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1 Introduction 

While deep neural networks have been on the rise, it is still unclear how they capture and 

store knowledge about both the world and the language from the perspective of human 

interpretation. Although a model’s architecture has been explained in detail (Vaswani et al., 

2017), its internal workings remain "a black box". 

Many researchers have approached this problem, trying to analyze models’ 

representations. A number of experiments have been previously conducted, such as amnesic 

probing (Elazar et al., 2021), layer-wise probing (Fayyaz et al., 2021), chronological probing 

(Voloshina et al., 2022). Still, a common and widely used strategy is to train a linear classifier to 

predict labels of a linguistic category, treating the activations generated from the neural network 

as features (Belinkov, 2022). If the probe shows good performance, it might be legitimate to say 

that the model encodes the target property somehow. Nonetheless, it is still unknown where that 

knowledge is stored. 

This paper aims to offer a technique, which seeks to get more insight into the inner 

mechanisms of how deep neural networks actually work. We formulate our method as follows: 

• choose a neural network architecture; 

• make two datasets in your target language which contain practically the same sentences, 

but differ in a way that some predefined grammatical forms are randomly changed ("spoiled"), 

e.g. the grammatical number of noun; 

• train two models (we further address them as "good" and "broken" models); 

• choose target linguistic properties under probing investigation; 

• train probes to predict a grammatical feature using the models’ representations; 

• conduct further comparisons of the "sibling" pre-trained models and of probing 

performance, do neuron-level analysis. 

We prove this approach to be promising as long as it enables to get a better understanding 

of how specific information is encoded inside a deep neural network. 
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2 Related work 

There is a "zoo" of probing methods, but generally the proposed ones may be called 

either correlational or causal. While correlational probes indicate that the model has the 

knowledge about the target linguistic property, the purpose of causal techniques is to determine 

whether the model uses the information discovered by a probe. 

2.1 Correlational Probing 

The methodology is quite straightforward: having a dataset of sentence - label pairs, a 

classifier – a probe – is trained on the latent neural network model representations, so that the 

desired information (label) is predicted. High prediction score is regarded to be an indicator that 

such property can be extracted from the activations as it is actually encoded there. 

This approach is used in the study done by Serikov et al. (2022), where the authors probe 

mBERT and XLM-RoBERTa models for 104 languages and 80 morphosyntactic features with 

both linear (Logistic Regression) and nonlinear (MLP) classifiers. 

Voloshina et al. (2022) do a chronological probing investigation to show the changes 

within the language model during pre-training step, making use of logistic regression on top of 

embeddings of mBERT and T5. 

Still, the method is critised (Belinkov, 2022). It is highlighted that the probe is "a proxy", 

which raises the issue of whether the classifier actually reflects some correlations instead of just 

memorizing patterns on its own. 

The problem has been addressed through control tasks and selectivity criterion (Hewitt 

and Liang, 2019). It is defined as the difference between accuracy of probes trained on "true" 

data and one with randomized (shuffled) labels. The higher selectivity, the better performance of 

the classifier, the more we can trust the results. 

2.2 Causal Probing 

Prior work in this field focuses on interventions, either modifying a model’s 

representations or input data, in order to get so-called representational and 

templated / naturalistic "counterfactuals" respectively as the result. Such an approach is devised 

to evaluate the importance of a specific type of information in its relevance to some linguistic 

tasks. 
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Amnesic probing with INLP (iterative null space projection) was presented by 

Elazar  et  al.  (2021), so that the authors erased information about POS (part-of-speech) from 

BERT’s activations (Devlin et al., 2019) and then fed them to the word prediction layer to 

measure the performance after representational interventions. 

Finlayson et al. (2021) studied syntactic agreement mechanisms in neural language 

models. The researchers created templated counterfactuals – pairs of sentences, where a single 

analyzed property is changed, e.g. "The athlete confuses/*confuse". 

Naturalistic counterfactuals are widely used to solve the problem of eliminating gender 

bias (Zmigrod et al., 2019). The key distinction from templates is that dependency structure of 

the sentence is taken into account. Naturalistic counterfactuals are also used for linguistic 

probing (Amini et al., 2023). 

In our work we take advantage of both causal and correlational techniques, as we 

generate templated counterfactuals for BERT pre-training and then use a probing classifier to 

study linguistic properties. 

