
 

 

 

 

 
 

 

 

Fedor Slepov, Sergey Kokovin 

 

  
 

 EQUILIBRIUM EXISTENCE AND 

UNIQUENESS IN ADDITIVE 

TRADE MODELS  

 
   

BASIC RESEARCH PROGRAM 

WORKING PAPERS 

 

 
SERIES: ECONOMICS 

WP BRP 262/EC/2023 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

This Working Paper is an output of a research project implemented within NRU HSE’s Annual Thematic Plan for 

Basic and Applied Research. Any opinions or claims contained in this Working Paper do not necessarily reflect the 

views of HSE 

 



Equilibrium existence and uniqueness in additive trade models∗
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Fedor Slepov1 and Sergey Kokovin2

Abstract
This paper develops a modeling technique of “attainable profit” functions, applying it to two models of mo-

nopolistic competition. First, it revisits the Krugman’s classical trade model in the most general form: several
asymmetric countries and non-specified additive utility functions. We establish the weakest conditions on utilities,
sufficient for the existence of equilibria. These conditions are also necessary under symmetric preferences. Equilib-
rium uniqueness is proved only for the case of two countries. Second, we study another, “indirectly additive” trade
model (Bertoletti and Etro, 2015), and establish weak conditions on non-specified indirect utilities for the existence
of equilibria in several asymmetric countries.

Keywords: international trade, monopolistic competition, variable elasticity of substitution, variable markups,
existence of equilibria, attainable profits

JEL: F12, L13, D43

1 Introduction
This paper contributes to the foundations of New Trade theory and develops a technique of analysis. New Trade the-
ory emerged when Krugman (1979) adapted ideas of monopolistic competition to international economics, thereby
revealing trade gains from diversity. Subsequently, many papers studied various properties of Krugman’s classical
model with constant elasticity of substitution (CES) or variable elasticity of substitution (VES). Although after
Melitz’s (2003) paper, trade theory largely turned to heterogenous firms, Krugman’s approach remains relevant for
many research questions, especially in its general VES-version with non-specified utilities (lacking closed-form solu-
tions). These questions include the Home-market effect, the microfoundations of gravity equations, the estimation
of trade elasticity, pro-competitive effects (Mrazova and Neary, 2014), and welfare analysis (Arkolakis et al., 2019).
In spite of the extensive use of the Krugman’s general model, what remains unclear is the weakest condition on
utility functions sufficient for the existence of equilibria.

We fill this lacuna with the help of our new concise reformulation of the model, performed through “attainable
profit” functions, dependent only on market aggregators. Further, a similar technique allows us to also find suffi-
cient conditions on indirect utility functions for the existence of equilibria in the Bertoletti and Etro trade model
(Bertoletti and Etro, 2015). This interesting model has generated studies of income effects in trade (see Bertoletti
et al., 2018).

Where can our theoretical findings be useful? First of all, our existence theorems delineate the possible/impossible
choice of utility specifications in VES trade modeling, especially for empirical studies that calibrate VES trade mod-
els; see Arkolakis et al. (2019), Costinot and RodrÃguez-Clare (2014), and also Bertoletti et al. (2019). Indeed,
one should know the range of utility/demand functions that can/cannot be exploited when searching for the best fit
for the data. Second, the proof of the existence/uniqueness of equilibrium supports all theoretical papers devoted

∗We are grateful for contributons by Evgeny Zhelobodko, Artem Razumovskii, Sergey Onenko, and Philipp Ushchev, as well as for
comments on the draft by Pavel Molchanov and Konstantin Kucheryavyi. Ivan Serebrennikov provided research assistance on Bertoletti-
Etro model. An earlier version of this paper (2020) did not include the uniqueness result and Bertoletti-Etro model. The study was
financed by the HSE University Basic Research Program.

1HSE University, slepovfa@gmail.com.
2HSE University, skokov7@gmail.com, skokovin@hse.ru.
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to comparative statics and the properties of Krugman’s equilibria; otherwise these well-known results may be dis-
puted. Third, our paper develops a convenient “indirect” method of modeling the demand side through “attainable
profits”, which is not common (a rare example is Asplund and Nocke, 2006). This approach allows us to reduce
the equilibrium equations to a concise form involving only market aggregators. Prices and sales are subsequently
derived from the equilibrium values of two groups of aggregators: marginal utility of income and wages in each
country. This technique, as well as our non-trivial tricks for applying the fixed-point theorems (generalizable to
various models of monopolistic competition), may be interesting for theorists.

Krugman’s (1979) canonical VES setting is taken in its most general form: several countries with possibly
asymmetric (linear) production/trade costs, possibly asymmetric unspecified additive utilities and asymmetric pop-
ulations.

We provide the weakest known sufficient conditions on preferences for the existence of equilibria. These con-
ditions are also necessary-and-sufficient for symmetric utilities (under the usual elementary utility function, i.e.,
neoclassical, thrice differentiable, and allowing for monopolistic competition). Essentially, it says that when con-
sumption increases infinitely, the limit of the marginal utility is: (i) either non-positive; (ii) or positive but the
second derivative of the utility multiplied by the squared consumption tends to negative infinity.3

When utilities are symmetric among countries, these sufficient conditions also appear to be necessary, but only
when we need to ensure the existence of equilibria under any parameters of marginal, fixed, and trading costs, and
any populations and any number of countries. At the same time, there can be specific cost parameters that generate
equilibria even for some utilities violating our conditions (when profits remain finite). So, we almost completely
characterize the family of symmetric utility functions suitable for Krugman-type modeling of trade with any linear
costs. Still, under asymmetric utilities necessity remains an open question.

Our conditions for equilibria are the same as in a closed economy. This means that trade per se does not add
restrictions on the class of utilities suitable for monopolistic-competition modeling.

Technically, we achieve our results through formulating equilibria in terms of “attainable profit functions”,
dependent on market aggregators, instead of consumption volumes as the main variables. This promising “indirect”
formulation is shown to be equally applicable to indirectly-additive trade models, suggested by Betoletti and Etro
(2016).

Betoletti and Etro’s indirectly additive model is our second setting studied. Bertoletti and Etro (2015) suggested
using an indirectly additive utility function as the main primitive of the model to achieve tractable income effects
(elusive under Krugman’s additive modelling). The indirect framework opens new horizons; being generalized to
heterogenous firms, it allows for interesting empirical estimates connected to incomes (see Bertoletti et al., 2019).
We apply our technique to the initial, homogenous version of the model and prove equilibria (which has not yet
been done). The sufficient conditions on indirect utilities are found to be natural, the same as used by Bertoletti
and Etro for studying income effects. Essentially, they require the elementary indirect utility to be decreasing in
price, convex, and vanishing at the limit.

Literature. The growing VES literature on monopolistic competition and trade supplements the old CES tra-
dition. VES studies establish more general theorems about the robust qualitative features of equilibria, independent
of certain demand specifications, supported by VES empirics.4 However, as we have noted, the existence of trade
equilibria remains incompletely studied.

The seminal VES paper Krugman (1979) shows the existence of equilibria for two symmetric countries under
increasingly elastic demand functions. Extending this proof to N symmetric countries is rather obvious. However,
the asymmetric VES case is far from trivial, as the present paper shows. The reason is that the Brouwer fixed point
theorem cannot be applied straightaway due to the lack of reliable constraints on the variables. These boundaries
have to be skillfully constructed and implemented. This technical difficulty explains why typical VES-trade papers
do not include propositions on the existence of equilibria, see Mrazova and Neary (2014), Arkolakis et al. (2019),
Bykadorov et al. (2017). The only exception is Morgan et al. (2020). Adopting restrictive assumptions of two
countries and choke price, they prove the existence of Krugman equilibria for two cases: two cost-asymmetric

3Essentially, condition (ii) (limx→∞ x2u′′(x) = −∞) in terms of utility amounts to unbounded attainable profit when marginal cost
vanishes. Not every increasing concave elementary utility suits our conditions (i), (ii); we provide examples of functions violating both
versions.

4As to heterogeneous firms Ã la Melitz (2003), see related VES model in Arkolakis et al. (2019). Other VES studies of trade
implement multiple sectors of economy (Morgan et al. 2020), variable technology (Bykadorov et al. 2015, 2017), multi-product firms
(Boehm et al. 2020), etc.

2



countries and two symmetric countries with K sectors. Our propositions generalize the first theorem, allowing
multiple countries and the weakest possible restrictions on preferences.

Allen, Arkolakis and Lee (2015) formulate general methods of proving the existence and uniqueness of equilibria
in trade models. Essentially, they advise formulating the demand mappings and apply fixed-point theorems when
their conditions are satisfied. In our case, the crucial difficulty consists exactly in finding conditions on utilities and
appropriate bounds on variables that make the demand mapping suitable for the application of general theorems.

As to studies of monopolistic competition without trade (a closed economy), Zhelobodko et al. (2012) find
the necessary and sufficient conditions for the existence of equilibria, which is cost-specific (joint conditions on
utilities and costs). By contrast, our paper finds a cost-independent assumption on utilities, which is necessary and
sufficient both for a closed economy and Krugman’s trade model. The existence of equilibria was not studied in the
Bertoletti-Etro paper, as we have pointed out.

Sections 1-3 study Krugman’s model (the existence, uniqueness and extensions of equilibria), Section 4 considers
the Bertoletti-Etro model. Then the Conclusion and Appendix with auxiliary proofs follow.

2 Krugman’s general model in terms of attainable profits
We study the classical Krugman (1979) model of trade in its most general non-CES form.

A single differentiated good is traded among k countries k ∈ {1, ...,K}, each having a specific population lk > 0
and specific costs/utilities. The only production factor, labor, is immobile among countries. Free entry drives firms’
profits to zero, thus determining the endogenous mass Nk of firms in each country. All consumers are identical.
Each inelastically provides a unit of labor, in exchange for the endogenous country-specific wage wk, determined by
labor market clearing. Firms within every country are identical and each produces a unique variety of good.

2.1 Consumers, assumptions, demand
Now we introduce the standard Krugman trade model, and reformulate it through “elementary” revenue/consumption
functions to present the reduced form of the model. We also explain why these functions should be continuous,
monotone, etc.5

Consumers. Consumers maximize their utility which depends on the consumption of all varieties produced
in the world, inelastically selling their labor endowment. Each identical consumer in country j solves the following
maximization problem:

max
xωkj≥0

Uj =

K∑
k=1

ˆ Nk

0

uj(xωkj)dω subject to
K∑
k=1

ˆ Nk

0

pωkjxωkjdω ≤ wjej ,

where pωkj is the price of variety ω of country k in country j and xωkj is the consumption level of variety ω
of country k which each consumer in country j chooses, and uj(x) is the sub-utility function of any consumer in
country j. We impose several widely accepted assumptions on the sub-utility function.

Assumption 1. Sub-utility uj(x) : [0, X)→ R is continuous on its domain and at least thrice differentiable on
(0, X) for some finite or infinite saturation point X > 0 of uj(x)

uj(0) = 0, u′j(x) > 0, u′′j (x) < 0 ∀x ∈ (0, X), (1)

u′′′j (x)x+ 2u′′j (x) < 0 ∀x ∈ (0, X). (2)

The traditional assumption (1) implies that utility is normalized at zero, increasing, and strictly concave.
Assumption (2) ensures the strict concavity of profits, which provides similar (symmetric) choices of similar firms,
as we shall see. These assumptions are essential for modeling monopolistic competition, without them the model
becomes intractable.

5Such technique was sometimes used for non-Krugmanian models of monopolistic competition, e.g., Asplund and Nocke 2006,
Mrazova and Neary, 2017.
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Assumption 2. Finite or infinite point X is a saturation point in the sense that

lim
x→X−

u′j(x) = 0. (3)

Though this “saturation at the limit” assumption (about vanishing marginal utility) is not vital for monopolistic
competition modeling per se, it is needed for our proof. Being not very restrictive, it is further attenuated in another
section. Put together, Assumptions 1-2 admit all practically used utility functions, including CES, CARA, HARA,
linear-quadratic, as well as many others.6

Under our assumptions, each consumer’s utility maximization yields some demand function xωkj(pωkj , λj), which
generates the following inverse demand function:

pωkj(xωkj , λj) =
u′j(xωkj)

λj
,

where λj is the Lagrange multiplier of the budget constraint which could be interpreted as a price-aggregator in
country j (the marginal utility of money). Plugging this price into the budget constraint yields

λj =
1

wjej

K∑
k=1

ˆ Nk

0

u′j(xωkj)xωkjdω > 0.

Under our assumptions, the uniformity of demand functions across varieties ensures single-peaked producer
profits. This, in view of identical firms in each country, guarantees the identical (symmetric) behavior of firms
within each country. This means that all firms from any country k set the same price pkj for consumers of country
j. Consumers from country j, in turn, buy the same amount xkj of all varieties from country k. So, we can drop
index ω and simplify the inverse demand function as

pkj(xkj , λj) =
u′j(xkj)

λj
. (4)

We now turn to producers.

2.2 Producers and attainable profits
As mentioned, firms are similar within every country j, each supplies one variety and has an affine production-cost
function Cj(qj) = fj + cjqj , dependent upon the fixed cost fj > 0, marginal cost cj , and firm output qj . Exporting
also involves some destination-specific, possibly asymmetric, iceberg transportation cost coefficient τjk (τjj = 1).
This means that for supplying xjk units to country k, a firm from country j must produce τjkxjk units.

