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Abstract

This paper proposes a model of a finite two-sided market with a limited ar-

bitrary number of products per seller, where buyers are involved in a directed

search for the appropriate purchase. The effect of friction, discovered for the

models with a single product per seller, remains, though the competition intensi-

fies. We derive an analytical formula for the case of an equal number of products

for every seller and deduce that the equilibrium price decreases with the growth

of availability and drops to marginal costs when two sellers are able to serve

the whole set of buyers. However, the seller’s utility is a bell-shaped function

of the number of products. This produces the controversial impact of market

concentration on the various equilibrium characteristics. For the general model

with different capacities across sellers, we formulate equilibrium conditions on

prices, and clarify how the market power of a particular seller depends on its

capacity. Numerical analysis is also applied to the related problem of endogenous

capacities.
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1 Introduction

Directed search theory has developed a deep understanding of the endogenous matching
of buyers and sellers in finite markets, optimal pricing schemes, and, as a result, market
inefficiency (Wright et al. 2021). Two sides of a classic market, i.e. buyers or sellers,
or firms and employers, are aimed to be matched in pairs for making a deal (purchase
of a valuable product, hiring a productive worker) at a reasonable price. Strategic
buyers make a non-correlated choice from the list of sellers’ posted prices and, because
of the finiteness of sellers and products they have, some buyers remain unserved. In
the benchmark models, sellers generally have one unit of homogeneous product, and
the attention is paid to the mechanics of the friction process, the resulting failure of
effective matching, and the redistribution of bargaining power between the two market
sides determined by their sizes.

In this paper, we assert that the real capacity of a seller, which is the important
dimension of the finite market, has been poorly accounted for in previous studies, and
fill this gap. If sellers have more than one product, this increases the availability of
products for buyers and relaxes the competition for every seller. From the practical
point of view, the setting with many products is more applicable since sellers, for
instance operating in a marketplace, often have some reserve of a given product, whose
capacity depends on the size of the firm. Even if the total number of products in
the market exceeds the total demand for this product, this does not necessarily mean
that the cheapest seller alone can satisfy the whole market. Not only does the number
of market participants influence the equilibrium characteristics, like prices, matching
probabilities, and utilities, but the distribution of products across sellers also affects a
finite market. In this article, we determine the exact condition for the sellers’ capacities
under which the market demonstrates friction: if at least two sellers can individually
serve all buyers, then the friction disappears and the market is indistinguishable from
that without any capacity constraints.

A few studies implicitly incorporate greater capacities into the finite market model.
The original early paper by (Burdett, Shi, and Wright 2001) considers an extension
with some firms having a capacity of two versus others with a capacity of one. They
analytically solve the small market 2 buyers × 2 sellers, and then extend their result
to a large market with fixed buyer-seller ratio. Nevertheless, they learn nothing about
intermediate finite cases and, what is more important for us, for a larger number of
products per seller.

A similar setting, but in the labor market framework with firms and employers, was
developed in (Lester 2010), which refers to firms with two vacancies as large firms and
with one vacancy as small firms. The market mechanics is the same as in (Burdett,
Shi, and Wright 2001) and in the current paper, but again the author focuses on the
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infinite market with fixed buyer-seller ratio. He endogenizes the choice of capacity for
a firm, allows free entry of firms, and deduces a higher expected utility, total and per
vacancy, of large firms. But here we see that the further extension of the vacancy set
is not necessarily profitable.

Sellers with larger finite capacities are introduced in (Geromichalos 2012), but the
author introduces an alternative mechanism where a seller posts the conditions of a
contract "realized capacity+price", and the maximum capacity is given. Buyers also
pay a submission fee, which is paid irrespective of the success of a purchase from
a particular seller. The author focuses on efficiency problems of equilibria and on
an infinitely large market. This paper puts forward an important problem of seller’s
optimal capacity which does not cover the whole demand.

The similar to (Geromichalos 2012) models have been developed for the labor mar-
ket (Tan 2012), (Hawkins 2013), (Jacquet and Tan 2012). Wage-vacancy contracts,
where wages may depend on the number of hired workers or may be different across
workers hired by the same firm, fit the reality of the hiring process in classical labor
markets. Another issue accounted for in these studies is the difference between the pro-
ductivity of small and large firms, introduced in the models. However, they all consider
large markets with a relaxed strategic interaction of workers, while in the finite case
both friction and strategic behavior are non-negligible. Moreover, for a buyer-seller
market, the assumption that sellers are able to post a menu of prices for the same
products at a given moment does not generally fit the organization of the marketplace.

In this paper, we consider the finite market with 𝑛𝑠 sellers and 𝑛𝑏 buyers, which do
not necessarily grow to infinity. We start with symmetric sellers with equal capacities
1 ⩽ ℎ ⩽ 𝑛𝑏. Sellers simultaneously post prices, and then buyers independently send
their requests for a purchase to a particular seller. If the number of requests exceeds
the number of products the seller has, some buyers remain unserved. The probability
of being served is more complicated than in the case of a unique product per seller,
as it depends both on the capacity and the actual demand. We derive an analytical
solution of a buyers’ game and, consequently, the equilibrium price in a sellers’ game.
This is a direct extension of formula (45) from (Wright et al. 2021).

This generalized formula has immediate implications for understanding the tough-
ness of competition in the market. It also allows the matching probability and the seller
utilities as functions of ℎ to be calculated. For small ℎ ≤ 2, it was previously shown
that firms with a greater capacity get larger utility, but this tendency changes with the
growth of product reserve for each seller. Analyzing the comparative statics, we deduce
that, because of the intensification of competition with the growth of availability and
resulting price decrease, the potential to sell more products does not compensate for
loses from the low price. This means that the total utility of the firm is a bell-shaped
function of ℎ. Thus, there exists an optimal seller capacity in the symmetric setting,
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and this capacity is not so large, such that some deficit is optimal for sellers.
Our results contribute to understanding the influence of market concentration on

competition. We deduce that this influence is controversial and depends on the relation
between the number of buyers and total number of products on the market. Although in
a more concentrated market, friction decreases, under a large demand the equilibrium
price grows, but at low demand the competition intensifies such that the price drops.

The exact representation of symmetric buyer equilibrium behavior allows passing
to the maximization problem for sellers in the case of non-equal capacities. To ensure
the existence and uniqueness of the solution, we apply the approach from (Kim and
Camera 2014). We also improve the related recursive approach by (Camera and Kim
2013) when adopting it to the solution of the buyers’ subgame. This explains why the
numerical analysis is correct and well-defined.

The numerical solution of the general model demonstrates the difference in the
pricing behavior between large and small sellers in terms of their capacities. We show
that the large firms enjoy extra market power and propose higher prices than the small
firms. This is because small sellers must compete more aggressively in order to sell a few
products, while large sellers may sell less often per unit, but with greater marginality.
Large sellers attract buyers not by low prices, but by greater availability and less
friction. But again there is a limit of capacity which is profitable for a particular seller.

Relying on numerical solutions, we elaborate the setting with endogenous capacities
of sellers and associate their choice with a separate simultaneous game. The equilibria
for several special cases demonstrate that arbitrary large capacities are generally not
the best choice and far from what we may observe on the market. Generally, rational
sellers do not try to attract all buyers unilaterally, but also their total supply is larger
than that under collusion.

This study enriches the setting of a classic finite market by extending possible seller
capacities and explains the decisions of sellers and the classic relationship of “price –
matching efficiency – firm size” clearer. It clarifies the nature of buyers’ competitive be-
havior which in turn affects sellers’ expectation of demand, and highlights the influence
of product distribution across sellers.

The paper is organized as follows. Next session introduces the model and impor-
tant functions for the analysis. Section 3 solves the symmetric model and clarifies the
dependence of the equilibrium on the parameters. Section 4 considers the general het-
erogeneous case, presents the limits of analytical solution, and analyzes some numerical
properties and the setting with endogenous capacities. Section 5 concludes.
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2 The finite market model

2.1 The model

Assume we have the finite market with 𝑛𝑠 ⩾ 2 sellers and 𝑛𝑏 ⩾ 2 buyers. Every seller
has 1 ⩽ ℎ𝑖 ⩽ 𝑛𝑏, 𝑖 ∈ {1, . . . , 𝑛𝑠} units of homogeneous indivisible products which he
values as 𝑐 ⩾ 0. Every buyer aims to buy one unit of product, the common buyer
valuation is 𝑢 ⩾ 𝑐.

The market operates in two distinct stages. At the first stage, all sellers simulta-
neously and independently announce their prices, which do not change. Let 𝑝𝑗 be the
price posted by seller 𝑗 for every unit of her products. A particular seller is not allowed
to discriminate among buyers and propose menu of prices. So she is obligated to sell
all her products at 𝑝𝑗. This restriction is natural in the setting of a marketplace, while
for the dual setting of a labor market and hiring it can be more reasonable to introduce
flexible wages contracts, since the anonymity of workers is a more questionable issue
there.

At the second stage, buyers observe the whole list of prices from stage one. Every
buyer independently of others chooses one seller and submits to her a request for the
purchase of a unit of the product, at the given price. The strategic part of interaction
stops at this moment. Then the “blind” matching mechanics works. If seller 𝑗 obtains
not more than ℎ𝑗 requests, then she sells to every requester a unit of product at price
𝑝𝑗. If seller 𝑗 obtains more than ℎ𝑗 requests, then she is not able to serve all demand
she met and needs to choose exactly ℎ𝑗 buyers from the set of requesters. Since all
buyers are homogeneous, the choice is just equiprobable. This also can be interpreted
as the seller serving first ℎ𝑗 buyers in a queue while their time rank is determined not
strategically but randomly. Here is a potential place for friction among buyers.

All market participants behave rationally and strategically. Every buyer maximizes
her expected gain 𝑢− 𝑝 from a successful purchase, accounting for the probability that
it occurs. Every seller maximizes the expected sum of markups 𝑝 − 𝑐 from all her
successful sales.

