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The punctuality stability of the Nash equilibrium: the advantage of a late
player in potential and aggregative games

If all players in a game employ Nash-equilibrium strategies, then no single player benefits from
changing their strategy alone. In real games however, some players may intentionally arrive
late and get a payoff greater than at the equilibrium. To wit, it sometimes pays to wait for
competitors to announce their prices and then set the price for one’s own product. The motivation
for intentional tardiness is the advantage of making the last move. Can it be arranged so that no
player arrives in the game late intentionally? Responding to this challenge, we suggest forming
a punctually stable Nash-equilibrium strategy profile. In this study, we investigate whether such
a strategy profile exists in potential, aggregative, and symmetric games. What is remarkable
about this study is that in some game-theoretical settings all-player punctuality can be achieved
without penalizing late arrivals.
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1 Introduction

1.1 Problem description

In normal-form games, each player has to choose a strategy before the instant of getting a payoff.
For some players, it is sometimes better to wait until others have chosen their strategies before
making their own move. One can gain advantage from being the last to choose a strategy. That
is why some players intentionally arrive late for the game. Below are some examples where a
player’s payoff is augmented by tardiness:

• Coalition formation. Players break into a fixed number of commissions. A chairperson is
elected for each commission and each player wants to become one. Suppose a player arrives
late. Punctual players partition into commissions without waiting for the tardy player. After
the commission member-lists are formed, transitions between commissions are not allowed.
The tardy player arrives right before the election of chairpersons. Commissions will not
be recast because of one tardy player. The tardy player is invited to choose any of the
established commissions. It may prove to be advantageous for a player to wait until the
coalition partition is formed and then join the coalition in which their chance of becoming
the chairperson is the highest.

• Resource allocation. Consider a situation where any player’s strategy is the selection of a
resource. We assume that a certain player conceals their presence. The rest of the players
form a Nash-equilibrium strategy profile. Before the payoffs on the selected resources are
distributed, the covert player shows up. They choose the resource that maximizes their
payoff. Other players cannot change their strategy of choice since it is time to divide up the
resource. It may prove to be more beneficial to show up late and choose the best resource
than to enter the game from the start. This situation can take place in multi-server systems,
for example, the resource is a server and the payoff on the resource is the player’s service
time. The late-arriving player knows the server workloads and can choose the server to
minimize their service time.

Similar situations, in which players benefit from arriving late, can be encountered in decision-
making on pricing, choosing a college, etc. There is a common feature in all these game situations.
At first, punctual players arrive at some equilibrium strategy profile. Then, a tardy player
appears and chooses the best strategy knowing the strategies chosen by the punctual players. The
punctual players cannot change the strategies they have chosen after that player’s late arrival.

The easiest way to avoid intentional tardiness is to impose penalties or to prohibit the arrival
of new players. Implementing this in practice, however, is not always possible. Players in the
resource allocation process described above have no other rights but the right to use the servers.
That is why punctual players cannot prohibit the entry of new players or penalize tardiness.
Penalizing is not always welcomed in coalition formation. If a coalition imposes a penalty on its
new member for arriving late, then the penalized player may hold a grudge against the coalition,
and this cannot end well. Admittedly, there may be different reasons for missing the start of
the game. On the one hand, it can be the player’s own will, but on the other hand, unforeseen
circumstances may prevent a player from coming on time. Punctual players may never find out
whether the late arrival was intentional.

How can we make all agents in a game theoretical process be punctual without penalizing
them? Having studied this question, we conclude that the answer lies in the game itself. For
some games there exists a Nash-equilibrium strategy profile such that no player can augment
their payoff by arriving late. We describe such a Nash-equilibrium strategy profile as punctually
stable.
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The punctuality stability of a Nash equilibrium is defined as follows. Suppose Γ is a normal-
form game and N is the set of players. We assume that the strategy profile s∗ in the game Γ is
a Nash equilibrium. The payoff of player i, i ∈ N in the game Γ for the profile s∗ is ui(s∗). If
player i thinks about their intentional non-appearance by the beginning of the game, they reason
as follows: "Players from the set N \ {i} play a certain game Γ−i. An equilibrium ŝ∗−i is formed
in the new game. Then, I (player i) appear and choose a strategy si". It is disadvantageous for
player i to arrive late if ui(s∗) ≥ ui(si, ŝ

∗
−i) ∀si. If such inequalities hold for each player, then the

equilibrium s∗ is punctually stable in the game Γ. Each player abandons the thought of being
late for punctually stable equilibrium. A more formal description of the punctuality stability of
a Nash equilibrium is given in Section 2.

If nobody is late for the start of the game Γ, then player i gets a payoff of ui(s∗). If only player i
is late, then they get ui(si, ŝ∗−i), where ŝ∗−i is an equilibrium profile of the game Γ−i in which player
i did not participate. It is disadvantageous for player i to arrive late if ui(s∗) ≥ ui(si, ŝ

∗
−i) ∀si.

In some studies, a player’s strategy is the choice of timing for entering and leaving the game,
such as dynamic games. We are not interested in finding equilibrium instants of player arrivals
in the game. Our objective is the punctuality of all players. To this end, we suggest forming a
punctually stable Nash-equilibrium strategy profile.

When investigating the punctuality stability of a Nash equilibrium, a definition should be
given not only of the game Γ, but also of the games Γ−i, i ∈ N. Players from the set N \ {i} play
the game Γ−i if player i is late. We define the games Γ−i, i ∈ N proceeding from the context of
the game Γ. If, for example, the game Γ is a congestion game, then the games Γ−i, i ∈ N are
also congestion games.

What adds complexity to the study of the punctuality stability of a Nash equilibrium is
that the strategy profiles s∗ and (si, ŝ

∗
−i) may be completely different from one another. Here,

different approaches are employed for checking whether a punctually stable Nash equilibrium
exists in different game classes.

1.2 Key assumptions regarding tardiness and the privilege of the last move

If there are no tardy players, then players from the set N play the game Γ. If we only have
players from the set N \ {j}, then these players play the game Γ−j , j ∈ N. The set of punctual
players in the game Γ is N, and in the game Γ−j it is N \ {j}. Player j is called tardy. In the
following, we formulate five key assumptions regarding player tardiness.

Assumption 1. Only one player can come late for the start of the game Γ.

In a Nash equilibrium, no single player can augment their payoff by changing their strategy
on their own. The question, however, is whether a player’s payoff can be increased if they are
the only tardy player enjoying the privilege of the last move. We try to answer this question by
assuming there is only one tardy player.

Assumption 2. When selecting their strategies in the game Γ−j , punctual players do not
make allowances for the possible arrival of a new player.

Assumption 2 characterizes a feature of the real-life behavior of players in certain situations.
To wit, each agent in coalition formation processes wants, for reasons of caution, to cooperate
only with the players present at the moment. If one is guided by the probability that a new
player may appear and waits for their arrival, there is a chance of ending up alone.

Similar behavior can be encountered in traffic problems. Drivers use navigation systems to
get updated traffic congestion information. Theoretically, drivers can plan their route one step
ahead considering that many other drivers can go via uncongested roads. The search for the best
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strategy requires calculations, but the driver has little time to decide on the route. Because of
that, each driver trusts their navigation system and follows the suggested route.

If players from the set N \ {j} made allowances for the late arrival of player j, they would be
considering a two-step game. In the situations mentioned above, however, players take only the
current circumstances into account. This behavior is dictated by the players’ psychology [25, 26],
lack of time for lengthy calculations, short-sightedness, etc. Assumption 2 is also relevant for
games with a large number of players. A report that a large game will be joined by only one new
individual may not incite much interest or response.

Assumption 3. The tardy player enters the game after the punctual players have already
chosen their strategies and the tardy player chooses the best strategy for themselves.

Player j learns about the strategies selected by punctual players when entering the game.
Knowing the strategies of the punctual players, the tardy player chooses a strategy that will
maximize their payoff.

Assumption 4. The punctual players cannot change their strategies after the arrival of the
tardy player.

In some situations, there is a moment after which the player can no longer change the selected
strategy. If, for example, a driver chose a one way street, they cannot turn around. Having
invested some funds into a project, the investors do not terminate it if competitors show up. It
is after such a moment that a tardy player arrives. Although the punctual players are bound by
restrictions, the tardy player enjoys a freedom of choice: a new driver chooses an uncongested
road; an investor can evaluate the contributions of competitors and choose the best project.

These assumptions can give an advantage to the tardy player. This player knows the strategies
of other players, and punctual players cannot change them. When the tardy player gets the
privilege of the last move, then every player wants to be the tardy one. Because of that, players
may intentionally arrive late for the game. The question arises of how to prevent intentional
tardiness.

Assumption 4 is an obstacle to using the methods applied in dynamic games to tackle
intentional tardiness. In a dynamic game, punctual players would be able to respond to the
arrival of a tardy player, but in our case it is impossible. Naturally, some of the punctual players
would want to change their strategy after the arrival of the new player, but they cannot do so
physically or for some other reasons. This article studies how the advantage of the last move
for the tardy player can be eliminated without applying the obvious methods used in dynamic
games or penalizing tardiness.

Assumption 5. The tardy player’s payoff is determined by the game Γ.