Facing the direct demand function xjk(·) and aggregator λj , any firm from country j can maximize its profit
function in prices. Equivalently, the firm can use the inverse demand function pjk(·) from (4) and maximize its
profit in output qj =

∑K
k=1 τjkxjklk, i.e., in sales x:

Profitj =

K∑
k=1

(pjk(xjk, λj)xjklk − wjcjτjkxjklk)− wjfj =

=

K∑
k=1

u′k(xjk)xjk − λkwjcjτjkxjk
λk

lk − wjfj . (5)

We need to derive the optimal choice of sales and the maximal attainable profit for all possible parameter values.
The above derived representation implies that the choice of sales xjk depends only on the value of one “composite
cost” denoted as βjk := λkwjcjτjk, and on the properties of sub-utility function uk(x). This one-argument feature
justifies the following “attainable functions” approach.

We now introduce and derive several functions related to any sub-utility function uk(x) (fixing, for brevity, index
k). Let us ignore for a while multiplier 1/λk, to define the “elementary revenue” function Rk(x) and the “elementary
profit” function Prk(x, β) as follows:

Rk(x) :=

{
u′k(x)x, x > 0

0, x = 0
, (6)

6CARA utlity is u(x) = 1− exp(−ρx), HARA is u(x) = (x+ a)ρ − aρ, linear-quadratic u(x) = ax− bx2.
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Prk(x, β) := Rk(x)− βx, x ≥ 0, β > 0.

These two functions are continuous by Assumption 17. Restoring multiplier 1/λk, we reformulate the producers’
profits (5) in any country j through the elementary profit function:

Profitj =

K∑
k=1

Prk(xjk, λkwjcjτjk)

λk
− wjfj . (7)

To maximize Prk(x, β) we use Assumption 1. Taking the derivative with respect to x on (0, X) and equating it
to zero, we get FOC: u′′k(x)x+ u′k(x)− β = 0⇐⇒ β = u′′k(x)x+ u′k(x) and define a sort of “marginal revenue”

βk(x) ≡ u′′k(x)x+ u′k(x).

By Assumption 1, this βk(·) function is continuous and decreasing. It declines from βk := limx→0+ u′′k(x)x+u′k(x) >
08 to β

k
:= limx→X− u

′′
k(x)x+ u′k(x) ≤ 0. This implies that βk(x) must have an inverse function:

x̊k(·) ≡ β−1
k (·) : (β

k
, βk)→ (0, X), , (8)

where x̊k is continuous and decreasing from X to 0. Hereafter we exclude the lower (unneeded) part (β
k
, 0] of the

domain of x̊k(β) when β
k
< 0. The upper limit βk can be either finite or infinite. If it is finite, we extend x̊k(β) ≡ 0

for all β ≥ βk, otherwise, x̊k(β) need not be extended. Note that the resulting x̊k(β) is continuous, non-increasing,
and non-negative. A trivial observation is that x̊k(β) = arg max

x≥ 0
Prk(x, β) ∀β > 0. This allows us to treat x̊k(β)

as the firm’s best-response function, a sort of “optimal sales” (that motivates accent )̊. It links each composite cost
β > 0 with such sales x that a profit-maximizing producer would choose. So, we express the optimal producer’s
choice as

xjk ≡ x̊k(λkwjcjτjk) ≡ x̊k(βjk). (9)

We now plug the above best-response function – “optimal sales” – into our elementary revenue and profit functions
to get “attainable elementary revenue” and “attainable elementary profit” functions:

r̊k(β) := Rk (̊xk(β)) ≥ 0, π̊k(β) := Prk (̊xk(β), β) ≥ 0. (10)

These functions are obviously continuous. π̊k(β) is positive and decreasing on (0, βk) and π̊k(β) ≡ 0 for extension
β ≥ βk if βk is finite9. We now introduce one more useful “profit” function:

Π̊k(β) :=
π̊k(β)

β
.

This Π̊k(β) is non-increasing on (0,+∞) and decreasing on (0, βk), having the range (0,+∞). So, Π̊k(β) has an
inverse function Π̊−1

k : (0,+∞)→ (0, βk), which decreases on its domain. We call functions x̊k(β), r̊k(β), π̊k(β), Π̊k(β)
the attainable functions. In our expressions we shall often omit the arguments of the recently developed response-
functions, using brief notations:

rjk := r̊k(βjk), πjk := π̊k(βjk), Πjk := Π̊k(βjk).

Applying these notations to (7), the maximum profit achieved by any firm in country j can be expressed through
our “attainable profit functions” as follows:

max
xjk≥0

Profitj = max
xjk≥0

K∑
k=1

Prk(xjk, λkwjcjτjk)

λk
− wjfj = (11)

=

K∑
k=1

π̊k(λkwjcjτjk)

λk
lk − wjfj = wjfj

(
K∑
k=1

Π̊k(λkwjcjτjk)cjτjk
lk
fj
− 1

)
.

7For proof that limx→0+ u′k(x)x = 0 see Claim (5)
8See Claim (6)
9See Claim (7)
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2.3 Equilibrium equations
This sub-section introduces the system of equilibrium equations.

These conditions for each country include: the zero-profit assumption (ZP), labor market clearing (LM), the
budget constraint (BC) and the trade balance (TB). They are expressed first in terms of sales xjk, then in terms
of intensities of competition and wages λk, wj as the main variables.

ZP states that firms enter the market until profits vanish:

[ZP] :

K∑
k=1

(pjkxjklk − wjcjτjkxjklk)− wjfj = (12)

= wjfj

(
K∑
k=1

Π̊k(λkwjcjτjk)cjτjk
lk
fj
− 1

)
= 0 ∀j.

Labor Market clearing asserts that labor is fully employed:

[LM] : lj = Nj · (fj +

K∑
k=1

cjτjkxjklk) = (13)

= Nj ·

(
fj +

K∑
k=1

cjτjkx̊k(λkwjcjτjk)lk

)
∀j.

Here the left-hand side lj shows labor provided by all workers, while the right-hand side is the mass of firms
multiplied by the total labor costs of each firm.

Budget Constraint, as usual, requires that workers cannot spend more than they earn (naturally, at equilibria
it becomes an equality):

[BC] : wj lj =

K∑
k=1

Nkpkjxkj lj =

K∑
k=1

Nk
r̊j(λjwkckτkj)

λj
lj ∀j. (14)

In other words, all money earned in country j is spent on all goods purchased (identical workers spend their
incomes identically).

Trade Balance implies that all imported goods are worth as much as all exported goods:

[TB] : Nj

K∑
k=1

pjkxjklk =

K∑
i=1

Nipijxij lj ∀j. (15)

⇔ Nj

K∑
k=1

r̊k(λkwjcjτjk)

λk
lk =

K∑
i=1

Ni
r̊j(λjwiciτij)

λj
lj ∀j.

Definition. Trade equilibrium is a bundle{
λj , wj , Nj , (xjk)1≤ k≤K , (pjk)1≤ k≤K

}
1≤ j≤K

∈ R3K
+ × R2K2

+

that includes price-aggregates, wages, the numbers of firms, sales, prices, and satisfies: (i) utility-maximization
(4); (ii) profit-maximization (9)-(10), (iii) Zero Profit condition (12); (iv) Labor Market clearing (13); (v) Budget
Constraint (14); and (vi) Trade Balance (15).

Here, as usual, TB follows from the summation of BC (under labor balance and zero profit). This explains why
our list of 6 (groups of) equations is not excessive for fitting only 5 (groups of) variables.10

10See Appendix.
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2.4 Equilibrium existence in Krugman’s model
In this subsection, to prove the existence of equilibrium, we reformulate our system of equations in the form suitable
for applying the Brouwer fixed-point theorem.

First, using new convenient notation for variables µj ≡ λjwj , we rewrite ZP (12) as

wj = wj

K∑
k=1

Πjkcjτjk
lk
fj
∀j ⇔

wj = wj

K∑
k=1

Π̊k(µk
wj
wk

cjτjk)cjτjk
lk
fj
∀j. (16)

Second, we plug Nj from LM into BC to get

λjwj =

K∑
k=1

lkrkj

fk + ck
∑K
i=1 τkixkili

⇔

µj =

K∑
k=1

r̊j(µj
wk
wj
ckτkj)lk

fk + ck
∑K
i=1 τkix̊i(µi

wk
wi
ckτki)li

∀j. (17)

Third, as we have said, when ZP, LM, and BC hold for some country, then TB is also satisfied in that country,
so TB is superfluous in the further analysis. Moreover, these two 2K equilibrium equations of {µj , wj}1≤ j≤K
are not independent. One of these symmetric equations (16), e.g., the first one, can be derived from others when
other equations (16)-(17) hold.11 Since wages come into equations as ratios, they allow for scaling, i.e., the free
choice of wages/numerarie level. We can therefore reduce our setup to 2K − 1 equations in 2K − 1 unknowns{

(µj)1≤ j≤K , (wj)2≤ j≤K

}
by normalizing the first wage as

w1 ≡ 1. (18)

This identity from now on supersedes the first one of equations (16). We will establish the existence of equilibrium
using this system.

These considerations justify the three-stage sequential solution method:
Remark. Under Assumptions 1 and 2, any trade equilibrium in Krugman’s model can be found in three stages:

(1) finding aggregators/wages (µ,w) from the equation systems {(16), (17), (18)}, (2) finding sales x from equations
(9) using (µ,w), (3) finding prices p and the number N of firms from equations (4), (13).

Thereby, the reduced form (16)-(18) of the equilibrium equations enable us to formulate the sufficient conditions
for the existence of equilibria in a very general form, as follows (we postpone one more generalization – relaxing
Assumption 2 – to the Extensions section).

Proposition 1. Under any positive populations/costs ({lj , cj , fj}1≤j≤K � 0, τjk ≥ 1) and Assumptions 1,2 on
sub-utility functions uj(·), the reduced trade model {(16), (17), (18)} has a positive equilibrium {µ̄j , w̄j} 1≤j≤K � 0
in terms of price-aggregators and wages, which determine prices, sales, and the number of firms as in Remark 1.
Thereby, an equilibrium satisfying the initial equation systems {(12)–(15)} exists.

Proof. The main idea of our proof is to use the Brouwer fixed point theorem. It states that a continuous
mapping of a non-empty convex compact into itself—always has a fixed point. First, we define a convex compact
set Ω ⊂ R2K−1

++ , sufficiently broad to include all possible solutions to equations {(16), (17)}. Second, we define “the
Brouwer mapping” F : Ω → Ω whose fixed points (price-aggregators and wages) should be the equilibrium points.
Third, we show that any fixed point of F is really an equilibrium point in our model.

The boundaries. To start with, we introduce useful notations for the extremal values of our parameters:

fm := min
j
fj , cm := min

j
cj , lm := min

j
lj , τm := min

j
min
k
τjk ≤ 1,

11See Lemma 1 in the Appendix.
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fM := max
j
fj , cM := max

j
cj , lM := max

j
lj , τM := max

j
max
k

τjk ≥ 1.

We now start constructing some constants µm, µM , wm, 1
wm , used as boundaries for the convex compact set

Ω := [µm, µM ]K × [wm,
1

wm
]K−1 ⊂ R2K−1

++ , (19)

serving as a domain for our mapping F . The boundaries µm, µM , w, 1
w of our compact set will play a key role in

our proof. The way they are constructed will allow us to show that any fixed point of mapping F is an equilibrium
point. We start with µM using Rj(·) definition (6):

µM = K max
j

sup
0≤ x

Rj(x)lM
fm + cmτmxlm

> 0. (20)

Here each of K supremums is finite because each fraction Rj(x)
a+bx is continuous on [0, X) and, under Assumption 2,

vanishes at the saturation point X:12

lim
x→X

u′j(x)lM
fm
x + cmτmlm

=
limx→X u

′
j(x)lM

limx→X

(
fm
x + cmτmlm

) = 0.

Therefore, the upper bound µM is finite. Plugging constants into function Π̊−1
j (which is well-defined and positive,

as previously established), we define the lower bound µm as

µm =
1

2cM
min
j

Π̊−1
j

(
fM
cmlm

)
> 0. (21)

We now show that µm < µM . Denote by î an argminimum in the definition of µm. We can rewrite the definition
of bound µm as:

µm =
1

2cM
Π̊−1

î

(
fM
cmlm

)
⇒ fM

cmlm
=
π̊î(2µmcM )

2µmcM
⇒

⇒ 2µmcMfM
cmlm

= r̊î(2µmcM )− 2µmcM x̊î(2µmcM )⇒ µm =
1

2

cm
cM

r̊î(2µmcM )lm
fM + cmx̊î(2µmcM )lm

=

=
1

2

cm
cM

Rî
(
x̊î(2µmcM )

)
lm

fM + cmx̊î(2µmcM )lm
< K max

j
sup
0≤ x

Rj(x)lM
fm + cmτmxlm

= µM .

