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Introduction

Stochastic programming approach to optimal portfolio selection is widely used in aca-

demic literature since the pioneering works of Merton [Merton, 1969] and Samuelson

[Samuelson, 1969] who studied the problem for discrete and continuous time in its simplest

form (multi-asset portfolio on a zero-cost market without price impact). Continuous time

strategy modeling usually attracts more interest due to the possibility of a closed-form ana-

lytic solution of the Hamilton-Jacobi-Bellman equation (or the quasi-variational inequality).

The model assumes that m-dimensional price process X is the geometric Brownian motion

with SDE

dX i
t = µi

tX
i
tdt+X i

t

m∑
j=1

σij
t dw

j
t , i = 1,m, (1)

where wt is a Wiener process. Dynamics of the risk-free asset Y is described by SDE

dYt = rYtdt (2)

where r is a risk-free rate. Problem is solved for isoelasic (CRRA) utility, the solution is to

keep a constant part of total portfolio wealth in each risky asset (the so called �Merton line�

for single asset).

The approach has been extended in various studies: for example, Richard

[Richard, 1979] generalizes results to multi-dimensional Markovian price process; Karatzas

et al. [Karatzas et al., 1986] solve the problem for HARA utility; Shreve & Xu

[Xu and Shreve, 1992] use the dual approach to solve the problem with phase constraints

(no short-selling).

Extensive research has been conducted recently for market with transaction costs

and price impact. The most notable works in this area are [Davis and Norman, 1990],

[Shreve and Soner, 1994], [Ø ksendal and Sulem, 2010] for proportional transaction costs.

The above-mentioned continuous control framework does not allow for a �xed fee per

deal. Zakamouline in [Zakamouline, 2002], [Zakamouline, 2005] considers both �xed and

proportional costs while maximizing portfolio terminal value over impulse control strate-

gies. Numerical procedure for �nding the solution is also presented for CARA-utility.

[Vath et al., 2007] presents characteristics of the solution for price-dependent costs function

and permanent price impact. Impulse solution for general-shaped concave costs function is

studied in [Ma et al., 2013]. Overall, there are very few studies considering both transaction
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costs and trading limits (phase constraints).

The work by Bertsimas & Lo [Bertsimas and Lo, 1998] drew attention to the problem

of optimal liquidation, i. e. optimal selection problem with a boundary condition. It

has been researched in a series of works by Almgren & Chriss [Almgren and Chriss, 1999],

[Almgren and Chriss, 2001], [Almgren, 2003], [Lorenz and Almgren, 2011], [Almgren, 2012]

for discrete time, which consider various models of price impact and the Markowitz approach

to de�ne the optimal criterion through the risk-aversion of the portfolio manager. Further

extension of the framework can be found, for example, in [Andreev et al., 2011] for a cubic

polinomial costs function with stochastic coe�cients. Still, most of the research in this area is

centered around continuous time market where prices follow the geometric Brownian motion.

See, for example, [Schied and Sch�oneborn, 2009], [Sch�oneborn, 2011], [Predoiu et al., 2011],

[Fruth et al., 2013], [Obizhaeva and Wang, 2013].

In this paper we consider a discrete time market and present the worst-case approach to

optimal selection problem. The developed framework does not require speci�cation of the

stochastic dynamics of the system. Instead, basic properties of the parameter conditional

distribution must be speci�ed, such as expectation and range, for the considered time pe-

riod (characteristics can be estimated from statistics or by an expert). Optimal strategy is

assumed to maximize the worst-case expected value of the general-shaped terminal utility

function. The approach admits transaction costs and phase constraints while being oriented

for practical use as a decision support system (DSS) during an investment management

process. Similar approach, in game-theory terms, was studied in [Deng et al., 2005] for one-

period problem and Markowitz optimal criterion without transaction costs. The worst-case

framework has also been recently presented by Chigodaev [Chigodaev, 2016] for the option

super-hedging problem on a zero-cost market with one risky asset, based on the ideas of

Prof. Smirnov introduced at the course of lectures at the Moscow State University. Our

framework closely relates to the stochastic di�erential games theory, but instead we provide

a probabilistic interpretation through a set of probability models of the market.

The �rst chapter describes the framework and states the results for the general dynamic

system and expected utility optimization problem. We obtain the su�cient conditions to

simplify the arising Bellman-Isaacs equation and study properties of the value function.

The second chapter concentrates on the market and the portfolio selection problem: we

provide su�cient conditions for the closed-form solution of the Bellman-Isaacs equation

for markets with and without transaction costs. The third chapter describes numerical
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procedure for �nding the solution for the particular case of linear costs, which allows reducing

dimensionality of the problem. The fourth chapter presents results for the modeled data,

the �fth chapter concludes.

1 General framework and dynamic programming princi-

ple

To provide some insight, consider a �ltered probability space satisfying the usual conditions,

which represents a probability model of the system (i. e. the �nancial market). The usual

assumption when solving the optimal control problem is that the dynamics of all the system

parameters can be expressed as a trajectory of a known stochastic process Θt, t ∈ T , on a

measurable space. In this paper we try to solve the problem under weaker assumptions that

Θt is not explicitly known, though its values belong to a known compact set Kt. We will

also assume that the expected values Et, t ∈ T , of the system parameters are known as well.

The importance of specifying Et will be demonstrated later for a particular optimization

problem. As for application in �nance, certain expectations about the market dynamics

are necessary for any reasonable investment strategy and are provided by the analyst of the

company.

To understand the reasoning behind the proposed framework, imagine that Θt belongs to

a known set of candidate processes and all information concerning the system is contained

in Θt. The induced probability space can be associated with each of the candidates Θ, let

FΘ be the natural �ltration and P(Θ−1(A)) be the induced probability measure. When all

the candidate processes are assumed to have the same range of values, FΘ is common for

all of them. We plan to de�ne the optimization criterion in the mean sense, so it is easier

to describe the framework in terms of a collection of probability measures rather than the

candidate processes themselves.

For any space T , consider a collection of measurable spaces
{
(Kt,Bt)

}
t∈T , each with a

Hausdor� topology, where for all t, Kt is a convex compact set in Rl. Consider a space of

Rl-valued functions XT =
{
ω(t) : T → Rl : ω(s) ∈ Ks ∀s ∈ T

}
and a cylindrical σ-algebra

F on XT , let the sample space Ω = XT . Let {QS} be a collection of inner regular and

compatible measures QS (in terms of the Kolmogorov existence theorem [Tao, 2011, p. 195])

on KS =
∏
t∈S

Kt for each �nite subset S ⊆ T . According to the Kolmogorov theorem, there
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is a unique measure Q on Ω such that QS = (πT
S )∗Q � a pushforward measure induced by

a canonical projection map π for every �nite S ⊂ T . Hence the probability space (Ω,F , Q)

is well-de�ned for each collection {QS}. Let Q be the class of all such measures Q. In this

paper we consider a discrete time system and a �nite-horizon problem, so

T = {t0, . . . , tN}.

(To avoid trivial cases in the proofs, assumeN ≥ 2, though the main results hold forN = 1 as

well.) Our main idea is to �nd a solution to the expected functional maximization problem

in the worst possible case among all Q ∈ Q that produce the given expected values of

parameters.

Let Sn be the state of the system at tn, and Sn | Hn be the state where the control at tn

is Hn
3. Optimal strategy will later be de�ned as an admissible strategy HX∗

which provides

supremum to the functional inf
Q∈Q

ES0
Q J(SN | HX

N ). The proposed optimal control problem

is usually solved via the dynamic programming approach. The main di�culty arises for

�nding an extreme measure in Q. Any numerical implementation would require either a

feasible parametrization of the measure set or some analytic results. Moreover, the state S

must be passed as an argument of the value function, so a complex system dynamics would

require keeping all the history in the state variable which will greatly increase computational

di�culty. Throughout the paper we assume that the process of parameters is Markov, so

the system state can be reduced to the current state.

For a probability model (Ω,F , Q) consider a family of σ-algebras F s
t ⊆ F , s, t ∈ T , s < t,

such that

F s
t ⊂ Fu

v ∀ u ≤ s < t ≤ v.

De�nition 1. The parameter process is a family of functions

Θs(t) = Θs(t, ω) = ω(t), s, t ∈ T, t > s.

Note that for all s < t, Θs(t, ·) : Ω → Kt is measurable with respect to F s
t . For each

C ∈ F we let Θs(·, ω) ∈ C if there is such ω̄(t) ∈ Ω that ω(t) = ¯ω(t) for all t ≥ s and

3Formally, Sn = Sn (ω,H(ω)), hence Sn | H∗
n = Sn(ω,H

∗
n(ω)).Note that, unconditionally, Sn might depend on all

the parameter values and the control history.
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¯ω(t) ∈ C (see [Skorokhod, 1989, p. 150]). De�ne a subset QE of Q as

QE =
{
Q ∈ Q : EΘs

Q Θt = Et ∀s, t ∈ T, s < t
}
.

For each Q ∈ QE de�ne the Markov kernel (the transition probability function)

P (s, x, t, A) = Q
{
Θs(t) ∈ A | Θs(s) = x

}
= Ps,x

{
Θt ∈ A

}
(3)

on T × Ks × T × Bt, which satisfy the following conditions:

I) for all s, t ∈ T , s ≤ t, and all A ∈ Bt, P (s, ·, t, A) is measurable on Ks;

II) for all s, t ∈ T , s ≤ t, and all x ∈ Ks, P (s, x, t, ·) is a probability measure on Bt;

III) the Chapman-Kolmogorov equation holds:

P (s, x, t, A) =

∫
P (s, x, u, dz)P (u, z, t, A) s < u < t, x ∈ Ks, A ∈ Bt. (4)

By de�nition, Ps,x

{
Θs(s) = x

}
= 1. The space of Markov kernels induced by QE will be

denoted P(QE).

Let PE be the space of functions P (s, x, t, A) : T × Ks × T × Bt → [0; 1] for which

I)-III) are true, ∫
zP (s, x, t, dz) = Et s < t, x ∈ Ks, (5)

and

P (s, x, s, {x}) ≡ 1. (6)

We would make an extensive use of measures on subsets S of T , so the following notation is

used as the most convenient and descriptive:

QE
S =

{
(πT

S )∗Q, Q ∈ QE
}
, QE

≥n

df
= QE

[tn,tN ], QE
n

df
= Q{tn},

PE(QE
S ) =

{
QS

{
Θs(t) ∈ A | Θs(s) = x

}
, QS ∈ QS

}
,

PE
S and PE

≥n are de�ned by analogy. For any state Sn de�ne a set of conditional measures

QE
S | Sn =

{
Q{· | Sn}, Q ∈ QE

S

}
.
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Lemma 1. For any S ⊆ T , PE
S = P(QE

S ).

Proof. P(QE
S ) ⊆ PE

S by de�nition, so we only need to prove that for any P ∈ PE
S there is a

Q ∈ QE
S , generating P in accordance with (3). Indeed, it can be shown [Skorokhod, 1989]

that one can construct a family of measures

Ps,x

{
Θs(s1) ∈ A1, . . . ,Θs(sn) ∈ An

} Ps,x-a.s.
=

=

∫
A1

P (s, x, s1, dx1)

∫
A2

P (s1, x1, s2, dx2) . . .

∫
An

P (sn−1, xn−1, sn, dxn),

s ≤ s1 ≤ . . . ≤ sn, s, s1, . . . , sn ∈ S. (7)

For τ = inf S, let µτ (A) be any probability measure on (Kτ ,Bτ ). Then we can construct Q

as

Q
{
ω(s1) ∈ A1, . . . , ω(sn) ∈ An

}
=

∫
µτ (dx)Pτ,x

{
Θτ (s1) ∈ A1, . . . ,Θτ (sn) ∈ An

}
. (8)

It can be easily seen that for s ≤ s1, s ∈ S,

Q
{
ω(s1) ∈ A1, . . . , ω(sn) ∈ An | ω(s) = x

} Q-a.s.
= Ps,x

{
Θs(s1) ∈ A1, . . . ,Θs(sn) ∈ An

}
. (9)

Thus, EΘs
Q Θt =

∫
zP (s,Θs, t, dz) = Et and Q ∈ QE

S . Therefore, PE
S ⊆ P(QE

S ).

Lemma 1 shows that by generating Markov kernels from the set of considered measures,

we obtain all possible Markov kernels with the required properties.

Corollary 1. For any S ⊆ T , QE
S is isomorphic to QE

{τ} ⊗ PE
S where τ = inf S.