3 Methodology 

In our work we lean heavily on the NeuroX framework (Dalvi et al., 2019b), which is 

a toolkit for neuron-level analysis (Dalvi et al., 2019a). It makes use of a logistic regression 

classifier with elastic-net regularization and enables to select N% of top neurons for a specific 

linguistic task based on the weights of the trained probe. Then it is possible to train a probe only 

on a subset of neurons for the same task. There is also an option to conduct a general probing 

experiment layer-wise. 

Our experiment is largely premised on the toolkit. We also introduce control task, which 

was mentioned previously, to get more solid and trustful results. 

As there is a vast body of literature on BERT and its representations, e.g. 

Tenney  et  al.  (2019) and Rogers  et  al.  (2020), we have chosen it to be a base model under 

investigation. 
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4 Data 

4.1 Pre-training Data 

As we exploit the previously discussed idea of templates, we propose to change values 

in some chosen grammatical categories in a sentence not for probing, but for a neural language 

model pre-training, so that it "breaks" in its knowledge of a particular linguistic property. The 

experiment is controlled because the rest of the data remains unchanged. When the defined part 

of speech is present in a sentence, its grammatical form is randomly replaced with the incorrect 

one with some probability. 

While numerous grammatical categories are featured in various languages4, it can be 

deduced that each morphosyntactic property may have either a few (e.g., two) or many 

(particularly, more than four) forms inside it. 

In our experiment, we have chosen gender to be the category we "break" as the starting 

point. It is a widely present feature in grammar. In Russian, it is non-binary, having three values 

(feminine, masculine and neutral), which seems to be a reasonable trade-off, when tackling the 

above mentioned problem of language diversity. 

Specifically, we focus on adjectives’ gender, because it is relatively easy to "spoil" such 

forms, changing the inflections. While gender is a word-classifying category for nouns in 

Russian, for adjectives and verbs in the past tense, it is inflectional. Gender is not overtly marked 

on nouns, but is correlated with the type of declension. Adjectives and verbs agree with nouns by 

gender, but it is differentiated only in the singular, whereas in the plural, gender is neutralized. 

Adjective forms of masculine and neuter gender differ only in the nominative and accusative 

cases. 

In our work we largely rely on pymorphy25 engine (Korobov, 2015). It’s worth 

mentioning that this morphological analyzer considers pronominal adjectives to be adjectives as 

well. And since pymorphy2 does not disambiguate analyses, some demonstrative and relative 

pronouns (e.g. "takoj" ‘such’, "tot" ‘that’, "kotoryj" ‘which’), participles (e.g. "kuryashchij" 

‘smoking’), and adverbs (e.g. "ladno" ‘fine’) were changed too. 

                                                           
4  https://wals.info/ 
5 https://github.com/pymorphy2/pymorphy2 
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4.2 Probing Data 

For probing purposes, there is an option to use a converter from Serikov et al. (2022) 

which brings the Universal Dependencies data (de Marneffe et al., 2021) to SentEval format 

(Conneau and Kiela, 2018) so that the files for found morphological categories (e.g. Verb Tense) 

are created. These files contain train, test and dev tags for sentences as well as particular 

grammatical labels to predict. 

5 Experimental Setup 

Pre-trained Neural Language Models: as was mentioned above, we have studied the 

behavior of the BERT model (Devlin et al., 2019). The idea is to fix random seed and the 

environment and train two models separately (for the MLM task, in our case) on the practically 

same dataset, whereas the second version of BERT is fed with "spoiled" data where we randomly 

changed gender of the long and short forms of the adjectives. Each model was trained for 1kk 

steps on a single NVidia Tesla GPU V100 32GB with a mini-batch size of 32, which took ∼ 

35 hours. We also made checkpoints at each 100k steps for the further comparisons. 

Pre-Training Data: ∼3 GB of conversational texts in Russian, taken from OpenSubtitles 

(Lison and Tiedemann, 2016), Dirty6, Pikabu7, and a Social Media segment of Taiga8 corpus.  

Example of pre-training-data: 

В интересные времена живем. ‘We live in interesting times’. 

Ведь эти биткойны — первая независимая финансовая система. ‘After all, these bitcoins are 

the first independent financial system’. 

И ее, кажется, даже невозможно уничтожить никак — ни законами, ни киллерами, ни 

бомбардировщиками, ни подкупами министров. ‘And it seems impossible to even destroy it in 

any way - neither by laws, nor by killers, nor by bombers, nor by bribing ministers’. 

