN(ξ(τ)) ≡ 1/
√
N
∑N

i=1

∑T
t=1(ξ(Wit, τ)− Eξ(Wit, τ)),

• its subsample realizations (τ, ξ) 7→ Gj,b,N(ξ(τ)) ≡ 1/
√
b
∑

i∈Ij

∑T
t=1(ξ(Wit, τ)−Eξ(Wit, τ)),

j = 1, . . . , BN . Let JN denote the sampling (outer) law of (τ, ξ) 7→ GN(ξ(τ)) in ℓ∞(T ×Ξ),

• the subsampling law Lb,N of (τ, ξ) 7→ Gj,b,N(ξ(τ)) in ℓ∞(T × Ξ).

Lemma B.1 (Stochastic expansion). Under Assumption 2, the following statements are true.

I. sup(α,β,γ,τ)∈A×B×G×T

∣∣∣EN

(∑T
t=1 ĝ(Wt, α, β, γ, τ)

)
− E

(∑T
t=1 g(Wt, α, β, γ, τ)

)∣∣∣ p→ 0.

II. GNf(W,α(·), β(·), 0, ·) ⇒ G(·) ∈ ℓ∞(T ), where G is a Gaussian process with covariance
function S(τ, τ ′) defined in Theorem 2. Furthermore, for any α̂(τ), β̂(τ), γ̂(τ) such that

sup
τ∈T

∥(α̂(τ), β̂(τ), γ̂(τ))− (α(τ), β(τ), 0)∥ p→ 0,

it is the case that

sup
τ∈T

∥∥∥∥∥GN

(
T∑
t=1

f̂(Wt, α̂(τ), β̂(τ), γ̂(τ))

)
−GN

(
T∑
t=1

f(Wt, α(τ), β(τ), 0)

)∥∥∥∥∥ p→ 0.

Proof. We adapt the proof of Lemma B.2 in Chernozhukov and Hansen (2006), P.520–522.
Denote π = (α, β, γ) and Π = A× B × G where G is a closed ball at 0. The first step is to

prove that the class of functions

H = {h = (Φ1, . . . ,ΦT ,Ψ1, . . . ,ΨT , π, τ)

7→
T∑
t=1

φτ (Yt −D′
tα−X ′

tβ − Φt(Xt, Zt)
′γ)Ψt(Xt, Zt),

π ∈ Π,Φt ∈ F ,Ψt ∈ F , t = 1, . . . , T}

is Donsker, where F is defined in R4. By Corollary 2.7.4 in van der Vaart and Wellner (1996)
the bracketing number of F satisfies

logN[·](ε,F , L2(P )) = O(ε− dim(z,x)/η) = O(ε−2−δ′),

for some δ′ < 0. So F is Donsker with a constant envelope. By Corollary 2.7.4 in van der Vaart
and Wellner (1996) the bracketing number of

X = {(Φ1, . . . ,ΦT , π) 7→ D′
tα + X ′

tβ + Φt(Xt, Zt)
′γ, t = 1, . . . , T, π ∈ Π,Φ1, . . . ,ΦT ∈ F}

satisfies
logN[·](ε,X , L2(P )) = O(ε− dim(z,d,x)/η) = O(ε−2−δ′′),
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for some δ′′ < 0. By Remark 4 in Chernozhukov and Hong (2002), the bracketing number of

V = {(Φ1, . . . ,ΦT , π) 7→ I(Yt < D′
tα +X ′

tβ + Φt(Xt, Zt)
′γ), t = 1, . . . , T,

π ∈ Π,Φ1, . . . ,ΦT ∈ F}

also satisfies
logN[·](ε,V , L2(P )) = O(ε−2−δ′′).

V is Donsker since it has constant envelope by R1 and R4.
Class H, defined as H ≡

∑T
t=1(T −V) · F , is Lipschitz over T ×V ×F . By Theorem 2.10.6

in van der Vaart and Wellner (1996) class H is Donsker, since it defined through products and
sums of bounded Donsker classes F , V , and T ≡ {τ 7→ τ}.

The fact of H being Donsker is next used to prove claim II. The process

h = (Φ1, . . . ,ΦT ,Ψ1, . . . ,ΨT , π, τ) 7→ GN

(
T∑
t=1

φτ (Yt −D′
tα−X ′

tβ − Φt(Xt, Zt)
′γ)Ψt(Xt, Zt)

)
is Donsker in ℓ∞(H).

By R3 and R4, the process

τ 7→ (τ, α(τ)′, β(τ)′,Φ1(τ,X1, Z1), . . . ,ΦT (τ,XT , ZT ),Ψ1(τ,X1, Z1), . . . ,ΨT (τ,XT , ZT ))

is uniformly Holder continuous in τ with respect to the supremum norm.
So the process

τ 7→ GN

(
T∑
t=1

φτ (Yt −D′
tα(τ)−X ′

tβ(τ))Ψt(τ,Xt, Zt)

)
is also Donsker in ℓ∞(T ).