If nobody is late for the start of the game Γ, then player j gets uj(s∗). If they arrive late,
then punctual players in the game Γ−j form the equilibrium ŝ∗−j . After arriving in the game,
player j chooses strategy sj and gets uj(sj , ŝ∗−j). Player j does not profit from missing the start
of the game if uj(s∗) ≥ uj(sj , ŝ

∗
−j) ∀sj ∈ Sj . If such an inequality is true for any player j and for

any permissible equilibrium ŝ∗−j , then s∗ is called a punctually stable Nash equilibrium.

1.3 The punctuality problem in the literature

The efficiency of interactions between agents in economic and social spheres depends on many
factors. Let us mention some studies where delays in elements of the system or the tardiness of
agents are detrimental for the process.

Transport. Having vehicles running on time and arriving as scheduled is important for
the credibility of a transport company. The authors of [2] suggest a model for the integrated
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optimization of aircraft holding time to improve flight punctuality and reduce the impact of
adverse weather. A model for coordination of the airport operator, airlines, and ground service
providers is investigated in [7] to improve the apron’s on-time punctuality, without the need
for the involved agents to share sensitive information. The paper [8] suggests a mixed integer
programming formulation for routing aircraft along a predetermined path. The model takes into
account the main punctuality indicators. Many land transport passengers need to get to work,
college, or other places on time. Agents’ punctuality depends on many factors. Thus, school
bell time and bus schedules are coupled. A bell time optimization model is suggested in [29] to
ensure students’ punctuality. An automated train traffic control system was worked out in [6] to
optimize the regular traffic of trains and ensure their punctuality. Deviations from the timetable
demand fast rerouting decisions. A linear programming model is applied in [15] to handle this
issue.

The punctuality of patients in health care institutions. An approach to sequentially scheduling
appointments to provide desirable schedules from the perspective of both patients and medical
practices is proposed in [5]. Outpatient appointment scheduling considering tardiness is investigated
in [12]. The paper [14] investigates a stochastic patient service model in a clinic with a single
doctor. The problem of working out appointment scheduling strategies in [31] is designed to help
outpatient clinics to utilize their resources efficiently while limiting patient waiting times.

Customer service. Which appointment scheduling rule is best is still an open question. The
appointment scheduling model in [4] takes into account customer tardiness, service interruptions,
and delays in session start times. The authors of [30] consider the problem of appointment
scheduling on multiple servers. The objective is to minimize the weighted sum of server staffing
cost and total expected cost of customer waiting, server idleness, and overtime. The problem
studied in [28] is the effect of customer tardiness considering the fact that preventive maintenance
depends on when customers return their items to authorized maintenance centers. The application
of penalties in scheduling problems is investigated in [24].

Product handling. Punctuality can be addressed in the literature implicitly. Supply chains
of perishable products require punctuality. Thus, researchers in [23] study punctuality in such
processes. Untimely waste removal can be harmful for the environment. Accordingly, the focus
in [13] is on waste treatment.

The results of an experiment where students were recruited to identify the value and provenance
of euro coins are described in [1]. The work materials had to be returned by an appointed date.
Reportedly, monitoring improved work quality if incentives were harsh but it reduced punctuality.
In the absence of monitoring, the percentage of participants arriving on time was much higher.

In the game-theoretical literature, punctuality was investigated in [18, 19]. The player decides
whether or not to arrive late and an aspect studied was equilibrium in the given game-theoretical
settings.

What distinguishes the present study is that we simulate the punctuality issue in games.
Players can intentionally arrive late for the game seeking to augment their payoff. We suggest
forming a punctually stable Nash equilibrium in the games to avoid intentional tardiness.

1.4 The contribution of the paper

The main results of the study are:

• The classes of potential games in which the Nash equilibrium which maximizes the potential
function is punctually stable are found (Theorem 1).

• The necessary and sufficient conditions for the punctuality stability of the Nash equilibrium
in aggregative games with monotone payoff functions are found (Theorem 2).
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• The identification of sufficient conditions for the punctuality stability of the Nash equilibrium
in symmetric games are found.

The following situation is considered for potential games. There are two scenarios of the game
process. In the first scenario, players form a strategy profile that maximizes the potential function.
In the second scenario, a player is late and a certain new potential game is formed without the
tardy player. In this new potential game, punctual players form a strategy profile which maximizes
the new potential function. After that, the tardy player shows up and chooses the best option.
The punctual players cannot change their strategies after that player’s late arrival. Is it in the
first or in the second scenario that the tardy player’s payoff is higher? Theorem 1 describes the
potential games in which the first scenario is preferable for the players. This means that it is
disadvantageous for players to miss the start of the game. The Nash equilibrium which maximizes
the potential function is punctually stable in games from Theorem 1. The question of punctuality
for transversal value is examined in [10].

If a Nash equilibrium exists in an aggregative game with monotone payoff functions, it is
punctually stable iff the inequalities described in Theorem 2 are fulfilled. These inequalities
are numerical and they can always be verified for any specific game. A Nash equilibrium in
an oligopoly with linear-quadratic functions is shown to be punctually stable. A game that
is simultaneously potential and aggregative has been found and it is specified that the Nash
equilibrium in this game is not punctually stable in the general case.

Sufficient conditions for symmetric equilibrium punctuality in symmetric games are related
to the existence of a saddle point for some special function. The definitions of the punctuality
stability of a Nash equilibrium formulated for normal-form and for extensive-form games are
different. We prove that a Nash equilibrium of an extensive-form symmetric game is always
punctually stable.

Proofs of Theorems and Statements 2-7 are in the Appendix.

2 Punctuality stability

2.1 The definition of the punctuality stability of a Nash equilibrium

We introduce the basic notation. Let

Γ = ⟨N, {Si}i∈N , {ui}i∈N ⟩

be a game in normal form, where N = {1, 2, ..., n} is the finite set of players, Si is the set of
strategies of player i, S =

∏
i∈N Si = S1 × S2 × ... × Sn, ui : S → R is the payoff function of

i, i ∈ N. If Si is a finite set ∀i ∈ N , then Γ is called a finite game. Denote

Γ−j =
〈
N \ {j}, {Si}i∈N\{j}, {u

j
i}i∈N\{j}

〉
as a game in normal form without player j, where uji :

∏
k∈N\{j} Sk → R.

The strategy of player i in the games Γ and Γ−j is si and sji , respectively. The strategy
profile of players in the game Γ is a vector s = (s1, s2, ..., sn) ∈ S, and the strategy profile of
players in the game Γ−j is ŝ−j = (sj1, s

j
2, ..., s

j
j−1, s

j
j+1, ..., s

j
n), where sji ∈ Si ∀i ∈ N \ {j}. The

equilibrium profile of strategies in the game Γ is s∗ = (s∗1, s
∗
2, ..., s

∗
n), and in the game Γ−j is

ŝ∗−j = (sj∗1 , s
j∗
2 , ..., s

j∗
j−1, s

j∗
j+1, ..., s

j∗
n ). In order to highlight the strategy of player i in the profile s,

we use the notation s = (si, s−i). We also write (si, ŝ−i) = (si1, s
i
2, ..., s

i
i−1, si, s

i
i+1, ..., s

i
n), where

si is the strategy of player i in the game Γ and ŝ−i is the profile strategies in the game Γ−i.
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We use NE(Γ) and NE(Γ−j), j ∈ N to denote the set of the Nash equilibria considered
in the games Γ and Γ−j , respectively. In the following, we shall always imply or specify that
NE(Γ) ̸= ∅ and NE(Γ−j) ̸= ∅ ∀j ∈ N.

Definition 1. The Nash equilibrium s∗ = (s∗i , s
∗
−i) ∈ NE(Γ) is punctually stable if ∀i ∈ N

the following inequalities are fulfilled:

ui(s
∗
i , s

∗
−i) ≥ ui(si, ŝ

∗
−i) ∀si ∈ Si ∀ŝ∗−i ∈ NE(Γ−i).

Let us describe the physical meaning of the punctuality stability of a Nash equilibrium. We
have a set of players N = {1, 2, ..., n}. All players are selfish and seek to maximize their payoff
functions. In the process of the game Γ, an equilibrium strategy profile s∗ = (s∗i , s

∗
−i) ∈ NE(Γ)

forms and player i gets ui(s∗), i ∈ N. Since s∗ is an equilibrium, the payoff of player i will not
grow if they alter their equilibrium strategy s∗i .

Next, player i reasons as follows. They consider two situations. In the first situation, player
i assumes that no one will be late. In this case, their payoff is ui(s∗). In the second situation,
player i decides to hide themselves. In this situation, players from the set N \ {i} play Γ−i. A
certain equilibrium ŝ∗−i, ŝ

∗
−i ∈ NE(Γ−i) forms in the game Γ−i. Next, player i shows up. They

choose strategy si ∈ Si and get ui(si, ŝ∗−i).
In the first and second situations, player i assumes that the players from the set N \ {i} play

honestly, that is, they do not manipulate their presence. However, in the first case, player i is
not late, and in the second case, player i is late intentionally.

If ui(s∗i , s
∗
−i) < ui(si, ŝ

∗
−i), then player i benefits from missing the start of the game Γ. If

the Nash equilibrium s∗ is punctually stable, then no player can benefit from arriving late or
concealing their presence at the start of the game Γ. The assumption in this line of thought is
that players from the set N \ {i} cannot change their strategies upon the arrival of player i. The
reason may be that the game Γ−i is coming to an end and players from N \ {i} have no time to
respond to the arrival of the tardy player.

If each player would benefit from missing the start of the game and arriving only close to
its end, then the game may never even start. The punctuality stability of a Nash equilibrium
implies that all players are interested in being present at the start of the game.