Интересно, какие есть технические возможности. ‘I wonder what technical possibilities there 

are’. 

We have randomly changed ∼60% of adjectives’ gender forms in the pre-training data at 

the step of "spoiling" the dataset for the "broken" model. 

Example of "spoiled" pre-training-data: 

Ведь эти биткойны — первая независимое финансовый система. 

‘After all, these bitcoins are the first(F) independent(N) financial(M) system(F)’9. 

The total distribution of adjectives in the data is shown in Table 1. 

                                                           
6 https://d3.ru/ 
7 https://pikabu.ru/ 
8 https://tatianashavrina.github.io/taiga_site/ 
9 The letter in brackets indicate the gender form of the word. In a grammatically correct sentence, all three modifiers should agree 

with the noun and be in the feminine form (F). 
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Tab. 1. Percentage of full (ADJF) and short adjectives (ADJS) in 

pre-training data. 

(total number of words: 274442625) 

POS Number, gender Percentage 

ADJF 

sg, masc 2.86% 

sg, femn 2.86% 

sg, neut 1.93% 

pl 3.09% 

ADJS 

sg, masc 0.28% 

sg, femn 0.14% 

sg, neut 0.42% 

pl 0.16% 

Total  11.76% 

 

Probing Data: UD Russian Taiga10 converted to SentEval format with UD Parser11. 

Example of probing data: 

tr; Fem; Оценка истории крайне интересна ! ‘The assessment of history is extremely 

interesting !’ 

tr; Neut; - Спасибо большое . ‘Thanks a lot .’ 

tr; Masc; - Кто последний ? ‘Who is last ?’ 

 

Studied Properties: besides probing for adjectives’ gender, we have chosen other core 

parts of speech and their grammatical features. Thus, we studied nouns, verbs and adjectives. 

Our final list of properties includes: adjectives’ gender; nouns’ number and case; verbs’ aspect, 

person and tense. 

Probe Configuration: all the probing experiments were also conducted with the same 

fixed seed so that training and test sets always contained identical data and the linear probe’s 

initialization did not mess up the results. In each iteration a linear probing classifier with elastic-

net regularization (λ1, λ2 = 0.003), a categorical cross-entropy loss and AdamW optimiser 

                                                           
10 https://github.com/UniversalDependencies/UD_Russian-Taiga 
11 https://github.com/AIRI-Institute/Probing_framework/tree/main 
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(Loshchilov and Hutter, 2017) was used (Durrani et al., 2020). Then the importance of each 

neuron was calculated according to the learned weights. 

Metrics: label prediction accuracy and selectivity. 

6 Results 

Our analysis splits into two parts: BERT models’ comparison and the probing section. 

6.1 Pre-Trained BERT Models 

The widely used metric for LM’s evaluation is perplexity12. However, it is devised to 

estimate the performance of autoregressive models, while BERT is MLM model. Thus, we 

calculated pseudo-perplexity, following the approach by Salazar et al. (2019). Pseudo-perplexity, 

in its core, largely relies on the average probability of each token in a given sentence. 

The  interpretation of the metric is as follows: the lower pseudo-perplexity, the better 

understanding of the language the model has, as it predicts the masked words more accurately, 

assigning them higher probabilities. 

We measured pseudo-perplexity over two subsets. Each of them contained 30000 

sentences. They were randomly sampled from RuSentEval data13,14. The metrics for "good" and 

"broken" models on the first dataset are ∼41.17 and ∼48.11 respectively. The metrics on the 

second dataset are ∼59.73 and ∼71.87. The difference between the latter values is higher as, 

presumably, the second dataset, devoted to estimation of object’s gender, contained more 

adjectives. Nonetheless, the results allow to conclude that the "good" BERT is more successful 

in language modeling than the "broken" one. 

The line plot of loss during training (Fig. 1) shows that models actually learned 

differently. The loss of the "broken" model is generally a bit higher as the model was confused 

with the randomly "spoiled" grammatical forms. 

                                                           
12 https://huggingface.co/docs/transformers/perplexity 
13 https://github.com/RussianNLP/RuSentEval/blob/main/data/sent_len.txt 
14 https://github.com/RussianNLP/RuSentEval/blob/main/data/obj_gender.txt 
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Fig. 1. Loss change during training two BERT models. 