Proof. Consider the map f : QE
{τ}⊗PE

S → QE
S given by (8), and the map g : QE

S → QE
{τ}⊗PE

S

where g(Q) = (µτ , P ),

µτ (A) = Q {ω(τ) ∈ A} ,

P (s, x, t, A) = Q
{
ω(t) ∈ A | ω(s) = x

}
.
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Since

[
f(g(Q))

]{
ω(s1) ∈ A1, . . . , ω(sn) ∈ An

}
=

=

∫
µτ (dx)

∫
A1

P (τ, x, s1, dx1)

∫
A2

P (s1, x1, s2, dx2) . . .

∫
An

P (sn−1, xn−1, sn, dxn) =

=

∫
Q
{
dω(τ)

}∫
A1

Q
{
dω(s1) | Sτ

}∫
A2

Q
{
dω(s2) | Ss1

}
. . .

∫
An

Q
{
dω(sn) | Ssn−1

}
=

= Q
{
ω(s1) ∈ A1, . . . , ω(sn) ∈ An

}
for every measurable A1, . . . , An, then g = f−1 and f is a bijective map.

Corollary 2. For any S ⊆ T such that [tn+1, tN ] ∩ S ̸= ∅ where n = 0, N − 1, QE
S | Sn is

isomorphic to PE
{tn}∪([tn+1,tN ]∩S).

Proof. The proof will be provided for tn+1 ≤ inf S, in other cases it can be conducted by

analogy. Consider the map f : PE
{tn} ∪ ([tn+1,tN ]∩S) → QE

S | Sn, given by (9), and the map

g : QE
S | Sn → PE

{tn}∪([tn+1,tN ]∩S) de�ned as P (s, x, t, A) = Q
{
ω(t) ∈ A | ω(s) = x

}
. Since

[
f(g(Q))

]{
ω(s1) ∈ A1, . . . , ω(sn) ∈ An | Sn

}
=

=

∫
A1

P (tn,Θn, s1, dx1)

∫
A2

P (s1, x1, s2, dx2) . . .

∫
An

P (sn−1, xn−1, sn, dxn) =

=

∫
A1

Q
{
dω(s1) | Sn

}∫
A2

Q
{
dω(s2) | Ss1

}
. . .

∫
An

Q
{
dω(sn) | Ssn−1

}
=

= Q
{
ω(s1) ∈ A1, . . . , ω(sn) ∈ An

}
for every measurable A1, . . . , An, then g = f−1 and we have constructed a bijective map.

1.1 The Bellman-Isaacs equation

To derive the Bellman-Isaacs equation, we, in layman's terms, need to be able to decompose

the in�mum over QE
≥n into in�ma over QE

n and QE
≥n+1.

Lemma 2. For any u ∈ S ⊆ T such that both [t0;u]∩ S and [u; tN ]∩ S contain at least two

points, PE
S is isomorphic to PE

[t0;u]∩S ⊗ PE
[u;tN ]∩S.

Proof. To construct a bijective map, we show that for any P ∗
1 ∈ PE

[t0;u]∩S and P ∗
2 ∈ PE

[u;tN ]∩S,
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there is P ∈ PE
S :

P (s, x, t, A) ≡

 P ∗
1 (s, x, t, A), s, t ∈ [t0, u] ∩ S,

P ∗
2 (s, x, t, A), s, t ∈ [u, tN ] ∩ S

Firstly, note that P (u, x, u, A) is de�ned correctly since

P (u, x, u, A) = P ∗
1 (u, x, u, A) = P ∗

2 (u, x, u, A) = I{x ∈ A}.

For s < u < t de�ne

P (s, x, t, A) =

∫
P ∗
1 (s, x, u, dz)P

∗
2 (u, z, t, A).

The Markov kernel composition belongs to PE
S which can be shown by verifying properties

I)-III) and (5) for s < u < t. II) and III) are obvious, (5) is implied by the Fubini-Tonelli

theorem and by property (5) of P ∗
1 :

Et = Et

∫
Ku

P ∗
1 (s, x, u, dz) =

∫
Ku

EtP
∗
1 (s, x, u, dz)

(5)
=

∫
Ku

∫
Kt

yP ∗
2 (u, z, t, dy)P

∗
1 (s, x, u, dz) =

=

∫
Kt

y

∫
Ku

P ∗
1 (s, x, u, dz)P

∗
2 (u, z, t, dy) =

∫
Kt

yP (s, x, t, dy).

To prove property I), we use the fact that a function is measurable if and only if it is a

limit of a uniformly converging sequence of simple functions [Kolmogorov and Fomin, 1999].

Since P ∗
1 (s, x, u, A) and P ∗

2 (u, x, t, A) are x-measurable,

P ∗
1 (s, x, u, A) = lim

N→+∞

+∞∑
j=1

cN,j(s, u, A)I
{
x ∈ CN,j(s, u, A)

}
,
⋃
j

CN,j(s, u, A) = Ks,

P ∗
2 (u, x, t, A) = lim

M→+∞

+∞∑
i=1

bM,i(u, t, A)I
{
x ∈ BM,i(u, t, A)

}
,
⋃
i

BM,i(u, t, A) = Ku,

where all CN,j and BM,i are measurable sets. Then

P (s, x, t, A) = lim
M→+∞

+∞∑
i=1

bM,i(u, t, A)P
∗
1 (s, x, u, BM,i(u, t, A)) =
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= lim
M→+∞

+∞∑
i=1

bM,i(u, t, A) lim
N→+∞

+∞∑
j=1

cN,j (s, u,BM,i(u, t, A)) I
{
x ∈ CN,j (s, u,BM,i(u, t, A))

}
=

= lim
M→+∞

lim
N→+∞

+∞∑
j=1

+∞∑
i=1

bM,i(u, t, A)cN,j (s, u,BM,i(u, t, A)) I
{
x ∈ CN,j (s, u,BM,i(u, t, A))

}
.

Since the values of products bM,i(u, t, A)cN,j can coincide, let {al}+∞
l=1 be a set of various

values among all i and j, so that

ak = bM,ik,1(u, t, A)cN,jk,1 = . . . = bM,ik,lk
(u, t, A)cN,jk,lk

.

Then

P (s, x, t, A) = lim
M→+∞
N→+∞

+∞∑
k=1

akI

{
x ∈

lk⋃
p=1

CN,jk,p

(
s, u,BM,ik,p(u, t, A)

)}
= lim

n→+∞
fn(x; s, u, t, A),

where fn is a simple function since all the sets
{
fn(x) = ak

}
are measurable as

unions of measurable sets. Thus, property I) for P holds true. The provided map

f : PE
[t0;u]∩S ⊗ PE

[u;tN ]∩S → PE
S can be obviously reversed and proven bijective which

proves the main statement.

Statement 1. For any n = 1, N , admissible state Sn−1, measurable f and ξ ∈ m(Fk),

k ≥ n,

inf
ξ∈m(Fk)

ESn−1f(ξ) = ESn−1 inf
ξ∈m(Fk)

f(ξ), (10)

granted the in�ma exist and the conditional expectations exist and �nite.

Proof. 1) Let ξ∗ belong to the a. s. in�mum of f : f(ξ∗)
a. s.
= inf

ξ∈m(Fk)
f(ξ) then

ESn−1f(ξ∗) ≤ ESn−1f(ξ),

therefore

ESn−1 inf
ξ∈m(Fk)

f(ξ) ≤ inf
ξ∈m(Fk)

ESn−1f(ξ).

On the other hand, since ξ∗ ∈ m(Fk),

inf
ξ∈m(Fk)

ESn−1f(ξ) ≤ ESn−1f(ξ∗) = ESn−1 inf
ξ∈m(Fk)

f(ξ),

hence the equality holds.
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Remark: Statement 1 obviously holds for supremum instead of in�mum (mutatis mutan-

dis), so we will refer to the Statement in both cases.

Lemma 3. Let N ≥ 2, then for each ξ ∈ m(FN) and each n = 1, N − 1,

inf
Q∈QE

≥n

ESn−1

Q ξ = inf
Qn∈QE

n

ESn−1

Qn
inf

Q≥n+1∈QE
≥n+1

ESn
Q≥n+1

ξ.

Proof. Note that Q≥n | Sn−1 is isomorphic to PE
{tn−1,tN} by virtue of Corollary 2 for S =

[tn; tN ]; PE
{tn−1,tN} is isomorphic to PE

{tn−1,tn} ⊗ PE
≥n by Lemma 2 for S = [tn−1; tN ] and

u = tn. Corollary 2, when applied for S = {tn}, yields that PE
{tn−1,tn} is isomorphic to

Qn | Sn−1; when applied for S = [tn+1; tN ], yields that PE
≥n is isomorphic to Q≥n+1 | Sn.

Thus, by transitivity, Q≥n | Sn−1 is isomorphic to Qn | Sn−1 ⊗ Q≥n+1 | Sn. Therefore

inf
Q∈QE

≥n

ESn−1

Q ξ = inf
Q∈QE

≥n|Sn−1

ESn−1

Q ξ = inf
Qn|Sn−1

inf
Q≥n+1|Sn

ESn−1ξ =

= inf
Qn|Sn−1

inf
Q≥n+1|Sn

ESn−1ESnξ
(10)
= inf

Qn∈Qn|Sn−1

ESn−1

Qn
inf

Q≥n+1∈Q≥n+1|Sn

ESn
Q≥n+1

ξ.

Lemma 3 can be interpreted as an equivalent of the semigroup property in proof of the

dynamic programming principle.

Consider a utility function J(SN). J might depend solely on the portfolio structure �

for example, in most classic approaches to portfolio optimization, the utility depends on

the terminal market value of portfolio. J might also depend on the state of the whole

system � consider the previous example when, instead of market value, the utility is based

on liquidation value of the portfolio, hence co-depends on the transaction cost parameters.

By strategy we mean a sequence H = {Hn}Nn=1 such that Hn ∈ Rm+1 for each n = 1, N .

As before, let H≤k = {Hn}kn=1, H≥k = {Hn}Nn=k. We assume that S0 is observable initial

state of the system (which includes H0).

De�nition 2. For a given collection of sets Dn ∈ m(Fn−1), Dn ⊆ Rm+1, Dn ̸= ∅, admissible

strategy is a strategy H such that for all n = 1, N

1. Hn ∈ Dn;
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2. Hn ∈ m(Fn−1);

3.

Q {Hn ∈ An | Fn−1}
a.-s.
= Q {Hn ∈ An | Sn−1} ∀An ∈ B(Dn), ∀Q ∈ QE

(Markov control policy).

A set of all admissible strategies is denoted A; for any S ⊆ T ,

AS | Sn−1 =
{
{Hk}S∩[tn;tN ] : H ∈ A, Hn−1 ∈ Sn−1

}
,

while A | Sn−1 = A[tn;tN ] | Sn−1.

De�nition 3. Optimal strategy is a strategy H∗ ∈ A such that

inf
Q∈QE

ES0
Q J(SN | H∗

N) = sup
H∈A

inf
Q∈QE

ES0
Q J(SN | HN). (11)

Let Sn be the set of all system states at tn for all admissible H≤n; Sn | H≤n be the set

of all system states at tn for the strategy H≤n; let Sn | Hn be a set of all system states at

tn when the control value is Hn. When necessary, for S ∈ Sn | H≤n we will also use the

notation S | H≤n for clari�cation.

Consider the following dynamic programming equation for the value function Vn(S):

Vn−1(S) = sup
Hn∈Dn(S)

inf
Qn∈QE

n

ES
Qn

Vn(Sn | Hn), S ∈ Sn−1, n = 1, N, (12)

VN(S) = J(S), S ∈ SN . (13)

Statement 2. If n = 1, N , S ∈ Sn−1, ξ ∈ m(FN) and function f(ξ) is continuous and

bounded, then ES
Q f(ξ) is continuous in Q over Q≥n.

Proof. By de�nition, Q≥n+1 | S consists of Borel measures de�ned on
N∏

i=n+1

Ki which can be

supplied with a metric d. Consider the Prokhorov metric dP on Q≥n+1 | S. By its properties,

dP (Qi, Q) −→ 0 =⇒ Qi ⇒ Q, Q, Qi ∈ Q≥n+1 | S, i ≥ 1.

Given the continuity and boundedness of f , weak convergence of measures proves the state-

ment.
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Under speci�c conditions, the value of Vn(S) is the optimal value of the worst-case ex-

pected utility when the initial moment is tn and the initial state is S. To prove this, a version

of the minimax theorem is required. Since the initial version for concave-convex function

over compact sets, the result has been generalized for more general cases. Here we use the

theorems for two generalizations of convexity which require the compactness of only one set.