2.2 Simple examples: tardiness in the prisoner’s dilemma and in the battle
of the sexes game

Let us consider the prisoner’s dilemma game,

Γ = ⟨N = {1, 2}, S1 = S2 = {a, b}, {ui}i∈N ⟩ ,

where 1 and 2 are the players, a is the strategy to testify, b is the strategy to remain silent.
The players’ payoffs are given in Table 1.

Таблица 1: Players’ payoffs in the prisoner’s dilemma game

2
a b

1 a -6;-6 0;-10
b -10;0 -2;-2
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If both players testify to the crime, then each is sentenced to six years in jail. If one player
remains silent while the other testifies, then the one that has kept silent goes free while the one
that has testified is sentenced to 10 years. If both remain silent, then both get two years. The
prisoner’s dilemma has only one pure equilibrium and we want to check it for punctuality, that
is, NE(Γ) = {(a, a)}.

We consider the following situation. Players 1 and 2 have committed a crime. One of them
decides to surrender voluntarily, and the other one decides to flee. The testimony of the detained
player can reduce the time it takes to pin down the player in flight. The investigator proposes a
deal to the detained player. If the detained player testifies and conceals nothing from the police,
then they get only one year to serve in reward for cooperation. Voluntary surrender coupled with
refusal to cooperate results in five years in jail for the detained player. Formally, the games Γ−1

and Γ−2 have the form

Γ−1 =
〈
{2}, {a, b}, u12

〉
, Γ−2 =

〈
{1}, {a, b}, u21

〉
,

u21(a) = u12(a) = −1, u21(b) = u12(b) = −5.

In the game Γ−1 player 1 has fled and player 2 is detained. The situation in the game Γ−2

is the opposite. The optimal strategies of players 1 and 2 in the games Γ−2 and Γ−1 are s2∗1 = a
and s1∗2 = a, respectively.

We have thus defined the games Γ,Γ−1,Γ−2. Now, let us check whether the equilibrium
(a, a) is punctually stable in Γ. By Definition 1, equilibrium is punctually stable if the following
inequalities are fulfilled:

u1(s
∗
1, s

∗
2) ≥ u1(s1, s

1∗
2 ) ∀s1 ∈ {a, b}.

u2(s
∗
1, s

∗
2) ≥ u2(s

2∗
1 , s2) ∀s2 ∈ {a, b}.

Since (s∗1, s
∗
2) = (a, a), s2∗1 = s1∗2 = a, we have

u1(a, a) ≥ u1(a, a), u1(a, a) ≥ u1(b, a),

u2(a, a) ≥ u2(a, a), u2(a, a) ≥ u2(a, b).

The inequalities hold, so the equilibrium (a, a) is punctually stable in the prisoner’s dilemma
game. We can say that the rule under which investigators offer a bargain for voluntary surrender
is an example of a game design that makes the equilibrium punctually stable. The above reasoning
implies that both players will be eventually caught. In this case, each player would want to get
caught first to get the bargain from the police.

For a matrix game Γ, the games Γ−i ∀i ∈ N are constructed based on the physical meaning
of the game.

The next example to consider is the battle of the sexes game,

Γ = ⟨N = {H,W}, S1 = S2 = {F, T}, {ui}i∈N ⟩ .

The players’ payoffs are given in Table 2.
Husband (H) and wife (W) plan to go to a soccer game (F) or to the theater (T). They decide

to meet at a given time and buy tickets together. The soccer and theater cash desks are situated
close to each other. If one of the spouses misses the appointed time, then the punctual spouse
buys a ticket for him or herself and waits for the tardy spouse. The players’ payoffs are given in
Table 2.
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Таблица 2: Players’ payoffs in the battle of the sexes game

W
F T

H F 2;1 0;0
T 0;0 1;2

The battle of the sexes game has two pure equilibria. We shall test each one for being
punctually stable, that is,

NE(Γ) = {(F, F ), (T, T )}.

If the player H or W is late, then, formally, two one-player games

Γ−H =
〈
{W}, {F, T}, uHW

〉
and Γ−W =

〈
{H}, {F, T}, uWH

〉
form respectively. It is reasonable to assume that if W missed the appointed time, then H will
buy himself a ticket for the soccer game. If H is late for the meeting, then W will buy a theater
ticket. This means that the optimal strategies of the players W and H in the games Γ−H and
Γ−W are sH∗

W = T, sW∗
H = F. By Definition 1, the strategy profile s∗ = (s∗H , s

∗
W ), s∗ ∈ NE(Γ) is

punctually stable if the following inequalities are fulfilled:

uH(s
∗
H , s

∗
W ) ≥ uH(sH , s

H∗
W ) ∀sH ∈ {F, T},

uW (s∗H , s
∗
W ) ≥ uW (sW∗

H , sW ) ∀sW ∈ {F, T}.

If (s∗H , s
∗
W ) = (F, F ), then the two inequalities written above can be represented as

uH(F, F ) ≥ uH(sH , T ) ∀sH ∈ {F, T},

uW (F, F ) ≥ uW (F, sW ) ∀sW ∈ {F, T}.

If (s∗H , s
∗
W ) = (T, T ), then we have

uH(T, T ) ≥ uH(sH , T ) ∀sH ∈ {F, T},

uW (T, T ) ≥ uW (F, sW ) ∀sW ∈ {F, T}.

For each s∗ ∈ NE(Γ), the inequalities from Definition 1 hold. The rule under which the
punctual spouse buys a ticket for their preference is a game design that makes the Nash equilibrium
in the battle of the sexes game punctually stable.

2.3 The necessary condition for punctuality

This section is dedicated to finding the necessary condition for the punctuality stability of a
Nash equilibrium in an arbitrary game Γ. The aim is to demonstrate that in the general case the
necessary condition is not sufficient.

Statement 1. Let NE(Γ) ̸= ∅ and NE(Γ−j) ̸= ∅ ∀j ∈ N.
i) The necessary condition. Let s∗, s∗ ∈ NE(Γ) be punctually stable. Then

ui(s
∗
i , s

∗
−i) ≥ ui(s

∗
i , ŝ

∗
−i) ∀ŝ∗−i ∈ NE(Γ−i).

ii) The sufficient condition. Let the necessary condition be satisfied and (s∗i , ŝ
∗
−i) be a Nash

equilibrium in the game Γ ∀ŝ∗−i ∈ NE(Γ−i). Then s∗ is punctually stable.
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Доказательство. i) Let si = s∗i be satisfied in the inequalities from Definition 1. This proves
the first part of the statement.

ii) Since the necessary condition is satisfied, then

ui(s
∗
i , s

∗
−i) ≥ ui(s

∗
i , ŝ

∗
−i) ∀ŝ∗−i ∈ NE(Γ−i).

Since (s∗i , ŝ
∗
−i) is a Nash equilibrium in game Γ ∀ŝ∗−i ∈ NE(Γ−i), then

ui(s
∗
i , ŝ

∗
−i) ≥ ui(si, ŝ

∗
−i) ∀si ∈ Si.

Therefore,
ui(s

∗
i , s

∗
−i) ≥ ui(si, ŝ

∗
−i) ∀si ∈ Si ∀ŝ∗−i ∈ NE(Γ−i),

that is, s∗ is punctually stable.

In the general case, the necessary condition for the punctuality stability of a Nash equilibrium
is not sufficient. It is also worth noting that the sufficient condition for a Nash equilibrium in the
arbitrary game Γ from Statement 1 to be punctually stable is not constructive. That is why we
henceforth consider certain game classes individually and determine whether a punctually stable
Nash equilibrium exists in them.

3 Punctuality in potential games

3.1 Tardiness in classical potential games

This subsection investigates the punctuality stability of a Nash equilibrium in the class of
potential games [16]. A potential game is a normal-form game for which there exists a function
P :

∏
i∈N Si → R, such that ∀i ∈ N the following equality is true:

ui(si, s−i)− ui(s
′
i, s−i) = P (si, s−i)− P (s′i, s−i) ∀si, s′i ∈ Si ∀s−i ∈

∏
j∈N\{i}

Sj .

Let Γ and Γ−j be potential games with the potential functions P : S → R and P−j :∏
i∈N\{j} Si → R ∀j ∈ N, respectively. The strategy profile that maximizes the potential

function, P, on the set, S, is a pure Nash equilibrium in Γ. Below, we describe three potential
games in which the punctuality stability of the equilibrium is checked.

Congestion game [20]. Let M be a finite set of resources and Si ⊆ 2M ∀i ∈ N. The resource
l, l ∈M is associated with the payoff function cl : R → R. The congestion game is a normal-form
game, Γ, in which the payoff function for player i, i ∈ N and the potential function have the
form

ui(s) =
∑
l∈si

cl(kl(s)), P (s) =
∑

l∈ ∪
m∈N

sm

kl(s)∑
k=1

cl(k),

where kl(s) is the number of players who have chosen the resource l in the profile s.
If the start of the congestion game, Γ, is missed by player j, then a congestion game Γ−j

forms, in which the payoff function for player i, i ∈ N \ {j} and the potential function are

uji (ŝ−j) =
∑
l∈sji

cl(kl(ŝ−j)), P−j(ŝ−j) =
∑

l∈ ∪
m∈N\{j}

sjm

kl(ŝ−j)∑
k=1

cl(k).
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The players’ payoff functions retain their form if one player is late. The same is valid for the
following two potential games.