 

Masked language modeling task itself also proves that we have managed to bewilder 

BERT with conflicting linguistic features. The "broken" model assigns higher probabilities to 

incorrect grammatical forms when it predicts adjectives (Table 2a). 

However, when we mask other parts of speech (Table 2b), the behavior of the models 

also does not seem to be consistent, as they propose different variants for the same masked word 

in a sentence, even though it doesn’t contain adjectives. 

Tab. 2. The way the pre-trained models guess the masked word. 

(a) The noun’s gender is feminine, so the first model is correct, the 

second one is not. 

Собака очень [MASK]. 

dog.F-NOM very [MASK]15 

model score prediction 

good model 

0.284 
красивая 

beautiful-F.NOM 

0.052 
добрая 

kind-F.NOM 

0.048 
умная 

smart-F.NOM 

                                                           
15 In this table, instead of a translation, a gloss line is given. F – feminine, M – masculine, N – neuter, NOM – nominal case. 
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broken model 

0.028 
сильный 

beautiful-M.NOM 

0.018 
красивое 

beautiful-N.NOM 

0.018 
сильная 

beautiful-F.NOM 

(b) The proposed variants and probabilities are different, although the 

masked word is not an adjective. 

Мальчик ходит в [MASK] ежедневно. 

‘The boy goes to [MASK] every day’. 

model score prediction 

good model 

0.7486 
школу 

‘school’ 

0.0321 
церковь 

‘church’ 

0.0231 
походы 

‘hiking’ 

broken model 

0.6992 
школу 

‘school’ 

0.0342 
садик 

‘kindergarten’ 

0.0112 
спортзал 

‘gym’ 

 

6.2 Probing Analysis 

We conducted a number of probing experiments based on activations generated by two 

pre-trained BERT models. 

Performance of the Probes 

The plot (Fig. 2) indicates that the "good" model is generally better, although the 

"broken" one performs higher on the noun’s properties. 
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Fig. 2. Test accuracy: models’ comparison across the probed grammatical categories 

 

We conducted a control task to make sure the obtained results can be trusted. The 

difference in performance on “true” and randomly annotated data reveals that the probe does not 

just memorize the information from the model’s representations, but also grasps significant 

features. Thus, selectivity, which is defined as the target metric subtraction, is rather high across 

all chosen linguistic categories. Therefore, the probes actually use the encoded knowledge. The 

comparison is shown in Fig 3. 

 

Fig. 3. Actual test accuracy vs control task accuracy for the “good” BERT model. 
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According to McNemar's Chi-squared test with continuity correction, the difference between the 

results of the test and control tasks is statistically significant for all categories (p-value < 0.05) 

 

Neuron Sets 

While the NeuroX Framework lets analyze particular neurons, we singled out top-20% of 

neurons by weight mass, bottom-20% and trained probes zeroing-out other neurons. The 

obtained metrics show (Table 3) that the fewer neurons are considered, the better might be a 

performance as such an approach probably prevents overfitting. Beyond that, top-neurons indeed 

contain more information in comparison to bottom-neurons. 

Tab. 3. Test accuracy comparison of the performance probe trained on all (total 

number = 9984) neurons, top-20% by mass and bottom-20% of neurons. 

category all top-20% bottom-20% 

ADJ Gender 0.82 0.84 0.79 

NOUN Number 0.76 0.82 0.81 

NOUN Case 0.55 0.6 0.55 

VERB Aspect 0.74 0.73 0.71 

VERB Person 0.8 0.81 0.63 

VERB Tense 0.72 0.73 0.67 

 

Besides, taking a closer look at the number of top-20% of neurons per category (Table 4), 

we state that the fewer labels the property has, the more weight mass is localized rather than 

distributed. For example, we see a pattern: 2 labels correspond to ∼ 350-400 neurons, 3 labels – 

to ∼ 600 neurons and a category with 8 labels requires even a larger number of neurons. 

Generally, it means that if a linguistic property is complex, the model needs more neurons to 

encode the knowledge in comparison to a simpler grammatical feature. These results are 

congruent with previous studies (Durrani et al., 2020). 

Tab. 4. Number of classes in each category vs number of top-

20% of neurons per category for “good” BERT. 

category classes neurons 

ADJ Gender 3 635 



 
 

13 

NOUN Number 2 385 

NOUN Case 8 1749 

VERB Aspect 2 356 

VERB Person 3 573 

VERB Tense 3 598 

 

Neuron Overlap 

At the step of designing the whole experiment, we wanted to detect whether top-N% 

neurons actually vary across two pre-trained models. 