De�nition 4. A function f(x, y) on M × N is quasi-concave in M if {x : f(x, y) ≥ c} is a

convex set for any y ∈ N and real c.

De�nition 5. A function f(x, y) on M × N is quasi-convex in N if {y : f(x, y) ≤ c} is a

convex set for any x ∈ M and real c.

A function f(x, y) on M × N is quasi-concave-convex if it is both quasi-concave in M

and quasi-convex in N .

Theorem 1 ([Sion, 1958]). Let M and N be convex spaces, one of which is compact, and

f(µ, ν) be a function on M × N , quasi-concave-convex, upper semi-continuous in µ for

each ν ∈ N and lower semi-continuous in ν for each µ ∈ M . Then

sup
µ∈M

inf
ν∈N

f(µ, ν) = inf
ν∈N

sup
µ∈M

f(µ, ν).

Lemma 4. Let

Vn−1(S) = sup
H≥n∈A|S

inf
Q≥n∈Q≥n

ES
Q≥n

J(SN | HN), S ∈ Sn−1, n = 1, N, (14)

If for some n′ ∈ [1;N − 1]

1. Dk(Sk−1) is convex for each Sk−1 ∈ Sk−1, k ≥ n′ + 1;

2. ES
Q inf

Q′∈Q≥n′+1

ESn′ |Hn′
Q′ J(SN | HN) is quasi-concave and upper semi-continuous in

H≥n′+1 ∈ A | (Sn′ | Hn′) for each S ∈ Sn′−1, Hn′ ∈ Dn′(S) and Q ∈ QE
n′;

3. inf
Q′∈Q≥n′+1

ESn′
Q′ J(SN | HN) is continuous and bounded on Sn′ for each H≥n′+1 ∈ A | Sn′,

then Vn−1 satis�es (12) for n = n′.
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Proof. We have

Vn′−1(S) = sup
H≥n′∈A|S

inf
Q≥n′∈Q≥n′

ES
Q≥n′J(SN | HN)

Lemma 3
=

= sup
Hn′∈Dn′ (S)

sup
H≥n′+1∈A|(Sn′ |Hn′ )

inf
Qn′∈Qn′

ES
Qn′ inf

Q≥n′+1∈Q≥n′+1

ESn′ |Hn′
Q≥n′+1

J(SN | HN).

ES
Qn′ inf

Q≥n′+1∈Q≥n′+1

ESn′ |Hn′
Q≥n′+1

J(SN | HN) is linear, hence quasi-convex, in Qn′ . The assumptions

yield that it is also quasi-concave and upper semi-continuous in H≥n′+1, and also continuous

in Qn′ which follows from Statement 2. Since Kn′ is compact, by the Prokhorov theorem,

Qn′ is compact relative to the Prokhorov metric. Convexity of Qn′ follows from convexity of

Kn′ while convexity of A | (Sn′ | Hn′) follows from convexity of Dk, k ≥ n′+1. Therefore,

Theorem 1 applies and

Vn′−1(S) =

sup
Hn′∈Dn′ (S)

inf
Qn′∈Qn′

sup
H≥n′+1∈A|(Sn′ |Hn′ )

ES
Qn′ inf

Q≥n′+1∈Q≥n′+1

ESn′ |Hn′
Q≥n′+1

J(SN | HN)
Statement 1

=

= sup
Hn′∈Dn′ (S)

inf
Qn′∈Qn′

ES
Qn′ sup

H≥n′+1∈A|(Sn′ |Hn′ )

inf
Q≥n′+1∈Q≥n′+1

ESn′ |Hn′
Q≥n′+1

J(SN | HN) =

= sup
Hn′∈Dn′ (S)

inf
Qn′∈Qn′

ES
Qn′Vn′(Sn′ | Hn′).

De�nition 6. A function f(x, y) on M × N is concavelike in M if for every x1, x2 ∈ M

and 0 ≤ t ≤ 1, there is a x ∈ M such that

tf(x1, y) + (1− t)f(x2, y) ≤ f(x, y) ∀y ∈ N.

De�nition 7. A function f(x, y) on M × N is convexlike in N if for every y1, y2 ∈ N

and 0 ≤ t ≤ 1, there is a y ∈ N such that

tf(x1, y) + (1− t)f(x2, y) ≥ f(x, y) ∀x ∈ M.

A function f(x, y) on M × N is concave-convexlike if it is both concavelike in M and

convexlike in N .

Theorem 2 ([Sion, 1958]). Let M be any space, N compact and f(µ, ν) a function on
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M × N that is concave-convexlike. If f(µ, ν) is lower semi-continuous in ν for each

µ ∈ M , then

sup
µ∈M

inf
ν∈N

f(µ, ν) = inf
ν∈N

sup
µ∈M

f(µ, ν).

Lemma 5. Let Vn(S) be de�ned by (14). If for some n′ ∈ [1;N − 1]

1. ES
Q inf

Q′∈Q≥n′+1

ESn′ |Hn′
Q′ J(SN | HN) is concavelike in H≥n′+1 ∈ A | (Sn′ | Hn′) for each

S ∈ Sn′−1, Hn′ ∈ Dn′(S) and Q ∈ QE
n′;

2. inf
Q′∈Q≥n′+1

ESn′
Q′ J(SN | HN) is continuous and bounded on Sn′ for each H≥n′+1 ∈ A | Sn′,

then Vn satis�es (12) for n = n′.

Proof. The proof repeats Lemma 4, the only di�erence is using Theorem 2 instead of The-

orem 1 to prove that sup
H≥n′+1∈A|(Sn′ |Hn′ )

inf
Qn′∈Qn′

= inf
Qn′∈Qn′

sup
H≥n′+1∈A|(Sn′ |Hn′ )

, which is provided

by the assumptions of the Lemma.

Statement 3. Let f and g be �nite functions on X×Y , such that inf
Y

f(x, y) and inf
Y

g(x, y)

are attained for each x ∈ X. If for every y ∈ Y f(x, y) < g(x, y) on X then

inf
Y

f(x, y) < inf
Y

g(x, y) ∀x ∈ X.

Proof. To prove by contradiction, assume that there is x′ ∈ X such that

f(x′, y1) = inf
Y

f(x′, y) ≥ inf
Y

g(x′, y) = g(x′, y2).

Then f(x′, y1) ≥ g(x′, y2) > f(x′, y2) which contradicts the de�nition of y1 as in�mum.

Theorem 3 (Dynamic programming principle in weak form). Let H∗ be an optimal strategy

and Vn(S) be de�ned by (12),(13). Let the assumptions of either Lemma 4 or Lemma 5 hold

for every n = 1, N − 1. Then for any n = 1, N :

1. if n = 1, then

H∗
n ∈ Argmax

Hn∈Dn(S0)

inf
Qn∈QE

n

ES0
Qn

Vn(Sn | Hn); (15)
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2. if n > 1 then there is such S ∈ Sn−1 | H∗
≤n−1 that

H∗
n ∈ Argmax

Hn∈Dn(S)
inf

Qn∈QE
n

ES
Qn

Vn(Sn | Hn). (16)

Proof. The proposed assumptions yield that Vn can be de�ned by (14). Assume that for

some n′ ∈ [1;N ] the statement is not true. If n′ = 1 then there is such Ĥn′ ∈ Dn′(S0),

Ĥn′ ̸= H∗
n′ , that

inf
Qn′∈QE

n′

ES0
Qn′Vn′(Sn′ | H∗

n′) < inf
Qn′∈QE

n′

ES0
Qn′Vn′(Sn′ | Ĥn′); (17)

if n′ > 1, then for any S ∈ Sn−1 | H∗
≤n−1 there is such Ĥn′ ∈ Dn′(S), Ĥn′ ̸= H∗

n′ , that

inf
Qn′∈QE

n′

ES
Qn′Vn′(Sn′ | H∗

n′) < inf
Qn′∈QE

n′

ES
Qn′Vn′(Sn′ | Ĥn′). (18)

1) Let n′ < N . For the subclass of strategies A∗
≤n′ =

{
H ∈ A : Hk = H∗

k , k ≤ n′}, we
have

H∗ ∈ A∗
≤n′ ⊆ A,

therefore

inf
Q∈QE

ES0
Q J(SN | H∗

N) = sup
H∈A∗

≤n′

inf
Q∈QE

ES0
Q J(SN | HN)

Lemma 3
=

= sup
H≥n′+1∈A|(Sn′ |H∗

n′)
inf

Q≤n′∈QE
≤n′

ES0
Q≤n′ inf

Q≥n′+1∈QE
≥n′+1

ES∗
n′

Q≥n′+1
J(SN | HN),

where S∗
k ∈ Sk | H∗

≤k, k ≥ 1, and S∗
0 = S0. Using the same reasoning for QE

≤n′ as in Lemmas

4 and 5, it is easy to see that sup
H≥n′+1

and inf
Q≤n′

can be switched by virtue of the provided

minimax theorems. Therefore,

inf
Q∈QE

ES0
Q J(SN | H∗

N) =

= inf
Q≤n′∈QE

≤n′

ES0
Q≤n′ sup

H≥n′+1∈A|(Sn′ |H∗
n′)

inf
Q≥n′+1∈QE

≥n′+1

ES∗
n′

Q≥n′+1
J(SN | HN)

(14)
=

= inf
Q≤n′∈QE

≤n′

ES0
Q≤n′Vn′(S∗

n′).
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If n′ > 1 then

inf
Q≤n′∈QE

≤n′

ES0
Q≤n′Vn′(S∗

n′) = inf
Q≤n′−1∈QE

≤n′−1

ES0
Q≤n′−1

inf
Qn′∈QE

n′

E
S∗
n′−1

Qn′ Vn′(S∗
n′)

(18), Stat.3
<

< inf
Q≤n′−1∈QE

≤n′−1

ES0
Q≤n′−1

inf
Qn′∈QE

n′

E
S∗
n′−1

Qn′ Vn′(Sn′ | Ĥn′) = inf
Q≤n′∈QE

≤n′

E
S∗
n′−1

Q≤n′ Vn′(Sn′ | Ĥn′);

if n′ = 1 then

inf
Q≤n′∈QE

≤n′

ES0
Q≤n′Vn′(S∗

n′) = inf
Qn′∈QE

n′

ES0
Q≤n′Vn′(S∗

n′)
(17), Stat.3

<

< inf
Qn′∈QE

n′

ES0
Q≤n′Vn′(Sn′ | Ĥn′) = inf

Q≤n′∈QE
≤n′

E
S∗
n′−1

Q≤n′ Vn′(Sn′ | Ĥn′).

In any case,

inf
Q∈QE

ES0
Q J(SN | H∗

N) < inf
Q≤n′∈QE

≤n′

E
S∗
n′−1

Q≤n′ Vn′(Sn′ | Ĥn′) =

= inf
Q≤n′∈QE

≤n′−1

ES0
Q≤n′−1

inf
Qn′∈QE

n′

E
S∗
n′−1

Qn′ sup
H≥n′+1∈A|(Sn′ |Ĥn′)

inf
Q≥n′+1∈Q≥n′+1

ESn′ |Ĥn′
Q≥n′+1

J(SN | HN) =

= inf
Q∈QE

ES0
Q J(SN | ĤN)

for some strategy Ĥ such that

 Ĥk = H∗
k , k < n′,

Ĥn′ ̸= H∗
n′

. Therefore, Ĥ ̸= H∗ which contradicts

the optimality of H∗.

2) For n′ = N we have, by analogy,

inf
Q∈QE

ES0
Q J(SN | H∗

N)
(13)
= inf

Q∈QE
ES0

Q VN(S∗
N) = inf

Q≤N−1∈QE
≤N−1

ES0
Q≤N−1

inf
QN∈QE

N

ES∗
N−1

QN
VN(S∗

N)
(18), Stat.3

<

< inf
Q≤N−1∈QE

≤N−1

ES0
Q≤N−1

inf
QN∈QE

N

ES∗
N−1

QN
VN(SN | ĤN) = inf

Q≤N∈QE
≤N

ES∗
N−1

Q≤N
VN(SN | ĤN) =

= inf
Q∈QE

ES0
Q J(SN | ĤN)

for some strategy Ĥ such that ĤN ̸= H∗
N which contradicts the optimality of H∗.

Theorem 4 (Veri�cation theorem). Let Vn(S) be a solution to (12). Then for all n = 1, N

and S ∈ Sn−1

1.