This strict inequality is guaranteed because the supremum in x at the right-hand side is taken, and multiplier 1
2 is

used. We now define bound wm as:

wm =
1

2µMcMτM
min
j

Π−1
j

(
fM

cmτmlm

)
> 0. (22)

Since wm and 1
wm are our lower and upper boundaries for wages, we should make sure that wm < 1. Denote by

î the number where the minimum is achieved in the definition of wm. With the same algebraic manipulations we
get:

wm =
1

2µMcMτM
Π̊−1

î

(
fM

cmτmlm

)
⇒ fM

cmτmlm
=
π̊î(2µMw

mcMτM )

2µMwmcMτM
⇒

⇒ wm =
1

µM

1

2

cmτm
cMτM

Rî
(
x̊î(2µMw

mcMτM )
)
lm

fM + cmτmx̊î(2µMw
mcMτM )lm

<
1

µM
K max

j
sup
0≤ x

Rj(x)lM
fm + cmτmxlm

= 1.

Thus, we have shown that wm < 1
wm . So, Ω is correctly defined in (19), it is a non-empty subset of R2K−1

++ . Since
Ω is a Cartesian product of closed intervals, it is a non-empty compact convex set. Its elements will be denoted

ω ≡ (µ,w) ≡ (µj , wj 6=1)1≤ j≤K ∈ Ω.

12X = +∞ for typical u. Vanishing is not guaranteed under Assumption 2* in our subsequent generalizations, yet, the limit remains
finite.
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The mapping . We are ready to define a mapping F : Ω→ Ω for applying the Brouwer fixed point theorem as
F (ω) := (µ (ω) ,w (ω)), namely

µj (ω) := max

(
K∑
k=1

rkj lk

fk + ck
∑K
i=1 τkixkili

, µm

)
∀j, (23)

wj (ω) := min

(
max

(
wj

K∑
k=1

Πjkcjτjk
lk
fj
, wm

)
,

1

wm

)
∀j > 1. (24)

We have ensured that our functions r̊k(ω), x̊k(ω), Π̊k(ω) are continuous, whereas max, min operators preserve
continuity, thereby mapping F is continuous.

We should ensure that F maps its domain Ω into itself and not outside. Component wj (ω) of this mapping fits
the boundaries

[
wm, 1

wm

]
by construction; operations max, min artificially restrict w. We should estimate another

component, µj (ω), from its upper, unrestricted side. If not hitting the lower boundary µm, our variable µj equals
magnitude

K∑
k=1

rkj lk

fk + ck
∑K
i=1 τkixkili

≤
K∑
k=1

rkj lM

fm + cmτm
∑K
i=1 xkilm

≤
K∑
k=1

rkj lM
fm + cmτmxkj lm

=

=

K∑
k=1

Rj(xkj)lM
fm + cmτmxkj lm

≤ K max
j

sup
0≤ x

Rj(x)lM
fm + cmτmxlm

= µM ∀µj > 0, ∀wj 6=1 > 0 j = 1, ...,K.

Thus, the upper bound is satisfied as µj (ω) ≤ µM for all ω, and we have constructed a continuous mapping
F from a convex compact set Ω into itself. So, by the Brouwer fixed point theorem, our mapping F must have at
least one fixed point. It will be denoted ω̂ ≡ {ŵj , µ̂j}1≤ j≤K (we include an additional component ŵ1 := 1). We
shall further use the following intuitive notation withˆfor all fixed-point components:

β̂jk := λ̂kŵjcjτjk, x̂jk := x̊k(β̂jk), r̂jk := r̊k(β̂jk), π̂jk := π̊k(β̂jk).

Now we show why any fixed point of our mapping is a true equilibrium point.
Boundaries do not bind . Our construction of mapping F artificially restricts the set of values that F can

take. This creates the possibility that a fixed point lying on any boundary of Ω will not be a true equilibrium,
i.e., not a solution to the initial equations (16)–(17). To exclude this case, we will show that none of the artificial
constraints is binding at any fixed point. We start by showing (by contradiction) that hitting the boundary ŵj = wm

is impossible for any j > 1. Suppose that ŵi = wm for some i > 1. Then

ŵi = wm = min

(
max

(
ŵi

K∑
k=1

Π̂ikciτik
lk
fi
, wm

)
,

1

wm

)
≥

≥ ŵi
K∑
k=1

Π̊k

(
µ̂k
ŵi
ŵk

ciτik

)
ciτik

lk
fi

=

= wm
K∑
k=1

Π̊k

(
µ̂k
wm

ŵk
ciτik

)
ciτik

lk
fi
≥

≥ wmΠ̊1(µ̂1w
mciτi1)ciτi1

l1
fi
≥ wmΠ̊1(µMw

mcMτM )cmτm
lm
fM
⇒

⇒ fM
cmτmlm

≥ Π̊1(µMw
mcMτM )⇒

⇒ wm ≥ 1

µMcMτM
Π̊−1

1

(
fM

cmτmlm

)
≥ 1

µMcMτM
min
j

Π̊−1
j

(
fM

cmτmlm

)
= 2wm.

Since wm > 0, we came to a contradiction wm ≥ 2wm. We conclude that at the fixed point the lower bound is
not reached: ŵj > wm ∀j > 1. We now prove that reaching the upper bound ŵj = 1

wm for any j is also impossible.
We apply Lemma (1) from Appendix to our fixed point. The Lemma considers some vector y = (w, x, p) and

9



restores, as an inequality, the omitted ZP condition for the country j = 1, using K inequalties like BC (23) and
K − 1 inequalties like the ZP condition (24). We use the fixed-point values for vector y:

y ≡
{
wj , (xjk)1≤ k≤K , (pjk)1≤ k≤K

}
1≤ j≤K

=

=

ŵj , (x̂jk)1≤ k≤K ,

p̂jk :=
u′k

(
x̂jk

)
ŵk

µ̂k


1≤ k≤K


1≤ j≤K

.

For applying Lemma 1, we use the fact that the lower bound wm is not reached by wages:

ŵj = min

(
ŵj

K∑
k=1

Π̂jkcjτjk
lk
fj
,

1

wm

)
≤ ŵj

K∑
k=1

Π̊k

(
µ̂k
ŵj
ŵk

cjτjk

)
cjτjk

lk
fj
⇐⇒

⇐⇒
K∑
k=1

(p̂jkx̂jklk − ŵjcjτjkx̂jklk)− ŵjfj ≥ 0 ∀j > 1,

which shows that the first set of inequalities required for Lemma 1 is provided. To guarantee the second set, observe

µ̂j = max

(
K∑
k=1

r̂kj lk

fk + ck
∑K
i=1 τkix̂kili

, µm

)
≥

K∑
k=1

r̂kj lk

fk + ck
∑K
i=1 τkix̂kili

⇐⇒

⇐⇒ ŵj lj ≥
K∑
k=1

lk

fk +
∑K
i=1 ckτkix̂kili

p̂kj x̂kj lj ∀j.

Thus, the Lemma is applicable. It yields the following inequality, satisfied for values of our fixed point (we use
identity ŵ1 = 1):

K∑
k=1

(p̂1kx̂1klk − ŵ1c1τ1kx̂1klk)− ŵ1f1 ≤ 0⇐⇒

1 ≥
K∑
k=1

Πk

( µ̂k
ŵk

c1τ1k

)
c1τ1k

lk
f1
. (25)

Suppose the upper bound is achieved as ŵi = 1
wm for some i. Then we have:

1 ≥
K∑
k=1

Πk

( µ̂k
ŵk

c1τ1k

)
c1τ1k

lk
f1
≥ Πi

( µ̂i
ŵi
c1τ1i

)
c1τ1i

li
f1

= Πi

(
µ̂iw

mc1τ1i

)
c1τ1i

li
f1
⇒

⇒ wm ≥ 1

µMcMτM
Π−1
i

(
fM

cmτmlm

)
≥ 1

µMcMτM
min
j

Π−1
j

(
fM

cmτmlm

)
= 2wm.

Since we arrived at a contradiction, we conclude that ŵj < 1
wm holds for ∀j > 1. At this point, we have

established that our mapping F generates real, not artificial values for wages:

ŵj = ŵj

K∑
k=1

Πk

(
µ̂k
ŵj
ŵk

cjτjk

)
cjτjk

lk
fj
∀j > 1.

Together with ((25)), it implies that

ŵj ≥ ŵj
K∑
k=1

Πk

(
µ̂k
ŵj
ŵk

cjτjk

)
cjτjk

lk
fj
∀j.

Now we want to show that for the price aggregators µ the lower boundary µ̂j = µm is also not attained. Suppose
that µ̂i = µm for some i. Then by applying the familiar trick, we come to a contradiction, as shown below:

ŵi ≥ ŵi
K∑
k=1

Πk

( µ̂k
ŵk

ŵiciτik

)
ciτik

lk
fi
≥

10



≥ ŵiΠi(µ̂ici)ci
li
fi

= ŵiΠi(µmci)ci
li
fi
≥

≥ ŵiΠi(µmcM )cm
lm
fM
⇒ µm ≥

1

cM
Π−1
i

(
fM
cmlm

)
≥ 1

cM
min
j

Π−1
j

(
fM
cM lm

)
= 2µm.

Since µm > 0, it is a contradiction. So, we have proved that none of the artificial boundaries used to restrict our
mapping F is binding at any fixed point. Without these artificial restrictions, our mapping exactly expresses the
needed equilibrium equations (16)–(17). Thus, any fixed point ω̂ (which exists, as we have shown) is an equilibrium
point. Using ω̂, other equilibrium variables – prices, sales and masses of firms – are easily found with Remark 1.
This completes the proof. Q.E.D.

3 Necessary condition for Krugman’s equilibrium, equilibrium unique-
ness

3.1 Generalized condition on marginal utility
For equilibria existence we imposed Assumption 2 on u′j (demand saturation at the limit). However, our proof can
be extended to a broader class of utility functions u by using the following “weakest sufficient” condition.

Assumption 2*: Elementary utility uj in any country j satisfy

lim
x→X

u′j(x) ≤ 0 or


X = +∞
limx→+∞ u′j(x) > 0

limx→+∞−u′′j (x)x2 = +∞
.

This assumption means that, whenever our marginal utility (inverse demand u′) is not vanishing at the limit, its
(absolute value of) derivative

(
−u′′j

)
must not decrease too fast. This property guarantees that the attainable profit

increases infinitely when marginal cost vanishes (one can see this from combining the FOC u′(x) +xu′′(x) = β with
the “elementary profit” function xu′(x)− βx), which is used as follows.

Proposition 2. To prove the existence of equilibria as in Proposition 1, we may replace Assumption 2 (asymp-
totic saturation) by Assumption 2*, the conclusion remains true.

Proof. We mention only amendments to the previous proof. We used Assumption 2 (asymptotic saturation) to
construct in (9) our sales function x̊j (the inverse function to the marginal revenue) in such a way that its domain
be (0,∞). For those countries where Assumption 2 is satisfied for uj , no amendment is needed. We should check
domains and ranges of x̊j for other countries.

Define T as the set of countries with limx→+∞ u′t(x) > 0. As in definition (9), for any such country t ∈ T
we construct the best-response function x̊t(β), but now it has domain (β

t
,+∞) instead of the usual (0,+∞)

(where the lower limit is β
t
≡ limx→+∞ u′′t (x)x + u′t(x) = limx→+∞ u′t(x) > 0).13 We define the upper limit as

βt ≡ limx→0 u
′′
t (x)x + u′t(x) > 0 under our assumptions. Our new best-response function x̊t(β) spans (0,+∞) on

(β
t
, βt). We set x̊t(·) ≡ 0 on the upper interval [βt,+∞) in case βt is finite.
As in definitions (10), we construct “attainable” functions r̊t(β) and π̊t(β) from x̊t(β). As before, function π̊t(·)

decreases on (β
t
, βt), whereas it equals zero for larger β > βt, in case βt is finite.

Using identity (u′′t (̊xt(β))̊xt(β) + u′t(̊xt(β))) ≡ β we can express the maximal attainable profit as

lim
x→+∞

−u′′t (x)x2 = lim
x→+∞

(u′t(x)x− (u′′t (x)x+ u′t(x))x) =

= lim
β→β

t

(u′t(̊xt(β))̊xt(β)− βx̊t(β)) = lim
β→β

t

πt(β) = +∞,

because limx→+∞−u′′t (x)x2 = +∞, by Assumption 2*.
13For proof that limx→+∞ u′′t (x)x = 0 see Claim (8) in Appendix.
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Thus, our decreasing function Π̊t(β) ≡ π̊t(β)
β has range (0,+∞) on (β

t
, βt) (taking value 0 for β > βt if finite)

and therefore Π̊t has the inverse function Π̊−1
t : (0,+∞)↔ (β

t
, βt).

We are going to make our previous proof of the existence of equilibrium applicable to the case when set T
is non-empty. For all t ∈ T , we should extend the definition of our “attainable” functions x̊t, r̊t, π̊t, Π̊t — from
(β
t
,+∞) to the broader domain (0,+∞). The latter should contain all positive arguments needed in our proof,

even the small ones.
To construct such an extension we need to choose some value x̂t of function x̊t(·) that can be attributed to all

small arguments (0, β
t
]. However, since x̊t(βt) = ∞ it cannot play the role of x̂t. So, we need an argument β̂t

somewhat larger than β
t
to define x̂t := x̊t(β̂t), e.g.,

β̂t :=
1

2

(
Π̊−1
t

(
fM

cmτmlm

)
+ β

t

)
> β

t
.