Firstly, we measured an overlap in percentage between two versions of our "good" BERT 

model. We took the checkpoint at 700k steps and the final one at 1kk steps. The overlap displays 

that the model maintains continuity, as the intersection is significant (Fig. 4a). 

Secondly, we calculated the same overlap across "good" and "broken" models. According 

to the heatmap (Fig. 4b), it is not large, which raises the question whether the models are actually 

that different or if the comparison should be made in another way. 

  

(a) (b) 

Fig. 4. Percentage of top-N% neurons (by weight mass) overlap: a) comparison between "good" 

BERTS after 700k and 1kk training steps; b) comparison between “good” and "broken" BERTS 

after 1kk steps. 
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Layers: Distribution and Evaluation 

The layer-wise distribution of the salient neurons (Fig. 5) provides more information 

about the way grammar is encoded. Our assumption is that the number of significant neurons per 

layer can be helpful when we compare "sibling" models. Although we can’t say that distributions 

are nearly identical, the trends of both "good" and "broken" models for most of the categories 

generally do not contradict each other. 

 

Fig. 5. Top-20% of neurons per category: layerwise distribution for two probed BERT models 

after 1kk steps. 

 

Training the probing classifiers, we expected a large drop in performance on our major 

target category – adjective’s gender. Although the probe based on the "good" model actually 

makes better predictions as shown in the layer-wise accuracy plot (Fig. 6), the "broken" model 

also does well. The possible explanation is that the probe has found patterns in the sentence 

representations of the correspondent to the target adjective noun, which is the head of the noun 

phrase. Still, we see a peak in performance at layer three for both models. The result is in line 

with Fig. 5, as the third layer has more top neurons than any other one for both "good" and 

"broken" BERTs. 
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Fig. 6. Layerwise test accuracy: models’ comparison for adjectives’ gender category. 

7 Future Work  

The work can be continued so that one can experiment with other architectures, 

languages, linguistic categories and probing methods. 

Our plan is to conduct a similar experiment where values of a grammatical category are 

always changed into the same form rather than randomly. Thus, we will be able to "turn off" the 

grammatical category in the "broken" model: it will not know that the particular part of speech 

can inflect for it. 

Speaking about the probing part, in our study we focus on the sentence representations. 

We want to do conduct future probing experiments on word-annotated text-label pairs. 

8 Conclusions  

In this work we propose a new approach to the probing task, which aims to extract 

features relevant to a specific linguistic category from a deep neural network’s representations 

through a novel experimental setup. Our findings are stated as follows: 

 it is a promising technique to train two architectures in the same fixed conditions, but on 

slightly different data in terms of grammatical correctness; it allows to draw a 

comparison between activations generated by the models; 



 
 

16 

 a subset of top-N% neurons is much more informative than all number of neurons for a 

linguistic property as long as it partly solves the overfitting problem during probing 

procedure; 

 such a subset is smaller for "simple" categories, while its size, probably, grows linearly as 

the number of labels increases; 

 "complex" properties are distributed because it is harder for the model to internalize them 

than some "easy" ones, which, interestingly, is understandable from the perspective of 

"human" interpretation (though, our conclusion confirms previous studies in this field); 

 BERT model is rather coherent during pre-training, so that it is enforced to encode 

grammar in approximately the same subset of neurons at each iteration; 

 the layerwise top-N% neuron distribution is useful for comparison analysis between two 

pre-trained "sibling" models. 

Limitations 

Firstly, in our study we have dealt primarily with adjectives’ gender category and while a 

full adjective is a part of a noun phrase, it is a dependent, not a head of NP. It is strongly advised 

to conduct further experiments "spoiling" a head of a phrase (or a head with its dependents) in 

data in order to get the most solid results.  

Secondly, our approach requires a morphological analyzer which can parse words and 

change their grammatical forms. Though, a solution for low-resource agglutinative languages is 

the usage of transducers. But the better the analyzer disambiguates homonyms, the more accurate 

conclusions about the behavior of the "broken" model can be made. 

Thirdly, scaling the approach to the architectures with a vast number of parameters is 

bound to require lots of computational power and, thus, be costly. 
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