Therefore,

GN

(
T∑
t=1

φ·(Yt −D′
tα(·)−X ′

tβ(·))Ψt(·, Xt, Zt)

)
⇒ G(·).

The process G(·) has covariance function

S(τ, τ ′) = E(G(τ)G(τ ′)′)

= E

((
T∑
t=1

φτ (Yt −D′
tα(τ)−X ′

tβ(τ))Ψt(τ,Xt, Zt)

)

×

(
T∑

s=1

φτ ′(Ys −D′
sα(τ

′)−X ′
sβ(τ

′))Ψs(τ
′, Xs, Zs)

)′)

= E

(
T∑
t=1

T∑
s=1

lt(τ, θ(τ))ls(τ
′, θ(τ ′))Ψt(τ)Ψs(τ

′)′

)
.

where lt(τ, θ(τ)) = φτ (Yt −D′
tα(τ)−X ′

tβ(τ)).

Ψ̂t(·)
p→ Ψt(·) and Φ̂t(·)

p→ Φt(·) uniformly over compact sets and π̂(τ)−π(τ)
p→ 0 uniformly

in τ . So by R3 and R4, δN ≡ supτ∈T ρ(h′(τ), h(τ))|h′(τ)=ĥ(τ)

p→ 0, where ρ is the L2(P )
pseudometric on H:

ρ(h, h̃) ≡

√√√√√ E
(∑T

t=1 ∥φτ (Yt −D′
tα−X ′

tβ − Φt(Xt, Zt)
′γ)Ψt(Xt, Zt)

−φτ (Yt −D′
tα̃−X ′

tβ̃ − Φ̃t(Xt, Zt)
′γ̃)Ψ̃t(Xt, Zt)∥2

) .
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Accordingly, as δN → 0

sup
τ∈T

∥∥∥∥∥GN

(
T∑
t=1

φτ (Yt −D′
tα̂(τ)−X ′

tβ̂(τ)− Φ̂t(τ,Xt, Zt)
′γ̂(τ))Ψ̂t(τ,Xt, Zt)

)

−GN

(
T∑
t=1

φτ (Yt −D′
tα(τ)−X ′

tβ(τ))Ψt(τ,Xt, Zt)

)∥∥∥∥∥
≤ sup

ρ(h̃,h)≤δN ,h̃,h∈H

∥∥∥∥∥GN

(
T∑
t=1

φτ̃ (Yt −D′
tα̃−X ′

tβ̃ − Φ̃t(Xt, Zt)
′γ̃)Ψ̃t(Xt, Zt)

)

−GN

(
T∑
t=1

φτ (Yt −D′
tα−X ′

tβ − Φt(Xt, Zt)
′γ)Ψt(Xt, Zt)

)∥∥∥∥∥ p→ 0,

by stochastic equicontinuity of

h 7→ GN

(
T∑
t=1

φτ (Yt −D′
tα−X ′

tβ − Φt(Xt, Zt)
′γ)Ψt(Xt, Zt)

)
,

which proves claim II.
The final step proves claim I. Functions

P = {h = (Φ1, . . . ,ΦT , V1, . . . , VT , α, β, γ, τ)

7→
T∑
t=1

ρτ (Yt −D′
tα−X ′

tβ − Φt(Xt, Zt)
′γ)Vt(Xt, Zt)}

are Donsker, since they are bounded by R1 and uniformly Lipschitz over FT×FT×A×B×G×T
(Theorem 2.10.6 in van der Vaart and Wellner (1996)).

Donskerness leads to a uniform law of large numbers

sup
h∈H

∣∣∣∣∣EN

(
T∑
t=1

ρτ (Yt −D′
tα−X ′

tβ − Φt(Xt, Zt)
′γ)Vt(Xt, Zt)

)

− E

(
T∑
t=1

ρτ (Yt −D′
tα−X ′

tβ − Φt(Xt, Zt)
′γ)Vt(Xt, Zt)

)∣∣∣∣∣ p→ 0,

which further yields

sup
(α,β,γ,τ)∈A×B×G×T

∣∣∣∣∣EN

(
T∑
t=1

ρτ (Yt −D′
tα−X ′

tβ − Φ̂t(τ,Xt, Zt)
′γ)V̂t(τ,Xt, Zt)

)

− E

(
T∑
t=1

ρτ (Yt −D′
tα−X ′

tβ − Φ̂t(τ,Xt, Zt)
′γ)V̂t(τ,Xt, Zt)

)∣∣∣∣∣ p→ 0.