Using this new constant, we can define artificial functions xt, rt, πt,Πt extending their values at β̂t to all argu-
ments below β̂t, in the following way:

xt(β) := x̊t(max{β, β̂t}) rt(β) := Rt(xt(β)),

πt(β) := Prt(xt(β),max{β, β̂t}), Πt(β) :=
πt(β)

β
.

From now on, in our proof we replace the original “attainable” functions by these new “extended” ones, for the
countries from set T (where Assumption 2* holds). We keep the old functions intact for other countries (where
Assumption 2 holds). All the elements of the argumentation from the proof of Proposition 1 remain the same with
these new functions, exactly as we proceeded with the old functions x̊t, r̊t, π̊t, Π̊t. We repeat the same construction of
our (continuous) mapping F and the borders of its (compact, rectangular) domain Ω. Then, applying the Brouwer
fixed point theorem again, we get the fixed point and ensure that it is an equilibrium point {w̃j , µ̃j}1≤ j≤K .

It remains to show that at this point our “extended” functions xt, rt, πt,Πt coincide with the initial functions
x̊t, r̊t, π̊t, Π̊t, which are used on their normal domain, so that their artificial values do not come to play.

Suppose it is not so: the artificial value is used at the fixed point. Then for some country i and some country
t ∈ T we have the inequality: µ̃t w̃iw̃t ciτit ≤ β̂t. Consider the zero-profit condition for country i:

w̃i = w̃i

K∑
k=1

Πk

(
µ̃k
w̃i
w̃k

ciτik

)
ciτik

lk
fi
≥

w̃iΠt

(
µ̃t
w̃i
w̃t
ciτit

)
ciτit

lt
fi
≥ w̃iΠt

(
µ̃t
w̃i
w̃t
ciτit

)
cmτm

lm
fM
⇒

⇒ fM
cmτmlm

≥ Πt

(
µ̃t
w̃i
w̃t
ciτit

)
=

πt

(
µ̃t

w̃i
w̃t
ciτit

)
µ̃t

w̃i
w̃t
ciτit

=
πt(β̂t)

µ̃t
w̃i
w̃t
ciτit

≥ πt(β̂t)

β̂t
= Πt(β̂t)⇒

⇒ β̂t ≥ Π−1
t

(
fM

cmτmlm

)
>

1

2

(
Π−1
t

(
fM

cmτmlm

)
+ ct

)
= β̂t.

This is a contradiction. So, at any equilibrium point obtained with our “extended” functions none of the artificial
values are engaged. We conclude that it is an equilibrium point with the original functions as well. Q.E.D.
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3.2 The necessity of the generalized condition on marginal utility
Our generalized condition (Assumption 2*) is probably necessary and sufficient in all cases. However, we are able
to prove its necessity for the existence of equilibria only in the simple case, when countries are symmetric in utilities
(not in costs or populations).

Proposition 3. If all sub-utilities, satisfying Assumption 1 are symmetric among countries, i.e. uj(x) = u(x),
then Assumption 2* is sufficient for equilibrium existence under all positive parameters (c, f, τ, l) ∈ R4K

++, and also
necessary for this conclusion (whereas under specific cost parameters Assumption 2* may be superfluous).

Proof. The sufficiency of Assumption 2* is stated in Proposition 2 (which includes asymmetric countries also).
Consider necessity. We must prove that for any u(·) that satisfies Assumption 1, but violate Assumption 2*, one
can find such positive parameters c, f, τ, l that equilibrium is absent.

Violation of Assumption 2* by some u′(·) means that its limit is positive and attained too quickly in the sense{
limx→+∞ u′(x) > 0

limx→+∞−u′′(x)x2 6= +∞
.

Denote S ≡ limx→+∞−u′′(x)x2 where S > 0 is some positive number (the existence of this limit follows from
the monotonicity of −u′′(x)x2, guaranteed by Assumption 1). Therefore, limc→c+ π(c) = S and Π(c) < S

c .
14

Now consider the zero-profit condition, it states that

wj =

K∑
k=1

πjk
sk
wk

lk
fj
⇒ fj =

K∑
k=1

Πj(sk
wj
wk

cjτjk)lk =

=

K∑
k=1

Π(sk
wj
wk

cjτjk)cjτjklk < K
S

c
cM tM lM

This inequality becomes impossible when fj is chosen big enough, relative to other parameters. Thus, under
any utility u that violates Assumption 2* we can always find such cost/population parameters (c, f, τ, l), such that
an equilibrium becomes impossible.

To prove that Assumption 2* can be “superfluous” under some specific parameters, we need a counterexample
to its necessity. Indeed, take two symmetric countries (K = 2, ui = uj = u) and utility u(x) = 0.5 ln(x+ 1) +mx
that violates Assumption 2*. One can check that equilibria are absent under parameters (m = 1, c1 = c2 = 1,
τ = 1, l1 = l2 = 1, f1 = f2 = 5), but exist under other parameters, e.g., (m = 1, c1 = c2 = 1, τ = 1, l1 = l2 = 1,
f1 = f2 = 0.5). This completes the proof. Q.E.D.

3.3 The uniqueness of a trade equilibrium with two countries
In this subsection we consider only two countries, being unable to prove uniqueness in the more general case.
Here we reformulate our equilibrium in terms of market aggregators λj = µj/wj instead of variables µj used
previously. The related equilibrium (w1, w2, λ1, λ2) in Krugman’s model with two countries, defined in (16)–(17),
can be reformulated as the following system:

l1
r̊2(λ2w1c1τ12)l2

λ2

f1 + c1x̊1 (λ1w1c1) l1 + c1τ12x̊2 (λ2w1c1τ12) l2
=

=
l2
r̊1(λ1w2c2τ21)l1

λ1

f2 + c2x̊2 (λ2w2c2) l2 + c2τ21x̊1 (λ1w2c2τ21) l1
, (26)

f1 =
π̊1(λ1w1c1)l1

λ1w1
+
π̊2(λ2w1c1τ12)l2

λ2w1
, (27)

f2 =
π̊2(λ2w2c2)l2

λ2w2
+
π̊1(λ1w2c2τ21)l1

λ1w2
. (28)

Two ZP conditions are reformulated in variables λ, whereas BC is transformed into TB, with the help of ZP
conditions. What we need is to show that the solution to this system is unique in the following sense.

14See Appendix.
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Proposition 4. Under two trading countries (K = 2) and Assumption 1 there is not more than one bundle of
sales (x11, x12, x21, x22) consistent with the equilibrium system. The aggregators (λ,w) generating these sales—are
determined uniquely up to scale when countries do trade (x12 > 0, x21 > 0).

Proof. Suppose the opposite: we have two different equilibria
(
ŵ1, ŵ2, λ̂1, λ̂2

)
and

(
ŵ1, ŵ2, λ̂1, λ̂2

)
.

We normalize the variables of the first equilibrium dividing λ̂j by λ̂2 and multiplying both wages ŵj by
λ̂2, to get

(
w̃1 = λ̂2ŵ1, w̃2 = λ̂2ŵ2, λ̃1 = λ̂1

λ̂2
, λ̃2 = 1

)
. This normalized bundle still satisfies the same equilib-

rium system (26)–(28), as one can see from the equations. Similarly we normalize the second equilibrium as(
w̃1 = λ̂2ŵ1, w̃2 = λ̂2ŵ2, λ̃1 = λ̂1

λ̂2
, λ̃2 = 1

)
.

Let λ̃1 ≥ λ̃1 without loss of generality. We connect these two equilibria by some continuous trajectory and check
some sort of monotonicity. We want to introduce such functions (w1(t) > 0, w2(t) > 0, λ1(t) > 0, λ2(t) > 0) so
that aggregators λj are connected linearly as λ1(t) = (1− t)λ̃1 + tλ̃1, λ2(t) ≡ 1, whereas wages are calculated from
two equations 27 and 28 for every point 0 ≤ t ≤ 1. The beginning of the trajectory is w1(0) = w̃1, w2(0) = w̃2, and
the end is w1(1) = w̃1, w2(1) = w̃2.

We should establish existence and uniqueness of these functions wj , and their properties. First, we substitute
λ1(t) and λ2(t) into 27. We get

f1 =
π1(λ1(t)w1c1)l1

λ1(t)w1
+
π2(w1c1τ12)l2

w1
⇒ w1f1 =

π1(λ1(t)w1c1)l1
λ1(t)

+ π2(w1c1τ12)l2.

Here the LHS grows with w1 while the RHS does not. So, we ascertain that there is at most one solution w1

for each λ1(t) (and thereby for each t). We know that at t = 0 this equation could be resolved with respect to w1

as w1 = w̃1. If w1(t) were increasing, it would contradict the above equation, because the LHS would increase but
the RHS could not (keeping in mind that λ1 is non-decreasing). Thus, if w1(t) exists, it must not grow.

Looking again at the same equation in the form

f1 =
π1(λ1(t)w1(t)c1)l1

λ1(t)w1(t)
+
π2(w1(t)c1τ12)l2

w1(t)
=

= Π1 (λ1(t)w1(t)c1) c1l1 + Π2 (w1(t)c1τ12) c1τ12l2,

we want to establish that λ1(t)w1(t) must not decrease. Remember that Π(c) = π(c)
c decreases unless it has reached

zero. Here we cannot have both summands equal to zero at the same time. If the first summand is positive,
then decreasing λ1(t)w1(t) would increase it, and we would end up with a constant LHS and an increasing RHS
(contradiction). In the case when first summand is zero, function w1(t) must be constant to maintain LHS=RHS.
In this case, λ1(t)w1(t) cannot decrease either, because neither λ1(t) nor w1(t) decreases. To understand that w1(t)
must exist, observe that it exists for t = 0. When λ1(t) grows and term Π1 (λ1(t)w1(t)c1) is positive, there exist
a decrease in w1(t) that compensates this shift, the second term not hindering finding such w1(t). When term
Π1 (λ1(t)w1(t)c1) = 0, growing λ1 just does not matter, and solution w1(t) exists anyway. It must be continuous
by continuity of all functions involved.

We know at this point that there is unique function w1(t) that maintains equation 27, and this w1(t) happens
to be continuous and non-increasing, for 0 ≤ t ≤ 1.

Consider partial derivatives in t and w1 of function F (t, w1) = Π1 (λ1(t)w1c1) c1l1 + Π2 (w1c1τ12) c1τ12l2 − f1.
They should exist and be equal to (except for maybe finite number of points)

∂F (t, w1)

∂t
= − r1(λ1(t)w1c1)

(λ1(t)w1c1)
2
c1

(
λ̃1 − λ̃1

)
l1,

∂F (t, w1)

∂w1
= − r1(λ1(t)w1c1)

(λ1(t)w1c1)
2
c1
l1 −

r2(w1c1τ12)

w2
1c1τ12

l2 6= 0.

These functions are continuous around any (t, w1(t)). The term ∂F (t,w1)
∂w1

cannot be zero at any point (t, w1(t)) as
it is zero iff x̊1 (λ1(t)w1(t)c1) = 0 and x̊2 (w1(t)c1τ12) = 0 together, which cannot hold. Thus, the implicit function
theorem states that w1(t) is differentiable on [0, 1] except for maybe a finite number of points.

We proceed to the equation 28:

f2 =
π2(w2c2)l2

w2
+
π1(λ1(t)w2c2τ21)l1

λ1(t)w2
⇒ w2f2 = π2(w2c2)l2 +

π1(λ1(t)w2c2τ21)l1
λ1(t)

.

14



We see that w2(t) must not increase as λ1(t) increases, because the LHS in this case would increase and the
RHS would not. We also note that there could not be two solutions w2(t) for any t. Looking at

f2 =
π2(w2(t)c2)l2

w2(t)
+
π1(λ1(t)w2(t)c2τ21)l1

λ1(t)w2(t)

we conclude (similarly to the w1 case) that λ1(t)w2(t) is non-decreasing and that w2(t) exists for all 0 < t < 1. We
again establish that w2(t) is differentiable for all t except for maybe a finite number of points.

Having ascertained the properties of wj , we note that x12(t) := x̊2 (w1(t)c1τ12) and x21(t) := x̊1 (λ1(t)w2(t)c2τ21)
must be differentiable everywhere except for maybe a finite number of points.

We introduce notations
x11(t) := x̊1 (λ1(t)w1(t)c1) ,

x12(t) := x̊2 (λ2(t)w1(t)c1τ12) = x̊2 (w1(t)c1τ12) ,

x22(t) := x̊2 (λ2(t)w2(t)c2) = x̊2 (w2(t)c2) ,

x21(t) := x̊1 (λ1(t)w2(t)c2τ21) ,

r12(t) := r̊2 (w1(t)c1τ12) ,

r21(t) := r̊1 (λ1(t)w2(t)c2τ21) .