Bilateral symmetric interaction games (BSI) [27]. Suppose that for any i, g ∈ N, i ̸= g
there exists a function wig : Si × Sg → R and hi : Si → R. The function wig shows the influence
of player i on player j. The function hi is the utility (hi > 0) or the costs (hi < 0) of player i
using strategy si. The equality wig(si, sg) = wgi(sg, si) ∀(si, sg) ∈ Si×Sg is true for the function
wig. The BSI is a normal-form game, Γ, in which the payoff function for player i, i ∈ N and the
potential function have the form

ui(s) =
∑

g∈N\{i}

wig(si, sg)− hi(si), P (s) =
∑
m<g
m,g∈N

wmg(sm, sg)−
∑
m∈N

hm(sm).

Γ−j is a BSI game in which the payoff function for player i, i ∈ N \ {j} and the potential
function have the form

uji (ŝ−j) =
∑

g∈N\{i,j}

wig(s
j
i , s

j
g)− hi(s

j
i ), P−j(ŝ−j) =

∑
m<g

m,g∈N\{j}

wmg(s
j
m, s

j
g)−

∑
m∈N\{j}

hm(s
j
m).

The third potential game, The universal potential game, is a normal-form game, Γ, in
which the payoff function for player i and the potential function have the form

ui(s) =
∑
K⊆N
i∈K

ΦK(sK), P (s) =
∑
K⊆N
K ̸=∅

ΦK(sK),

where ΦK :
∏
i∈K Si → R ∀K ⊆ N,K ̸= ∅ and sK ∈

∏
i∈K Si [27]. If player j is late for the

start of the universal potential game, then a game, Γ−j , forms in which the payoff function for
player i, i ̸= j and the potential function have the form

uji (ŝ−j) =
∑

K⊆N\{j}
i∈K

ΦK(sK), P−j(ŝ−j) =
∑

K⊆N\{j}
K ̸=∅

ΦK(ŝK).

We have defined the game Γ−j so that the tardiness of any player does not entail an alteration
of the form of the players’ payoff functions. If Γ belongs to a certain class of games, then Γ−j
also belongs to this class ∀j ∈ N.

3.2 Example of tardiness in a congestion game

This subsection demonstrates that not any equilibrium in a potential game is punctually stable.
Let Γ be a congestion game with the set of playersN = {1, 2, 3, 4} and two resourcesM = {I, II}.
Each player can choose only one of the resources. The payoff functions cI and cII are non-
monotonic and their values have the form

cI(1) = 3, cI(2) = 5 cI(3) = 1, cI(4) = 2.5,

cII(1) = 2, cII(2) = 6, cII(3) = 4, cII(4) = 1.

The strategy profile (I, I, I, I) is a Nash equilibrium. For such a profile, the payoff of each
player is ui(I, I, I, I) = 2.5 ∀i ∈ N. For any other equilibrium strategy profile, the number of
players selecting the resource I or II is 2 for each. E.g., (I, I, II, II) is also a Nash equilibrium
and

u1(I, I, II, II) = u2(I, I, II, II) = 5, u3(I, I, II, II) = u4(I, I, II, II) = 6.

11



Let us check whether the strategy profile (I, I, I, I) is punctually stable. Suppose player
j, j ∈ N arrives late or intentionally conceals their presence from other players. Then, players
from the set N \ {j} play a congestion game, Γ−j , with the same resources. This game has only
one equilibrium ŝ∗−j = (II, II, II) and the players’ payoffs are uji (II, II, II) = cII(3) = 4 ∀i ∈
N \{j}. After the equilibrium ŝ∗−j is established, player j shows up and chooses the best resource
for oneself. We have uj(I, ŝ∗−j) = 3, uj(II, ŝ

∗
−j) = 1 ∀j ∈ N. The best answer for player j is

to choose I and get 3. This payoff is greater than uj(I, I, I, I) = 2.5, and so the equilibrium
(I, I, I, I) is not punctually stable.

Let us now consider the equilibrium (I, I, II, II). For this strategy profile, the payoff for the
first and the second players is cI(2) = 5, and the payoff for the third and the fourth players is
cII(2) = 6. If the player j arrives late, they will get uj(I, ŝ∗−j) = 3 after arriving in the game.
Since 5 and 6 is more than 3, being tardy is not beneficial for any player. Hence, (I, I, II, II) is
a punctually stable Nash equilibrium.

Hence, not any equilibrium profile in the congestion game is punctually stable.

3.3 The theorem of punctuality in potential games

We now test the punctuality stability of the equilibrium strategy profiles that maximize the
potential function:

NE(Γ) = {s∗|s∗ ∈ argmax
s∈S

P (s)},

NE(Γ−j) = {ŝ∗−j |ŝ∗−j ∈ argmax
ŝ−j∈

∏
i∈N\{j} Si

P−j(ŝ−j)}.

Theorem 1. The following two assertions are true:
1. Let the payoff function for player i, i ∈ N in the game Γ have the form

ui(s) = P (s)− P−i(s−i),

where P and P−i are the potential functions in the games Γ and Γ−i, respectively. In this
case, any strategy profile from NE(Γ) is punctually stable.

2. If Γ is a congestion game or a BSI game or a universal potential game, then any profile
from NE(Γ) is punctually stable.

In the games from Theorem 1, players can be asked to form a strategy profile that maximizes
the potential function. In this case, we get an equilibrium and no player would want to arrive
late or conceal their presence before the start of the game.

As demonstrated in [27], a normal-form game is a potential game iff the normal-form game is
a universal potential game. Hence, for an arbitrary potential game it is always possible to find an
array of functions {ΦK}K⊆N

K ̸=∅
to express the players’ payoffs. If uji ∀i ∈ N ∀j ∈ N \ {i} can also

be expressed through the array {ΦK}K⊆N
K ̸=∅

as stated in Section 2.1, then, according to Theorem

1, any profile from NE(Γ) is punctually stable.
It is known that the payoff functions for players in an arbitrary potential game can be written

in the form

ui(s) = P (s) +Qi(s−i),

where P is the potential function and Qi :
∏
k∈N\{i} Sk → R. If Qi = −P−i ∀i ∈ N, then we

get the players’ payoff functions described in the first point of Theorem 1.

12



Suppose we are checking the punctuality stability in a potential game from a certain class of
potential games. If any player is late, we will have a potential game from the same class. Will the
equilibrium that maximizes the potential function be punctually stable in this case? The answer
to this question is negative. The game described in Section 4.3. is a counterexample.

3.4 Punctuality in the marginal game

Let Π(N) be the set of all coalition partitions of the set N,

Π(N) =
{
{B1, B2, ..., Bl}|Bj ∩Bg = ∅, 1 ≤ j < g ≤ l,∪lj=1Bj = N

}
.

The coalition structure π = {B1, B2, ..., Bl} is an element of Π(N). We denote by B(i) the
coalition in the partition π which contains the player i, that is, i ∈ B(i) ∈ π. The coalition
partition game is a pair (N,H) where H : Π(N) → Rn. In the game (N,H), the question of the
existence of a stable partition is interesting. In a Nash-stable partition, it is not profitable for
any player to move from their coalition to another. For a permutation-stable partition, the sum
of players’ payoffs from different coalitions will decrease if they switch places. The strategy of
the player in the coalition partition game follows from the type of stability.

The marginal game is a coalition partition game (N,H) in which the players’ payoff functions
have the form

Hi(π) = v(B(i))− v(B(i) \ {i}) ∀i ∈ N,

where v : 2N → R, v(∅) = 0. In a marginal game, as demonstrated in [9], there always exists
a coalition structure, π∗, which is simultaneously Nash-stable and permutation-stable. To find
π∗ it suffices to solve the discrete optimization problem

π∗ ∈ argmax
π∈Π(N)

∑
B∈π

v(B),

where P (π) =
∑

B∈π v(B) is a simultaneously potential and permutation-potential function.
Denote

π∗ ∈ argmax
π∈Π(N)

P (π), ψ∗
−i ∈ argmax

ψ−i∈Π(N\{i})
P (ψ−i),

Y (ψ∗
−i) =

{
{A ∪ {i}, ψ∗

−i,A}|∀A ∈ ψ∗
−i

}
.

The coalition structure ψ,ψ ∈ Y (ψ∗
−i) is obtained from ψ∗

−i by joining player i to some
coalition. For example, if ψ∗

−1 = {{2}, {3, 4}}, then

Y (ψ∗
−1) =

{{
{1}, {2}, {3, 4}

}
,
{
{1, 2}, {3, 4}

}
,
{
{2}, {1, 3, 4}

}}
.

The coalition structure, π∗, which maximizes the potential function of the game (N,H), is
punctually stable if

Hi(π
∗) ≥ Hi(ψ) ∀i ∈ N, ∀ψ ∈ Y (ψ∗

−i).

Statement 2. The partition, π∗, is punctually stable in the marginal game.

It is worth making the following remark regarding the marginal game and a certain type
of stability. Partition π is a utilitarian order (not strictly) in the cooperative game, (N, v), if
∀A,B ∈ π ∀i ∈ A the following inequalities are fulfilled:
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∑
A∈π

v(A) ≥
∑
A∈ρ

v(A) ∀ρ ∈ Π(N).