2.2 Representation of utilities

Denote by ℐ = {1, 2, . . . , 𝑛𝑏} the set of buyers and by 𝒥 = {1, 2, . . . , 𝑛𝑠} the set of
sellers. Let on the first stage sellers propose a price vector p = (𝑝1, . . . , 𝑝𝑛𝑠) and on the
second stage buyers submits requests for the purchase with probabilities expressed by
the matrix Γ:

(𝑛𝑏×𝑛𝑠)
Γ =

⎛⎜⎜⎝
𝛾11 . . . 𝛾1𝑛𝑠

... . . . ...
𝛾𝑛𝑏1 . . . 𝛾𝑛𝑏𝑛𝑠

⎞⎟⎟⎠
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We denote an arbitrary row 𝑖 of matrix Γ as 𝛾𝑏
𝑖 = (𝛾𝑖1, . . . , 𝛾𝑖𝑛𝑠) and an arbitrary

column 𝑗 as 𝛾𝑠
𝑗 = (𝛾𝑗1, . . . , 𝛾𝑗𝑛𝑏

).
We want to find a symmetric equilibrium (p,Γ) such that

• 𝛾𝑏
𝑖1
= 𝛾𝑏

𝑖2
∀𝑖1, 𝑖2 ∈ ℐ, that is for each particular seller it is true that all buyers sub-

mit to her a request with equal probabilities (because buyers are homogeneous),
and

• ℎ𝑗1 = ℎ𝑗2 ⇐⇒ (𝑝𝑗1 = 𝑝𝑗2) ∧
(︀
𝛾𝑠
𝑗1
= 𝛾𝑠

𝑗2

)︀
∀𝑗1, 𝑗2 ∈ 𝒥 , that is iff two sellers

have equal capacities, then in symmetric equilibrium they set equal prices and
all buyers visits them with equal probabilities.

Denote by 𝛾𝑠 =
(︀
𝛾𝑠
1, . . . , 𝛾

𝑠
𝑛𝑠

)︀
the vector of probabilities with which buyers submit

requests to sellers in symmetric equilibrium that is the unique column values of matrix
Γ.

The key bricks in all equilibrium derivations are buyers and sellers expected utility
and profit functions, respectively. First, let consider buyer 𝑖 ∈ ℐ and seller 𝑗 ∈ 𝒥 in the
equilibrium. The expected utility of this buyer from submitting to seller 𝑗 conditional
on other buyer sending requests to this seller with probability 𝛾𝑠

𝑗 is equal to

E [𝑢𝑖(𝑗)] = (𝑢− 𝑝𝑗)× Probability of being served by seller 𝑗 (𝛾𝑠
𝑗 ;𝑛𝑏, ℎ𝑗). (1)

Because at the second stage buyers make their choices independently, we can write the
expected profit of seller 𝑗 from posting price 𝑝𝑗 in equilibrium as

E [𝜋𝑗(𝑝𝑗, 𝑝−𝑗)] = (𝑝𝑗 − 𝑐)× 𝑛𝑏 × 𝛾𝑠
𝑗 (𝑝𝑗, 𝑝−𝑗)×

× Probability of being served by seller 𝑗 (𝛾𝑠
𝑗 ;𝑛𝑏, ℎ𝑗). (2)

Note that the expected payoff of seller 𝑗 depends on the other players strategies through
𝛾𝑠
𝑗 (𝑝𝑗, 𝑝−𝑗) term, which is the result of the equilibrium in the buyers’ subgame (equi-

librium 𝛾𝑠
𝑗 ).

When ℎ𝑗 = 1 it is easy to express E [𝜋𝑗] directly as

E [𝜋𝑗(𝑝𝑗, 𝑝−𝑗)] =

= (𝑝𝑗 − 𝑐)× Probability that at least one buyer out of 𝑛𝑏 come to seller 𝑗 =

= (𝑝𝑗 − 𝑐)×
(︀
1−

(︀
1− 𝛾𝑠

𝑗

)︀𝑛𝑏
)︀
.

From the connection between the general form of buyers expected utility (1) and sellers
expected profit (2) functions we can easily derive that

Probability of being served by seller 𝑗 (𝛾𝑠
𝑗 ;𝑛𝑏, ℎ𝑗)

⃒⃒⃒⃒
ℎ𝑗=1

=

(︀
1−

(︀
1− 𝛾𝑠

𝑗

)︀𝑛𝑏
)︀

𝑛𝑏𝛾𝑠
𝑗

. (3)
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These functions and the connection between them are well-known and widely used in
different proofs and derivations (a good example is (Wright et al. 2021)).

Things become much more complicated when we consider the Probability of being
served function with an arbitrary parameter 1 ⩽ ℎ𝑗 ⩽ 𝑛𝑏. Firstly, let’s rewrite this
function in an explicit form:

Probability of being served by seller 𝑗 (𝛾𝑠
𝑗 ;𝑛𝑏, ℎ𝑗) =

=

𝑛𝑏−1∑︁
𝑘=0

(The probability that exactly 𝑘 buyers out of the rest 𝑛𝑏 − 1 come to seller 𝑗)×

× (The probability that buyer will be served conditional on

exactly 𝑘 other buyers come to seller 𝑗) =

=

𝑛𝑏−1∑︁
𝑘=0

(︁
𝐶𝑘

𝑛𝑏−1 ×
(︀
𝛾𝑠
𝑗

)︀𝑘 × (︀1− 𝛾𝑠
𝑗

)︀𝑛𝑏−1−𝑘
)︁
×min

(︂
ℎ𝑗

𝑘 + 1
, 1

)︂
. (4)

It is problematic to get any meaningful analytical results using The probability of being
served function in that form, that is why previous researches only covers the case where
ℎ𝑗 = 1 ∀𝑗 ∈ 𝒥 .

We solve that problem and find a way to transform The probability of being served
function and express it in the exact form without explicit summations such that it
can be used in the further analytical derivations. The first key result of this paper is
presented in lemma 1.

Lemma 1 (Analytical expression for The probability of being served function). The
probability of being served by seller 𝑗 at symmetric equilibrium as a function of 𝛾𝑠

𝑗 and
parameters 𝑛𝑏, ℎ𝑗 is calculated as

the probability of being served by seller 𝑗 (𝛾𝑠
𝑗 ;𝑛𝑏, ℎ𝑗) =

= P(𝑋1 ⩽ ℎ𝑗 − 1) +
ℎ𝑗

𝑛𝑏 × 𝛾𝑠
𝑗

× P(𝑋2 > ℎ𝑗),

where 𝑋1 and 𝑋2 are independent random variables equal to the number of successes
in the 𝑛𝑏 − 1 and 𝑛𝑏, respectively, Bernoulli experiments with the probability of success
𝛾𝑠
𝑗 .

Since after transformations the function under consideration is not defined at 𝛾𝑠
𝑗 =

0, we put The probability of being served by seller 𝑗 (0;𝑛𝑏, ℎ𝑗) = 1 explicitly.

Proof of lemma 1 is in Appendix. Here and further we will denote
Probability of being served by seller 𝑗 (𝛾𝑠

𝑗 ;𝑛𝑏, ℎ𝑗) function as 𝜁(𝛾𝑠
𝑗 ;𝑛𝑏, ℎ𝑗) just for ease

of notation. Now we can state some useful properties of 𝜁(𝛾𝑠
𝑗 ;𝑛𝑏, ℎ𝑗) function.
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Corollary 1 (Properties of 𝜁(𝛾𝑠
𝑗 ;𝑛𝑏, ℎ𝑗) function). The following relation holds

𝜕𝜁(𝛾𝑠
𝑗 ;𝑛𝑏, ℎ𝑗)

𝜕𝛾𝑠
𝑗

=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
⎧⎨⎩

1−𝑛𝑏

2
, if ℎ𝑗 = 1,

0, if 1 < ℎ𝑗 ⩽ 𝑛𝑏,
if 𝛾𝑠

𝑗 = 0;

− ℎ𝑗

𝑛𝑏×𝛾𝑠
𝑗
× P(𝑋2 > ℎ𝑗), if 0 < 𝛾𝑠

𝑗 ⩽ 1.

𝜁(𝛾𝑠
𝑗 ;𝑛𝑏, ℎ𝑗) is a monotonically decreasing function with continuous derivative.

Corollary 2 (Properties of 𝜏(𝛾𝑠
𝑗 ;𝑛𝑏, ℎ𝑗) function). Let consider the function

𝜏(𝛾𝑠
𝑗 ;𝑛𝑏, ℎ𝑗) = 𝑛𝑏 × 𝛾𝑠

𝑗 × 𝜁(𝛾𝑠
𝑗 ;𝑛𝑏, ℎ𝑗) that express the expected number of seller deals

when each buyer can come to that seller independently with equal probability. This
function is a key part of the expression for the expected profit of a seller. The following
relation holds

𝜕𝜏(𝛾𝑠
𝑗 ;𝑛𝑏, ℎ𝑗)

𝜕𝛾𝑠
𝑗

= 𝑛𝑏 × P(𝑋1 ≤ ℎ𝑗 − 1), 0 ⩽ 𝛾𝑠
𝑗 ⩽ 1.

𝜏(𝛾𝑠
𝑗 ;𝑛𝑏, ℎ𝑗) is a monotonically increasing and concave function with a continuous

derivative.

Note that function 𝜁(𝛾𝑠
𝑗 ;𝑛𝑏, ℎ𝑗) with its explicit expression and properties can be

used not only in the framework that we consider in our paper, but also in many other
frameworks under the Bayesian equilibrium setting.

Finally, we can use our first key result for practical purposes. In the next section,
we apply it to the derivation of analytical expressions for the equilibrium characteristics
in the symmetric directed search model where all sellers have equal capacities ℎ.