Now we are going to check how the remaining, unused equation (26) changes on our trajectory. Subtract the
LHS of 26 at t = 0 from a similar LHS at point t = 1:

l1
r̊2(λ2(1)w1(1)c1τ12)l2

λ2(1)

f1 + c1x̊1 (λ1(1)w1(1)c1) l1 + c1τ12x̊2 (λ2(1)w1(1)c1τ12) l2
−

−
l1
r̊2(λ2(0)w1(0)c1τ12)l2

λ2(0)

f1 + c1x̊1 (λ1(0)w1(0)c1) l1 + c1τ12x̊2 (λ2(0)w1(0)c1τ12) l2
=

=
l1r̊2 (w1(1)c1τ12) l2

f1 + c1x̊1 (λ1(1)w1(1)c1) l1 + c1τ12x̊2 (w1(1)c1τ12) l2
−

− l1r̊2 (w1(0)c1τ12) l2
f1 + c1x̊1 (λ1(0)w1(0)c1) l1 + c1τ12x̊2 (w1(0)c1τ12) l2

≥

≥ l1r̊2 (w1(1)c1τ12) l2
f1 + c1x̊1 (λ1(0)w1(0)c1) l1 + c1τ12x̊2 (w1(1)c1τ12) l2

−

− l1r̊2 (w1(0)c1τ12) l2
f1 + c1x̊1 (λ1(0)w1(0)c1) l1 + c1τ12x̊2 (w1(0)c1τ12) l2

=

=

ˆ 1

0

(
l1u
′
2(x12(t))x12(t)l2

f1 + c1x̃11l1 + c1τ12x12(t)l2

)′
t

dt =

= l1l2

ˆ 1

0

(u′′2(x12(t))x12(t) + u′2(x12(t))) (f1 + c1x̃11l1 + c1τ12x12(t)l2)

(f1 + c1x̃11l1 + c1τ12x12(t)l2)
2 · dx12(t)

dt
dt−

−l1l2
ˆ 1

0

c1τ12l2 (u′2(x12(t))x12(t))

(f1 + c1x̃11l1 + c1τ12x12(t)l2)
2 ·

dx12(t)

dt
dt =

= l1l2

ˆ 1

0

c1τ12 (w1(t) (f1 + c1x̃11l1 + c1τ12x12(t)l2)− r12(t)l2)

(f1 + c1x̃11l1 + c1τ12x12(t)l2)
2

dx12(t)

dt
dt.

Since w1(t) (f1 + c1x̃1l1 + c1τ12x12(t)l2)− r12(t)l2 ≥ 0 and dx12(t)
dt ≥ 0 the final and initial expressions are both

non-negative.
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Substract now the RHS of 26 at t = 0 from a similar RHS at t = 1:

l2
r̊1(λ1(1)w2(1)c2τ21)l1

λ1(1)

f2 + c2x̊2 (λ2(1)w2(1)c2) l2 + c2τ21x̊1 (λ1(1)w2(1)c2τ21) l1
−

−
l2
r̊1(λ1(0)w2(0)c2τ21)l1

λ1(0)

f2 + c2x̊2 (λ2(0)w2(0)c2) l2 + c2τ21x̊1 (λ1(0)w2(0)c2τ21) l1
=

=
l2
r̊1(λ1(1)w2(1)c2τ21)l1

λ1(1)

f2 + c2x̊2 (w2(1)c2) l2 + c2τ21x̊1 (λ1(1)w2(1)c2τ21) l1
−

−
l2
r̊1(λ1(0)w2(0)c2τ21)l1

λ1(0)

f2 + c2x̊2 (w2(0)c2) l2 + c2τ21x̊1 (λ1(0)w2(0)c2τ21) l1
≤

≤
l2
r̊1(λ1(1)w2(1)c2τ21)l1

λ1(1)

f2 + c2x̊2 (w2(0)c2) l2 + c2τ21x̊1 (λ1(1)w2(1)c2τ21) l1
−

−
l2
r̊1(λ1(0)w2(0)c2τ21)l1

λ1(0)

f2 + c2x̊2 (w2(0)c2) l2 + c2τ21x̊1 (λ1(0)w2(0)c2τ21) l1
=

=

ˆ 1

0

(
1

λ1(t)

l2u
′
1(x21(t))x21(t)l1

f2 + c2x̃22l2 + c2τ21x21(t)l1

)′
t

dt =

= l1l2

ˆ 1

0

− 1

(λ1(t))
2

(
λ̃1 − λ̃1

) u′1(x21(t))x21(t)

f2 + c2x̃22l2 + c2τ21x21(t)l1
dt+

+l1l2

ˆ 1

0

1

λ1(t)

(u′′1(x21(t))x21(t) + u′1(x21(t))) (f2 + c2x̃22l2 + c2τ21x21(t)l1)

(f2 + c2x̃22l2 + c2τ21x21(t)l1)
2 · dx21(t)

dt
dt−

−l1l2
ˆ 1

0

1

λ1(t)

c2τ21l1u
′
1(x21(t))x21(t)

(f2 + c2x̃22l2 + c2τ21x21(t)l1)
2 ·

dx21(t)

dt
dt =

= l1l2

ˆ 1

0

− 1

(λ1(t))
2

(
λ̃1 − λ̃1

) u′1(x21(t))x21(t)

f2 + c2x̃22l2 + c2τ21x21(t)l1
dt+

+l1l2

ˆ 1

0

1

λ1(t)

c2τ21 (λ1(t)w2(t) (f2 + c2x̃22l2 + c2τ21x21(t)l1)− r21(t)l1)

(f2 + c2x̃22l2 + c2τ21x21(t)l1)
2

dx21(t)

dt
dt

As λ1(t)w2(t) (f2 + c2x̃22l2 + c2τ21x21(t)l1)− r21(t)l1 ≥ 0 and dx21(t)
dt ≤ 0 the second summand obtained is non-

positive. First summand is also non-positive, moreover, it is negative unless λ̃1−λ̃1 = 0 or u′1(x21(t))x21(t)
f2+c2x̃22l2+c2τ21x21(t)l1

= 0

almost everywhere. This second equality is equivalent to x21(t) = 0 almost everywhere. As x21(t) is continuous,
this is only possible if x21(t) ≡ 0.

Thus, our suggestion about two equilibria leads to the conclusion that the ends of our trajectory coincide in
the sense λ̃1 = λ̃1 or x21(t) ≡ 0. The first option trivially leads to coinciding equilibria ·̃ and ·̃, because wages
w̃j = w̃j are uniquely determined from ZP conditions. The second option (no trade) also trivially leads to two
identical equalibria: x̃21 ≡ x21(0) = x21(1) = 0 implies x12(0) = x12(1) = 0. Then, the remaining variables x11 and
x22 are determined uniquely by the ZP condition, which exploits the same product (λjwj) at the beginning and at
the end of our trajectory. Thus, the assumption of two equilibria leads to the conclusion that they are essentially
coinciding. Q.E.D.

4 Bertoletti-Etro trade model: the existence of equilibria
Indirectly additive utilities were suggested in [Bertoletti and Etro, 2015] for modeling income effects in trade. This
method makes the consumer’s expenditure function, instead of the utility function, the main primitive of the model.
This interesting and promising way of modeling is extended to heterogeneous firms in (Bertoletti et al., 2019), where
the model is calibrated on data. However, the existence of equilibria remains unknown for both versions of the
model: homogeneous and heterogeneous. This section fills this lacuna for the homogeneous case. Namely, we apply
our methodology of “attainable profit functions” to the initial trade model proposed in [Bertoletti and Etro, 2015]
(we generalize the [Bertoletti and Etro, 2015] setup by including more than two trading countries).
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4.1 Varieties, consumers, and demand
As in Krugman’s model, the world consists of K countries, each having its specific costs and specific population lk of
consumers (identical within the country). In each country k ≤ K, the endogenous mass Nk of firms is homogeneous
within the country. Each firm produces its specific variety, facing fixed and marginal costs of production, plus
iceberg transportation costs. Consumers enjoy consumption of all varieties produced in the world. Each consumer
has a labor endowment ek > 0 and maximizes some implicit (hidden from us) utility function Uk.

The only difference from Krugman’s model is that in the Bertoletti-Etro setup, the utility maximization is
presented indirectly ; we observe only the result of this optimization. Namely, the consumer’s preferences in country
j are represented by a symmetric and additively separable indirect utility function of the following form:

Vj ≡
K∑
k=1

ˆ Nk

0

vj
( pωkj
wjej

)
dω.

Here pωkj is the price of variety ω of country k sold in country j. Function vj(·) is the indirect sub-utility function
of each consumer in country j. This function is the main primitive of this model. The argument of vj(·) is the
“real” price, i.e., the nominal price divided by income:

sωkj :=
pωkj
wjej

. (29)

As in [Bertoletti and Etro, 2015], we impose the following widely accepted (indirect) assumptions on preferences.

Assumption 3. In any country j, its indirect sub-utility function satisfies five conditions:
(i) vj(·) : (0,+∞)→ R is thrice differentiable on (0, s̄j), where s̄j > 0 is either finite or infinite real choke price;
(ii) vj vanishes at the choke price, together with its derivative:

lim
s→s̄−j

vj(s) = 0, lim
s→s̄−j

v′j(s) = 0. (30)

(iii) vj becomes zero above the choke price (when s̄j is finite)15:

vj(s) ≡ 0 ∀s ≥ s̄j ; (31)

(iv) vj is strictly convex below the choke price:

v′′j(s) > 0 ∀s ∈ (0, s̄j); (32)

(v) vj has a moderately convex derivative (below the choke price), in the sense:

2(v′′j(s))
2 − v′j(s)v′′′j (s) > 0 ∀s ∈ (0, s̄j). (33)

Among these conditions, (iv) (convexity) means that an initial increase in price has more impact on expenditures
than a subsequent increase, this assumption provides increasing marginal revenue for any firm. Assumptions (ii),
(iii) indicate that s̄j is indeed a choke price, i.e. such a value that a consumer ceases consuming a variety as soon as
its price reaches s̄j . Moreover, any price fluctuations become almost immaterial near the choke price. Assumptions
(ii) and (iv) together ensure that vj is decreasing below the choke price16:

v′j(s) < 0 ∀s ∈ (0, s̄j). (34)

Finally, (v) is a technical assumption, which ensures that producers’ profit functions derived from v become concave
or at least single-peaked; otherwise modeling competition becomes quite tedious.

We are now in a position to derive the demand functions. Using the Roy identity, we get the following individual
demand function for variety ω of country k that any consumer from country j demonstrates:

xωkj
(
sωkj

)
=
−v′j

(
sωkj

)
µj

, where (35)

15lims→0+
vj(s̄j+s)−vj(s̄j)

s
= lims→0+

vj(s̄j+s)

s
= lims→0+ −

v′j(s̄j+s)

1
= 0 due to L’HÃŽpital’s rule, so v′j(s) ≡ 0 for s ≥ s̄j

16It follows then that vj(s) > 0 for s : 0 < s < s̄j
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µj :=

K∑
k=1

ˆ Nk

0

sωkj ·
(
−v′j

(
sωkj

))
dω. (36)

Here µj > 0 is a price aggregator in country j. Intending to rely on symmetry and drop index ω, we note that
demand functions are the same in regard to varieties and producers’ profit functions are single-peaked. Other
conditions, including costs, that producers from one country face, are identical. So, producers within any country
should behave identically. Thus, all firms from any country k would set the same prices pkj for consumers from
country j. Accordingly, all consumers from country j buy the same amount xkj of all varieties produced in country
k. Therefore, we drop from now on index ω of a specific firm, and formulate the symmetric demand function as:

xkj(skj , µj) ≡ xkj =
−v′j(skj)

µj
. (37)

4.2 Producers and attainable profits
We use the above demand function, as in Krugman’s setup, for any firm in any country j and formulate the following
profit function:

Profitj :=

K∑
k=1

(pjkxjklk − wjcjτjkxjklk)− wjfj ,

where pjk is the price for country k, and function xjk = xjk(sjk, µj) is the individual demand in country k for any
variety from country j. Further, we plug the demand (37) into this profit function:

Profitj =

K∑
k=1

(
−(pjk − wjcjτjk)v′k

( pjk
wkek

)
lk

µk

)
− wjfj =

=

K∑
k=1

(−(sjk − wj
ekwk

cjτjk

)
v′k(sjk)lkekwk

µk

)
− wjfj → max

{sj·}≥0
. (38)

As usual, producers choose prices pjk (or, equivalently, real prices sjk) to maximize their profits. We start by
solving this maximization problem to derive any firm’s best-response function. From this optimal pricing rule we
shall derive the “attainable profit” function.

We proceed as in Section 2.2, fixing here index k (related to any destination country of producer j). We again
define composite (real) marginal cost βjk :=

wj
ekwk

cjτjk. Next, we introduce the auxiliary “elementary revenue” and
“elementary profit” functions (this auxiliary profit from sales in country k will turn into real profit after multiplication
by 1/µk):

Rk(s) := −v′k(s)s, s > 0,

P rk(s, β) := Rk(s)− (−v′k(s) · β), s > 0, β > 0.

Obviously, both of these functions are continuous on their domains (s > 0, β > 0).
Now, plugging all elementary profit functions operating in countries k = 1, ...,K into expression (38) and adding

multiplier 1/µk, we reformulate the composite Profitj of any producer from any country j:

Profitj =

K∑
k=1

Prk

(
sjk,

wj
ekwk

cjτjk

)
lkekwk

µk
− wjfj → max

{sj·}≥0
.