Total social welfare
∑

A∈π v(A) achieved in π is not less than in ρ. This type of stability is
often studied in the literature on telecommunications [3, 21, 22]. P (π) =

∑
A∈π v(A), however,

is a potential function for a marginal game. Hence, the utilitarian order is the same as a Nash-
stable partition in a marginal game. Now, considering Statement 2 and the result from [9], we
can conclude that, in a marginal game, there exists a coalition structure which is simultaneously
a utilitarian order, Nash-stable, permutation-stable, and punctually stable.

3.5 Punctuality in singleton congestion games

The singleton congestion game, Γ, is a congestion game in which each player can choose only
one resource from the set of resources, M . The payoff function for player i, i ∈ N has the form

ui(s) = csi(ksi(s)).

As a reminder, si is the resource chosen by player i, and ksi(s) is the number of players
who have chosen the resource si in the profile s. We assume in this section that cl ∀l ∈ M is a
monotone decreasing function.

The profile s∗ is a Nash equilibrium in a singleton congestion game if the following inequalities
are fulfilled:

cs∗i (ks∗i (s
∗)) ≥ csi(ksi(s

∗) + 1) ∀i ∈ N ∀si ∈M.

We are concerned with the punctuality of the equilibrium profile formed in the following
manner. Let NE(Γ) = {s∗ = (s∗1, s

∗
2, ..., s

∗
n)},where

s∗1 = argmax
s1∈M

cs1(1),

s∗i = argmax
si∈M

csi(ksi(s
∗
1, ..., s

∗
i−1) + 1), ∀i ∈ {2, 3, ..., n}.

Players, one after another, choose the resources that represent their best answers. The best
resource is first chosen by player 1, then by player 2, and so forth. The last one to find the
best answer is player n. It is easy to see that, after such a sequence of best answers we get an
equilibrium strategy profile. The resultant equilibrium is of interest because it is obtained within
n steps. Although new players arrive at the resources, old players do not benefit from switching
to another resource. This equilibrium is also practical. An equilibrium strategy profile can be
obtained simply by asking players to choose, one after another, the resource which best answers
their needs. We assume that each player’s best response is found uniquely. As a result, we get a
unique equilibrium at the end of the sequence of best choices.

Suppose player j is late. Punctual players play the singleton congestion game, Γ−j , with the
payoff functions

uji (ŝ−j) = c
sji
(k
sji
(ŝ−j)).

For Γ−j , we have NE(Γ−j) = {ŝ∗−j = (sj∗1 , s
j∗
2 , ..., s

j∗
j−1, s

j∗
j+1, ..., s

j∗
n )}, where

sj∗1 = argmax
sj1∈M

c
sj1
(1),
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sj∗l = argmax
sjl∈M

c
sjl
(k
sjl
(sj∗1 , ..., s

j∗
l−1) + 1), ∀l ∈ {2, 3, ..., j − 1, j + 1, ..., n}.

In the absence of player j, punctual players find their best answers one after another and
player j finds their best answer last. The next statement demonstrates that the player’s tardiness
does not increase their payoff.

Statement 3. The strategy profile s∗ ∈ NE(Γ) is punctually stable.

To achieve punctuality in a congestion game, the players only need to agree to form a strategy
profile that maximizes the potential function. This is a corollary from Theorem 1. If, however,
we have a singleton game with monotone decreasing functions, the punctuality problem can be
approached in a different way. When a player appears in the game, they choose the best resource
for themselves. After the last player has made their move, we get a Nash equilibrium. It follows
from Statement 3 that being the last to choose is not beneficial for any player. Hence, there is
no interest for the players to intentionally miss the start of the game.

Let us consider an example. Let N = {1, 2, ..., 6},M = {I, II, III}. The functions of payoff
on resources are

cI(k) =
16

k
, cII(k) =

11

k
, cIII(k) =

9

k
.

Players make moves one after another. Player 1 is the first to make a move, player 2 is the
second, and so forth. The distribution of players among resources will take the form:

I II III
1 2 3
4 5
6

Players 1, 4, 6 get 16
3 as payoff. Players 2, 5 get 11

2 . The payoff of player 3 is 9. Note that
player 6 gets the smallest payoff although the resource size is 16.

Suppose the second player has missed the start of the game. Then players 1, 3 — 6 find their
best answers one after another and player 2 makes their move last. In this case, the distribution
among resources is

I II III
1 3 4
5 6
2

The sequence of the resources chosen does not change in the case of any player’s tardiness.
So, the tardy player takes the position of player 6. Since the payoff of player 6 is the smallest (in
the game without tardiness), nobody wants to be in this position. Hence, players do not want to
be late.

4 Punctuality in aggregative games

4.1 Theorem of punctuality in aggregative games

The aggregative game is a normal-form game, Γ, for which Si ⊆ R+ ∀i ∈ N and there exists a
function fi : Si × R+ → R such that the payoff of player i has the form
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ui(s) = fi(si,
∑
k∈N

sk).

The strategy profile s∗, s∗ ∈ S is a Nash equilibrium in the aggregative game, Γ, if ∀i ∈ N
the following inequalities are fulfilled:

fi(s
∗
i , s

∗
i +

∑
k∈N\{i}

s∗k) ≥ fi(si, si +
∑

k∈N\{i}

s∗k) ∀si ∈ Si.

If player j, j ∈ N has missed the start of the aggregative game, Γ, then an aggregative game,
Γ−j forms, in which the payoff of player i, i ∈ N \ {j} is

uji (ŝ−j) = fi(s
j
i ,

∑
k∈N\{j}

sjk).

Sufficient conditions for an equilibrium to exist in an aggregative game were found in [11]; in
the general case, an equilibrium may not exist.

In this section, the sets NE(Γ) and NE(Γ−j) ∀j ∈ N consist of all Nash equilibria of the
games Γ and Γ−j , respectively.

Theorem 2. Let NE(Γ) and NE(Γ−j) be non-empty sets ∀j ∈ N and fi(si, y) be a monotonically
increasing (decreasing) function by y ∀i ∈ N. Then, the profile s∗, s∗ ∈ NE(Γ) is punctually stable
iff ∑

k∈N\{i}

s∗k ≥ (≤)
∑

k∈N\{i}

si∗k ∀i ∈ N ∀ŝ∗−i ∈ NE(Γ−i).

It follows from Statement 1 that for an arbitrary normal-form game the necessary condition for
punctuality is not sufficient. Theorem 2, however, finds a simultaneously necessary and sufficient
condition for the punctuality stability of a Nash equilibrium in an aggregative game.

The algorithm for applying the outcome of Theorem 2 to an aggregative game is the following.
First, we find an equilibrium in the games Γ and Γ−j . Next, the inequalities from Theorem 2 are
checked. If the inequalities are true, then the equilibrium is punctually stable. If the inequalities
are not true, then the equilibrium is not punctually stable and players can be found who will
benefit from missing the start of the game. The next subsections demonstrate the application of
Theorem 2 to aggregative games.

4.2 Punctuality in a Cournot oligopoly

Let the game Γ be a Cournot oligopoly in which the players’ payoff functions have the form

ui(s) = si · L

(∑
k∈N

sk

)
− Ci(si),

where si is the product output of player i, L : R → R is a decreasing inverse demand function,
and Ci : Si → R is the cost of player i. The oligopoly is an example of an aggregative game for
which

fi(si, y) = si · L(y)− Ci(si), ui(s) = fi(si,
∑
k∈N

sk).

We assume that NE(Γ) ̸= ∅, NE(Γ−j) ̸= ∅ ∀j ∈ N . Since fi(si, y) decreases by y, Theorem
2 can be applied. The profile s∗ ∈ NE(Γ) is punctually stable iff
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∑
k∈N\{i}

s∗k ≤
∑

k∈N\{i}

si∗k ∀i ∈ N ∀ŝ∗−i ∈ NE(Γ−i).

The value
∑

k∈N\{i} s
∗
k is the supply of the product in the market in a game with the set

of players, N , without the release of the product from player i. The value
∑

k∈N\{i} s
i∗
k is the

supply of the product in a game with the set of players N \ {i}. Hence, the equilibrium s∗ is
punctually stable in a Cournot oligopoly if players from the set N \{i} in the game Γ−i together
generate a product volume greater or equal to that in the game Γ ∀i ∈ N.

Statement 4. In an oligopoly with linear-quadratic payoff functions

ui(s) = si ·

(
p−

∑
k∈N

sk

)
− c · si, p > 0, c > 0, p− c > 0.

the Nash equilibrium is punctually stable.

The proof of Statement 4 is based on Theorem 2. For the game from Statement 4, however,
Theorem 1 can be applied. The potential function for an oligopoly with linear-quadratic payoff
functions has the form

P (s) = (p− c) ·
∑
k∈N

sk −
∑
k∈N

∑
m∈N

sk · sm.

The potential function for an oligopoly without player j is

P−j(ŝ−j) = (p− c) ·
∑

k∈N\{j}

sjk −
∑

k∈N\{j}

∑
m∈N\{j}

sjk · s
j
m.

It is easy to show that the payoff functions for players in a Cournot oligopoly with linear-
quadratic payoff functions meet the first point of Theorem 1. Hence, the Nash equilibrium that
maximizes the potential function is punctually stable.

Suppose a certain game is simultaneously a potential one and an aggregative one. In this case,
the outcome of Theorem 2 is wider for this game than the outcome of Theorem 1. Theorem 1 is
concerned with the punctuality of the strategy profile which maximizes the potential function,
whereas Theorem 2 can be used to test the punctuality of any Nash equilibrium. The next section
deals with a potential aggregative game to which only Theorem 2 can be applied.