3 The symmetric equilibrium

3.1 The analytical solution

Let us focus on the symmetric framework where each firm has exactly 1 ⩽ ℎ ⩽ 𝑛𝑏 units
to sell. We aim to find a symmetric equilibrium (p,Γ) such that 𝑝 = 𝑝1 = . . . = 𝑝𝑛𝑠 ,
𝛾𝑖𝑗 = 1

𝑛𝑠
∀𝑖 ∈ ℐ, 𝑗 ∈ 𝒥 . To ensure there are no incentives to deviate and (p,Γ) is a

subgame perfect Nash equilibrium, the following conditions must be met (Wright et al.
2021):

• 𝑝 = argmax𝑝𝑑 E[𝜋𝑑(𝑝𝑑, 𝑝𝑛𝑑)], where 𝑝𝑑 is the price of deviating seller and 𝑝𝑛𝑑 = 𝑝

are prices of all other non-deviating sellers;

• 𝛾𝑠,𝑑(𝑝𝑑, 𝑝𝑛𝑑) constitutes an equilibrium in the buyers subgame for any 𝑝𝑑, 𝑝𝑛𝑑;

• on the equilibrium path 𝛾𝑖𝑗 =
1
𝑛𝑠

, while after a deviation buyers submit requests
for the purchase to a deviating seller with probability 𝛾𝑠,𝑑 and to all other sellers
with probability 𝛾𝑠,𝑛𝑑 = 1−𝛾𝑠,𝑑

𝑛𝑠−1
.
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We apply a similar technique to (Wright et al. 2021), by balancing the probability
to be served for a buyer and the probability to make a deal for the seller. By the reasons
from (Kim and Camera 2014), it is worth focusing on the symmetric price equilibrium.
As an immediate corollary, in equilibrium, in buyers’ subgame every seller will be
chosen with equal probability.

Theorem 1. In a symmetric subgame perfect equilibrium, all sellers post equal prices

𝑝𝑑𝑠 =
𝑢 · P(𝑋2 > ℎ) + 𝑐 · 𝑛𝑏

𝑛𝑠
· 1
ℎ
·
(︁
1− 1

𝑛𝑠

)︁
· P(𝑋1 ⩽ ℎ− 1)

P(𝑋2 > ℎ) + 𝑛𝑏

𝑛𝑠
· 1
ℎ
·
(︁
1− 1

𝑛𝑠

)︁
· P(𝑋1 ⩽ ℎ− 1)

, (5)

where 𝑋1 and 𝑋2 are independent random variables equal to the number of successes
in the 𝑛𝑏 − 1 and 𝑛𝑏, respectively, Bernoulli experiments with the probability of success
1/𝑛𝑠. This equilibrium is a unique non-coordinated one.

Proof. Suppose that some seller deviate from initial price vector p and consider the
symmetric equilibrium with 𝛾𝑠,𝑑(𝑝𝑑, 𝑝𝑛𝑑). The expected profit of the deviant seller is
equal to

E
[︀
𝜋𝑑
(︀
𝑝𝑑, 𝑝𝑛𝑑

)︀]︀
=
(︀
𝑝𝑑 − 𝑐

)︀
× 𝑛𝑏 × 𝛾𝑠,𝑑

(︀
𝑝𝑑, 𝑝𝑛𝑑

)︀
× 𝜁

(︀
𝛾𝑠,𝑑

(︀
𝑝𝑑, 𝑝𝑛𝑑

)︀
;𝑛𝑏, ℎ

)︀
,

where 𝜁(·) is the probability of being served, as mentioned before.
The expected utility of a buyer from visiting a deviant seller in equilibrium is equal

to
E
[︀
𝑢𝑑
(︀
𝑝𝑑, 𝑝𝑛𝑑

)︀]︀
=
(︀
𝑢− 𝑝𝑑

)︀
× 𝜁

(︀
𝛾𝑠,𝑑

(︀
𝑝𝑑, 𝑝𝑛𝑑

)︀
;𝑛𝑏, ℎ

)︀
At the same time, the expected utility of a buyer from visiting a non-deviant seller in
equilibrium is equal to

E
[︀
𝑢𝑛𝑑
(︀
𝑝𝑑, 𝑝𝑛𝑑

)︀]︀
=
(︀
𝑢− 𝑝𝑛𝑑

)︀
× 𝜁

(︀
𝛾𝑠,𝑛𝑑

(︀
𝑝𝑑, 𝑝𝑛𝑑

)︀
;𝑛𝑏, ℎ

)︀
The deviant seller maximizes her profit after deviation from the symmetric price

vector

E
[︀
𝜋𝑑
(︀
𝑝𝑑, 𝑝𝑛𝑑

)︀]︀
=
(︀
𝑝𝑑 − 𝑐

)︀
× 𝑛𝑏 × 𝛾𝑠,𝑑 × 𝜁(𝛾𝑠,𝑑;𝑛𝑏, ℎ) =

(︀
𝑝𝑑 − 𝑐

)︀
× 𝜏(𝛾𝑠,𝑑;𝑛𝑏, ℎ) → max

𝑝𝑑

FOC implies (using properties from corollary 1)

𝜕 E
[︀
𝜋𝑑
(︀
𝑝𝑑, 𝑝𝑛𝑑

)︀]︀
𝜕𝑝𝑑

=
(︀
𝑝𝑑 − 𝑐

)︀
× 𝑛𝑏 × P(𝑋1 ⩽ ℎ− 1)×

𝜕𝛾𝑠,𝑑
(︀
𝑝𝑑, 𝑝𝑛𝑑

)︀
𝜕𝑝𝑑

+

𝑛𝑏 × 𝛾𝑠,𝑑
(︀
𝑝𝑑, 𝑝𝑛𝑑

)︀
× 𝜁

(︀
𝛾𝑠,𝑑

(︀
𝑝𝑑, 𝑝𝑛𝑑

)︀
;𝑛𝑏, ℎ

)︀
= 0. (6)

In a symmetric equilibrium in the buyers’ subgame, buyers should be indifferent
between purchasing from deviant and non-deviant sellers.

E
[︀
𝑢𝑑
(︀
𝑝𝑑, 𝑝𝑛𝑑

)︀]︀
= E

[︀
𝑢𝑛𝑑
(︀
𝑝𝑑, 𝑝𝑛𝑑

)︀]︀
⇐⇒(︀

𝑢− 𝑝𝑑
)︀
× 𝜁

(︀
𝛾𝑠,𝑑

(︀
𝑝𝑑, 𝑝𝑛𝑑

)︀)︀
−
(︀
𝑢− 𝑝𝑛𝑑

)︀
× 𝜁

(︀
𝛾𝑠,𝑛𝑑

(︀
𝑝𝑑, 𝑝𝑛𝑑

)︀)︀
= 0.
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From this equation, we take an implicit derivative of 𝛾𝑠,𝑑 with respect to 𝑝𝑑:

− 𝜁
(︀
𝛾𝑠,𝑑

(︀
𝑝𝑑, 𝑝𝑛𝑑

)︀)︀
+
(︀
𝑢− 𝑝𝑑

)︀
×

𝑑𝜁
(︀
𝛾𝑠,𝑑

(︀
𝑝𝑑, 𝑝𝑛𝑑

)︀)︀
𝑑𝛾𝑠,𝑑 (𝑝𝑑, 𝑝𝑛𝑑)

×
𝜕𝛾𝑠,𝑑

(︀
𝑝𝑑, 𝑝𝑛𝑑

)︀
𝜕𝑝𝑑

−

−
(︀
𝑢− 𝑝𝑛𝑑

)︀
×

𝑑𝜁
(︀
𝛾𝑠,𝑛𝑑

(︀
𝑝𝑑, 𝑝𝑛𝑑

)︀)︀
𝑑𝛾𝑠,𝑛𝑑 (𝑝𝑑, 𝑝𝑛𝑑)

×
(︂
− 1

𝑛𝑠 − 1

)︂
×

𝜕𝛾𝑠,𝑑
(︀
𝑝𝑑, 𝑝𝑛𝑑

)︀
𝜕𝑝𝑑

= 0

Representing
𝜕𝛾𝑠,𝑑(𝑝𝑑,𝑝𝑛𝑑)

𝜕𝑝𝑑
explicitly, we get

𝜕𝛾𝑠,𝑑
(︀
𝑝𝑑, 𝑝𝑛𝑑

)︀
𝜕𝑝𝑑

=
𝜁
(︀
𝛾𝑠,𝑑

(︀
𝑝𝑑, 𝑝𝑛𝑑

)︀)︀
(𝑢− 𝑝𝑑)× 𝑑𝜁(𝛾𝑠,𝑑(𝑝𝑑,𝑝𝑛𝑑))

𝑑𝛾𝑠,𝑑(𝑝𝑑,𝑝𝑛𝑑)
+ (𝑢− 𝑝𝑛𝑑)× 𝑑𝜁(𝛾𝑠,𝑛𝑑(𝑝𝑑,𝑝𝑛𝑑))

𝑑𝛾𝑠,𝑛𝑑(𝑝𝑑,𝑝𝑛𝑑)
× 1

𝑛𝑠−1

.

In a symmetric equilibrium, the maximum is reached at the symmetric price vector

𝜕𝛾𝑠,𝑑
(︀
𝑝𝑑, 𝑝𝑛𝑑

)︀
𝜕𝑝𝑑

⃒⃒⃒⃒
𝑝𝑑=𝑝𝑛𝑑=𝑝

=
𝜁
(︁

1
𝑛𝑠

)︁
(𝑢− 𝑝)× 𝜁 ′

(︁
1
𝑛𝑠

)︁
× 𝑛𝑠

𝑛𝑠−1

. (7)

We substitute 7 into 6 and express 𝑝 considering a symmetric equilibrium (𝑝 = 𝑝1 =

· · · = 𝑝𝑛𝑠 and 𝛾𝑖𝑗 =
1
𝑛𝑠

). That gives exactly 5.
Finally, (Galenianos and Kircher 2012) prove and (Wright et al. 2021) highlighted

that there are no asymmetric equilibrium where buyers use mixed and sellers use pure
strategies for ℎ = 1, but the arguments could be extended to an arbitrary ℎ.

Remark 1. The multiplier
(︁
1− 1

𝑛𝑠

)︁
(marked in blue) in (5) indicates a term reflecting

the strategic effect among buyers. It disappears when we extend the formula from
(Montgomery 1991) for ℎ products per seller using the market utility approach.

Remark 2. It is easy to see that, when ℎ ⩾ 𝑛𝑏, P(𝑋2 > ℎ) = 0 and P(𝑋1 ⩽ ℎ− 1) = 1,
which yields 𝑝𝑑𝑠 = 𝑐. The intuition behind the result is similar to Bertrand’s paradox.

After we derive the equilibrium in the symmetric setting, it make sense to analyze
its characteristics.