Vn−1(S) ≥ inf
Q∈QE

≥n

ES
QJ(SN | HN), ∀H≥n ∈ A | S; (19)
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2. if there is a H∗ ∈ A such that

H∗
n ∈ Argmax

Hn∈Dn(S)
inf

Qn∈QE
n

ES
Qn

Vn(Sn | Hn), S ∈ Sn−1, (20)

then Vn−1(S) = inf
Q∈QE

≥n

ES
QJ(SN | H∗

N).

Proof. The �rst part of the theorem is proven by induction. For n = N , (19) follows directly

from (12). Let (19) hold for Vn. Then

Vn−1(S)
(12)
= sup

Hn∈Dn

inf
Qn∈QE

n

ES
Qn

Vn(Sn | Hn) ≥ inf
Qn∈QE

n

ES
Qn

Vn(Sn | Hn)
(19) for Vn

≥

≥ inf
Qn∈QE

n

ES
Qn

inf
Q∈QE

≥n+1

ESn|Hn

Q J(SN | HN)
Lemma 3

= inf
Q∈QE

≥n

ES
QJ(SN | HN). (21)

Therefore, (19) holds for Vn−1.

The second statement is proven by analogy: due to (20), all the inequalities in (21) turn

to equalities which proves the statement.

The dynamic programming principle speci�es the necessary conditions for the optimal

strategy to satisfy the Bellman-Isaacs equation, while the Veri�cation theorem provides the

su�cient conditions. Unfortunately, the result of Theorem 3 is rather weak for n > 1 in

general case4. H∗
n is guaranteed to attain maximum in the dynamic programming equation

only for some of the system states in Sn−1 | H∗
≤n−1, therefore one cannot be sure that for the

given state the equation is satis�ed. Weakness of the proposition stems from the necessity

of its strong negation to justify the inequality

inf
Q≤n′−1∈QE

≤n′−1

ES0
Q≤n′−1

Vn′(S∗
n′−1, H

∗
n′) < inf

Q≤n′−1∈QE
≤n′−1

ES0
Q≤n′−1

Vn′(S∗
n′−1, Ĥn′) (22)

in proof by contradiction, where

Vn(S, H) = inf
Qn∈QE

n

ES
Qn

Vn(Sn | H), S ∈ Sn−1, H ∈ An | S. (23)

The result could be strengthened if we assume that the outer in�ma on both sides are

4Note that for n = 1 Hn = H1 ∈ m(F0), hence not a random variable. So the condition (15) is satis�ed in a
classic sense.
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attained at the same measure Q∗ ∈ QE
≤n′−1 | S0. Then the inequality is equivalent to

ES0
Q∗

≤n′−1
Vn′(S∗

n′−1, H
∗
n′) < ES0

Q∗
≤n′−1

Vn′(S∗
n′−1, Ĥn′)

which is satis�ed when

Q∗
≤n′−1

{
Vn′(S∗

n′−1, H
∗
n′) < Vn′(S∗

n′−1, Ĥn′)
}
= 1.

From this we can assume thatH∗
n dominates (in terms of (18)) such Ĥn for which the in�mum

over QE
≤n′−1 | S0 can be attained at Q∗

n′−1.

For n = 1, N consider the set-valued map Rn−1 : A≤n−1 × An | Sn−1 → 2Q
E
≤n−1 such

that

Rn−1(H
′
≤n−1, Hn) = Argmin

Q≤n−1∈QE
≤n−1

ES0
Q≤n−1

Vn(S | H ′
≤n−1, Hn).

This allows us to formulate the dynamic programming principle in semi-strong form:

Theorem 5 (Dynamic programming principle in semi-strong form). Let H∗ be an optimal

strategy and Vn(S) be de�ned by (12),(13). Let the assumptions of either Lemma 4 or Lemma

5 hold for every n = 1, N − 1. Then for any n = 1, N :

1. if n = 1, then H∗
n satis�es (15);

2. if n > 1 then for any Ĥn such that Rn−1(H
∗
≤n−1, Ĥn)∩Rn−1(H

∗
≤n−1, H

∗
n) ̸= ∅, and any

Q∗ ∈ Rn−1(H
∗
≤n−1, Ĥn) ∩Rn−1(H

∗
≤n−1, H

∗
n)

Q∗
{
Vn(S∗

n−1, H
∗
n) ≥ Vn(S∗

n−1, Ĥn)
}
> 0.

Proof. The proof repeats Theorem 3, inequality (22) holds based on the assumptions for

n′ > 1: if there are Ĥn′ and Q∗ ∈ Rn′−1(H
∗
≤n′−1, Ĥn′) ∩Rn′−1(H

∗
≤n′−1, H

∗
n′) such that

Q∗
{
Vn′(S∗

n′−1, H
∗
n′) ≥ Vn′(S∗

n′−1, Ĥn′)
}
= 0 ⇐⇒

⇐⇒ Q∗
{
Vn′(S∗

n′−1, H
∗
n′) < Vn′(S∗

n′−1, Ĥn′)
}
= 1,
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then

inf
Q≤n′−1∈QE

≤n′−1

ES0
Q≤n′−1

Vn′(S∗
n′−1, H

∗
n′) = ES0

Q∗Vn′(S∗
n′−1, H

∗
n′) <

< ES0
Q∗Vn′(S∗

n′−1, Ĥn′) = inf
Q≤n′−1∈QE

≤n′−1

ES0
Q≤n′−1

Vn′(S∗
n′−1, Ĥn′).

As in Theorem 3, we can use (22) to reach a contradiction and prove the main statement.

The necessary conditions for optimality might be hard to verify in practice so by optimal

strategy we will mean an extreme point in the Bellman-Isaacs equation according to (20)

bearing in mind that there can be other optimal strategies. Nevertheless, such strategy is

reasonably constructed thus can be considered a feasible solution of the problem. Finding

the solution of (12)-(13) is another topic since it implies �nding a minimum over a set of

probability measures. The problem is numerically di�cult in general case but has a closed-

form solution for value functions with speci�c properties:

Theorem 6. Let f(x) be a �nite real-valued concave function on a convex polyhedron K ⊂

Rl, E ∈ K, Q � a set of probability measures on K. Then the solution of the problem


∫
K

f(x)dQ(x) −→ inf
Q∈Q

,∫
K

xidQ(x) = Ei, i = 1, l.
(24)

includes an atomic measure with mass concentrated in mK + 1 extreme points of K,

mK = dim(K), such that E belongs to their convex combination while mass at each point

equals the corresponding barycentric coordinate of E.

Similar result can be obtained via the theory of generalized Tchebyche� inequalities, see

[Karlin and Studden, 1966, chapter XII]. The problem of �nding the extreme measure is

also studied in a more recent work [Goovaerts et al., 2011] for a number of measure classes.

In this paper we provide a constructive proof of the Theorem for measures on bounded

polyhedrons and obtain a closed-form analytic solution. The proof is based on the fact that

a bounded polyhedron always has such facet that all its points lie above the facet-de�ned

hyperplane. To illustrate, below is the proof for K = [a; b], a < b: consider a linear function

l(x), such that l(a) = f(a) and l(b) = f(b):

l(x) =
b− x

b− a
f(a) +

x− a

b− a
f(b).
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Since f is concave, f(x) ≥ l(x) on [a, b]. Therefore

∫
[a,b]

f(x)dQ(x) ≥
∫

[a,b]

l(x)dQ(x) =
b− E

b− a
f(a) +

E − a

b− a
f(b) =

∫
[a,b]

f(x)dQ∗(x),

where

Q∗(x) = pδ(x− a) + (1− p)δ(x− b), (25)

p = b−E
b−a

. p ∈ [0, 1] since E ∈ [a, b], which proves the statement. The proof for the general

case can be found in Appendix 1. The result could be used for (12)-(13) to �nd in�mum

over a set of measures more e�ectively since the set of extreme measure candidates would

be known and �nite.

For a bounded polyhedron K, let m(K) = dim(K) and let G(K,E) be a set of combi-

nations of its m(K) + 1 extreme points such that their convex combination contains a point

E ∈ K. For a combination G = (G0, . . . , Gm(K)) ∈ G(K,E), let pi(G,E) be the barycentric

coordinate of E in the convex combination corresponding to the point Gi, i = 0,m(K).

Lemma 6. For some 1 ≤ n′ ≤ N let Kn′ be a bounded polyhedron and let the value function

Vn′(Sn′) be concave in Θn′ on Sn′. Let Sn′ | (H∗,Θ∗) be a system state at tn′ where the control

Htn′ = H∗ and the parameter value Θtn′ = Θ∗. Then

Vn′−1(S) = sup
Hn′∈Dn′ (S)

min
Gn′∈G(Kn′ ,En′ )

m(Kn′ )∑
i=0

pi(Gn′ , En′)Vn′ (Sn′ | (Hn′ , Gi,n′)) . (26)

Throughout the rest of the paper we consider only polyhedral sets Kn, n = 1, N , which

are automatically bounded due to compactness. If concavity in unknown parameters Θ

holds for all tn then the Bellman-Isaacs equation can be simpli�ed to (26) for all n = 1, N

which reduces the problem of �nding Vn−1 at each S to solving a �nite number of (m+ 1) -

dimensional optimization problems. If there is only one parameter (l = 1), the problem is

further simpli�ed since there is only one combination of extreme points for each n and the

extreme measure is known exactly, see (25).

The remaining part of the research considers application of the provided results to the

optimal portfolio selection problem in discrete-time �nancial market. We consider a general

class of price models without requiring a full speci�cation of the dynamics and provide

su�cient and economically reasonable conditions to simplify the Bellman-Isaacs equation.
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2 Optimal portfolio selection problem

Let HX
n ∈ Rm be the vector of volumes of the risky assets at tn, and HY

n ∈ R be the volume

of the risk-free asset at tn, while the asset prices are Xn ∈ Rm and Yn ∈ R respectively. Let

Kn be a bounded convex polyhedron for n = 1, N .

De�nition 8. Portfolio at time tn, n = 0, N , is a vector Hn = (HX
n , HY

n )
T .

De�nition 9. Market value of the portfolio Hn is

Wn = HX
n

T
Xn +HY

n Yn. (27)

Let WX
n = HX

n
T
Xn and W Y

n = HY
n Yn be market values of the risky and the risk-free

positions respectively. In presence of transaction costs, di�erence arises between the market

and the liquidation value (i. e. the real value of a portfolio when liquidated on the market).

Henceforth, by �portfolio value� we shall mean the market value.

H0 ∈ Rm+1 is a given initial portfolio. External capital and asset movements in the

framework are considered zero, so the following budget equation holds at every n:

∆HX
n

T
Xn−1 +∆HY

n Yn−1 = −Cn−1(∆HX
n ,Sn−1) (28)

⇔

HY
n = Y −1

n−1

(
Wn−1 −HX

n

T
Xn−1 − Cn−1(∆HX

n ,Sn−1)
)
, (29)

where Cn−1(∆H,S) is the value of transaction costs for the deal of volume ∆H at tn−1 given

the state S5.

Consider trading limits at each tn in the form of phase constraints Hn ∈ Dn ⊆ Rm+1, n =

1, N , where Dn ∈ m(Fn−1). Since Hn means the portfolio which must be hold throughout

the n-th investment period, the structure of Hn is determined at tn−1 based on the available

information, which explains the Fn−1-measurability of Hn and its domain Dn.

Budget equation demonstrates that HY
n can always be expressed through HX

n via (29),

so in the rest of the paper we consider HX as a strategy and formulate phase constraints in

terms of HX only. An admissible strategy is then de�ned according to De�nition 2.

5Throughout the paper, ∆H > 0 means buying |∆H| of the asset and ∆H < 0 means selling |∆H| respectively.
For a vector ∆H this applies element-wise.
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2.1 Price dynamics

The general framework admits a frivolous choice of the market parameter vector. For exam-

ple, parameters can describe price returns, risk-free rate, market liquidity or credit quality

of the emitent. In each case an aimed study is required to �nd the optimal solution. In

this study we consider only the parameters that a�ict price dynamics assuming that the

remaining parameters are known or can be provided with a reliable point estimate. Most of

the �nancial literature considers a multiplicative price dynamics:

∆Xn = snXn−1,

e. g. the model of Cox,Ross and Rubinstein or the Black-Scholes market. To illustrate the

approach, one could consider Θn = sn, but to have a better understanding of how it can be

used in practice, we treat sn as a sum of two components which stand for the expected value

of price return and the deviation from it:

∆Xn = µnXn−1∆tn + σnXn−1

√
∆tn, n = 1, N, (30)

where σn ∈ Rm×m are diagonal matrices with random elements σ1
n, . . . , σ

m
n on the main diago-

nal, µn ∈ Rm×m are matrices with non-negative non-diagonal elements, see [Yaozhong, 2000]

for details. µn is assumed known for all n and can be interpreted as a forecast of the returns

made by the company analyst for the forthcoming investment periods. We consider

Θn = (σ1
n, . . . , σ

m
n )

T ∀n = 1, N,

the vector of parameters represent deviation from the forecast which is a priori unknown,

though its range can be estimated by an expert to whom we refer as �risk-manager�. Con-

struction of (30) resembles GBM model but does not assume normality or symmetry of

the returns distribution, thus avoiding the most criticized assumptions of the model (see

[Cont, 2001]). Rather, (30) represents a general class of price processes with multiplicative

dynamics.