4.3 Regarding punctuality in a potential aggregative game: data communication
in a multichannel system

In this subsection, we simulate the process of data communication in a multichannel system and
check the punctuality of the equilibrium.

Let us consider the game Γ = ⟨N, {Si}i∈N , {ui}i∈N ⟩ in which Si is the interval [0, Ai] and a
player’s payoff is

ui(s) = hi(Ai − si) + h(
∑
k∈N

sk),

where si ∈ [0;Ai], h : R → R, hi : R → R and h, hi are monotonically increasing functions
∀i ∈ N.

Let us illustrate the physical meaning of the game, Γ. The number Ai is the amount of the
data of player i. There is one common and n private channels for data communication. A certain
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player is matched bijectively to each private channel. The number si is the data of player i which
is communicated via the common channel. An Ai − si amount of data is communicated via the
private channel.

The data communication system is arranged as follows. First, data are communicated via the
common channel. After data communication via the common channel is over, private channels
are engaged. If si = Ai, then there is no need to engage the private channel for player i. If
si ̸= Ai, then player i sends an Ai − si amount of data via the private channel. The availability
of the common channel helps lower the load on the data transmission system and reduce the
number of the private channels engaged.

The numbers h(
∑

k∈N sk) and hi(Ai − si) are the period of data communication via the
common and via the private channel of player i, respectively. The function ui(s) is the service
time for player i. Player i is interested in minimizing ui(s).

The game, Γ, is a potential game with the potential function

P (s) = h(
∑
k∈N

sk) +
∑
k∈N

hk(Ak − sk),

hence, a Nash equilibrium exists. If player j is late for the start of the game, then the game
Γ−j forms, in which the payoff of player i, i ∈ N \ {j} is

uji (ŝ−j) = hi(Ai − sji ) + h(
∑

k∈N\{j}

sjk).

The game Γ−j is a potential game ∀j ∈ N, for which the potential function has the form

P−j(ŝ−j) = h(
∑

k∈N\{j}

sjk) +
∑

k∈N\{j}

hk(Ak − sjk).

Let us check whether the payoff functions for players in Γ fulfill the conditions set out in the
first point of Theorem 1,

P (s)− P−i(s−i) = ui(s)− h(
∑

k∈N\{i}

sk) ̸= ui(s).

Hence, Theorem 1 is not applicable to the game in question. However, Γ is an aggregative
game,

ui(s) = fi(si,
∑
k∈N

sk), fi(si, y) = hi(A− si) + h(y).

Statement 5. Let hi = h ∀i ∈ N and h is a convex function. Then the following is true:
1) If

Ai∑
k∈N Ak

≥ 1

n+ 1
and

Ai∑
k∈N\{j}Ak

≥ 1

n
∀i, j ∈ N, i ̸= j,

then the equilibrium strategies of players in the games Γ and Γ−j are

s∗k = Ak −
∑

l∈N Al

n+ 1
, sj∗k = Ak −

∑
l∈N\{j}Al

n
.

2) The equilibrium of the game Γ from the first point is punctually stable iff

Ai∑
l∈N\{i}Al

≥ 1

n
∀i ∈ N.
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The equilibrium in the game Γ does not possess the punctuality property in the general
case. Statement 5 finds the sufficient condition for punctuality of the equilibrium with some
constraints.

Let A1 ≥ A2 ≥ ... ≥ An. Then,

A1∑
k∈N\{1}Ak

≥ A2∑
k∈N\{2}Ak

≥ ... ≥ An∑
k∈N\{n}Ak

.

Hence, if the last fraction is not less than 1
n , then all other fractions are also not less than 1

n .We
can therefore observe the following regarding Statement 5. If the player with the smallest amount
of data is disadvantaged by missing the start of the game, then being tardy is disadvantageous
for other players as well.

5 Punctuality in symmetric games

5.1 Symmetric mixed equilibrium

Let the strategy sets of players in the game Γ coincide, i.e., S1 = S2 = ... = Sn. Then, Γ is called
symmetric if for any permutation of players σ and for any strategy profile s = (s1, s2, ..., sn) the
following equalities hold:

ui(s1, s2, ..., sn) = uσ(i)(sσ(1), sσ(2), ..., sσ(n)) ∀i ∈ N.

We assume that {1, 2, ...,m} is a finite set of strategies of each player. We denote by S the
set of mixed strategies of the players,

S =

(x1, x2, ..., xm)|
m∑
j=1

xj = 1, xj ≥ 0,∀j ∈ {1, 2, ...,m}

 .

As has been proven that any finite symmetric game has a symmetric mixed equilibrium
(x∗, x∗, ..., x∗),
x∗ ∈ S [17], that is, the following inequalities are fulfilled:

ui(x
∗, ..., x∗, ..., x∗) ≥ ui(x

∗, ..., x, ..., x∗) ∀i ∈ N ∀x ∈ S.

The aim of this subsection is to obtain the sufficient condition for a mixed symmetric
equilibrium to be punctually stable.

Let u(x, y) = u1(x, y, ..., y) ∀x, y ∈ S. The pair (x∗, y∗) is the saddle point of the function
u(x, y) if the following inequalities are true:

u(x, y∗) ≤ u(x∗, y∗) ≤ u(x∗, y) ∀x, y ∈ S.

Statement 6. Let Γ−j be a symmetric game ∀j ∈ N and in games Γ−1,Γ−2, ...,Γ−n there is
the same symmetric mixed equilibrium (y∗, y∗, ..., y∗) ∈ Rn−1, y∗ ∈ S. Then the symmetric mixed
equilibrium x∗ of the symmetric game Γ is punctually stable if (x∗, y∗) is the saddle point of the
function u(x, y).

The symmetric equilibrium of a normal-form symmetric game is rarely punctually stable. The
next section, however, demonstrates that a pure equilibrium in an extensive-form symmetric game
is always punctually stable.
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5.2 Games with a move order

A strategic game with a move order is a tuple E = ⟨N, σ, {S}i∈N , {ui}i∈N ⟩, where N is the set
of players, σ is a permutation of the set N, and S is the set of strategies at the player’s position
in σ. The function ui : Sn → R is the payoff of player i.

We assume that players select their strategies sequentially. The first one to choose a strategy
is the player occupying the first position in the permutation σ. The second move is made by
the player occupying the second position, and so on. A move order exists in extensive form
games, but in such games the order is fixed. In our case, the move order can change. Let σ1 =
(2, 3, ..., n, 1), σn = (1, 2, ..., n), σi = (1, 2, ..., i− 1, i+1, ..., n, i), i ∈ {2, ..., n− 1}. Denote Ei as a
strategic game with the permutation σi and s∗(Ei) as a perfect Nash equilibrium.

Definition 2. The equilibrium s∗(En) is punctually stable in the game En if

ui(s
∗(En)) ≥ ui(s

∗(Ei)) ∀i ∈ N.

In a punctually stable equilibrium s∗(En), no single player benefits from moving from their
position in the permutation σn = (1, 2, ..., n) to the last position. There is a significant difference
in Definition 1 and Definition 2. The difference is that in the first case we introduce new games
Γ−i, i ∈ N without player i, whereas in the second case the new games include player i.

For the game E with the permutation σ = (σ1, σ2, ..., σn), we plot an oriented graph G in
the following way. Any graph vertex is labeled with the player’s number, and edges are labeled
by strategies. The root vertex of G is labeled as σ1. There are |S| edges (σ1, σ2) running from
the vertex labeled as σ1, and each of the edges is labeled by the corresponding strategy from S.
Each vertex labeled as σ2 has |S| edges (σ2, σ3) labeled as s, s ∈ S, respectively, running from it.
There is a total of |S|2 vertices labeled as σ3. We continue adding more edges until we have added
the edges (σn−1, σn), labeled with players’ strategies. Next, we add the edges (σn, x), labeled by
strategies from S, where x is the corresponding vector of players’ payoffs. We denote by Gi the
graph of the game Ei, ∀i ∈ N.

Let us consider an example. Let N = {1, 2, 3}, S = {a, b}. The graph G3 of the game E3 and
the payoffs of players are shown in Fig. 1.

Fig. 1. The graph of the game E3.
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According to extensive form games, player 1 has 2 strategies, a and b. Player 2 has 4 strategies,
aa, ab, ba, bb, and player 3 has 8 strategies. In further reasoning, it is enough for us to know only
the player’s action relative to their position, so we do not use the classical notation. We only
need to know the player’s choice (a or b) regarding their position.

It follows from Fig. 1 that u1(a, a, a) = 1, u2(a, a, a) = 6, u3(a, a, a) = 5. Let us find s∗(E3).
At first, the third player finds their optimal strategy. Then, the second player, knowing the
optimal strategy of player 3, finds their best answer. Player 1 then acts in the same manner.
The players’ best answers are underlined in Fig 1. We have s∗(E3) = (b, a, b). The payoffs of the
players are u1(s∗(E3)) = 8, u2(s

∗(E3)) = 4, u3(s
∗(E3)) = 3.

Let us check whether the equilibrium s∗(E) is punctually stable. Suppose that only player 2
is late. After player 2 shows up, there forms the game E2, the graph of which is shown in Fig. 2.

Fig. 2. The graph of the game E2.

We have s∗(E2) = (b, a, a). The payoffs of the players have the form u1(s
∗(E2)) = 4, u2(s

∗(E2)) =
8, u3(s

∗(E2)) = 2. Since u2(s∗(E2)) > u2(s
∗(E)), player 2 benefits from being tardy in the game

E. Hence, the equilibrium s∗(E) is not punctually stable.
Let us now consider the case where player 1 arrives late. The tree of the game E1 is shown

in Fig. 3.
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Fig. 3. The graph of the game E1.