We observe that this additive function can be maximized for each variable sjk separately. Taking one elementary
profit function Prk(s, β), we maximize it in the standard way using assumption (v). We equate the derivative with
respect to s on (0, s̄k) to zero: v′′k (s)s+ v′k(s)− v′′k (s) · β = 0 ⇐⇒

βk(s) := β = s+
v′k(s)

v′′k (s)
.

The obtained function βk(s) means “the cost that generates the real price s”. This function is continuous and
increasing on (0, s̄k) due to assumption (v) (33) (i.e., higher costs correspond to higher optimal real prices). This
function βk(·) grows from the lower limit

β
k

= lim
s→0+

s+
v′k(s)

v′′k (s)
≤ 0
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to the upper limit βk = lims→s̄− s+
v′k(s)
v′′k (s) > 017. By monotonicity, βk(·) should have an inverse function

s̊k(β) : (β
k
, βk)→ (0, s̄k),

which is also continuous and increasing (the optimal real price is higher when its generating cost is higher). In
case of the negative lower bound β

k
< 0, we exclude interval (β

k
, 0] (unneeded for our analysis) from the domain

of s̊k(·). For the upper bound of s̊k(·) domain, two cases are possible: bound βk can be either finite or infinite. If
finite, we extend s̊k(·) by setting the maximal real price as s̊k(β) ≡ s̄k for higher arguments β ≥ βk (if infinite such
an extension is not needed).

Note that the resulting function s̊k(·) : (0,+∞) → R+ is continuous, non-decreasing, and positive on (0,+∞).
Since it is built from maximization, a trivial observation is that s̊k(β) ∈ arg max

0<s
Prk(s, β) ∀β > 0. It allows us to

treat s̊k(·) as the best-response function, which yields a profit maximizing relative price for each positive composite
cost β > 0.18 Slightly abusing notation (dropping arguments of function s̊k for brevity), we denote the values sjk
of our optimal pricing functions s̊k as

sjk := s̊k

( wj
ekwk

cjτjk

)
= s̊k(βjk). (39)

Following the reasoning in 2.2, we insert maximizers s̊k(β) into Rk(s) and Prk(s, β), to define the “attainable
elementary revenue” and “attainable elementary profit” functions, dependent on costs:

r̊k(β) := Rk (̊sk(β)) ≥ 0, π̊k(β) := Prk (̊sk(β), β).

Here function π̊k(β) is positive and decreasing on (0, βk), whereas π̊k(β) = 0 for high costs β ≥ βk (when βk is
finite).19 We also define one more, “normalized” attainable profit function Π̊k(β):

Π̊k(β) :=
π̊k(β)

β
, Π̊k(·) : (0,+∞)→ (0,+∞).

This new function is continuous and decreasing on (0, βk). Therefore, there is a continuous decreasing inverse
function Π−1

k : (0,+∞) ↔ (0, βk). We call functions s̊k(β), r̊k(β), π̊k(β), Π̊k(β) the attainable functions. For
brevity of future narration, we introduce the following simplified notation (without explicit arguments) for our
optimal functions of outputs, revenues, and profits:

xjk :=
−v′k

(
sjk
)

µk
≥ 0, rjk := r̊k(βjk), πjk := π̊k(βjk), Πjk := Π̊k(βjk).

Now we use the elementary attainable functions to formulate the maximal composite profit that producers from
each country j can obtain:

max
sj·≥0

Profitj = max
sj·≥0

K∑
k=1

Prk

(
sjk,

wj
ekwk

cjτjk

)
lkekwk

µk
− wjfj = (40)

=

K∑
k=1

π̊k

(
wj
ekwk

cjτjk

)
lkekwk

µk
− wjfj = wjfj

( K∑
k=1

Πjk

µk
cjτjk

lk
fj
− 1
)
.

Now we can formulate the equilibrium equations in the Bertoletti-Etro model in terms of attainable functions.
17See Claim (10)
18Actually, if βk is finite, there are multiple maximizers for β ≥ βk: arg max

0<s
Prk(s, β) = {s̃ : s̃ ≥ s̄k}. Out of them we pick the

magnitude that secures continuity of s̊k(β), this property being important for our proof. This choice does not diminish generality of
our future reformulation of equilibrium equations as all these maximizers ensure v′k(s̃) = 0 while s-variables enter these equations only
in the form of v′j(s)s or v′j(s).

19See Claim (11)
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4.3 Equilibrium equations
We now specify the system of equations that determine equilibria under indirectly additive preferences, incor-
porating the optimal pricing rule through the use of attainable functions. First, we formulate the ZP condition∑K
k=1(pjkxjklk − wjcjτjkxjklk)− wjfj = 0.
Second, we reformulate the BC: wjej lj =

∑K
k=1

eklk
f+
∑K
i=1 ckτkixkili

pkjxkj lj .
Combining these equations with our “attainable” functions, we come to the following “reduced system” of equi-

librium equations, to be used further:

[ZP] : wj = wj

K∑
k=1

Π̊k

( wj
ekwk

cjτjk
)

µk
cjτjk

lk
fj
∀j > 1, w1 = 1, (41)

[BC] : µj =

K∑
k=1

r̊k
(
wk
ejwj

ckτkj
)
eklk

fk + ck
∑K
i=1 τki

−v′k
(
s̊k

(
wk
eiwi

ckτki

))
µk

li

∀j. (42)

Our reformulation enables us to seek for equilibria sequentially. First one can find a bundle of auxiliary variables
{µj , wj}1≤ j≤K that satisfies equations (41) and (42); then this bundle can be translated into some equilibrium
prices and consumptions. Namely, the main variables of any equilibrium could be found through (39), (29), (35).
Consumption should satisfy two more conditions, as in Krugman’s model, LM and TB. Labour Market clearing
asserts that labour is fully employed:

[LM] : lj = Nj · (fj +

K∑
k=1

cjτjkxjklk) ∀j. (43)

This condition gives us number Nj when we know sales x.
Trade Balance implies that all imported goods worth as much as all exported goods:

[TB] : Nj

K∑
k=1

pjkxjklk =

K∑
i=1

Nipijxij lj ∀j. (44)

As in Krugman’s model, TB follows from BC when other equilibrium conditions hold.

Definition. Trade equilibrium in the Bertoletti-Etro model is a bundle{
µj , wj , Nj , (xjk)1≤ k≤K , (pjk)1≤ k≤K

}
1≤ j≤K

∈ R3K
+ × R2K2

+ (45)

that includes price-aggregates, wages, number of firms, sales, and prices, and satisfies: (i) utility-maximization (35);
(ii) profit-maximization (39),(29), (iii) the ZP condition (41); (iv) LM clearing (43); v) BC (42); and (vi) TB (44).

We are now in a position to impose one more condition (vi) on sub-utilities and parameters of this model,
namely,

(vi) s̄j >
cj
ej
∀j. (46)

This inequality makes economies “productive”, saying that the benefits outweigh the costs in each country taken
separately.

As in Krugman’s model, we have normalized w1 ≡ 1, otherwise we could get an inconvenient system of 2K − 1
independent equations in 2K unknowns {µj≤K , w1≤ j≤K} with an indefinite level of wj .

4.4 The existence of equilibrium in the Bertoletti-Etro model
We are now going to apply the Brouwer fixed-point theorem to equations defined above to prove the existence of
equilibria.
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Proposition 5. In the Bertoletti-Etro model there is an equilibrium, defined by (45), for all sets of indirect utility
functions vj(·) and all positive parameter values

{
ej , fj , cj , lj , (τjk)1≤ k≤K

}
1≤ j≤K

� 0, satisfying assumptions

(i)-(vi) ( (30), (31), (32), (46)).

Proof. As will be evident later, the peculiarities of this model bring about some new difficulties not encountered
in Krugman’s model. Nonetheless, we adhere to the scheme of his proof. Namely, we again define a convex compact
set Ω of the Euclidean space R2K−1, suitable for a mapping F which operates from Ω into Ω, we find a fixed point,
and then show that any fixed point of this mapping is a true equilibrium of the Bertoletti-Etro model.

Let us construct the Brouwer mapping and its domain. To begin with, we introduce the following constants:

fm := min
j
fj , cm := min

j
cj , lm := min

j
lj , em := min

j
ej , τm := min

j
min
k
τjk ≤ 1, (47)

fM := max
j
fj , cM := max

j
cj , lM : = max

j
lj , eM := max

j
ej , τM := max

j
max
k

τjk ≥ 1.

As before, we introduce a convex compact set

Ω := [µm, µM ]K × [w,
1

w
]K−1

which will serve as the domain of our mapping. Here µm, µM , w, 1
w are constants (not defined so far) that serve as

the boundaries of our rectangular compact set. These boundaries play a key role in our proof, since their specific
construction will allow us to show that any fixed point of the mapping F is an equilibrium point. Namely, we define
the upper bound µM as a magnitude that satisfies two conditions:

µM = K max
j

sup
s>0

Rj(s)eM lM

fm − cmτmlm
v′j(s)

µM

> 0,

K max
j

sup
s>0

Rj(s)eM lM

fm − cmτmlm
v′j(s)

µ

< µM ∀µ : 0 < µ < µM .

Using assumptions (i)–(v), a separate Lemma (2) in Appendix shows that there always exists such a number µM .
Further, we define the lower bound µm as20

µm =
cmlm
2fM

min
j

Πj

(
cj
ej

)
> 0.

It is important to establish that µm < µM . Suppose that the minimum taken in the definition of µm is achieved
at some j = i. Then we get the following result:

µm =
cmlm
2fM

Πi

(
ci
ei

)
=
eilm
2fM

cm
ci
πi

(
ci
ei

)

=
eilm
2fM

cm
ci

(
ri

(
ci
ei

)
+
ci
ei
v′i

(
si

(
ci
ei

)))
⇒

⇒ 1 =
cm
ci

ri

(
ci
ei

)
eilm

2µmfM − cmv′i
(
si

(
ci
ei

))
lm

=
cm
ci

Ri

(
si

(
ci
ei

))
eilm

2µmfM − cmv′i
(
si

(
ci
ei

))
lm
.

Remember that

µM = K max
j

sup
s>0

Rj(s)eM lM

fm − cmτm
v′j(s)

µM
lm
⇒ 1 = K max

j
sup
s>0

Rj(s)eM lM
µMfm − cmτmv′j(s)lm

.

Suppose µm ≥ µM . This would imply:
20The positivity of the following minimum is guaranteed by assumption (vi).
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1 =
cmτm
ci

Ri

(
si

(
ci
ei

))
eilm

2µmfm − cmv′i
(
si

(
ci
ei

))
lm
≤ cmτm

ci

Ri

(
si

(
ci
ei

))
eilm

2µMfm − cmv′i
(
si

(
ci
ei

))
lm

<

< K max
j

sup
s>0

Rj(s)eM lM
µMfm − cmτmv′j(s)lm

= 1.

Obviously, this is a contradiction, and therefore µm < µM .
Now we define the bounds on wages w. We set the lower boundary for wages in the following way:

w :=
em

2cMτM
min
j

Π−1
j

(
µMfM
cmτmlm

)
> 0.

Now we must show that w < 1. We suppose that the minimum above is achieved in some country j = i and
reformulate the w definition:

w =
em

2cMτM
Π−1
i

(
µMfM
cmτmlm

)
⇒ µMfM

cmτmlm
=
πi(2w

cMτM
em

)

2w cMτM
em

⇒

⇒ w =
1

2

cmτm
cMτM

Ri

(
si

(
2w cMτM

em

))
emlm

µMfM − cmτmv′i
(
si

(
2w cMτM

em

))
lm

=

=
1

µM

1

2

cmτm
cMτM

Ri

(
si

(
2w cMτM

em

))
emlm

fM − cmτm
µM

v′i

(
si

(
2w cMτM

em

))
lm

<

<
1

µM
K max

j
sup
s>0

Rj(s)eM lM

fm − cmτm
v′j(s)

µM
lm

= 1.

Thus, we can conclude that w < 1 and 1
w > w, so, our interval for wages w and for µ is non-empty.

Using our domain Ω, we now can define the required Brouwer mapping F
(
{wj 6=1, µj}1≤ j≤K

)
:=

µj = max

(
K∑
k=1

rkjeklk

fk + ck
∑K
i=1 τkixkili

, µm

)
∀j,

wj = min

(
max

(
wj

K∑
k=1

Πjk

µk
cjτjk

lk
fj
, w

)
,

1

w

)
∀j > 1.