One could consider an additive model and conduct a similar research but additive dy-

namics is less common in �nancial literature and in practice due to the lack of positivity of

prices. It is also possible to abstain from imposing any a priori assumptions about price, but

the optimal strategy can turn out to be ine�ective due to the complete lack of information
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about price. In the multiplicative model, range of Θ can sometimes be estimated based on

the market trading policy. For example, MOEX stops the continuous auction for the partic-

ular security on the Main Board and performs two discrete auctions per trading session if

the price of the security deviates by more than 20% from the previous close6. If µn = 0 this

allows to consider Kn =
m⊗
i=1

[−0.2; 0.2] for all n as reasonable bounds for the parameters (in

general case, Kn will depend on µn). Of course, such a rough estimate can lead to ine�ective

portfolio management strategy since it does not rely on any additional information about

the risky prices.

Note that µn and Kn must be chosen in such a way that sn is always positive. Otherwise,

the price of some assets is allowed to become non-positive with non-zero probability, while

negative prices are not economically reasonable and zero prices are not considered in the

current framework (all issuers are assumed default-free).

Risk-free dynamics is given, as usual, by

∆Yn = rnYn−1∆tn, n = 1, N, (31)

where rn ≥ 0 is the risk-free rate known for every n. Since we don not consider risk-free

rate as an unknown parameter, a �at rate structure would su�ce to demonstrate the results.

Risk-free asset can be a cash account in a secure bank or even a separate �xed income

investment portfolio with no credit and liquidity risk.

To simplify the problem, we also assume that the optimal portfolio structure for the

next period depends solely on the market prices, the portfolio structure and the value of the

risk-free position at the end of the previous period (or at t0), thus

Sn = (Xn, H
X
n ,W Y

n ).

For ease of notation we will write Dn instead of Dn(X,HX ,W Y ) though dependency on the

state is still implied unless mentioned otherwise. Then the Bellman-Isaacs equation can be

represented as

6http://moex.com/a775 [as of 20.09.2016]
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Vn−1(X,HX ,W Y ) = sup
HX

n ∈Dn

inf
Qn∈QE

n

ESn−1

Qn
Vn

(
(1 + µn∆tn +Θn

√
∆tn)X,HX

n ,

(
W Y − (HX

n −HX)TX − Cn−1(H
X
n −HX , Sn−1)

)
(1 + rn∆tn)

)
, n = 1, N, (32)

VN(X,HX ,W Y ) = J(X,HX ,W Y ),

which, in presence of Θ-concavity of Vn, can be rewritten as

Vn−1(X,HX ,W Y ) =

= sup
Z∈Dn

min
G∈Gn(Kn,En)

m(Kn)∑
i=0

pi(Gn, En)Vn

(
(1 + µn∆tn + diag(Gi,n)

√
∆tn)X,Z,

(
W Y − (Z −HX)TX − Cn−1(H

X
n −HX , Sn−1)

)
(1 + rn∆tn)

)
, n = 1, N, (33)

VN(X,HX ,W Y ) = J(X,HX ,W Y ),

where diag(Gi,n) is a diagonal matrix with elements of vector Gi,n on the main diagonal.

In this chapter we research the speci�c properties of the value function. First, we study

the market with zero transaction costs (Cn(∆HX
n ,Sn−1) ≡ 0, n = 1, N) and provide su�cient

conditions for Θ-concavity of the value function. Then we present the analogous result for

the general market, which requires stricter conditions. We also assume that the optimal

strategy and the value function are �nite over the considered regions. This assumption is

reasonable for practical use when in�nite values point to poor speci�cation of parameter

estimates or optimal criteria. In general, boundedness depends on the trading limits, the

terminal utility and the stochastic parameter range, and is beyond the scope of the research.

2.2 Zero-cost market

For some region S∗ ⊂ Rm×Rm×R consider a set-valued functionD(X,HX ,W Y ) : S∗ → 2R
m
.

Assumption 1. D(X,HX ,W Y ) is such that
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1. For every (X,HX ,W Y ) ∈ S∗

Z ∈ D(X,HX ,W Y ) ⇐⇒ ATZ ∈ D(A−1X,ATHX ,W Y ) (34)

for all invertible matrices A;

2. For every (X,HX ,W Y ) ∈ S∗

Z ∈ D(X,HX ,W Y ) ⇐⇒ Z ∈ D(X, 0,W Y +HXT
X); (35)

3. For every α ∈ [0, 1] and every (X,HX
1 ,W Y

1 ), (X,HX
2 ,W Y

2 ) ∈ S∗,

Z1 ∈ D(X,HX
1 ,W Y

1 ), Z2 ∈ D(X,HX
2 ,W Y

2 ) ⇒

⇒ αZ1 + (1 − α)Z2 ∈ D(X,αHX
1 + (1 − α)HX

2 , αW Y
1 + (1 − α)W Y

2 ). (36)

Assumption 1′. D(X,HX ,W Y ) is such that (35), (36) hold and for every

(X,HX ,W Y ) ∈ S∗

Z ∈ D(X,HX ,W Y ) ⇐⇒ AZ ∈ D(A−1X,AHX ,W Y ) (37)

∀A = diag(a1, . . . , am) > 0.

As an example of the function which satis�es Assumption 1, consider

D(X,HX ,W Y ) =
{
Z ∈ Rm : − βXW ≤ ZTX ≤ (1 + βY )W

}
, (38)

W = W Y +HXT
X.

Now consider a function V (X,HX ,W Y ) : S∗ → R.

Assumption 2. V (X,HX ,W Y ) is such that for every (X,HX ,W Y ) ∈ S∗

V (AX,HX ,W Y ) = V (X,ATHX ,W Y ) ∀A. (39)
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Assumption 2′. V (X,HX ,W Y ) is such that for every (X,HX ,W Y ) ∈ S∗

V (AX,HX ,W Y ) = V (X,AHX ,W Y ) ∀A = diag(a1, . . . , am) > 0. (40)

Assumption 3. V (X,HX ,W Y ) is such that for every (X,HX ,W Y ) ∈ S∗

V (X,HX ,W Y ) = V (X, 0,W Y +HXT
X). (41)

Assuming that the utility function J and the constraint sets Dn, n = 1, N , satisfy some

of the above-mentioned assumptions, we prove that some properties of J are inherited by

the value functions Vn across all n, including concavity in W Y which leads to concavity in

parameters.

Theorem 7. For a zero-cost market, let the following assumptions hold:

1. J(X,HX ,W Y ) satis�es Assumptions 2 and 3 for S∗ = SN .

2. J(X,HX ,W Y ) is concave in W Y for each X,HX such that (X,HX ,W Y ) ∈ SN .

3. Dn(X,HX ,W Y ) satis�es Assumption 1 for S∗ = Sn for every n = 1, N .

4. Xn and Yn are de�ned by (30) and (31) respectively.

Then the value function satis�es (33).

Theorem 8. For a zero-cost market, let the following assumptions hold:

1. J(X,HX ,W Y ) satis�es Assumptions 2′ and 3 for S∗ = SN .

2. J(X,HX ,W Y ) is concave in W Y for each X,HX such that (X,HX ,W Y ) ∈ SN .

3. Dn(X,HX ,W Y ) satis�es Assumption 1′ for S∗ = Sn for every n = 1, N .

4. Xn and Yn are de�ned by (30) and (31) respectively.

5. µn is diagonal for every n = 1, N .
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Then the value function satis�es (33).

It can be easily noticed that all the previous results of this and other sections can be

obtained for a class of measures with known support but without �xed expectation values.

A natural question arises about the necessity of specifying the expectation at all. Below we

illustrate the importance of it in the context of the worst-case portfolio selection problem.

We provide su�cient conditions under which lack of the expectation constraint leads to

risk-free strategy being always optimal, which makes the investment process degenerative.

Theorem 9. For a zero-cost market, consider the Bellman-Isaacs equation (12)-(13) for

Qn =
⋃

E∈Kn

QE
n , n = 1, N , and let the following assumptions hold:

1. J(X,HX ,W Y ) satis�es Assumptions 2 and 3 for S∗ = SN .

2. J(X,HX ,W Y ) is concave in W Y for each X,HX such that (X,HX ,W Y ) ∈ SN .

3. Dn(X,HX ,W Y ) satis�es Assumption 1′ for S∗ = Sn for every n = 1, N .

4. 0 ∈ Dn(X,HX ,W Y ) for every n = 1, N .

5. Xn and Yn are de�ned by (30) and (31) respectively.

6. µn is diagonal and the main diagonal of (rnI − µn)
√
∆tn is a vector in Kn for every

n = 1, N .

Then HX∗
= 0 is an optimal strategy.

2.3 Market with transaction costs

For the general market, consider the costs function Cn−1(∆HX ,Sn−1)
df
= Cn−1(∆HX , Xn−1),

n = 1, N . While being quite narrow, this simple class of functions includes the most com-

monly used proportional costs model.

Consider a function C(∆H,X) : Rm × Rm
+ → R+.

Assumption 4. C(∆H,X) is such that

1. C(∆H,X) is non-negative, non-decreasing in |∆H| and convex in ∆H on Rm for any

X ∈ Rm
+ ;
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2. for every X ∈ Rm
+ , ∆H ∈ Rm and A = diag(a1, . . . , am) > 0

C(A∆H,X) = C(∆H,AX); (42)

With this assumption it is quite easy to prove the analog to Theorem 8:

Theorem 10. Let the following assumptions hold:

1. J(X,HX ,W Y ) is non-decreasing in W Y for each X,HX such that (X,HX ,W Y ) ∈ SN .

2. J(X,HX ,W Y ) satis�es Assumption 2′ for S∗ = SN .

3. J(X,HX ,W Y ) is jointly concave in HX ,W Y for each X such that (X,HX ,W Y ) ∈ SN .

4. Dn(X,HX ,W Y ) satis�es Assumption 1′ for S∗ = Sn for every n = 1, N .

5. Cn−1(∆HX , X) satis�es Assumption 4 for every n = 1, N .

6. Xn and Yn are de�ned by (30) and (31) correspondingly.

7. µn is diagonal for every n = 1, N .

Then the value function satis�es (33).

The key di�erence between Theorems 8 and 10 are the assumption of joint concavity

in HX ,W Y and monotonicity in W Y . However, these properties are not restrictive since

inherent to a wide range of classic utility functions of the form

J(X,HX ,W Y ) = J(W Y +HXT
X − CN(H

X , X)), (43)

i.e. non-decreasing concave functions of terminal liquidation value of the portfolio, including

CARA and CRRA utilities.

3 Numeric solution of the Bellman-Isaacs equation with

linear costs

When costs function is linear in volume, it is possible to restate the problem in terms ofWX =

HXT
X instead of X and HX separately. This leads to the Bellman-Isaacs equation where

the value function depends on m less variables compared to the general case, which is useful
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for numerical purposes. Let Cn−1(∆H,X) = λn−1(∆H)|∆H|X, n = 1, N , where λn−1(h) ≡ λ+
n−1, h ≥ 0,

λ−
n−1, h < 0.

λ+
n−1 and λ−

n−1 are proportionality coe�cients for transaction costs function

for buy and sell deals respectively. Below we present a numeric scheme assuming that the

limit book is symmetrical (λ+
n−1 = λ−

n−1). The assumption is widely-used in literature and

can sometimes be a necessary condition for the arbitrage-free market (see [Gatheral, 2010]).

Here, the symmetry is used for the sake of convenience and not required.