We have s∗(E1) = (b, a, b), which coincides with s∗(E3). Hence, being late is disadvantageous
for player 1.

In the general case, the profile s∗(E3) is not punctually stable. For symmetric games, however,
the following result was obtained.

Statement 7. For a symmetric game En the profile s∗(En) is punctually stable.

The proof is based on the fact that as a result of the tardiness of player i, i ∈ N the
permutation σn is replaced by the permutation σi. The trees Gn and Gi are superposed and
it is demonstrated that the corresponding players’ best answers are also superposed. Using the
symmetry property, we then conclude that being late is disadvantageous for the players.

6 Conclusions

To avoid the intentional tardiness of individual players in games, we recommend that the players
form a Nash equilibrium that would be punctually stable. In the potential games described in
Theorem 1, players need to agree on forming a strategy profile that maximizes the potential
function. In this case, no single player would benefit from missing the start of the game alone.
Mind that there may exist an equilibrium in the potential games under consideration that does
not maximize the potential function. Such an equilibrium cannot be punctually stable.

A solution for singleton congestion games with decreasing functions of payoff on resources
can be the queuing of players. The first player to arrive chooses the best resource for oneself.
The last one to arrive in the game is the last one to choose a resource. After the last player’s
move, we get an equilibrium. Such an equilibrium is punctually stable.

A symmetric mixed equilibrium in an arbitrary symmetric game may prove not to be punctually
stable. Yet, a pure Nash equilibrium of an extensive-form symmetric game is always punctually
stable.

A Nash equilibrium in aggregative games with monotone payoff functions may also not be
punctually stable. However, the necessary and sufficient conditions from Theorem 2 can help to
identify which player can benefit from missing the start of the game.
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Appendix

Proof of Theorem 1. 1. Let s∗ = (s∗i , s
∗
−i) ∈ NE(Γ), ŝ∗−i ∈ NE(Γ−i). The following sequence of

equalities is true,

ui(s
∗
i , s

∗
−i)− ui(si, ŝ

∗
−i) =

(
P (s∗i , s

∗
−i)− P−i(s

∗
−i)
)
−
(
P (si, ŝ

∗
−i)− P−i(ŝ

∗
−i)
)

=
(
P (s∗i , s

∗
−i)− P (si, ŝ

∗
−i)
)
+
(
P−i(ŝ

∗
−i)− P−i(s

∗
−i)
)
.

Since s∗ ∈ NE(Γ) and ŝ∗−i ∈ NE(Γ−i), then s∗ ∈ argmax
s∈S

P (s) and ŝ∗−i ∈ argmax
ŝ∈

∏
j∈N\{i} Sj

P−i(ŝ).

Therefore, P (s∗i , s
∗
−i) − P (si, ŝ

∗
−i) ≥ 0 ∀si ∈ Si ∀ŝ∗−i ∈ NE(Γ−i) and P−i(ŝ

∗
−i) − P−i(s

∗
−i) ≥

0 ∀s∗−i ∈
∏
j∈N\{i} Sj . Hence, ui(s∗i , s

∗
−i)−ui(si, ŝ∗−i) ≥ 0 ∀si ∈ Si ∀ŝ∗−i ∈ NE(Γ−i). By definition,

s∗ is punctually stable
2. We show that the games in question are special cases of the game from point 1.
Let Γ be a congestion game. Then,

P (s)− P−i(s−i) =
∑

l∈ ∪
m∈N

sm

kl(s)∑
k=0

cl(k)−
∑

l∈ ∪
m∈N\{i}

sm

kl(s−i)∑
k=0

cl(k)

=

∑
l∈si

kl(s)∑
k=0

cl(k) +
∑

l∈∪j∈N\{i}sj
l/∈si

kl(s)∑
k=0

cl(k)

−

∑
l∈si

kl(s−i)∑
k=0

cl(k) +
∑

l∈∪j∈N\{i}sj
l/∈si

kl(s−i)∑
k=0

cl(k)


=
∑
l∈si

kl(s)∑
k=0

cl(k)−
kl(s−i)∑
k=0

cl(k)

+
∑

l∈∪j∈N\{i}sj
l/∈si

kl(s)∑
k=0

cl(k)−
kl(s−i)∑
k=0

cl(k)

 .

If l ∈ ∪j∈N\{i}sj and l /∈ si, then kl(s) = kl(s−i). This means that the number of players
will not change on the resource l, if the player i has not chosen l. In the case of l ∈ si we have
kl(s)− 1 = kl(s−i). Then,

P (s)− P−i(s−i) =
∑
l∈si

kl(s)∑
k=0

cl(k)−
kl(s)−1∑
k=0

cl(k)

 =
∑
l∈si

cl(kl(s)) ≡ ui(s),

where ui(s) is the payoff function of the player i, i ∈ N in the congestion game.
Let Γ be a BSI game, then

P (s)−P−i(s−i) =

 ∑
m<g
m,g∈N

wmg(sm, sg)−
∑
m∈N

hm(sm)

−

 ∑
m<g

m,g∈N\{i}

wmg(sm, sg)−
∑

m∈N\{i}

hm(sm)
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=

 ∑
m<g
m,g∈N

wmg(sm, sg)−
∑
m<g

m,g∈N\{i}

wmg(sm, sg)

− hi(si)

=
∑
g<i

wgi(sg, si) +
∑
g>i

wig(si, sg)− hi(si) =
∑
g<i

wig(si, sg) +
∑
g>i

wig(si, sg)− hi(si)

=
∑

g∈N\{i}

wig(si, sg)− hi(si) ≡ ui(s),

where ui(s) is the payoff function of the player i in the BSI game.
Let Γ be a universal potential game. Simplify the difference of potential functions,

P (s)− P−i(s−i) =
∑
K⊆N
K ̸=∅

ΦK(sK)−
∑

K⊆N\{i}
K ̸=∅

ΦK(sK) =
∑
K⊆N
i∈K

ΦK(sK) ≡ ui(s),

where ui(s) is the payoff function of the player i in a potential game.
Thus, the payoff functions of the players in the considered games satisfy the equality from

the first point of the theorem. Therefore, the profile of the strategy maximizing the potential
function is punctually stable.

Proof of Statement 2. The idea of proving the Statement 2 is similar to the proof of Theorem 1.
Let π−i be a partition of π without a player i. Then,

P (π)− P (π−i) =
∑
B∈π

v(B)−
∑
B∈π−i

v(B)

=

v(B(i)) +
∑
B∈π

B ̸=B(i)

v(B)

−

v(B(i) \ {i}) +
∑
B∈π

B ̸=B(i)

v(B)


= v(B(i))− v(B(i) \ {i}) = Hi(π).

Therefore, ∀i ∈ N ∀π ∈ Π(N) the following equality is true

Hi(π) = P (π)− P (π−i).

Let ψ ∈ Y (ψ∗
−i), then

Hi(π
∗)−Hi(ψ) = (P (π∗)− P (π∗−i))− (P (ψ)− P (ψ∗

−i))

= (P (π∗)− P (ψ)) + (P (ψ∗
−i)− P (π∗−i))

The partitions π∗ and ψ∗
−i maximize the potential function on the sets Π(N) and Π(N \{i}),

respectively. Then P (π∗) − P (ψ) ≥ 0, P (ψ∗
−i) − P (π∗−i) ≥ 0. Hence, Hi(π

∗) − Hi(ψ) ≥ 0 ∀i ∈
N ∀ψ ∈ Y (ψ∗

−i). Therefore, π∗ is punctually stable.
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Proof of Statement 3. We investigate the punctuality of the strategy profile, which can be written
as follows,

s∗ = (s∗1, s
∗
2, ..., s

∗
j−1, s

∗
j , s

∗
j+1, s

∗
j+2, ..., s

∗
n−2, s

∗
n−1, s

∗
n).

If the player j, j ∈ N is late, then the players from N \ {j} find their best answers, and the
player j finds their best answer last. The sequence of selected resources will not change if one
player is late. Then we will get the following strategy profile

s = (s∗1, s
∗
2, ..., s

∗
j−1, s

∗
n, s

∗
j , s

∗
j+1, ..., s

∗
n−3, s

∗
n−2, s

∗
n−1).

Therefore, the equilibrium profile is punctually stable if the payoff of player n is smallest.
The strategy profile (s∗1, ..., s

∗
n−1) is a Nash equilibrium, hence

cs∗i (ks∗i (s
∗
1, ..., s

∗
n−1)) ≥ cl(kl(s

∗
1, ..., s

∗
n−1) + 1) ∀i ∈ {1, 2, ..., n− 1} ∀l ∈M.

Player n finds the best answer and their payoff is

cs∗n(ks∗n(s
∗
1, ..., s

∗
n−1, s

∗
n)) = cs∗n(ks∗n(s

∗
1, ..., s

∗
n−1) + 1).

The payoff of player i in the profile s∗ can be represented as follows,

cs∗i (ks∗i (s
∗)) =

{
cs∗i (ks∗i (s

∗
1, ..., s

∗
n−1)), s∗i ̸= s∗n;

cs∗n(ks∗n(s
∗
1, ..., s

∗
n−1) + 1), s∗i = s∗n.