Corollary 3. The expected utility of a buyer in the equilibrium is equal to

E
[︀
𝑢𝑑𝑠
]︀
= (𝑢− 𝑐)×

(︂(︂
1− 1

𝑛𝑠

)︂
× P (𝑋1 ⩽ ℎ− 1)

)︂
×

×

(︁
𝑛𝑏 × 1

ℎ
× 1

𝑛𝑠
× P (𝑋1 ⩽ ℎ− 1) + P (𝑋2 > ℎ)

)︁
(︁
𝑛𝑏 × 1

ℎ
× 1

𝑛𝑠
×
(︁
1− 1

𝑛𝑠

)︁
× P (𝑋1 ⩽ ℎ− 1) + P (𝑋2 > ℎ)

)︁ .
This expression can be limited from above and below as:

E
[︀
𝑢𝑑𝑠
]︀
∈
(︂
(𝑢− 𝑐)×

(︂
1− 1

𝑛𝑠

)︂
× P (𝑋1 ⩽ ℎ− 1) , (𝑢− 𝑐)× P (𝑋1 ⩽ ℎ− 1)

)︂
. (8)
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The expected profit of each seller in the equilibrium is equal to

E
[︀
𝜋𝑑𝑠
]︀
= (𝑢− 𝑐)× ℎ× P (𝑋2 > ℎ)×

×

(︁
𝑛𝑏 × 1

ℎ
× 1

𝑛𝑠
× P (𝑋1 ⩽ ℎ− 1) + P (𝑋2 > ℎ)

)︁
(︁
𝑛𝑏 × 1

ℎ
× 1

𝑛𝑠
×
(︁
1− 1

𝑛𝑠

)︁
× P (𝑋1 ⩽ ℎ− 1) + P (𝑋2 > ℎ)

)︁
and is limited from above and below as: 1

E
[︀
𝜋𝑑𝑠
]︀
∈
(︂
(𝑢− 𝑐)× ℎ× P (𝑋2 > ℎ) , (𝑢− 𝑐)× ℎ× P (𝑋2 > ℎ)×

(︂
1 +

1

𝑛𝑠 − 1

)︂)︂
.

(9)
The expected total market surplus in the equilibrium is equal to

𝑛𝑏 × E
[︀
𝑢𝑑𝑠
]︀
+ 𝑛𝑠 × E

[︀
𝜋𝑑𝑠
]︀
= (𝑢− 𝑐)× 𝑛𝑏 × 𝜁

(︂
1

𝑛𝑠

;𝑛𝑏, ℎ

)︂
.

The expected number of deals in the equilibrium is equal to

E [Number of deals] = 𝑛𝑏 × 𝜁

(︂
1

𝑛𝑠

;𝑛𝑏, ℎ

)︂
.

Now we can use theorem 1 and corollary 3 to analyze the comparative statics and
make some observations about equilibrium tendencies.

3.2 Comparative statics

Valuations. It is clear, that equilibrium price linearly increases with the growth of
both buyer and seller valuations. The growth of seller value 𝑐 shrinks the bargaining
space and negatively affects the utilities of participants and their surpluses. On the
other hand, the growth of buyer value 𝑢 expands the market and, even though the price
increases, the utilities of all market participants also increase. Neither values influence
the expected number of deals and market efficiency, since they depend only on the sizes
of market sides 𝑛𝑏 and 𝑛𝑠 and the capacities ℎ.
The number of buyers. With the growth of buyer side 𝑛𝑏, they compete more
intensely for products, and the sellers’ market power increases, which means that the
individual seller’s utility and total seller surplus increase. The utility of a particular
buyer decreases, nevertheless, the total surplus of buyers is a bell-shape function: when
the number of buyers is low, a small growth in 𝑛𝑏 does not lead to rapid growth of
prices and, in sum, buyers win. But with the further growth of 𝑛𝑏, the price rise and
the growing friction hit all buyers, and though a new buyer gets some positive utility,
the total effect is negative (Fig. 1).

1We can see that as 𝑛𝑠 → ∞, in 8 and 9, the upper bound tends to the lower one and the asymptotic
expression is quite simple and easy to interpret for both expressions of profits.
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The number of sellers. Increasing the number of sellers intensifies seller competition,
which leads to a price drop, and a rise in buyer utility and product surplus. The
situation with sellers is similar to the previous case effect for buyers, i.e. the influence
on their surplus is mixed. If the number of buyers is large enough in comparison with
the total number of products in the market (from all sellers), the growth of the number
of sellers always decreases their individual utility. However, the total seller surplus is
bell-shaped. A little growth of a small seller market enforces the friction which does
not allow prices to decrease too much, but with the further growth of the seller side
the price decrease becomes so great that this does not compensate for the increased
number of sellers. When the number of buyers is not large in comparison with ℎ, then
even a small growth of 𝑛𝑏 leads to tougher competition among sellers for buyers and
decreases the total seller surplus (Fig. 1).

Figure 1: The total buyer surplus as a function of 𝑛𝑏, under 𝑛𝑠 = 10, ℎ = 3, 𝑐 = 100,
𝑢 = 200. The total seller surplus as a function of 𝑛𝑠, under 𝑛𝑏 = 60, ℎ = 2, 𝑐 = 100,
𝑢 = 200.

The number of products. The impact of the growth of number of products per
seller is similar to, but not the same as, the impact of the 𝑛𝑠. For buyers, the tendency
is straightforward and positively affect their utility. For sellers, two opposite effects
take place: products compete more intensely and the returns from one unit decrease,
but since every seller has more products, this may be profitable. The second effect
prevails when the growth of ℎ is small, while further growth brings down the price and
the profit. So, the market with major sellers is less profitable for every seller than the
market with minor sellers, and there exists an optimal firm size, i.e. the number of
products for every seller (Fig. 2).

An interesting observation concerns the efficiency of market matching, which is the
share of expected deals from the maximal possible number of deals, i.e. min{ℎ𝑛𝑠, 𝑛𝑏}.
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With a small growth in ℎ, this share decreases, which means that the efficiency of the
market matching mechanism fails. This is because it is more difficult for a seller to sell
all her products when their number increases, even if it is relatively low in comparison
with the demand. On the other hand, when the growth of ℎ is significant, then selling
all products is not possible, but we may care now about the probability of serving
all buyers. Naturally, this probability increases, so the market becomes more efficient
(Fig. 2).

Figure 2: The total seller surplus and expected share of possible deals as a function of
ℎ, under 𝑛𝑏 = 60, 𝑛𝑠 = 5, 𝑐 = 100, 𝑢 = 200.

3.3 The market concentration

The same total number of product can be sold by a different number of sellers, such
that markets with a smaller number of larger firms are referred to as more concentrated
than markets with a large number of small firms. In the second case, sellers have less
market power, however, there are high risks for buyers to request to the same seller
and to lose from friction. In the first case, the competition among sellers is lower,
but the friction is also lower since a large seller is able to serve many buyers. Thus,
it is not clear in advance that a more concentrated, or monopolized, market is worse
for consumers. Formula (5) allows a comparison of numerical equilibrium parameters
of markets with the same number of products and buyers, but varying distributions
of products among sellers. This clarifies the influence of market concentration and
explains the consequences of monopolization for buyers and sellers.

We split a fixed number of products into all possible combinations of two integer
multipliers, and assume that the first multiplier means the number of products per
seller, while the second means the number of sellers. Increasing the number of products

13



per seller means increasing the market concentration with monopolization as the limit.
Numerical analysis demonstrates that equilibrium parameters depend on the relation
between 𝑛𝑏 and the total number of products (𝐻). Several typical cases arise, which
smoothly transform to each other.

• 𝑛𝑏 >> 𝐻: the number of buyers exceeds the total number of products signifi-
cantly. Here there is a large deficit of products and sellers do not compete tough
for buyers under any distribution. With the growth of market concentration,
the equilibrium price increases, the utility of every seller increases, and buyer’s
utility decreases. The friction diminishes not so great because of the total lack
of products of the market, even if they are distributed by only two sellers or
even monopolized. However, the drop in friction leads to the growth of the total
number of deals. (for more details see Fig. 5 in Appendix).

• 𝑛𝑏 >≈ 𝐻: the number of buyers slightly exceeds the total number of products.
With the growth of market concentration, the equilibrium price increases, the
utility of every seller increases, and the total number of deals increases. For the
buyers, the growth of seller concentration has a mixed effect. If we start with
a large market with a lot of sellers with a unit capacity, then a small growth
of concentration is profitable for buyers since the gain from lowering friction
dominates the small price growth; further, the price increase is harmful for buyers.
(Fig. 6).

• 𝑛𝑏 << 𝐻: the number of buyers is significantly lower than the total number of
products. Then there is a deficit of buyers, and it increases with the growth of
market concentration, since it is easier for buyers to choose the cheapest seller
and to be served there. This intensifies competition and the equilibrium price
decreases. Buyer utility and the total number of deals increase; for sellers, a small
growth in market concentration is profitable, since the increased demand more
than compensates for the drop in price. (Fig. 7).

• 𝑛𝑏 <≈ 𝐻: the number of buyers is slightly lower than the total number of
products. Then the effects are mixed and we can observe the transition from
the case (2) to the case (3). With the growth in difference between 𝑛𝑏 and 𝐻,
the price switches from increasing (𝐻 = 48, 𝑛𝑏 = 47) to decreasing (𝐻 = 48,
𝑛𝑏 = 20) through bell-shaped form (𝐻 = 48, 𝑛𝑏 = 43). Similar transformations
hold for buyer and seller expected profits and surpluses (Fig. 8).

In all cases, the growth of market concentration leads to the growth of market
efficiency, such that a greater number of products will be sold and a greater number
of buyers will be served. However, depending on the relation between the number of
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buyers and products, the growth of market concentration is not necessarily bad for
buyers and good for sellers.

4 Heterogeneous sellers

After the extensive discussion of the symmetric framework, it is time to analyze the
general case with heterogeneous sellers with different capacities. There are two im-
portant questions related to the current analysis: the first is about the existence and
uniqueness of the equilibrium, and the second is about effective ways to find that
equilibrium numerically.

In (Kim and Camera 2014), the authors demonstrate that in a certain type of
directed search model there is a unique uncoordinated equilibrium. In fact, when
ℎ = 1, our setting is exactly that particular case. However, an arbitrary ℎ does not
change the essential fundamental properties of a key functions: 𝜇(·) and 𝜏(·). That is
why it is possible to replicate all the steps from their proof and get the same results
for our framework.