Consider the isoelastic utility J(X,HX ,W Y ) = (W Y + HXT
X − λN |HXT |X)γ/γ and

m = 1 (multidimensional case can be researched by analogy). By denoting πX = WX

W0
and

πY = WY

W0
, we can work in terms of dimensionless variables and obtain the Bellman-Isaacs

equation as

Vn−1(π
X , πY ) = sup

h∈Dn(WX ,WY )

[
pnVn

(
snh, π

Y r̃n − (h− πX)r̃n − λn−1

∣∣h− πX
∣∣r̃n)+

+ (1− pn)Vn

(
snh, π

Y r̃n − (h− πX)r̃n − λn−1

∣∣h− πX
∣∣r̃n))], n = 1, N, (44)

VN(π
X , πY ) = (πY + πX − λN |πX |)γ/γ, (45)

where

Dn =
{
h : −βX

n (πX + πY ) ≤ h ≤ (1 + βY
n )(π

Y + πX)
}
, n = 1, N. (46)

Dimensionality of the state space can be reduced up to m + 1 for even more general case

when Cn(∆H,X) is a, possibly non-linear, function of ∆HTX. However, in this case the

value function will depend on (WX ,W Y ) rather than the dimensionless (πX , πY ) which will

require additional scaling during numeric procedures.

The described method has been implemented for MatLab R2012a. Generally speaking,

the framework can be decomposed into several blocks. Actual implementation depends on

the speci�c formalization of the problem. The blocks are:

1. De�ning key aspects of the problem which is conducted by both investor and portfolio

manager. At this stage, one de�nes investment horizon, control moments t1, . . . , tN ,

initial market and portfolio state, optimal criteria, admissible set of assets for future

investments (stock selection).

2. Preliminary analysis of market data: estimation of initial market parameters and a

priori distributions for the Bayesian method.
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3. Update procedure for statistically estimated parameters and updates of expert fore-

casts.

4. Numerical solution of the Bellman-Isaacs equation based on the current estimates.

5. Analysis of performance and the control characteristics. Strategy can be stopped

prematurely due to the reset of the strategy which is decided by the portfolio manager.

We consider the case when the value function is concave in parameters Θ, hence the

Bellman-Isaacs equation can always be reduced to the simpli�ed form. If phase constraints

are compact, maximum is always achieved. For example, in one-dimensional case, constraint

set (38) is an interval, while in multidimensional case it can be modi�ed as

D(X,HX ,W Y ) =

Z ∈ Rm :
−βXW ≤ ZTX ≤ (1 + βY )W,

|Z|TX ≤ (1 + β̃Y )W

 , (47)

where W = W Y +HXT
X, so that D is compact and still satis�es Assumption 1 which can

be readily veri�ed. (47) can be interpreted as limits for total size of short positions and limit

for the amount invested in risky assets. Without the second constraint, one could in�nitely

short one risky asset and invest in another without violating the limit.

The value function can be calculated recursively according to (44), however this method

becomes too slow with the increase of the number of steps N . Hence, we propose a step-

by-step reconstruction of the value function on (πX , πY ) grid: �rst, for tN , then for tN−1 by

using known values at tN , and so on up to t0. As a byproduct, we obtain reconstructed value

function for the whole grid which can be used for future analysis and strategy modeling if

market parameters and forecasts are assumed unchanged.

At time tN value function is known from analytic representation of J . Suppose that Vn is

reconstructed for the grid. To �nd Vn−1 according to (44), we might need Vn values in points

both inside and outside the grid. Thus, either interpolation and extrapolation methods or

appropriate parametric form V̂n of the value function is required. The latter approach has

been used during modeling, parametric form was chosen so that it is concave for any values

of the calibration coe�cients. We �nd that for isoelastic J , all Vn, n = 0, N − 1, can be

approximated (even in the presence of costs and constraints) by isoelastic function of the

form

V̂n(π
X , πY ) =

(
bXn

T
πX + bYn π

Y + cn

)γ
/γ, (48)
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with �tting reduced to simple linear regression. Since Vn−1 depends solely on Vn, it is possible

to calculate values of Vn−1 on the grid in parallel mode.

4 Modeling results

This chapter presents results of implementing the proposed framework to modeled market.

We consider one risky asset and stationary parameters µn, En, Kn. Economic interpretation

allows to divide them into two main groups characterizing price forecast and deviation from

it. Hence, during investment process, the groups can be estimated by di�erent departments

(analyst/trader and risk-manager). We assume that µ is given by an expert analyst since

poorly estimated based on market information. K is estimated and updated via a Bayesian

method based on observable data: we assume that the data follows a known stochastic

process with unknown parameters (GBM was used since it was the basis for the multiplicative

price model). The parameters are estimated and K is found as credible interval of detrended

returns. E is assumed zero to keep all the information about price forecast within µ.

Analyst's forecasts of µ are characterized by the forecasting power. Denote the price

change over interval [tn−1, tn] as ∆Xn, n = 1, N . At time tn−1, the forecasted value is

modeled as a random variable µ̃n with normal distribution such that

µ̃n −
∆Xn

Xn−1

=
∆Xn

Xn−1

ξ, ξ ∼ N (0, ε2). (49)

ε−1 is a measure of forecast's precision, hence analyst's forecasting power. This method of

forecast modeling is extremely rough but allows to de�ne dimensionless measure of forecast-

ing power. Estimates for K are characterized by credible interval for speci�ed level α.

Below we demonstrate the worst-case strategy and discuss the results for one realized

scenario of market price. Parameters are the following: m = 1; N = 5; Cn−1(∆H,X) =

λ|∆H|X, n = 1, N ; price follows GBM with drift 0.03 and volatility 0.005; risk-free rate

equals 0.02; initial prices are 1; initial capital is 10; ∆tn = 1. The utility function is

isoelastic with γ = 0.6. Strategy is constrained by D(X,HX ,W Y ), de�ned in (38), with

stationary coe�cients βX
n = βY

n ≡ 1. Between each neighboring control moments tn, 500

price observations are assumed available for Bayesian updates. Figures 1 - 3 demonstrate

the realized price trajectory and the worst-case strategy results for high forecasting power

ε = 1 when λ = 0 and λ = 0.05 (loss of 5% of each deal's value).
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Figure 1: Realized price trajectory.

Since the forecasting power is big enough, all decisions made by DSS were correct in

terms of long/short position, hence portfolio value increased at every step. In the presence

of costs, transacted volumes are smaller and the total pro�t becomes less. Further increase

in λ shows that at some point costs are so large that risky investments are not worth investing

into, even if all the decisions are correct. Figure 4 demonstrates results for the same price

scenario and λ = 0.12.

For the same values of parameters, we simulated market dynamics and compared the

expectation of liquidation value. Based on 100 iterations, we obtained that, for λ = 0.05,

expected optimal portfolio value outperforms risk-free value by 3.05%, and by 28.32% for

λ = 0. This shows that even for λ = 0.05 the worst-case strategy produces better results

than risk-free investment.
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Figure 2: The worst-case optimal strategy: to the left � at costs-free market; to the right �
at λ = 0.05. ε = 1.

5 Conclusion

We present a probabilistic framework for the worst-case approach to the stochastic dynamic

programming problem in discrete time with terminal utility maximization criterion. Unlike

the classic game-theoretic framework, we assume that the dynamic model of the stochastic

system is a black box with some observable characteristics, and formulate a model-free

approach to the optimal control of a general Markov stochastic system in a class of Markov

strategies on a �nite horizon. One of the assumptions of the framework is the boundedness

of parameters' range which can be considered a mild restriction if the range is chosen big

enough. We also present a closed-form solution to the problem for a speci�c class of the

terminal utility functions. The results are then applied to the strategic portfolio selection

problem for discrete time when the stochastic process of asset prices is not speci�ed. The

choice of the discrete time is caused by the intended purpose to implement the approach as

a decision support system during an investment process rather than an automatic trading

system. Besides, even high-frequency trading cannot be continuous due to the latency of

the trading platform which, especially in presence of �xed transaction costs per deal, makes
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Figure 3: Portfolio market valueWn when using the worst-case optimal strategy: to the left �
at costs-free market; to the right � at λ = 0.05. Dashed line is market value according to
risk-free strategy HX ≡ 0. Pentagonal star denotes liquidation value of the portfolio at the
end of the strategy. ε = 1.

discrete dynamics more viable.

The selection problem is solved when only the expected value and range of the future price

returns are known. The worst-case framework allows to avoid using a speci�c price model

hence accepting the implied assumptions. For example, the canonical model of geometric

Brownian motion assumes normal distribution of returns which has been criticized lately

[Cont, 2001]. The proposed approach has been adapted to the general multiplicative model

without the assumptions of GBM. Therefore an expert could change forecasts and ranges of

possible price returns according to the state of the market, which is crucial during crisis and

eventual shocks.

The main results hold for several risky assets in presence of convex transaction costs

and trading limits. For proportional costs, we present a simpler numerical scheme for the

Bellman-Isaacs equation by reducing the dimensionality of the value function's state space.
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Appendix 1. The extreme measure problem for m-

dimensional convex polyhedral support

In this section we consider a �nite real-valued function f(x) over a convex hull K of a �nite

point set in Rl. Let aff(K) be the a�ne hull of K, dim(aff(K)) = mK ≤ l. For the general

results in convex geometry, we refer to [Artamonov and Latyshev, 2004]. Let U(K) be the

set of extreme points of K. Note that K = conv (U(K)).

Lemma 7. Let f(x) be concave on K and E ∈ K. Then there is Ũ ⊆ U(K) consisting of

mK + 1 points, and a�ne function l(x), such that

1. E ∈ conv(Ũ);

2. l(A) = f(A), ∀A ∈ Ũ ;

3. l(x) ≤ f(x), ∀x ∈ K;

Proof. Note that when K contains a single point, mK = 0 and the statement is trivial so

the rest of the proof assumes mK > 0.

Instead of l-dimensional sets K and U(K), we will work in terms of mK-dimensional

equivalent subsets of aff(K) due to bijectivity. It can be easily shown that concave f(x)

attains minimum on U(K). De�ne the set

Uf (K) = {B = (A, f(A)), A ∈ U(K) ⊂ aff(K)} .

LetM = conv(Uf (K)), thenM is a polyhedron and can be de�ned in terms of a non-singular

linear system of

gk(x, h) =

mK∑
i=1

aki xi + akmK+1h+ ak0, k = 1, r, x ∈ aff(K), h ∈ R

so that M =
{
x, h : gk(x, h) ≥ 0, k = 1, r

}
. Since f is �nite and U(K) is bounded, M is a

bounded set, thus a1mK+1, . . . , a
r
mK+1 cannot all be zero. By construction, dim(M) is either

mK or mK + 1. Since E ∈ K, by Carath�eodory theorem, there is a combination of mK + 1

extreme points in U(K) such that E is the convex combination of these points. Let UE be

a set of such combinations.
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1) If dim(M) = mK , then there is a k∗ such that gk∗(x, h) = 0 for each (x, h) ∈ M .

Assume that ak
∗

mK+1 = 0. Then

gk∗(x, h) =

mK∑
i=1

ak
∗

i xi + ak
∗

0 = 0

de�nes a mK-dimensional facet which contains mK + 1 extreme points of Uf (K). Since

dim(K) = mK , the corresponding mK +1 extreme points of K are in general position, hence

ak
∗

0 = . . . = ak
∗

mK
= 0 which contradicts the de�nition of polyhedron. Therefore, ak

∗
mK+1 ̸= 0

and we can take

l(x) = −
mK∑
i=1

ak
∗

i

ak
∗

mK+1

xi −
ak

∗
0

ak
∗

mK+1

and any combination of extreme points from UE.

2) Let dim(M) = mK + 1. Let Π(E) = {Πk}r
∗

k=1 be a set of hyperplanes de�ned by

combinations of the extreme points in Uf (K) such that the combinations of the corresponding

points from U(K) belong to UE. For ease of notation, let each Πk ∈ Π(E) be de�ned by

gk(x, h) = 0. Our next goal is to prove that there is a hyperplane Πk∗ ∈ Π(E) such that

ak
∗

mK+1 ̸= 0 and

h ≥ −
mK∑
i=1

ak
∗

i

ak
∗

mK+1

xi −
ak

∗
0

ak
∗

mK+1

∀(x, h) ∈ M. (50)

By contradiction, assume that for any k = 1, r∗ either akmK+1 = 0 or there is (xk, hk) ∈ M

such that

hk < −
n∑

i=1

aki
akmK+1

xk
i −

ak0
akmK+1

⇐⇒ akmK+1gk(x
k, hk) < 0.