If s∗i = s∗n, then

cs∗i (ks∗i (s
∗)) = cs∗n(ks∗n(s

∗
1, ..., s

∗
n−1) + 1) = cs∗n(ks∗n(s

∗))

If s∗i ̸= s∗n, then we put in the above inequality l = s∗n. We get that

cs∗i (ks∗i (s
∗)) = cs∗i (ks∗i (s

∗
1, ..., s

∗
n−1)) ≥ cs∗n(ks∗n(s

∗
1, ..., s

∗
n−1) + 1)

= cs∗n(ks∗n(s
∗
1, ..., s

∗
n−1, s

∗
n)) = cs∗n(ks∗n(s

∗)) ∀i ∈ {1, 2, ..., n− 1}.

Thus, the payoff of player n is no greater than any other player’ payoff. Therefore, it is not
profitable for each player to be late. Hence, s∗ is punctually stable.

Proof of Theorem 2. Necessity. Let s∗ is punctuality stable Nash equilibrium. We show that the
inequalities are satisfied∑

k∈N\{i}

s∗k ≥ (≤)
∑

k∈N\{i}

si∗k ∀i ∈ N ∀ŝ∗−i ∈ NE(Γ−i).

The profile s∗ is punctually stable, so ∀i ∈ N the following inequalities are true,

fi(s
∗
i , s

∗
i +

∑
k∈N\{i}

s∗k) ≥ fi(si, si +
∑

k∈N\{i}

si∗k ) ∀si ∈ Si ∀ŝ∗−i ∈ NE(Γ−i).

Let it si = s∗i . Since fi(si, y) monotonically increases (decreases) by y ∀i ∈ N, then

fi(s
∗
i , s

∗
i +

∑
k∈N\{i}

s∗k) ≥ fi(s
∗
i , s

∗
i +

∑
k∈N\{i}

si∗k ) ⇒ s∗i +
∑

k∈N\{i}

s∗k ≥ (≤) s∗i +
∑

k∈N\{i}

si∗k

⇒
∑

k∈N\{i}

s∗k ≥ (≤)
∑

k∈N\{i}

si∗k ∀i ∈ N ∀ŝ∗−i ∈ NE(Γ−i).
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Sufficiency. Let ∑
k∈N\{i}

s∗k ≥ (≤)
∑

k∈N\{i}

si∗k ∀i ∈ N ∀ŝ∗−i ∈ NE(Γ−i).

We show that s∗ is punctually stable
The profile s∗ is a Nash equilibrium, so ∀i ∈ N we have

fi(s
∗
i , s

∗
i +

∑
k∈N\{i}

s∗k) ≥ fi(si, si +
∑

k∈N\{i}

s∗k) ∀si ∈ Si.

Given the increase (decrease) of the function fi(si, y) by y and the sufficient condition of the
theorem, the right part of the above inequality can be evaluated as follows,

fi(si, si +
∑

k∈N\{i}

s∗k) ≥ (≥) fi(si, si +
∑

k∈N\{i}

si∗k ) ∀si ∈ Si ∀ŝ∗−i ∈ NE(Γ).

Therefore,

fi(s
∗
i , s

∗
i +

∑
k∈N\{i}

s∗k) ≥ (≥) fi(si, si +
∑

k∈N\{i}

si∗k ) ∀si ∈ Si ∀ŝ∗−i ∈ NE(Γ),

that is, s∗ is punctually stable.

Proof of Statement 4. In case the player i is late, we have the game Γ−i, in which the payoff of
j, j ∈ N \ {i} is

uij(ŝ−i) = sij ·

p− ∑
k∈N\{i}

sik

− c · sij .

The equilibrium in Γ is s∗ = (s∗1, s
∗
2, ..., s

∗
n), s

∗
k = p−c

n+1 ∀k ∈ N. In an oligopoly without a
player i the equilibrium strategy of the player k is si∗k = p−c

n . Let’s check the necessary and
sufficient conditions of Theorem 2,∑

k∈N\{i}

s∗k ≤
∑

k∈N\{i}

si∗k ⇔ (n− 1) · p− c

n+ 1
≤ (n− 1) · p− c

n
⇔ 1

n+ 1
≤ 1

n
.

Since the sufficient condition of Theorem 2 is fulfilled, the equilibrium of the game Γ is
punctually stable.

Proof of Statement 5. 1) Write down the necessary conditions,

∂ui
∂si

= 0 ∀i ∈ N ⇒ h(Ai − si) = h(
∑
k∈N

sk) ∀i ∈ N ⇒ s∗i = Ai −
∑

l∈N Al

n+ 1
∀i ∈ N.

Because of the conditions of the first point, s∗i ∈ [0;Ai] ∀i ∈ N. is satisfied. Since the function
h is convex, it is not difficult to show that ui(s) is convex by si. Therefore, the necessary conditions
are sufficient. Similarly, there is an equilibrium in the game Γ−j ∀j ∈ N.

2) In Theorem 2 and in the game under consideration, the player maximizes and minimizes the
payoff, respectively. Since the player minimizes their waiting time and the function hmonotonically
increases, the equilibrium is punctually stable if and only if
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∑
k∈N\{i}

s∗k ≤
∑

k∈N\{i}

si∗k ∀i ∈ N ∀ŝ∗−i ∈ NE(Γ−i).

We assume that NE(Γ−i) consists of a single strategy profile, which is found in the first
point. Substitute numeric values in the above inequality, we have

∑
k∈N\{i}

s∗k ≤
∑

k∈N\{i}

si∗k ⇒ −(n− 1) ·
∑

l∈N Al

n+ 1
≤ −(n− 1) ·

∑
l∈N\{i}Al

n

⇒
∑

l∈N Al∑
l∈N\{i}Al

≥ n+ 1

n
⇒ Ai∑

l∈N\{i}Al
≥ 1

n
∀i ∈ N.

Proof of Statement 6. Since (y∗, y∗, ..., y∗) is a symmetric mixed equilibrium in games Γ−j , j ∈
{1, 2, ..., n}, then x∗ is punctually stable if ∀x ∈ S inequalities

u1(x
∗, x∗, ..., x∗) ≥ u1(x, y

∗, ..., y∗),

u2(x
∗, x∗, ..., x∗) ≥ u2(y

∗, x, ..., y∗),

...

un(x
∗, x∗, ..., x∗) ≥ un(y

∗, y∗, ..., y∗)

are true. Using the symmetry properties of the players’ payoff functions, we can swap players
1 and i in places, i ∈ N \{1}. Then the above written inequalities are equivalent to the inequality

u1(x
∗, x∗, ..., x∗) ≥ u1(x, y

∗, ..., y∗) ∀x ∈ S,

which can be converted to the form

u(x∗, x∗) ≥ u(x, y∗) ∀x ∈ S.

By condition, (x∗, y∗) is the saddle point of the function u(x, y), that is, the inequalities

u(x, y∗) ≤ u(x∗, y∗) ≤ u(x∗, y) ∀x, y ∈ S.

are true. Therefore,

u(x∗, y) ≥ u(x, y∗) ∀x, y ∈ S.

Let y = x∗, then

u(x∗, x∗) ≥ u(x, y∗) ∀x ∈ S.

Hence, the mixed symmetric equilibrium x∗ is punctually stable.

Proof of Statement 7. Let En be a symmetric game. If the player i is late, then the game En is
transformed into the game Ei

We overlay the trees Gn and Gi so that the root and leaf vertices coincide with each other,
respectively. The corresponding edges of the graphs Gn and Gi, marked with the same strategy,
also overlap each other. Due to the overlap of trees, each vertex has a double label. The labels
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of the vertices of the first level, the second, etc. are (1, 1), (2, 2), ..., (i− 1, i− 1), (i, i+1), ..., (n−
1, n), (n, i), respectively.

After overlaying the trees, we find the best answers of the players, starting with leaf vertices.
All leaf vertices have the label (n, i). Let for some sj , j ̸= i the best answer of the player n in
the game En is sn, that is

un(s1, s2, ..., si−1, si, si+1, ..., sn) ≥ un(s1, s2, ..., si−1, si, si+1, ..., s
′
n) ∀s′n ∈ S.

Since

un(s1, s2, ..., si−1, si, si+1, ..., sn) = ui(s1, s2, ..., si−1, sn, si, ..., sn−1),

un(s1, s2, ..., si−1, si, si+1, ..., s
′
n) = ui(s1, s2, ..., si−1, s

′
n, si, ..., sn−1),

then

ui(s1, s2, ..., si−1, sn, si, ..., sn−1) ≥ ui(s1, s2, ..., si−1, s
′
n, si, ..., sn−1) ∀s′n.

Therefore, the best answer of the player n in the game En is the best answer of the player i
in the game Ei. Due to the symmetry of the game En, a similar property holds for the remaining
pairs (1, 1), (2, 2), ..., (i − 1, i − 1), (i, i + 1), ..., (n − 1, n). As a result of overlapping trees, the
best answers of the game En are superimposed on the best answers of the game Ei. Means, if
(s∗1, s

∗
2, ..., s

∗
i−1, s

∗
i , s

∗
i+1, ..., s

∗
n) is the equilibrium of the gameE, then (s∗1, s

∗
2, ..., s

∗
i−1, s

∗
i , s

∗
i+1, ..., s

∗
n)

is the equilibrium in the game Ei. The payoffs of the late player in the equilibrium profiles are
the same due to the symmetry of the game E. Therefore, the equilibrium of the game En is
punctually stable.
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