The answer to the question about effective ways of finding an equilibrium is not
straightforward. In (Camera and Kim 2013), the authors propose the new recursive
approach to find an equilibrium in the buyers’ subgame for an arbitrary price vector.
The drawback of their approach is the necessity to recursively solve 𝐽 systems of
equations of size 1, . . . , 𝐽 . We significantly improve this approach for our setting,
allowing which system we need to solve to be defined based on simple conditions without
having to solve all other systems.

4.1 The effective way to find an equilibrium in the buyers’ sub-

game

For this subsection, suppose that announced prices for the product are ordered as

𝑐 ⩽ 𝑝1 ⩽ 𝑝2 ⩽ · · · ⩽ 𝑝𝑛𝑠 ⩽ 𝑢

where 𝑝1 < 𝑢.
The necessary condition for the buyers’ symmetric mixed equilibrium 𝛾 to exist is

the indifference for all buyers to which seller they should send a request for purchas-
ing a product. In other words, the following system of equations with corresponding
boundaries must have a solution:⎧⎪⎪⎪⎨⎪⎪⎪⎩

(𝑢− 𝑝𝑖)× 𝜁 (𝛾𝑖;ℎ𝑖) = (𝑢− 𝑝𝑖+1)× 𝜁 (𝛾𝑖+1, ℎ𝑖+1) , 𝑖 ∈ {1, . . . , 𝑛𝑠 − 1}∑︀
𝑖∈𝒥 𝛾𝑖 = 1

𝛾𝑖 ∈ (0, 1), ∀𝑖 ∈ 𝒥

(10)
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We can rewrite this system as:⎧⎪⎪⎪⎨⎪⎪⎪⎩
𝜁 (𝛾𝑖;ℎ𝑖) =

𝑢−𝑝𝑛𝑠

𝑢−𝑝𝑖
× 𝜁 (𝛾𝑛𝑠 , ℎ𝑛𝑠) , 𝑖 ∈ {1, . . . , 𝑛𝑠 − 1}∑︀

𝑖∈𝒥 𝛾𝑖 = 1

𝛾𝑖 ∈ (0, 1), ∀𝑖 ∈ 𝒥 .

(11)

We show that system (11) has either exactly one solution or no solutions at all.
We also derive the conditions under which such an equilibrium exists. Let us rewrite
system (11) in the following way under the assumption that all inverse functions are
correctly specified in corresponding points:⎧⎪⎪⎪⎨⎪⎪⎪⎩

𝛾𝑖 = 𝜁−1
(︁

𝑢−𝑝𝑛𝑠

𝑢−𝑝𝑖
× 𝜁 (𝛾𝑛𝑠 , ℎ𝑛𝑠) , ℎ𝑖

)︁
, 𝑖 ∈ {1, . . . , 𝑛𝑠 − 1}∑︀

𝑖∈𝒥 𝛾𝑖 = 1

𝛾𝑖 ∈ (0, 1),∀𝑖 ∈ 𝒥 .

(12)

Remember that function 𝜁(𝑥;𝑛𝑏, ℎ) monotonically decreases and takes values from
ℎ
𝑛𝑏

to 1 at points 1 and 0, respectively. Consequently, the inverse function 𝜁−1(𝑥;ℎ)

under restrictions in the third line of system (12) could take values from ℎ
𝑛𝑏

to 1 without
including borders as its argument 𝑥.

To compute the inverse function 𝜁−1
(︁

𝑢−𝑝𝑛𝑠

𝑢−𝑝𝑖
× 𝜁 (𝛾𝑛𝑠 , ℎ𝑛𝑠) , ℎ𝑖

)︁
on a nonempty set

with respect to varying 𝛾𝑛𝑠 , it is necessary and sufficient that 𝑢−𝑝𝑛𝑠

𝑢−𝑝𝑖
> ℎ𝑖

𝑛𝑏
⇐⇒ ℎ𝑖(𝑢 −

𝑝𝑖) < 𝑛𝑏(𝑢 − 𝑝𝑛𝑠). Thus, to compute the inverse functions for all equations in system
(11) on a nonempty set with respect to varying 𝛾𝑛𝑠 , it is necessary and sufficient that:

ℎ𝑖(𝑢− 𝑝𝑖) < 𝑛𝑏(𝑢− 𝑝𝑛𝑠),∀𝑖 ∈ {1, . . . , 𝑛𝑠} . (13)

Under conditions (13), we can start from point 0 and increase 𝛾𝑛𝑠 , decreasing at the
same time 𝑢−𝑝𝑛𝑠

𝑢−𝑝𝑖
× 𝜁 (𝛾𝑛𝑠 , ℎ𝑛𝑠) until 𝛾𝑛𝑠 increases to 1, or 𝑢−𝑝𝑛𝑠

𝑢−𝑝𝑖
× 𝜁 (𝛾𝑛𝑠 , ℎ𝑛𝑠) is equal

to ℎ𝑖

𝑛𝑏
. After further increasing 𝛾𝑛𝑠 , the inverse function 𝜁−1

(︁
𝑢−𝑝𝑛𝑠

𝑢−𝑝𝑖
× 𝜁 (𝛾𝑛𝑠 , ℎ𝑛𝑠) , ℎ𝑖

)︁
stops accepting an argument from the set where its correctly defined. Therefore, the
upper bound for 𝛾𝑛𝑠 for each equation in system (11), under which all corresponding
inverse functions are correctly defined, equals to

𝑢𝑏𝑖 =

⎧⎨⎩1, if 𝑢−𝑝𝑛𝑠

𝑢−𝑝𝑖
× ℎ𝑛𝑠

𝑛𝑏
⩾ ℎ𝑖

𝑛𝑏

𝑥*
𝑖 :

𝑢−𝑝𝑛𝑠

𝑢−𝑝𝑖
× 𝜁 (𝑥*

𝑖 , ℎ𝑛𝑠) =
ℎ𝑖

𝑛𝑏
, otherwise

(14)

Using the monotonicity of 𝜁(·), we can define boundaries for correctly varying 𝛾𝑛𝑠 in
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the following way

𝛾𝑛𝑠 ∈

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∅, if ℎ�̂�(𝑢− 𝑝�̂�) ⩾ 𝑛𝑏(𝑢− 𝑝𝑛𝑠)

(0, 𝑥*) : 𝑢−𝑝𝑛𝑠

𝑢−𝑝�̂�
× 𝜁 (𝑥*, ℎ𝑛𝑠) =

ℎ�̂�

𝑛𝑏
, if

⎧⎨⎩ℎ�̂�(𝑢− 𝑝�̂�) < 𝑛𝑏(𝑢− 𝑝𝑛𝑠)

𝑢−𝑝𝑛𝑠

𝑢−𝑝�̂�
× ℎ𝑛𝑠

𝑛𝑏
<

ℎ�̂�

𝑛𝑏

(0, 1), if

⎧⎨⎩ℎ�̂�(𝑢− 𝑝�̂�) < 𝑛𝑏(𝑢− 𝑝𝑛𝑠)

𝑢−𝑝𝑛𝑠

𝑢−𝑝�̂�
× ℎ𝑛𝑠

𝑛𝑏
⩾ ℎ�̂�

𝑛𝑏

(15)

where �̂� : ℎ�̂�(𝑢− 𝑝�̂�) ⩾ ℎ𝑘(𝑢− 𝑝𝑘),∀𝑘 ∈ 𝒥 .
Put expression for 𝛾𝑖 in the link equation in system (12) and consider the last

expression as a function of 𝛾𝑛𝑠 .

𝐹 (𝛾𝑛𝑠) =
𝑛𝑠−1∑︁
𝑖=1

𝜁−1

(︂
𝑢− 𝑝𝑛𝑠

𝑢− 𝑝𝑖
× 𝜁 (𝛾𝑛𝑠 , ℎ𝑛𝑠) , ℎ𝑖

)︂
+ 𝛾𝑛𝑠 − 1. (16)

Function 𝐹 (𝛾𝑛𝑠) monotonically increases on the interval defined by system (15). Obvi-
ously, in the upper boundary of that interval 𝐹 (𝛾𝑛𝑠) takes positive value. Consequently,
to provide the existence and uniqueness of the solution of equation 𝐹 (𝛾𝑛𝑠) = 0, it is
necessary and sufficient to demand one more condition: 𝐹 (0) < 0. In addition to sys-
tem (15), necessary and sufficient conditions for the existence of the symmetric mixed
non-coordinated equilibrium where all sellers are active could be represented as:⎧⎨⎩ℎ�̂�(𝑢− 𝑝�̂�) < 𝑛𝑏(𝑢− 𝑝𝑛𝑠)∑︀𝑛𝑠−1

𝑖=1 𝜁−1
(︁

𝑢−𝑝𝑛𝑠

𝑢−𝑝𝑖
, ℎ𝑖

)︁
− 1 < 0

(17)

where �̂� : ℎ�̂�(𝑢− 𝑝�̂�) ⩾ ℎ𝑘(𝑢− 𝑝𝑘),∀𝑘 ∈ 𝒥 .
Finally, we need to note that if the conditions above are not satisfied, the mixed

non-coordinated equilibrium where all sellers are active does not exist. Consequently,
some firms with highest prices stay out of the market. Note that if several firms have
equal prices then either all of them are active in equilibrium, or all of them are out of
the market. It is also true that if a firm with a higher price is active in the market,
then the all firms with lower prices must also be active. Thus, we can iteratively
check conditions (17), excluding from consideration the firm with the highest prices
until those conditions are satisfied. After that we can find a solution of equation (16)
considering only those firms that must be active at the equilibrium according to the
conditions we checked before.

4.2 The way to find an equilibrium in the sellers’ game

As mentioned above, there exists a unique uncoordinated symmetric equilibrium in
our general model. To find it numerically we need to solve the following system of

17



equations:⎧⎪⎪⎪⎨⎪⎪⎪⎩
(𝑢− 𝑝𝑖)× 𝜁 (𝛾𝑠

𝑖 ;𝑛𝑏, ℎ𝑖) = (𝑢− 𝑝𝑖+1)× 𝜁
(︀
𝛾𝑠
𝑖+1;𝑛𝑏, ℎ𝑖+1

)︀
, ∀𝑖 = {1, . . . , 𝑛𝑠 − 1}∑︀𝑛𝑠

𝑖=1 𝛾
𝑠
𝑖 = 1

𝜕𝜋𝑗(𝑝𝑗 ,p−𝑗)

𝜕𝑝𝑗
= 0, ∀𝑗 ∈ 𝒥 .