This mapping is continuous by construction and restricted to fit the borders µm, w, 1
w . However, we must make

sure that it maps Ω into itself, to use the Brouwer fixed point theorem. Obviously, we only need to check for the
non-violation of the upper border for µj

(
{wj 6=1, µj}1≤ j≤K

)
≤ µM :

µj =

K∑
k=1

rkjeklk

fk + ck
∑K
i=1 τkixkili

≤
K∑
k=1

rkjeM lM

fm + cm
∑K
i=1 τmxkilm

≤

≤
K∑
k=1

rkjeM lM
fm + cmτmxkj lm

=

K∑
k=1

Rj(skj)eM lM

fm + τmcm
−v′j(skj)

µj
lm
≤

≤ K max
j

sup
s>0

Rj(s)eM lM

fm + cmτm
−v′j(s)
µj

lm
≤ µM ∀ 0 < µj ≤ µM , ∀wj 6=1 > 0 j = 1, ...,K.
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So, we have constructed a mapping F suitable for the application of the Brouwer fixed point theorem. Thus,
this mapping must have at least one fixed point. We again (as in Krugman’s model) denote any such fixed point by
variables with a hat: {ŵj , µ̂j}1≤ j≤K , for convenience additionally defining ŵ1 := 1. We also shall use the notation

β̂jk :=
ŵj
ekŵk

cjτjk, ŝjk := sk(β̂jk), x̂jk :=
−v′k

(
ŝjk
)

µ̂k
, r̂jk := rk(β̂jk), π̂jk := πk(β̂jk), Π̂jk := Πk(β̂jk).

We now need to demonstrate that any fixed point is an equilibrium point.

To show that any fixed point of the mapping is an equilibrium of the model, we recall that mapping F is
artificially restricted. Its fixed point situated on a boundary of our set Ω could be not a true equilibrium. Therefore
we show that a fixed point never lies on the boundaries of Ω, and the existence of an equilibrium existence is proven.
Adhering to this strategy, we start by proving that the lower boundary w is not reached for any j > 1 by stationary
wages ŵj . Suppose the opposite: there is such wage ŵi = w for some country i > 1:

w = ŵi = max

(
ŵi

K∑
k=1

Π̂ik

µ̂k
ciτik

lk
fi
, w

))
≥ ŵi

K∑
k=1

Π̊k

(
ŵi
ekŵk

ciτik

)
µ̂k

ciτik
lk
fi
≥

≥ ŵi
Π̊1

(
ŵi
e1
ciτi1

)
µ̂i

ciτi1
l1
fi

= w
Π̊1

(
w
e1
ciτi1

)
µ̂i

ciτi1
l1
fi
≥ w

Π̊1

(
w cMτM

em

)
µM

cmτm
lm
fM
⇒

⇒ w ≥ em
cMτM

Π̊−1
1

(
µMfM
cmτmlm

)
≥ em
cMτM

min
j

Π̊−1
j

(
µMfM
cmτmlm

)
= 2w.

This is a contradiction due to the positivity of w; therefore, reaching the lower bound ŵj = w for wages is
impossible for any country j > 1. As for the upper bound, we show that ŵj = 1

w is also impossible for any j > 1.
To this end, we apply Lemma ((1)) from Appendix to our fixed point (this Lemma uses K − 1 ZP conditions and
all BC, to derive the remaining ZP condition, as an inequality). Consider our fixed point (ŵ, µ̂) and the related
sales/prices in the role of the point y = {w, x, p} studied in Lemma 1:

y =
{
ŵj , (x̂jk)1≤ k≤K , (ŝjkŵjej)1≤ k≤K

}
1≤ j≤K

.

The assumptions (inequalities) of this Lemma are satisfied because

ŵj = min

(
ŵj

K∑
k=1

Π̂jk

µ̂k
cjτjk

lk
fj
,

1

w

)
≤

K∑
k=1

Πk

(
ŵj
ekŵk

cjτjk

)
µ̂k

cjτjk
lk
fj
⇐⇒

⇐⇒
K∑
k=1

(p̂jkx̂jklk − ŵjcjτjkx̂jklk)− ŵjfj ≥ 0 ∀j > 1,

µ̂j = max

(
K∑
k=1

r̂kjeklk

fk + ck
∑K
i=1 τkix̂kili

, µm

)
≥

K∑
k=1

r̂kjeklk

fk + ck
∑K
i=1 τkix̂kili

⇐⇒

⇐⇒ ŵjej lj ≥
K∑
k=1

lkek

fk + ck
∑K
i=1 τkix̂kili

p̂kj x̂kj lj ∀j.

Thus, Lemma 1 provides the following result:

K∑
k=1

(p̂1kx̂1klk − ŵ1c1τ1kx̂1klk)− ŵ1f1 ≤ 0⇐⇒ 1 ≥
K∑
k=1

Πk

(
1

ekŵk
c1τ1k

)
µ̂k

c1τ1k
lk
f1
. (48)

Suppose that the upper bound ŵi = 1
w is achieved for some i > 1:

1 ≥
K∑
k=1

Πk

(
1

ekŵk
c1τ1k

)
µ̂k

c1τ1k
lk
f1
≥

Πi

(
1

eiŵi
c1τ1i

)
µ̂i

c1τ1i
li
f1

=
Πi

(
w c1τ1i

ei

)
µ̂i

c1τ1i
li
f1
⇒
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⇒ w ≥ em
cMτM

Π−1
1

(
µMfM
cmτmlm

)
≥ em
cMτM

min
j

Π−1
j

(
µMfM
cmτmlm

)
= 2w.

Observing this contradiction, we conclude that ŵj = 1
w is impossible for any country j > 1. We have established

that at the fixed point

ŵj = ŵj

K∑
k=1

Πk

(
ŵj
ekŵk

cjτjk

)
µ̂k

cjτjk
lk
fj
∀j > 1.

So, together with (48), this implies that

ŵj ≥ ŵj
K∑
k=1

Πk

(
ŵj
ekŵk

cjτjk

)
µ̂k

cjτjk
lk
fj
∀j.

Now we turn to proving that the lower bound µ̂j = µm is not attained for any j. Suppose there is some i :
µ̂i = µm. Then

ŵi ≥ ŵi
K∑
k=1

Π̂ik

µ̂k
ciτik

lk
fi

= ŵi

K∑
k=1

Πk

(
ŵi
ekŵk

ciτik

)
µ̂k

ciτik
lk
fi
≥

≥ ŵi
Πi

(
ci
ei

)
µ̂i

ci
li
fi
≥ ŵi

Πi

(
ci
ei

)
µm

cm
lm
fM
⇒

⇒ µm ≥ Πi

( ci
ei

)
cm

lm
fM
≥ cm
fM

min
j

Πj

(
cj
ej

)
lm = 2µm,

which is a contradiction because µm > 0 by definition. Thus, equality µ̂j = µm is impossible for any country j.
Thus, we have shown that none of the fixed points of mapping F lie on any of the boundaries (i.e., that the artificial
restriction of the values of mapping F have not played a role in determining its fixed point).

Based on this, we conclude that under the conditions listed, this model of international trade always has at least
one equilibrium point in terms of variables (µ,w). The remaining variables (x, p,N) are found directly from by the
equations, mentioned in the definition of equilibria. Q.E.D.
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5 Conclusion
This paper establishes the existence of an equilibrium under very weak assumptions on elementary utility functions
for two tractable broad classes of models: directly additive (Krugman’s model) or indirectly additive preferences (the
Bertoletti-Etro model). Though in general the sufficient conditions established are not necessary, they appear to be
the “weakest” conditions. Moreover, under directly additive preferences we formulate the exact necessary conditions
for the existence of an equilibrium in the case of symmetric (identical) preferences across countries. In addition,
we find sufficient conditions for the uniqueness of the equilibrium for two countries. Thereby, we comprehensively
characterize the classes of preferences suitable for modeling international trade under monopolistic competition.

Our characterization of “almost all” preferences classes suitable for such modeling—can be useful for empirical
research. Indeed, for model calibration/identification, an empiricist should freely choose the functional forms of
demand that better fit the data. From the purely theoretical side, one achievement of this article is a method for
analyzing international trade models through the “attainable revenue” and “attainable profit” functions. We hope
that this method will be useful in other models of international trade.

As to extensions, we are successfully working on the application of our method to a Melitz-like setup with
heterogeneous firms.
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6 Appendix

In the proof of Proposition 1 we used the following lemma, assuming ek ≡ 1 ∀k. In other claims we use this lemma
with other constants ek > 0. Essentially, using K − 1 zero-profit conditions and all budget constraints, this lemma
derives the remaining zero-profit condition (as inequalities).

Lemma 1. Consider some vector of wages, sales, prices

y ≡
{
wj ≥ 0, (xjk ≥ 0)1≤ k≤K , (pjk ≥ 0)1≤ k≤K

}
1≤ j≤K

.

If at y the following (2K − 1) inequalities hold:

K∑
k=1

(pjkxjklk − wjcjτjkxjklk)− wjfj ≥ 0 ∀j 6= 1,

wjej lj ≥
K∑
k=1

eklk

fk +
∑K
i=1 ckτkixkili

pkjxkj lj ∀j,

then the following inequality must hold at point y:21

K∑
k=1

(p1kx1klk − w1c1τ1kx1klk)− w1f1 ≤ 0. (49)

If instead of initial inequalities at point y similar equalities hold, then the resulting inequality (49) turns into equality
as well.

Proof. Consider the first set of inequalities:

K∑
k=1

(pjkxjklk − wjcjτjkxjklk)− wjfj ≥ 0⇒

21Note the opposite sign here.
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K∑
k=1

pjkxjklk ≥ wj
(
fj + cj

K∑
k=1

τjkxjklk

)
⇒ Nj

K∑
k=1

pjkxjklk ≥ wj ljej .

Here we have used the following notation:

Ni =
eili(

fi +
∑K
k=1 ciτikxiklk

) .
Putting all these inequalities together, we get inequality

K∑
j=1, j 6=i

Nj

K∑
k=1

pjkxjklk ≥
K∑

j=1, j 6=i

wj ljej . (50)

Consider now the second set of inequalities:

wj ljej ≥
K∑
k=1

eklk

fk +
∑K
i=1 ckτkixkili

pkjxkj lj ⇒ wj ljej ≥
K∑
k=1

Nkpkjxkj lj .

Summing up over j, we get inequality

K∑
j=1

wj ljej ≥
K∑
j=1

K∑
k=1

Nkpkjxkj lj . (51)

Subtracting (50) from (51), we arrive at

wiliei ≥ Ni
K∑
k=1

pikxiklk ⇒ wi(fi + ci

K∑
k=1

τikxiklk) ≥
K∑
k=1

pikxiklk ⇒

K∑
k=1

(pikxiklk − wiciτikxiklk)− wifi ≤ 0,

as needed. Finally, it is straightfoward to see that if “≥” and “≤” signs are replaced by “=” sign everywhere, same
algerbraic manipulations prove the second statement of the Lemma. Q.E.D.

The following lemma is used in the proof for Bertoletti-Etro model.

Lemma 2. There is always such µM that

µM = K max
j

sup
s>0

Rj(s)eM lM

fm − cmτmlm
v′j(s)

µM

,

K max
j

sup
s>0

Rj(s)eM lM

fm − cmτmlm
v′j(s)

µ

< µM µ : 0 < µ < µM

Proof. Step 1. We set up our tools.
Consider

φ(µ) := max
j

sup
s>0

−v′j(s)s
−v′j(s) +Bµ

, B :=
fm

cmτmlm
> 0, µ > 0.

Define gj(s, µ) :=
−v′j(s)s
−v′j(s)+Bµ

. Since lims→0+ −v′j(s) > 0 22, we know that23

lim
s→0+

gj(s, µ) = lim
s→0+

s

1 + Bµ
−v′j(s)

= 0,

22Immediately follows from −v′j(s) > 0 and −v′′j (s) < 0 in the vicinity of zero
23See Claim (9)
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lim
s→+∞

gj(s, µ) =
lims→+∞−v′j(s)s

lims→+∞−v′j(s) +Bµ
= 0.

As gj(s, µ) are defined for µ > 0, these observations trivially prove that arg maxs>0 gj(s, µ) ⊂ R exits for any
µ > 0 and j. Define then sj(µ) := max(arg maxs>0 gj(s, µ)). We prove that gj(sj(µ), µ) are continuous on µ > 0.
In order to do that, we introduce functions ĝj(s, µ) : R+ × R++ → R such that ĝj(s, µ) = gj(s, µ) for 0 < s ∈ R
and ĝj(+∞, µ) = 0, ĝj(0, µ) = 0 for all µ > 0. It is easy to see that gj(sj(µ), µ) and sups∈[0,+∞] ĝj(s, µ) coincide
on µ > 0. At the same time, the latter function is continuous by maximum theorem due to continuity of ĝj(s, µ)
on its domain. Thus, gj(sj(µ), µ) are continuous.

We now introduce some other useful functions:

j(µ) = max(arg max
j
gj(sj(µ), µ)), s(µ) = sj(µ)(µ).

Obviously,

φ(µ) = max
j

sup
s>0

gj(s, µ) =
−v′j(µ)(s(µ))s(µ)

−v′j(µ)(s(µ)) +Bµ
.

And we are in a position to conclude that φ(µ) is continuous on its domain µ > 0 as a maximum of a few
continuous functions.

Step 2. We prove that φ(µ) is decreasing on (0,+∞).
Consider 0 < µ1 < µ2. Then we have the following due to the definitions of j(µ) and s(µ) and the fact that

−v′j(µ)(s(µ))s(µ) > 0 for all µ > 024:

φ(µ1) =
−v′j(µ1)(s(µ1))s(µ1)

−v′j(µ1)(s(µ1)) +Bµ1
≤
−v′j(µ2)(s(µ2))s(µ2)

−v′j(µ2)(s(µ2)) +Bµ1
<
−v′j(µ2)(s(µ2))s(µ2)

−v′j(µ2)(s(µ2)) +Bµ2
= φ(µ2).