In the latter case, if akmK+1 > 0 then gk(x
k, hk) < 0, thus (xk, hk) ̸∈ M which contradicts

the assumption. Therefore, akn+1 ≤ 0 for every k = 1, r∗. This means that if gk(E, h) ≥ 0 is

satis�ed for all k = 1, r∗ for some h ∈ R, then the inequalities are satis�ed for any (E, h−∆),

∆ ≥ 0. If we prove that any point (E, h) satisfying inequalities gk(E, h) ≥ 0 for k = 1, r∗,

automatically satis�es inequalities for k = r∗ + 1, r, then we will show thatM is not bounded

which leads to contradiction.

To prove the required statement, note that for any k = 1, r∗ there are extreme points

Ak,1, . . . , Ak,mK+1 ∈ U(K) such that E ∈ conv(Ak,1, . . . , Ak,mK+1). Therefore

E =

mK+1∑
i=1

λk,iAk,i,

mK+1∑
i=1

λk,i = 1, λk,i ≥ 0.
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Then linearity of the polyhedral inequalities implies

gj

(
E,

mK+1∑
i=1

λk,if(Ak,i)

)
≥ 0 ∀k = 1, r∗, ∀j = r∗ + 1, r. (51)

Let

F = min
1≤k≤r∗

mK+1∑
i=1

λk,if(Ak,i) =

mK+1∑
i=1

λk,if(Ak,i),

F = max
1≤k≤r∗

mK+1∑
i=1

λk,if(Ak,i) =

mK+1∑
i=1

λk,if(Ak,i).

Then linearity of the inequalities and (51) imply that

gj(E, h) ≥ 0 ∀h ∈ [F , F ], ∀j = r∗ + 1, r.

Since M is bounded, the line {(E, h), h ∈ R} intersects M at points (E,
mK+1∑
i=1

λk,if(Ak,i))

at least for one k ∈ [1, r∗], thus the set {h : (E, h) ∈ M} ⊆ [F , F ]. Hence the inequalities

gk(E, h) ≥ 0 can be satis�ed for each k = 1, r∗ only for h ∈ [F , F ] which means that the rest

of the inequalities will be satis�ed as well.

We have proven that if for any k = 1, r∗ either akmK+1 = 0 or there is (xk, hk) ∈ M such

that

hk < −
n∑

i=1

aki
akmK+1

xk
i −

ak0
akmK+1

,

then M is unbounded which contradicts the de�nition. Therefore, there are coe�cients

ak
∗

1 , . . . , ak
∗

mK+1 such that k∗ ∈ [1, r∗] and (50) is true. Then we can consider

l(x) = −
mK∑
i=1

ak
∗

i

ak
∗

mK+1

xi −
ak

∗
0

ak
∗

mK+1

.

By construction, l(x) ≤ f(x) onK. Since the corresponding hyperplane Πk∗ containsmK + 1

extreme points (A1, f(A1)) , (AmK+1, f(AmK+1)), l(Ai) = f(Ai) for i = 1,mK + 1. By de�-

nition of Πk∗ , E ∈ conv(A1, . . . , AmK+1).

Lemma 7 allows to prove Theorem 6 which states that if f(x) is a �nite real-valued

concave function on a convex polyhedron K ⊂ Rl, E ∈ K and Q is a set of probability
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measures on K, then the solution of the problem


∫
K

f(x)dQ(x) −→ inf
Q∈Q

,∫
K

xidQ(x) = Ei, i = 1, l.

includes an atomic measure with mass concentrated in mK + 1 extreme points of K,

mK = dim(K), such that E belongs to their convex combination while mass at each

point equals the corresponding barycentric coordinate of E.

Proof of Theorem 6. Consider any l(x) from Lemma 7. Then l(x) equals f(x) at mK + 1

extreme points A0, . . . , AmK
∈ K such that E =

mK∑
i=0

piAi,
mK∑
i=0

pi = 1, pi = 0, i = 0,mK .

Since l(x) is a�ne, we have

∫
f(x) dQ(x) ≥

∫
l(x) dQ(x) = l(E) =

mK∑
i=0

pil(Ai) =

mK∑
i=0

pif(Ai) =

∫
f(x) dQ∗(x),

where

Q∗(x) =

mK∑
i=0

piδx({Ai}),

which proves the statement.

Below we provide the analytic formulas for p0, . . . , pmK
: let each extreme point Ai have

a�ne coordinates
(
xi
1, . . . , x

i
mK+1

)T
in aff(K), i = 0,mK , and let E have a�ne coordinates

(E1, . . . , EmK
)T 7. Then p0, . . . , pmK

is the solution of the linear system


x0
1 − E1 . . . xmK

1 − E1

...
. . .

...

x0
mK

− EmK
. . . xmK

mK
− EmK

1 . . . 1

 p =


0
...

0

1

 .

Since E is a convex combination of the extreme points, p ≥ 0. The solution can be

found numerically while analytic form is found by using the Cramer's rule and the Laplace

expansion:

7If dim(K) = m, a�ne coordinates can be made equal to the absolute coordinates in Rl.
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pi =
∆i

∆
, ∆ =

∣∣∣∣∣∣∣∣∣∣∣∣

x0
1 − E1 . . . xmK

1 − E1

...
. . .

...

x0
mK

− EmK
. . . xmK

mK
− EmK

1 . . . 1

∣∣∣∣∣∣∣∣∣∣∣∣
,

∆i = (−1)mK+i

∣∣∣∣∣∣∣∣∣
x0
1 − E1 . . . xi−1

1 − E1 xi+1
1 − E1 . . . xmK

1 − E1

...
. . .

...
...

. . .
...

x0
mK

− EmK
. . . xi−1

mK
− EmK

xi+1
mK

− EmK
. . . xmK

mK
− EmK

∣∣∣∣∣∣∣∣∣ .
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Appendix 2. Properties of the Bellman-Isaacs equation

For the case m = 1 let Kn = [σn;σn]. The following notations for n = 1, N will be used

throughout this section:

sn = I + µn∆tn + σn

√
∆tn,

sn(Gi,n) = I + µn∆tn + diag(Gi,n)
√
∆tn,

r̃n = 1 + rn∆tn,

(52)

where I denotes the identity matrix of the appropriate size, Gi,n is the i-th extreme point in

the collection Gn ∈ Gn(Kn, En). For ease of notation, in this chapter product of two vectors

means the scalar product and subtraction of a scalar r from the matrix s means s − rI for

the appropriate identity matrix I.

Lemma 8. For a zero-cost market, assume that Vn−1(X,HX ,W Y ) is de�ned by (12) for

some n = 1, N and

1. Vn(X,HX ,W Y ) satis�es Assumptions 2 and 3;

2. Vn(X,HX ,W Y ) is concave in W Y for each X,HX such that (X,HX ,W Y ) ∈ Sn;

3. Xn and Yn are de�ned by (30) and (31) respectively.

Then (33) holds for the given n.

Proof. Using Assumptions 2 and 3, (12) can be transformed as:

Vn−1(X,HX ,W Y ) = sup
Z∈Dn

inf
Qn∈QE

n

ESn−1

Qn
Vn(Xn, Z,W

Y
n ) =

= sup
Z∈Dn

inf
Qn∈QE

n

ESn−1

Qn
Vn(snX,Z,W Y r̃n − (Z −HX)TXr̃n)

(41)
=

(41)
= sup

Z∈Dn

inf
Qn∈QE

n

ESn−1

Qn
Vn(snX, 0,W Y r̃n − (Z − HX)TXr̃n + ZT snX)

(39)
=

(39)
= sup

Z∈Dn

inf
Qn∈QE

n

ESn−1

Qn
Vn(X, 0,W Y r̃n − (Z −HX)TXr̃n + ZT snX).

Since Vn is concave inW Y , function under the expectation sign is concave in sn and Theorem
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6 applies. By using (39),(41) for backward transformation, we derive

Vn−1(X,HX ,W Y ) = sup
Z∈Dn

min
Gn∈Gn(Kn,En)

m(Kn)∑
i=0

pi(Gn, En)Vn(X, 0,

W Y r̃n − (Z −HX)TXr̃n + ZT sn(Gi,n)X) =

= sup
Z∈Dn

min
Gn∈Gn(Kn,En)

m(Kn)∑
i=0

pi(Gn, En)Vn(sn(Gi,n)X,Z,W Y r̃n − (Z − HX)TXr̃n),

which coincides with (33) after substituting formulas for sn(Gi,n) and r̃n.

Similar proof can be derived under the weaker assumptions if µn, hence sn, is diagonal:

Corollary 3. Under the assumptions of Lemma 8, assume that Vn(X,HX ,W Y ) satis�es

Assumptions 2′ and 3 and µn is diagonal. Then (33) holds for the given n.

Assumption 3 can be replaced by joint concavity in HX and W Y :

Lemma 9. For a zero-cost market, assume that Vn−1(X,HX ,W Y ) is de�ned by (12) for

some n = 1, N and

1. Vn+1(X,HX ,W Y ) satis�es Assumptions 2;

2. Vn+1(X,HX ,W Y ) is jointly concave in W Y and HX for each X such that

(X,HX ,W Y ) ∈ Sn;

3. Xn and Yn are de�ned by (30) and (31) respectively.

Then (33) holds for the given n.

Proof. Using Assumption 2, transform (12):

Vn−1(X,HX ,W Y ) = sup
Z∈Dn

inf
Qn∈QE

n

ESn−1

Qn
Vn(Xn, Z,W

Y
n ) =

= sup
Z∈Dn

inf
Qn∈QE

n

ESn−1

Qn
Vn(snX,Z,W Y r̃n − (Z −HX)TXr̃n) =

= sup
Z∈Dn

inf
Qn∈QE

n

ESn−1

Qn
Vn(X, sTnZ,W

Y r̃n − (Z −HX)TXr̃n).

Since Vn is jointly concave in HX ,W Y , it is concave in sn and Theorem 6 applies. The rest

of the proof follows Lemma 8.
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Corollary 4. In view of Lemma 9, assume that Vn(X,HX ,W Y ) satis�es only Assumption

2′ and µn is diagonal. Then (33) holds for the given n.

Lemmas 8 and 9 with corollaries provide su�cient conditions to reduce equation (12) to

the simpler form where the extreme measure is concentrated in the extreme points of the

support. Diagonality of µn, together with diagonality of σn, is quite constraining and seem

to lead to independency of the risky asset prices. However, dependence among σ1
n, . . . , σ

m
n is

still allowed; besides, µn can be estimated according to the model which allows dependent

dynamics of parameters. Therefore, dependency can be accounted for during practical use

(though �outside� the worst-case framework).

Now we obtain su�cient conditions under which the required properties of Vn are inher-

ited by Vn−1.

Statement 4. For a zero-cost market, assume that Vn−1(X,HX ,W Y ) is de�ned by (12)

and Dn(X,HX ,W Y ) satis�es (35) for some n = 1, N . Then Vn−1(X,HX ,W Y ) satis�es

Assumption 3.

Proof. The budget equation (29) implies

Vn−1(X, 0,W Y +HXT
X) = sup

Z∈Dn(X,0,WY +HXTX)

inf
Qn∈QE

n

ESn−1

Qn
Vn(Xn, Z,

W Y r̃n +HXT
Xr̃n − (Z − 0)TXr̃n) =

= sup
Z∈Dn(X,HX ,WY )

inf
Qn∈QE

n

ESn−1

Qn
Vn(Xn, Z,W

Y r̃n − (Z −HX)TXr̃n) =

= Vn(X,HX ,W Y ).

Lemma 10. For a zero-cost market, assume that Vn−1(X,HX ,W Y ) is de�ned by (12) for

some n = 1, N and

1. Dn(X,HX ,W Y ) satis�es (34) for S∗ = Sn;

2. Vn(X,HX ,W Y ) satis�es Assumption 2 for S∗ = Sn;

3. Xn and Yn are de�ned by (30) and (31) respectively.

Then Vn−1(X,HX ,W Y ) satis�es Assumption 2 for S∗ = Sn−1.
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Proof. By letting Z ′ = ATZ, we obtain

Vn−1(AX,HX ,W Y ) = sup
Z∈Dn(AX,HX ,WY )

inf
Qn∈QE

n

ESn−1

Qn
Vn(AXn, Z,W

Y r̃n − (Z −HX)TAXr̃n) =

= sup
Z′∈Dn(X,ATHX ,WY )

inf
Qn∈QE

n

ESn−1

Qn
Vn(AXn, A

T−1
Z ′,W Y r̃n − (AT−1

Z ′ −HX)TAXr̃n) =

= sup
Z′∈Dn(X,ATHX ,WY )

inf
Qn∈QE

n

ESn−1

Qn
Vn(Xn, A

TAT−1
Z ′,W Y r̃n − (ATAT−1

Z ′ − ATHX)TXr̃n) =

= sup
Z′∈Dn(X,ATHX ,WY )

inf
Qn∈QE

n

ESn−1

Qn
Vn(Xn, Z

′,W Y r̃n − (Z ′ − ATHX)TXr̃n) = Vn−1(X,ATHX ,W Y ).