(18)
The first two lines of system (18) represent 𝑛𝑠 equations that define the equilibrium

in the buyers’ subgame. The third line of system (18) represents 𝑛𝑠 first order conditions
for the sellers’ profit functions which define the equilibrium in the sellers’ game. We
can derive this first order conditions in the explicit form and get:

𝜕𝜋𝑗 (𝑝𝑗,p−𝑗)

𝜕𝑝𝑗
= 𝑛𝑏×𝛾𝑠

𝑗 (𝑝𝑗,p−𝑗)×𝜁
(︀
𝛾𝑠
𝑗 (𝑝𝑗,p−𝑗) ;𝑛𝑏, ℎ𝑗

)︀
+(𝑝𝑗 − 𝑐)×𝑛𝑏×

𝜕𝛾𝑠
𝑗 (𝑝𝑗,p−𝑗)

𝜕𝑝𝑗
×

×
[︁
𝜁
(︀
𝛾𝑠
𝑗 (𝑝𝑗,p−𝑗) ;𝑛𝑏, ℎ𝑗

)︀
+ 𝛾𝑠

𝑗 (𝑝𝑗,p−𝑗)× 𝜁
′ (︀
𝛾𝑠
𝑗 (𝑝𝑗,p−𝑗) ;𝑛𝑏, ℎ𝑗

)︀]︁
=

= 𝑛𝑏 × 𝛾𝑠
𝑗 (𝑝𝑗,p−𝑗)× 𝜁

(︀
𝛾𝑠
𝑗 (𝑝𝑗,p−𝑗) ;𝑛𝑏, ℎ𝑗

)︀
+

+ (𝑝𝑗 − 𝑐)× 𝑛𝑏 ×
𝜕𝛾𝑠

𝑗 (𝑝𝑗,p−𝑗)

𝜕𝑝𝑗
× P𝑗(𝑋1 ⩽ ℎ𝑗 − 1). (19)

One sees that the final missing part here is the 𝜕𝛾𝑠
𝑗 (𝑝𝑗 ,p−𝑗)

𝜕𝑝𝑗
function in the explicit

form. After doing some math (see Appendix) we get:

𝜕𝛾𝑠
𝑗 (𝑝𝑗,p−𝑗)

𝜕𝑝𝑗
= 𝜁

(︀
𝛾𝑠
𝑗 (𝑝𝑗,p−𝑗) ;𝑛𝑏, ℎ𝑗

)︀
× 1

(𝑢− 𝑝𝑗)× 𝜁 ′ (︀𝛾𝑠
𝑗 (𝑝𝑗,p−𝑗) ;𝑛𝑏, ℎ𝑗

)︀×⎡⎣1− 1

(𝑢− 𝑝𝑗)× 𝜁 ′ (︀𝛾𝑠
𝑗 (𝑝𝑗,p−𝑗) ;𝑛𝑏, ℎ𝑗

)︀ ×
⎛⎝ 1∑︀𝑛𝑠

𝑗=1
1

(𝑢−𝑝𝑗)×𝜁′(𝛾𝑠
𝑗 (𝑝𝑗 ,p−𝑗);𝑛𝑏,ℎ𝑗)

⎞⎠⎤⎦ . (20)

Now we can take this expression, put it into sellers’ first order conditions (19) and
solve the system 18 numerically. We get all the following results using function fsolve
from Python package scipy.

The solution of the system derived above gives us the equilibrium in almost all cases,
but there is one exception that we need to mention. If two or more sellers have exactly
𝑛𝑏 products then any possibility of friction disappears, and we get clear Bertrand
competition with equilibrium prices of the active sellers dropping to the marginal costs
as a consequence. In all other cases, the equilibrium will be internal, i.e. all sellers will
be active in the market and get nonzero expected profits.

4.3 Comparative statics in general case

The correctness of conditions (18) and the obvious lack of analytical solution moti-
vates us to apply numerical solutions for understanding the patterns of equilibrium.
The main property we observe in all cases is that the seller with a larger number of

18



products sets higher prices and obtains higher profits, total and per product, than
her competitors, because this seller attracts more buyers because of higher availability
of products. However, unilaterally increasing the capacity of a particular seller, with
fixed capacities of competitors, leads to non-monotonic consequences: a small advan-
tage leads to a higher profit, but a large growth of capacity punishes the whole market
and drops prices, which is not compensated for by the large market power.

For buyers, the effect is more predictable: the growth of capacity of any given seller,
despite her price growth, increase buyer utility because of the higher probability of a
successful deal and because competitors’ prices drop. Buyer surplus growth is greater
than potential seller loses, such that the total surplus increases with larger sellers. On
the other hand, the total number of deals increases, but the probability of the average
product being sold decreases. This last effect is true even for the large seller separately,
even though her number of deals grows quicker than average.

The two figures below represent the noted relations. Fig. (3) shows the growth
of capacity of the first seller when two other sellers are similar. Fig. (4) covers the
completely asymmetric case.

4.4 Endogenous capacities

The natural implication of the ability to compute the market equilibrium is the idea
of endogenizing the capacities. Let us consider as a zero stage of the market game
the simultaneous and independent choice of capacities for all sellers in the market.
It is reasonable that the set of pure strategies is limited from 0 to the number of
buyers. So, in contrast to (Burdett, Shi, and Wright 2001), the equilibrium capacities
may be different from 1 and 2. In the comparative statics section, we noted that the
profit from strategically increasing the capacity is limited, but on the other hand it is
better to have a larger capacity than competitors. This may lead to effects similar to
the prisoners’ dilemma or Bertrand competition, where participants are involved in a
series of decisions resulting in Pareto dominated profiles. On the other hand, a seller’s
individual utility function is bell-shaped with respect to ℎ, which make the capacity
game intuitively close to Cournot competition.

The further analysis is completely numerical, and in order to avoid additional mul-
tiple cases we assume that choosing any number of products is costless for every seller,
and normalize 𝑐 = 0, 𝑢 = 1. Note that bearing positive, not necessarily equal costs of
adding the product may only shift equilibrium capacities down, but never makes them
greater than in the costless case.

The simplest capacity game is among 2 sellers and 2 buyers (Table 1). The matrix
coincides with that from (Burdett, Shi, and Wright 2001) and two asymmetric equilibria
may arise with three products in total in the market equilibrium. The seller who is
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Figure 3: Equilibrium characteristics as a function of capacity of the first firm, under
𝑛𝑏 = 40, 𝑛𝑠 = 3, ℎ2 = 12, ℎ3 = 12, 𝑐 = 100, 𝑢 = 200.

able to serve the whole market obtains a larger profit, but still she is not a monopolist,
since the smaller seller attracts buyers with positive probability, because of the lower
price and despite the friction.

0 1 2

0 (0; 0) (0; 1) (0; 2)

1 (1; 0) (0.375; 0.375) (0.0858; 0.4142)

2 (2; 0) (0.4142; 0.0858) (0; 0)

Table 1: Payoff matrix for sellers game with capacities: 𝑛𝑏 = 2, 𝑛𝑠 = 2, 𝑢 = 1, 𝑐 = 0.

For three buyers, one symmetric and two asymmetric equilibria hold, with four
products in total (Table 2). In one equilibrium, both sellers restrict their capacity,
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Figure 4: Equilibrium characteristics as a function of capacity of the first firm, under
𝑛𝑏 = 40, 𝑛𝑠 = 3, ℎ2 = 10, ℎ3 = 20, 𝑐 = 100, 𝑢 = 200.

while in the two others one seller tries to serve the whole market while her competitor
challenges her monopoly status.

Further increasing the set of buyers leads to equilibrium configurations where the
capacities are interior and the total number of products is close to the number of
buyers. This may be the pattern with a unique equilibrium, or two closest asymmetric
equilibria, or also with two additional asymmetric equilibria around the first two cases.
It seems that the equilibrium share of capacities from the maximal possible slightly
decreases, but not monotonically, and the limit is unclear (Table 3).

Starting with three sellers, we have the equilibrium with zero profits and maximal
utilities for all sellers. However, there exists an interior profile that Pareto dominates
the most competitive equilibrium (Table 4).
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0 1 2 3

0 (0; 0) (0; 1) (0; 2) (0; 3)

1 (1; 0)
(0.6364;
0.6364)

(0.3642;
0.9922)

(0.1629;
0.9962)

2 (2; 0)
(0.9922;
0.3642)

(0.4231;
0.4231)

(0.1058; 0.264)

3 (3; 0)
(0.9962;
0.1629)

(0.264; 0.1058) (0; 0)

Table 2: Payoff matrix for sellers game with capacities: 𝑛𝑏 = 3, 𝑛𝑠 = 2, 𝑢 = 1, 𝑐 = 0.

Table 4: Payoff matrix for sellers game with capacities: 𝑛𝑏 = 3, 𝑛𝑠 = 3, 𝑢 = 1,

𝑐 = 0.