Step 3. We prove that limµ→+∞ φ(µ) = 0.
This limit exists because of monotonicity of φ(µ). Moreover, it is greater or equal to zero as φ(µ) > 0. If this

limit is greater than zero, then there is some t > 0 such that φ(µ) > t in the vicinity of +∞. Thus, we have

−v′j(µ)(s(µ))s(µ)

−v′j(µ)(s(µ)) +Bµ
> t⇒ −v′j(µ)(s(µ))

(
s(µ)− t

)
> Btµ⇒

⇒ Btµ < −v′j(µ)(s(µ))
(
s(µ)− t

)
≤ max

j
sup
s>0
−v′j(s)

(
s− t

)
= max

j
πj(t).

This is a contradiction as the RHS is a number while the LHS can be made arbitrarily big. Therefore,
limµ→+∞ φ(µ) = 0.

Step 4. We prove that limµ→0+ φ(µ) = s̄M . This limit exists due to monotonicity of φ(µ).
Case 1: There is such a country i that s̄i = +∞.
Then −v′i(s) > 0 for s > 0. Consider gi(s, µ) =

−v′i(s)s
−v′i(s)+Bµ

. We show that one can choose s1 > 0, µ1 > 0 in such

a way that gi(s1,µ1) ≥ M , where M is an arbitrarily big number. Take, for example, s1 = M + ε, µ1 =
−v′i(s1)ε
BM .

Then
gi(s1,µ1) =

−v′i(s1)s1

−v′i(s1) +Bµ1
=

s1

1 + Bµ1

−v′i(s1)

=
M + ε

1 + ε
M

= M ≥M.

Since φ(µ) ≥ gj(s, µ) for all j, s, µ > 0 and φ(µ) is a decreasing function, we must have that limµ→0+ φ(µ) = +∞.
Case 2: All s̄j are finite.
We fix j and cover all countries. −v′j(s) > 0 for s : 0 < s < s̄j and −v′j(s) = 0 for s ≥ s̄j . Consider again

gj(s, µ) =
−v′j(s)s
−v′j(s)+Bµ

. We show that it is possible to choose s1 and µ1 in such a way that s̄j − gj(s1, µ1) ≤ ε. Take

s1 = s̄j − ε/2, µ1 =
−v′j(s1)ε

2(s̄j−ε)B . Then

s̄j − gj(s1,µ1) = s̄j −
−v′j(s1)s1

−v′j(s1) +Bµ1
= s̄j −

s1

1 + Bµ1

−v′j(s1)

= s̄j −
s̄j − ε/2

1 + ε
2(s̄j−ε)

= ε ≤ ε.

24φ(µ) > 0⇒ −v′
j(µ)

(s(µ))s(µ) > 0 and φ(µ) > 0 ∀µ > 0 is straightforward
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As previously, since φ(µ) ≥ gj(s, µ) for all j, s, µ > 0 and φ(µ) is a decreasing function, we have that limµ→0+ φ(µ) ≥
s̄M . Remember now that φ(µ) > 0⇒ s(µ) < s̄M and so

φ(µ) =
−v′j(µ)(s(µ))s(µ)

−v′j(µ)(s(µ)) +Bµ
=

s(µ)

1 +Bµ Bµ
−v′

j(µ)
(s(µ))

≤ s(µ) < s̄M ⇒ lim
µ→0+

φ(µ) ≤ s̄M ,

that finishes the proof of this step’s claim.
Further, consider the following function:

µφ(µ) =
−v′j(µ)(s(µ))s(µ)

−v′
j(µ)

(s(µ))

µ +B
.

Step 5. We prove that µφ(µ) is increasing.
As done earlier, take 0 < µ1 < µ2. Then

µ2φ(µ2) = µ2

−v′j(µ2)(s(µ2))s(µ2)

−v′j(µ2)(s(µ2)) +Bµ2
≥ µ2

−v′j(µ1)(s(µ1))s(µ1)

−v′j(µ1)(s(µ1)) +Bµ2
=

=
−v′j(µ1)(s(µ1))s(µ1)

−v′
j(µ1)

(s(µ1))

µ2
+B

>
−v′j(µ1)(s(µ1))s(µ1)

−v′
j(µ1)

(s(µ1))

µ1
+B

= µ1φ(µ1),

due to the definitions of j(µ) and s(µ) and the fact that −v′j(µ)(s(µ))s(µ) > 0 ∀µ > 0.
Step 6. We prove the Lemma.
Define A := K eM lM

cmτmlm
. Remember that we want to show that there is always such a µM that

µM = K max
j

sup
s>0

Rj(s)eM lM

fm − cmτmlm
v′j(s)

µM

=
eM lM
cmτmlm

K max
j

sup
s>0

−v′j(s)s
fm

cmτmlm
− v′j(s)

µM

= AµMφ(µM ),

Aµφ(µ) < µM µ : 0 < µ < µM .

Firstly, as limµ→0+ φ(µ) = s̄M > cmτm
eM

≥ 1
K
cmτmlm
eM lM

= 1
A

25, there is always such a neighborhood of zero that
Aφ(µ) > 1⇐⇒ Aµφ(µ) > µ.

Secondly, as limµ→+∞ φ(µ) = 0, there is always such a neighborhood of infinity that Aφ(µ) < 1⇐⇒ Aµφ(µ) < µ.
These two observations put together with the fact that µφ(µ) is increasing and continuous on (0,+∞) prove the

Lemma. Q.E.D.

The next lemma is used in the Claims that follow it.

Lemma 3. If some differentiable function f(x) in some neighbourhood Θ of +∞ has the following properties: 1)
f(x) > 0, 2) f ′(x) < 0, 3) limx→+∞ f ′(x)x exists, then limx→+∞ f ′(x)x = 0.

Proof. Note that f(x) is bounded from below by zero and decreasing in Θ, so limx→+∞ f(x) = L ≥ 0 exists
and is finite. It is straightforward to see that limx→+∞ f ′(x)x ≤ 0. Suppose that limx→+∞ f ′(x)x < 0. This means
that in some neighbourhood ∆ of +∞ f ′(x)x < t < 0 holds. Let [a, b] ∈ Θ

⋂
∆. Then

f(b)− f(a) =

ˆ b

a

f ′(x)dx =

ˆ b

a

f ′(x)x

x
dx <

ˆ b

a

t

x
dx = t(ln(b)− ln(a)).

Note that limb→+∞ f(b)− f(a) = L− f(a) is finite while limb→+∞ t(ln(b)− ln(a)) = −∞. Thus, this inequality
cannot hold if we set b sufficiently big. Therefore, limx→+∞ f ′(x)x = 0. Q.E.D.

Claim 4. If ZP, LM and BC hold in some country i, BP is also satisfied there.
25The first inequality is a trivial corollary of the assumption (vi).
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Proof. From zero-profit condition we get

K∑
k=1

(pikxiklk − wiciτikxiklk)− wifi = 0⇒
K∑
k=1

pikxiklk = wi

(
fi +

K∑
k=1

ciτikxiklk

)
⇒

⇒ 1(
fi +

∑K
k=1 ciτikxiklk

) K∑
k=1

pikxiklk = wi ⇒ Ni

K∑
k=1

pikxiklk = wieili.

At the last step we multiplied both sides by eili and plugged in Ni from the labour market balance. Now if we
plug the RHS into the budget constraint, we will get the balance of payments. Q.E.D.

Claim 5. For u, satisfying Assumption 1, limx→0+ u′j(x)x = 0.

Proof. Before anything else, note that limx→0+ u′j(x)x = limx→+∞ u′j(
1
x ) 1

x . Let then f(x) = uj(
1
x ). So,

f(x) > 0 and f ′(x) = −u′j( 1
x ) 1

x2 < 0 on (0,+∞). Consider (f ′(x)x)′ = f ′′(x)x+ f ′(x) = (u′′j ( 1
x ) 1

x + u′j(
1
x )) 1

x2 . This
function cannot change its sign more than once as u′′j ( 1

x ) 1
x + u′j(

1
x ) is increasing. So, its antiderivative f ′(x)x is

monotonic in the vicinity of +∞ and limx→+∞ f ′(x)x exists. Thus, f(x) satisfies all conditions of Lemma 3 and
limx→0+ u′j(x)x = limx→+∞ u′j(

1
x ) 1

x = − limx→+∞ f ′(x)x = 0. Q.E.D.

Claim 6. limx→0+ u′′k(x)x+ u′k(x) > 0

Proof. Since u′′k(x)x+u′k(x) is decreasing on (0, X), it is either positive or negative in some neighborhood Θk of
zero. If it is negative, we cannot have limx→0+ u′k(x)x = 026 and u′k(x)x > 0 in the vicinity of zero simultaneously. It
is due to the fact that u′k(x)x is an antiderivative of u′′k(x)x+u′k(x). Thus, limx→0+ u′′k(x)x+u′k(x) is positive in Θk.
We showed that u′′k(x)x+u′k(x) is postitive somewhere, so, as it is decreasing, limx→0+ u′′k(x)x+u′k(x) > 0. Q.E.D.

Claim 7. πk(β) is positive and decreasing on (0, βk) and πk(β) = 0 for β ≥ β if β is finite.

Proof. Remember that {xk(β)} = arg max
x≥ 0

Prk(x, β) for all β > 0. As xk(β) > 0 for β : βk > β, it must be

that Prk(xk(β), β) > Prk(0, β) = 0. Thus, πk(β) > 0 when βk > β. Let now β > β1 > β2, then

π(β2) = Prk(xk(β2), β2) ≥ Prk(xk(β1), β2) > Prk(xk(β1), β1) = πk(β1)

as Prk(xk(β1), β) = u′k(xk(β1))xk(β1)− βxk(β1) decreases in β. In case βk is finite,

πk(β) = Prk(xk(β), β) = Prk(0, β) = 0 ∀β ≥ βk.

Q.E.D.

Claim 8. limx→+∞ u′′t (x)x = 0.

Proof. Let f(x) = u′t(x). Then f(x) > 0 and f ′(x) = u′′t (x) < 0 on (0,+∞). Since limx→+∞ u′′t (x)x+ u′t(x)
exists due to monotonicity of u′′t (x)x+u′t(x) and limx→+∞ u′t(x) is finite, limx→+∞ f ′(x)x = limx→+∞ u′′t (x)x must
exist. Thus, f(x) satisfies all conditions of Lemma 3 and limx→+∞ u′′t (x)x = limx→+∞ f ′(x)x = 0. Q.E.D.

Claim 9. lims→s̄j v
′
j(s)s = lims→+∞ v′j(s)s = 0.

Proof. If s̄j 6= +∞, validity of this claim is obvious. Consider the case when s̄j = +∞. Let f(x) = vj(x). Then
f(x) > 0 and f ′(x) = v′j(x) < 0 on (0,+∞). As s +

v′k(s)
v′′k (s) is increasing and v′′j (s) > 0, (v′j(x)x)′ = v′′j (s)s + v′j(s)

cannot change its sign more than once. So, its antiderivative v′j(x)x is monotonic in the vicinity of +∞ and
limx→+∞ f ′(x)x = limx→+∞ v′j(x)x exists. Thus, f(x) satisfies all conditions of Lemma 3 and limx→+∞ v′j(x)x =
limx→+∞ f ′(x)x = 0. Q.E.D.

Claim 10. lims→s̄−k
s+

v′k(s)
v′′k (s) > 0.

26See Claim (5)
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Proof. Consider βk(s) = s+
v′k(s)
v′′k (s) . This function is increasing on (0, s̄k), so βk(s) can change its sign there at

most once. As v′′k (s) > 0 in the left half-neighborhood of s̄k, v′′k (s)s + v′k(s) is either positive or negative in some
left half-neighborhood Θk of s̄. If it is negative, then we cannot have lims→s̄−j

v′k(s)s = 027 and v′k(s)s < 0 on (0, s̄)

at the same time. It is so because v′k(s)s is an antiderivative of v′′k (s)s+ v′k(s). Thus, v′′k (s)s+ v′k(s) > 0 in Θk. As
v′′k (s)s+ v′k(s) is positive somewhere and s+

v′k(s)
v′′k (s) is increasing, lims→s̄−k

s+
v′k(s)
v′′k (s) > 0. Q.E.D.

Claim 11. πk(β) is positive and decreasing on (0, β) and πk(β) = 0 for β ≥ βk if βk is finite.

Proof. Remember that {sk(β)} = arg max
s> 0

Prk(s, β) for all βk > β. As sk(β) < s̄k for β : βk > β, it must be

that Prk(sk(β), β) > Prk(s̄k, β) = 0. Thus, πk(β) > 0 when βk > β. Let now βk > β1 > β2, then

π(β2) = Prk(sk(β2), β2) ≥ Prk(sk(β1), β2) > Prk(sk(β1), β1) = πk(β1)

due to the fact that Prk(sk(β1), β) = −v′k(sk(β1))(sk(β1)− β) decreases in β. In case βk is finite,

πk(β) = Prk(sk(β), β) = Prk(s̄k, β) = 0 ∀β ≥ βk.

Q.E.D.

27See Claim (9)
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