Corollary 5. In view of of Lemma 10, assume that Vn(X,HX ,W Y ) satis�es only Assump-

tion 2′, Dn(X,HX ,W Y ) satis�es only (37) and µn is diagonal. Then Vn−1(X,HX ,W Y )

satis�es Assumption 2′.

Lemma 11. For a zero-cost market, assume that Vn−1(X,HX ,W Y ) is de�ned by (12) for

some n = 1, N and

1. Dn(X,HX ,W Y ) satis�es (36) for S∗ = Sn;

2. Xn and Yn are de�ned by (30) and (31) respectively.

Then

1. If Vn(X,HX ,W Y ) is jointly concave in HX ,W Y for each X such that (X,HX ,W Y ) ∈

Sn, then Vn−1(X,HX ,W Y ) is jointly concave in HX ,W Y for each X such that

(X,HX ,W Y ) ∈ Sn−1.
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2. If Vn(X,HX ,W Y ) is concave in W Y for each X and HX such that (X,HX ,W Y ) ∈ Sn

and satis�es Assumption 3, then Vn−1(X,HX ,W Y ) is jointly concave in HX and W Y

for each X such that (X,HX ,W Y ) ∈ Sn−1.

3. If Vn(X,HX ,W Y ) is concave in W Y for each X and HX such that (X,HX ,W Y ) ∈ Sn,

then Vn−1(X,HX ,W Y ) is concave in W Y for each X and HX such that (X,HX ,W Y ) ∈

Sn−1.

Proof. 1) We begin with the �rst statement. (36) implies, that for any α ∈ [0, 1] the set

of Z that can be represented as αZ1 + (1 − α)Z2 with Z1 ∈ Dn(X,HX
1 ,W Y

1 ) and Z2 ∈

Dn(X,HX
2 ,W Y

2 ), belongs to the set

D′
n = Dn(X,αHX

1 + (1− α)HX
2 , αW Y

1 + (1− α)W Y
2 ).

Therefore,

Vn−1(X,αHX
1 + (1− α)HX

2 , αW Y
1 + (1− α)W Y

2 ) = sup
Z∈D′

n

inf
Qn∈QE

n

ESn−1

Qn
Vn(Xn, Z, αW

Y
1 r̃n + (1− α)W Y

2 r̃n −
(
Z − αHX

1 − (1− α)HX
2

)T
Xr̃n) ≥

≥ sup
Z=αZ1+(1−α)Z2

Z1∈Dn(X,HX
1 ,WY

1 )

Z2∈Dn(X,HX
2 ,WY

2 )

inf
Qn∈QE

n

ESn−1

Qn
Vn(Xn, Z,

αW Y
1 r̃n + (1− α)W Y

2 r̃n −
(
Z − αHX

1 − (1− α)HX
2

)T
Xr̃n) ≥

≥ sup
Z1∈Dn(X,HX

1 ,WY
1 )

Z2∈Dn(X,HX
2 ,WY

2 )

inf
Qn∈QE

n

ESn−1

Qn
Vn(Xn, αZ1 + (1− α)Z2,

αW Y
1 r̃n + (1− α)W Y

2 r̃n −
(
αZ1 + (1− α)Z2 − αHX

1 − (1− α)HX
2

)T
Xr̃n) =

= sup
Z1∈Dn(X,HX

1 ,WY
1 )

Z2∈Dn(X,HX
2 ,WY

2 )

inf
Qn∈QE

n

ESn−1

Qn
Vn(Xn, αZ1 + (1− α)Z2,

α
[
W Y

1 r̃n − (Z1 −H1)
TXr̃n

]
+ (1− α)

[
W Y

2 r̃n − (Z2 −H2)
TXr̃n

]
) ≥
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≥ sup
Z1∈Dn(X,HX

1 ,WY
1 )

Z2∈Dn(X,HX
2 ,WY

2 )

inf
Qn∈QE

n

ESn−1

Qn

[
αVn(Xn, Z1,W

Y
1 r̃n − (Z1 −H1)

TXr̃n)+

+ (1− α)Vn(Xn, Z2,W
Y
2 r̃n − (Z2 −H2)

TXr̃n)
]
. (53)

Since

inf
[
αf(x) + (1− α)g(x)

]
≥ α inf f(x) + (1− α) inf g(x),

we obtain

Vn−1(X,αHX
1 + (1− α)HX

2 , αW Y
1 + (1− α)W Y

2 ) ≥

≥ α sup
Z1∈Dn(X,HX

1 ,WY
1 )

inf
Qn∈QE

n

ESn−1

Qn
Vn(Xn, Z1,W

Y
1 r̃n − (Z1 − H1)

TXr̃n)+

+ (1 − α) sup
Z1∈Dn(X,HX

2 ,WY
2 )

inf
Qn∈QE

n

ESn−1

Qn
Vn(Xn, Z2,W

Y
2 r̃n − (Z2 − H2)

TXr̃n) =

= αVn(X,HX
1 ,W Y

1 ) + (1− α)Vn(X,HX
2 ,W Y

2 ).

2) The second statement is proven by analogy. The key di�erence is using Assumption 3

to obtain

Vn−1(X,αHX
1 + (1− α)HX

2 , αW Y
1 + (1− α)W Y

2 ) = sup
Z∈D′

n

inf
Qn∈QE

n

ESn−1

Qn
Vn(Xn, Z, αW

Y
1 r̃n + (1− α)W Y

2 r̃n −
(
Z − αHX

1 − (1− α)HX
2

)T
Xr̃n) =

= sup
Z∈D′

n

inf
Qn∈QE

n

ESn−1

Qn
Vn(Xn, 0, αW

Y
1 r̃n + (1− α)W Y

2 r̃n−

−
(
Z − αHX

1 − (1− α)HX
2

)T
Xr̃n + ZTXnr̃n).

Note that Z is missing in the second argument of Vn and appears only in the third argument

expression which is linear in Z. Therefore we can obtain (53) by using concavity of Vn only

in W Y . The rest is proved by analogy.

3) The proof of the third statement repeats the proof of the �rst one when HX
1 = HX

2 =

HX .
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Obtained Lemmas lead to Theorems 7 and 8, which provide su�cient conditions for the

extreme measure problem in the Bellman-Isaacs equation to have an atomic solution.

Proof of Theorem 7. Properties of the constraint sets Dn, n = 1, N , and Statement 4 imply

that Vn satis�es Assumption 3 for every n = 1, N . Hence by Lemma 11, concavity in W Y

holds for every n = 1, N . Lemma 8 concludes the proof.

Proof of Theorem 8. Proof follows Theorem 7 by using corollaries of the above-mentioned

Lemmas.

Proof of Theorem 9. Lemma 10 implies that Vn(X,HX ,W Y ) satis�es Assumptions 2 and 3

for every n, while Lemma 11 implies concavity in W Y for every n. Then for any n = 1, N

Vn−1(X,HX ,W Y ) = sup
Z∈Dn

inf
Qn∈Qn

ESn−1

Qn
Vn

(
snX,Z,

(
W Y − (Z −HX)X

)
r̃n

)
=

= sup
Z∈Dn

inf
Qn∈Qn

ESn−1

Qn
Vn

(
X, 0,

(
W Y − (Z −HX)X

)
r̃n + snZX

)
.

Since 0 ∈ Dn(X,HX ,W Y ),

Vn−1(X,HX ,W Y ) ≥ Vn

(
X, 0, (W Y +HXX)r̃n

)
.

Consider the measure Q∗
n ∈ QE∗

n , where E∗
n is the main diagonal of (rn − µn)

√
∆tn,

n = 1, N , with mass pi
∗
n concentrated at the extreme points G0,n, . . . , Gm(Kn),n of Kn. Then

we have

m(Kn)∑
i=0

pi
∗

n σ
j
n(Gi,n) = Ej∗

n , j = 1,m, ⇔
m(Kn)∑
i=0

pi
∗

n diag(Gi,n) = (rn − µn)
√

∆tn ⇔

⇔
m(Kn)∑
i=0

pi
∗

n (sn(Gi,n)− r̃n) = 0. (54)

Since

Vn−1(X,HX ,W Y ) ≤ sup
Z∈Dn

ESn−1

Q∗
n

Vn

(
X, 0,

(
W Y − (Z −HX)X

)
r̃n + snZX

)
=

= sup
Z∈Dn

m(Kn)∑
i=0

pi
∗

n Vn

(
X, 0,

(
W Y − (Z −HX)X

)
r̃n + sn(Gi,n)ZX

)
.
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Concavity in W Y implies

Vn−1(X,HX ,W Y ) ≤ sup
Z∈Dn

Vn

(
X, 0, (W Y +HXX)r̃n − ZXr̃n +

m(Kn)∑
i=0

pi
∗

n sn(Gi,n)ZX
)
=

= sup
Z∈Dn

Vn

(
X, 0, (W Y +HXX)r̃n+

m(Kn)∑
i=0

pi
∗

n

(
sn(Gi,n)− r̃n

)
ZX

)
= Vn

(
X, 0, (W Y +HXX)r̃n

)
.

Therefore, Vn−1(X,HX ,W Y ) = Vn

(
X, 0, (W Y +HXX)r̃n

)
and the maximum is achieved at

HX∗
n = 0 which proves the statement.

Lemma 12. Assume that Vn−1(X,HX ,W Y ) is de�ned by (12) for some n = 1, N and

1. Dn(X,HX ,W Y ) satis�es (37) for S∗ = Sn;

2. Vn(X,HX ,W Y ) satis�es Assumption 2′ for S∗ = Sn;

3. Cn−1(H
X , X) satis�es (42);

4. Xn and Yn are de�ned by (30) and (31) respectively;

5. µn is diagonal.

Then Vn−1(X,HX ,W Y ) satis�es Assumption 2′ for S∗ = Sn−1;

Proof. Proof follows Lemma 10, since the transaction costs function satis�es (42).

Lemma 13. Assume that Vn−1(X,HX ,W Y ) is de�ned by (12) for some n = 1, N and

1. Dn(X,HX ,W Y ) satis�es (36) for S∗ = Sn;

2. Vn(X,HX ,W Y ) is non-decreasing in W Y for each X,HX such that (X,HX ,W Y ) ∈ Sn;

3. Cn−1(H,X) is convex in H for each X ∈ Rm
+ ;

4. Xn and Yn are de�ned by (30) and (31) respectively;

5. µn is diagonal.

Then

1. If Vn(X,HX ,W Y ) is jointly concave in HX ,W Y for each X such that (X,HX ,W Y ) ∈

Sn, then Vn−1(X,HX ,W Y ) is jointly concave in HX ,W Y for each X such that

(X,HX ,W Y ) ∈ Sn−1.
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2. If Vn(X,HX ,W Y ) is concave in W Y for each X and HX such that (X,HX ,W Y ) ∈

Sn, then Vn−1(X,HX ,W Y ) is concave in W Y for each X and HX such that

(X,HX ,W Y ) ∈ Sn−1.

Proof. Proof of the �rst statement follows Lemma 11 since −Cn−1(H,X) is concave in H

and Vn is non-decreasing in W Y . Proof of the second statement repeats proof of the �rst

one when HX
1 = HX

2 = HX .

Lemma 14. Assume that Vn−1(X,HX ,W Y ) is de�ned by (12) for some n = 1, N and

1. Vn(X,HX ,W Y ) is non-decreasing in W Y for each X,HX such that (X,HX ,W Y ) ∈ Sn;

2. Vn(X,HX ,W Y ) satis�es Assumption 2′ for S∗ = Sn;

3. Vn(X,HX ,W Y ) is jointly concave in HX ,W Y for each X such that (X,HX ,W Y ) ∈ Sn;

4. Cn−1(H,X) satis�es Assumption 4;

5. Xn and Yn are de�ned by (30) and (31) respectively;

6. µn is diagonal.

Then (33) holds for the given n.

Proof. Proof follows Lemma 9 since −C(H,X) is concave in H and Vn is non-decreasing in

W Y .

Proof of Theorem 10. By analogy to Theorem 8, Theorem 10 is derived from the correspond-

ing Lemmas.
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