0

0 1 2 3

0 (0; 0; 0) (0; 1; 0) (0; 2; 0) (0; 3; 0)

1 (1; 0; 0)
(0.6364; 0.6364;

0)
(0.3642; 0.9922;

0)
(0.1629; 0.9962;

0)

2 (2; 0; 0)
(0.9922; 0.3642;

0)
(0.4231; 0.4231;

0)
(0.1058; 0.264; 0)

3 (3; 0; 0)
(0.9962; 0.1629;

0)
(0.264; 0.1058; 0) (0; 0; 0)

1

0 1 2 3

0 (0; 0; 1)
(0; 0.6364;

0.6364)
(0; 0.9922;

0.3642)
(0; 0.9962;

0.1629)

1
(0.6364; 0;

0.6364)
(0.3284; 0.3284;

0.3284)
(0.1621; 0.565;

0.1621)
(0.0577; 0.5749;

0.0577)

2
(0.9922; 0;

0.3642)
(0.565; 0.1621;

0.1621)
(0.2615; 0.2615;

0.0545)
(0.0653; 0.1925;

0.008)

3
(0.9962; 0;

0.1629)
(0.5749; 0.0577;

0.0577)
(0.1925; 0.0653;

0.008)
(0; 0; 0)

Continued on next page
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Table 4: Payoff matrix for sellers game with capacities: 𝑛𝑏 = 3, 𝑛𝑠 = 3, 𝑢 = 1, 𝑐 = 0.
(Continued)

2

0 1 2 3

0 (0; 0; 2)
(0; 0.3642;

0.9922)
(0; 0.4231;

0.4231)
(0; 0.264; 0.1058)

1
(0.3642; 0;

0.9922)
(0.1621; 0.1621;

0.565)
(0.0545; 0.2615;

0.2615)
(0.008; 0.1925;

0.0653)

2
(0.4231; 0;

0.4231)
(0.2615; 0.0545;

0.2615)
(0.107; 0.107;

0.107)
(0.0153; 0.0705;

0.0153)

3 (0.264; 0; 0.1058)
(0.1925; 0.008;

0.0653)
(0.0705; 0.0153;

0.0153)
(0; 0; 0)

3

0 1 2 3

0 (0; 0; 3)
(0; 0.1629;

0.9962)
(0; 0.1058; 0.264) (0; 0; 0)

1
(0.1629; 0;

0.9962)
(0.0577; 0.0577;

0.5749)
(0.008; 0.0653;

0.1925)
(0; 0; 0)

2 (0.1058; 0; 0.264)
(0.0653; 0.008;

0.1925)
(0.0153; 0.0153;

0.0705)
(0; 0; 0)

3 (0; 0; 0) (0; 0; 0) (0; 0; 0) (0; 0; 0)

Coming back to the framework of the prisoners’ dilemma, most symmetric equilibria
are Pareto dominated by some profile with lower capacities. This opens the possibility
of collusion among sellers, especially in the long run interaction, when they strategically
restrict the supply.

5 Conclusion

This paper presents a comprehensive analysis of the influence of seller capacity on
competition in a finite market. It addresses the optimal capacity and states the con-
troversial influence of capacity growth on a given seller. The analysis contributes into
the literature about the existence of equilibria in directed search models and enriches
the algorithm of solving the buyers’ subgame. Summing up, the firm size associated
with its capacity is a fine tuning of the model, and the choice of small versus large is
more complicated than that between 1 and 2 product per firm.
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Starting with homogeneous products, buyers who are symmetric in all aspects,
and sellers who are symmetric in costs, we discover a novel dimension of product
differentiation. Different capacities produce different availability, which in turn biases
buyers’ choice, redistributes the demand, and diverges prices. This falsifies the dilemma
between the price and quantity competition as two distinct ways to explain the market.
Instead of this, one can see a deeper analogy of price-quantity competition with price-
location competition, but also including the limitations stemming from friction.
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Appendix

Proof of the Lemma 1.

𝜁(𝑥;𝑛𝑏, ℎ) =

𝑛𝑏−1∑︁
𝑠=0

(︀
𝐶𝑠

𝑛𝑏−1 × 𝑥𝑠 × (1− 𝑥)𝑛𝑏−1−𝑠
)︀
×min

(︂
ℎ

𝑠+ 1
, 1

)︂
=

=
ℎ−1∑︁
𝑠=0

𝐶𝑠
𝑛𝑏−1 × 𝑥𝑠 × (1− 𝑥)𝑛𝑏−1−𝑠 +

𝑛𝑏−1∑︁
𝑠=ℎ

𝐶𝑠
𝑛𝑏−1 × 𝑥𝑠 × (1− 𝑥)𝑛𝑏−1−𝑠 × ℎ

𝑠+ 1
(21)

We also know that
𝑛𝑏−1∑︁
𝑠=0

𝐶𝑠
𝑛𝑏−1 × 𝑥𝑠 × (1− 𝑥)𝑛𝑏−1−𝑠 = 1 (22)

as sum of all probabilities and
𝑛𝑏−1∑︁
𝑠=0

𝐶𝑠
𝑛𝑏−1 × 𝑥𝑠 × (1− 𝑥)𝑛𝑏−1−𝑠 × 1

𝑠+ 1
= 𝜁(𝑥;𝑛𝑏, 1) =

1− (1− 𝑥)𝑛𝑏

𝑛𝑏 × 𝑥
, (23)

as it was demonstrated in equation 3.
Using that we can rewrite 𝜁(𝑥;𝑛𝑏, ℎ) as

𝜁(𝑥;𝑛𝑏, ℎ) =
ℎ−1∑︁
𝑠=0

𝐶𝑠
𝑛𝑏−1 × 𝑥𝑠 × (1− 𝑥)𝑛𝑏−1−𝑠+

+ ℎ×

[︃
1− (1− 𝑥)𝑛𝑏

𝑛𝑏 × 𝑥
−

ℎ−1∑︁
𝑠=0

𝐶𝑠
𝑛𝑏−1 × 𝑥𝑠 × (1− 𝑥)𝑛𝑏−1−𝑠 × 1

𝑠+ 1

]︃
(24)

The first summation term of the expression above (denote it 𝜔1(𝑥;𝑛𝑏, ℎ)) is equal to
P(𝑋1 ⩽ ℎ− 1) where 𝑋1 is a random variable equal to the number of successes in the
𝑛𝑏 − 1 Bernoulli experiments with the probability of success 𝑥 by definition.

Let consider the second summation term.

𝜔2(𝑥;𝑛𝑏, ℎ) =
ℎ−1∑︁
𝑠=0

𝐶𝑠
𝑛𝑏−1 × 𝑥𝑠 × (1− 𝑥)𝑛𝑏−1−𝑠 × 1

𝑠+ 1
(25)

After taking a derivative and making some math we can get

𝜕𝜔2(𝑥;𝑛𝑏, ℎ)

𝜕𝑥
=

1

𝑥(1− 𝑥)
[𝜔1(𝑥;𝑛𝑏, ℎ)− 𝜔2(𝑥;𝑛𝑏, ℎ)]−

(𝑛𝑏 − 1)× 𝜔2(𝑥;𝑛𝑏, ℎ)

1− 𝑥
=

=
1

1− 𝑥
×

×
[︂
1

𝑥

(︀
1− ℎ× 𝐶ℎ

𝑛𝑏−1 ×𝐵𝑥 (ℎ, 𝑛𝑏 − ℎ)− 𝜔2(𝑥;𝑛𝑏, ℎ)
)︀
− (𝑛𝑏 − 1)× 𝜔2(𝑥;𝑛𝑏, ℎ)

]︂
, (26)

where 𝐵𝑥 (ℎ, 𝑛𝑏 − ℎ) is an incomplete beta function.
Combining this differential equation with one of the border conditions 𝜔2(0;𝑛𝑏, ℎ) =

1 and 𝜔2(1;𝑛𝑏, ℎ) = 0, we can solve Cauchy problem and finally get

𝜔2(𝑥;𝑛𝑏, ℎ) =
1

𝑛𝑏

× [𝐶ℎ
𝑛𝑏−1 × 𝑥ℎ−1 × (1− 𝑥)𝑛𝑏−ℎ+

+
1

𝑥
× (𝜔1(𝑥;𝑛𝑏, ℎ)− (1− 𝑥)𝑛𝑏)]. (27)
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Putting all together and simplifying,

𝜁(𝑥;𝑛𝑏, ℎ) = 𝜔1(𝑥;𝑛𝑏, ℎ) + ℎ×
[︂
1− (1− 𝑥)𝑛𝑏

𝑛𝑏 × 𝑥

]︂
−

− ℎ× 1

𝑛𝑏

×
[︂
𝐶ℎ

𝑛𝑏−1 × 𝑥ℎ−1 × (1− 𝑥)𝑛𝑏−ℎ +
1

𝑥
× (𝜔1(𝑥;𝑛𝑏, ℎ)− (1− 𝑥)𝑛𝑏)

]︂
=

= 𝜔1(𝑥;𝑛𝑏, ℎ) +
ℎ

𝑛𝑏 × 𝑥
− ℎ

𝑛𝑏 × 𝑥
× 𝜔1(𝑥;𝑛𝑏, ℎ)−

ℎ

𝑛𝑏

× 𝐶ℎ
𝑛𝑏−1 × 𝑥ℎ−1 × (1− 𝑥)𝑛𝑏−ℎ =

= 𝜔1(𝑥;𝑛𝑏, ℎ) +
ℎ

𝑛𝑏 × 𝑥
×
[︀
1− 𝜔1(𝑥;𝑛𝑏, ℎ)− 𝐶ℎ

𝑛𝑏−1 × 𝑥ℎ × (1− 𝑥)𝑛𝑏−ℎ
]︀
=

= 𝜔1(𝑥;𝑛𝑏, ℎ) +
ℎ

𝑛𝑏 × 𝑥
× 𝐼𝑥 (ℎ+ 1, 𝑛𝑏 − ℎ) , (28)

where 𝐼𝑥 (ℎ+ 1, 𝑛𝑏 − ℎ) is a regularized incomplete beta function.
Finally, by definition 𝐼𝑥 (ℎ+ 1, 𝑛𝑏 − ℎ) is equal to P(𝑋2 > ℎ), where 𝑋2 is a random

variable equal to the number of successes in the 𝑛𝑏 Bernoulli experiments with the
probability of success 𝑥.

Q.E.D.

Derivation of expression for 𝜕𝛾𝑠
𝑗 (𝑝𝑗 ,p−𝑗)

𝜕𝑝𝑗
(20).⎧⎨⎩𝐿𝑖 = (𝑢− 𝑝𝑖)× 𝜁(𝛾𝑠

𝑖 ;ℎ𝑖)− (𝑢− 𝑝𝑖+1)× 𝜁(𝛾𝑠
𝑖+1;ℎ𝑖+1) = 0, ∀𝑖 ∈ {1, . . . , 𝑛𝑠 − 1}

𝐿𝑛𝑠 =
∑︀𝑛𝑠

𝑖=1 𝛾
𝑠
𝑖 − 1 = 0

(29)

𝜕𝐿

𝜕𝛾𝑠
× 𝜕𝛾𝑠

𝜕𝑝
= −𝜕𝐿

𝜕𝑝
⇐⇒ 𝜕𝛾𝑠

𝜕𝑝
= −

(︂
𝜕𝐿

𝜕𝛾𝑠

)︂−1

× 𝜕𝐿

𝜕𝑝
(30)

𝜕𝐿

𝜕𝛾𝑠
=

⎛⎜⎜⎜⎜⎜⎜⎜⎝

𝛽1 −𝛽2 0 · · · 0 0

0 𝛽2 −𝛽3 · · · 0 0
... . . . . . . . . . ...