Φ̂t(·) and Ψ̂t(·), t = 1, . . . , T , are uniformly consistent. By R4,

sup
(α,β,γ,τ)∈A×B×G×T

∣∣∣∣∣E
(

T∑
t=1

ρτ (Yt −D′
tα−X ′

tβ − Φ̂t(τ,Xt, Zt)
′γ)V̂t(τ,Xt, Zt)

)

− E

(
T∑
t=1

ρτ (Yt −D′
tα−X ′

tβ − Φt(τ,Xt, Zt)
′γ)Vt(τ,Xt, Zt)

)∣∣∣∣∣ p→ 0,

which proves claim I.
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Lemma B.2. Conditions I3 and I4(a,b) hold for the proposed implementation in Examples
1–2 under conditions R1–R4. In Example 3 conditions I3 and I4 hold under conditions R1–R4
for the instrumental variable quantile regression estimator for clustered data and the standard
regularity conditions for the conventional quantile regression estimator for clustered data, e.g.
those in Angrist et al. (2006) and Parente and Santos Silva (2016).

Proof. We adapt the proof of Lemma C.1 in Chernozhukov and Hansen (2006), P.523.
Consider Example 1. I3 holds for θ̂(·) by Theorem 2 in Chernozhukov and Hansen (2005).

As r = 0, zit(τ) = R(τ)(J(τ)−1lit(τ, θ(τ))Ψit(τ)), where

lit(τ, θ(τ)) = (τ − I(Yit < D′
itα(τ)−X ′

itβ(τ))), Ψit(τ) = Vit(τ)[Φit(τ)
′, X ′

it]
′. (B.2)

The proof of the fact that condition I4(a) holds in Example 1 is similar to the proof of Lemma
B.2 in Chernozhukov and Hansen (2006), P.521 for the class of functions H.

Since Ψit is a function of only Xit and Zit, condition I4(b) holds by Theorem 1 in Cher-
nozhukov and Hansen (2005). Condition I4(c) holds by R3.

Next, consider Example 2. Without the loss of generality, use r̂(·) = θ̂(1/2). For lit(·)
defined in (B.2), zit(τ) = R(τ)(J(τ)−1lit(τ, θ(τ))Ψit(τ) − J(1/2)−1lit(1/2, θ(1/2))Ψit(1/2)). In
other words, dit(τ, r(τ)) = J(1/2)−1lit(1/2, θ(1/2))Ψit(1/2)and I3—I4 hold by the argument
used in Example 1.

Finally, consider Example 3. ϑ̂(τ) is the estimate of r̂(τ) in conventional quantile regression
of Y on D and X, under the assumption of clustered data. Owing to the regularity conditions
in Angrist et al. (2006) and Parente and Santos Silva (2016),

√
N(ϑ̂(·)− ϑ(·)) = −H(·)−1 1√

N

N∑
i=1

T∑
t=1

dit(·, ϑ(·)) + op(1),

where dit(τ, ϑ(τ)) = (τ−I(Yit < X̃ ′
itϑ(τ)))X̃it for X̃it = [D′

it, X
′
it]

′,H(τ) = E
(∑T

t=1 fYt|X̃t
(X̃ ′

tϑ(τ))X̃tX̃
′
t

)
.

Therefore, zit = R(τ)(J(τ)−1lit(τ, θ(τ))Ψit(τ)−H(τ)−1dit(τ, ϑ(τ)).
The proof that conditions I3 and I4 hold for lit(τ, θ(τ))Ψit(τ) is given in Example 1.
To prove that I4(a) holds for dit(τ, ϑ(τ)), exploit the proof of Lemma B.1 by substituting

X̃it for Ψit and setting γ = 0.
I4(b) holds since E(dit(τ, ϑ(τ))) = 0, and I4(c) holds by R3.
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Appendix C Results of the empirical analysis

Table C.1: Impact of female labor supply (weeks worked per female) on female earnings in 1940–50, specification with X1,ist, X2,ist and X3,st as
controls

Quantile Mean 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

IV-QR with clustered SE −0.176∗∗∗ −0.171∗∗∗ −0.139∗∗∗ −0.112∗∗∗ −0.103∗∗∗ −0.095∗∗∗ −0.083∗∗∗ −0.072∗∗∗ −0.055∗∗∗

(0.052) (0.042) (0.032) (0.029) (0.024) (0.021) (0.018) (0.018) (0.016)

IV-QR with i.i.d. SE −0.176∗∗∗ −0.171∗∗∗ −0.139∗∗∗ −0.112∗∗∗ −0.103∗∗∗ −0.095∗∗∗ −0.083∗∗∗ −0.072∗∗∗ −0.055∗∗∗

(0.028) (0.017) (0.013) (0.012) (0.011) (0.010) (0.010) (0.010) (0.011)

QR with clustered SE −0.023 −0.027∗ −0.024∗ −0.018 −0.016 −0.010 −0.009 −0.002 0.004
(0.019) (0.016) (0.014) (0.011) (0.010) (0.010) (0.008) (0.008) (0.008)

TSLS with clustered SE −0.108∗∗∗

(0.025)

Notes: The model (9)–(11) is estimated using 69,335 observations. Dependent variable is log weekly earnings. Specification includes age
structure and state of birth. Standard errors are in parentheses. ∗, ∗∗, ∗∗∗ means significance at 10%, 5%, 1% respectively.
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Table C.2: Impact of female labor supply (weeks worked per female) on female earnings in 1940–50, specification with X1,ist, X2,ist, X3,st and
X4,st as controls

Quantile Mean 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

IV-QR with clustered SE −0.121∗∗ −0.135∗∗∗ −0.125∗∗∗ −0.092∗ −0.076∗∗ −0.044 −0.036 −0.027 −0.008
(0.057) (0.050) (0.048) (0.048) (0.039) (0.030) (0.025) (0.021) (0.021)

IV-QR with i.i.d. SE −0.121∗∗∗ −0.135∗∗∗ −0.125∗∗∗ −0.092∗∗∗ −0.076∗∗∗ −0.044∗∗∗ −0.036∗∗ −0.027∗ −0.008
(0.032) (0.022) (0.018) (0.017) (0.015) (0.014) (0.014) (0.016) (0.018)

QR with clustered SE −0.012 −0.020∗ −0.014 −0.006 −0.003 0.002 0.004 0.009 0.022∗∗∗

(0.012) (0.011) (0.010) (0.008) (0.007) (0.007) (0.006) (0.006) (0.006)

TSLS with clustered SE −0.073∗∗

(0.037)

Notes: The model (9)–(11) is estimated using 69,335 observations. Dependent variable is log weekly earnings. Specification includes age
structure, state of birth, share farmers, share nonwhite, and average education. Standard errors are in parentheses. ∗, ∗∗, ∗∗∗ means

significance at 10%, 5%, 1% respectively.
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Table C.3: Impact of female labor supply (weeks worked per female) on male earnings in 1940–50, specification with X1,ist, X2,ist and X3,st as
controls

Quantile Mean 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

IV-QR with clustered SE −0.114∗∗∗ −0.098∗∗∗ −0.082∗∗∗ −0.080∗∗∗ −0.077∗∗∗ −0.073∗∗∗ −0.062∗∗∗ −0.045∗∗∗ −0.036∗∗

(0.026) (0.020) (0.018) (0.018) (0.017) (0.017) (0.015) (0.014) (0.016)

IV-QR with i.i.d. SE −0.114∗∗∗ −0.098∗∗∗ −0.082∗∗∗ −0.080∗∗∗ −0.077∗∗∗ −0.073∗∗∗ −0.062∗∗∗ −0.045∗∗∗ −0.036∗∗∗

(0.014) (0.008) (0.007) (0.006) (0.006) (0.006) (0.006) (0.007) (0.010)

QR with clustered SE −0.019∗∗ −0.015∗ −0.013∗ −0.011 −0.010 −0.007 −0.005 −0.000 0.003
(0.008) (0.008) (0.008) (0.007) (0.007) (0.007) (0.007) (0.006) (0.007)

TSLS with clustered SE −0.070∗∗∗

(0.015)

Notes: The model (9)–(11) is estimated using 198,385 observations. Dependent variable is log weekly earnings. Specification includes age
structure and state of birth. Standard errors are in parentheses. ∗, ∗∗, ∗∗∗ means significance at 10%, 5%, 1% respectively.
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Table C.4: Impact of female labor supply (weeks worked per female) on male earnings in 1940–50, specification with X1,ist, X2,ist, X3,st and
X4,st as controls

Quantile Mean 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

IV-QR with clustered SE −0.051∗∗ −0.039∗∗ −0.018 −0.014 −0.012 −0.009 −0.008 0.002 0.012
(0.023) (0.019) (0.017) (0.017) (0.015) (0.015) (0.016) (0.014) (0.020)

IV-QR with i.i.d. SE −0.051∗∗∗ −0.039∗∗∗ −0.018∗∗ −0.014 −0.012 −0.009 −0.008 0.002 0.012
(0.016) (0.011) (0.009) (0.009) (0.008) (0.008) (0.009) (0.010) (0.013)

QR with clustered SE −0.006 −0.003 0.000 0.001 0.003 0.005 0.005 0.009∗∗∗ 0.012∗∗

(0.006) (0.004) (0.004) (0.004) (0.003) (0.003) (0.003) (0.003) (0.005)

TSLS with clustered SE −0.021
(0.017)

Notes: The model (9)–(11) is estimated using 198,385 observations. Dependent variable is log weekly earnings. Specification includes age
structure, state of birth, share farmers, share nonwhite, and average education. Standard errors are in parentheses. ∗, ∗∗, ∗∗∗ means

significance at 10%, 5%, 1% respectively.
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