...
0 · · · · · · · · · 𝛽𝑛𝑠−1 −𝛽𝑛𝑠

1 · · · · · · · · · 1 1

⎞⎟⎟⎟⎟⎟⎟⎟⎠
=

(︃
𝐴 𝐵

𝐶 𝐷

)︃
, (31)

where 𝛽𝑖 = (𝑢− 𝑝𝑖)× 𝜁
′
(𝛾𝑠

𝑖 ;ℎ𝑖)

(︂
𝜕𝐿

𝜕𝛾𝑠

)︂−1

=

(︃
𝐴 𝐵

𝐶 𝐷

)︃−1

=

(︃
𝐴−1 + 𝐴−1𝐵 (𝐷 − 𝐶𝐴−1𝐵)

−1
𝐶𝐴−1 −𝐴−1𝐵 (𝐷 − 𝐶𝐴−1𝐵)

−1

− (𝐷 − 𝐶𝐴−1𝐵)
−1

𝐶𝐴−1 (𝐷 − 𝐶𝐴−1𝐵)
−1

)︃−1

(32)
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𝐴−1 =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

1
𝛽1

1
𝛽1

· · · 1
𝛽1

1
𝛽1

1
𝛽1

0 1
𝛽2

· · · 1
𝛽2

1
𝛽2

1
𝛽2

... . . . . . . ...
...

...
0 · · · · · · 0 1

𝛽𝑛𝑠−2

1
𝛽𝑛𝑠−2

0 · · · · · · 0 0 1
𝛽𝑛𝑠−1

⎞⎟⎟⎟⎟⎟⎟⎟⎠
(33)

(︀
𝐷 − 𝐶𝐴−1𝐵

)︀−1
=

⎛⎜⎜⎜⎜⎜⎝1−
(︁
1 · · · 1

)︁
× 𝐴−1 ×

⎛⎜⎜⎜⎜⎜⎝
0
...
0

−𝛽𝑛𝑠

⎞⎟⎟⎟⎟⎟⎠

⎞⎟⎟⎟⎟⎟⎠
−1

=

=

(︃
1 + 𝛽𝑛𝑠 ×

𝑛𝑠−1∑︁
𝑖=1

1

𝛽𝑖

)︃−1

=
1

1 + 𝛽𝑛𝑠 ×
∑︀𝑛𝑠−1

𝑖=1
1
𝛽𝑖

= (*) (34)

𝐶𝐴−1 =
(︁

1
𝛽1

∑︀2
𝑖=1

1
𝛽𝑖

· · ·
∑︀𝑛𝑠−1

𝑖=1
1
𝛽𝑖

)︁
(35)

𝐴−1𝐵 = −

⎛⎜⎜⎝
𝛽𝑛𝑠

𝛽1

...
𝛽𝑛𝑠

𝛽𝑛𝑠−1

⎞⎟⎟⎠ (36)

𝐴−1𝐵𝐶 = −𝛽𝑛𝑠 ×

⎛⎜⎜⎝
1
𝛽1

· · · 1
𝛽1

... · · · ...
1

𝛽𝑛𝑠−1
· · · 1

𝛽𝑛𝑠−1

⎞⎟⎟⎠ (37)

𝐴−1𝐵𝐶𝐴−1 = −𝛽𝑛𝑠 ×

⎛⎜⎜⎝
1
𝛽1

× 1
𝛽1

1
𝛽1

×
∑︀2

𝑖=1
1
𝛽𝑖

· · · 1
𝛽1

×
∑︀𝑛𝑠−1

𝑖=1
1
𝛽𝑖... · · · · · · ...

1
𝛽𝑛𝑠−1

× 1
𝛽1

1
𝛽𝑛𝑠−1

×
∑︀2

𝑖=1
1
𝛽𝑖

· · · 1
𝛽𝑛𝑠−1

×
∑︀𝑛𝑠−1

𝑖=1
1
𝛽𝑖

⎞⎟⎟⎠ (38)

(︂
𝜕𝐿

𝜕𝛾𝑠

)︂−1

=

(︃
𝑄11 𝑄12

𝑄21 𝑄22

)︃
, (39)

where

𝑄11 =⎛⎜⎜⎜⎜⎜⎜⎝
1
𝛽1

[︁
1− 𝛽𝑛𝑠

𝛽1
(*)
]︁

1
𝛽1

[︁
1−

∑︀2
𝑖=1

𝛽𝑛𝑠

𝛽𝑖
(*)
]︁

· · · 1
𝛽1

[︁
1−

∑︀𝑛𝑠−1
𝑖=1

𝛽𝑛𝑠

𝛽𝑖
(*)
]︁

1
𝛽2

[︁
0− 𝛽𝑛𝑠

𝛽1
(*)
]︁

1
𝛽2

[︁
1−

∑︀2
𝑖=1

𝛽𝑛𝑠

𝛽𝑖
(*)
]︁

· · · 1
𝛽2

[︁
1−

∑︀𝑛𝑠−1
𝑖=1

𝛽𝑛𝑠

𝛽𝑖
(*)
]︁

... . . . . . . ...
1

𝛽𝑛𝑠−1

[︁
0− 𝛽𝑛𝑠

𝛽1
(*)
]︁

1
𝛽𝑛𝑠−1

[︁
0−

∑︀2
𝑖=1

𝛽𝑛𝑠

𝛽𝑖
(*)
]︁

· · · 1
𝛽𝑛𝑠−1

[︁
1−

∑︀𝑛𝑠−1
𝑖=1

𝛽𝑛𝑠

𝛽𝑖
(*)
]︁

⎞⎟⎟⎟⎟⎟⎟⎠ (40)
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𝑄12 =

⎛⎜⎜⎝
𝛽𝑛𝑠

𝛽1

...
𝛽𝑛𝑠

𝛽𝑛𝑠−1

⎞⎟⎟⎠× (*) (41)

𝑄21 = −
(︁

1
𝛽1

∑︀2
𝑖=1

1
𝛽𝑖

· · ·
∑︀𝑛𝑠−1

𝑖=1
1
𝛽𝑖

)︁
× (*) (42)

𝑄22 = (*) (43)

𝜕𝐿

𝜕𝑝
=

−

⎛⎜⎜⎜⎜⎜⎜⎜⎝

𝜁(𝛾𝑠
1;ℎ1) −𝜁(𝛾𝑠

2;ℎ2) 0 · · · 0 0

0 𝜁(𝛾𝑠
2; , ℎ2) −𝜁(𝛾𝑠

3; , ℎ3) · · · 0 0
... . . . . . . . . . ...

...
0 0 0 · · · 𝜁(𝛾𝑠

𝑛𝑠−1; , ℎ𝑛𝑠−1) −𝜁(𝛾𝑠
𝑛𝑠
; , ℎ𝑛𝑠)

0 0 0 · · · 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎠
(44)

𝜕𝛾𝑠

𝜕𝑝
=⎛⎜⎜⎜⎜⎜⎜⎝

𝜁(𝛾𝑠
1 ;ℎ1)
𝛽1

[︁
1− 𝛽𝑛𝑠

𝛽1
(*)
]︁

𝜁(𝛾𝑠
2 ;ℎ2)
𝛽1

[︁
−𝛽𝑛𝑠

𝛽2
(*)
]︁

· · · 𝜁(𝛾𝑠
𝑛𝑠 ;ℎ𝑛𝑠)
𝛽1

[︁
1−

∑︀𝑛𝑠−1
𝑖=1

𝛽𝑛𝑠

𝛽𝑖
(*)
]︁

𝜁(𝛾𝑠
1 ;ℎ1)
𝛽2

[︁
−𝛽𝑛𝑠

𝛽1
(*)
]︁

𝜁(𝛾𝑠
2 ;ℎ2)
𝛽2

[︁
1− 𝛽𝑛𝑠

𝛽2
(*)
]︁

· · · 𝜁(𝛾𝑠
𝑛𝑠

;ℎ𝑛𝑠)
𝛽2

[︁
1−

∑︀𝑛𝑠−1
𝑖=1

𝛽𝑛𝑠

𝛽𝑖
(*)
]︁

... . . . . . . ...

− 𝜁(𝛾𝑠
1 ;ℎ1)
𝛽1

(*) − 𝜁(𝛾𝑠
2 ;ℎ2)
𝛽2

(*) · · · 𝜁(𝛾𝑠
𝑛𝑠 ;ℎ𝑛𝑠)
𝛽𝑛𝑠

[︁
−
∑︀𝑛𝑠−1

𝑖=1
𝛽𝑛𝑠

𝛽𝑖
(*)
]︁

⎞⎟⎟⎟⎟⎟⎟⎠
(45)

𝜕𝛾𝑠
𝑖

𝜕𝑝𝑖
=

𝜁 (𝛾𝑠
𝑖 ;ℎ𝑖)

(𝑢− 𝑝𝑖)× 𝜁 ′ (𝛾𝑠
𝑖 ;ℎ𝑖)

×⎡⎣1− 1

(𝑢− 𝑝𝑖)× 𝜁 ′ (𝛾𝑠
𝑖 ;ℎ𝑖)

× (𝑢− 𝑝𝑛𝑠)× 𝜁
′
(𝛾𝑛𝑠 ;ℎ𝑛𝑠)

1 + (𝑢− 𝑝𝑛𝑠)× 𝜁 ′ (𝛾𝑛𝑠 ;ℎ𝑛𝑠)×
∑︀𝑛𝑠−1

𝑖=1
1

(𝑢−𝑝𝑖)×𝜁′(𝛾𝑠
𝑖 ;ℎ𝑖)

⎤⎦
(46)

𝜕𝛾𝑠
𝑖

𝜕𝑝𝑖
= 𝜁 (𝛾𝑠

𝑖 ;ℎ𝑖)×
1

(𝑢− 𝑝𝑖)× 𝜁 ′ (𝛾𝑠
𝑖 ;ℎ𝑖)

×⎡⎣1− 1

(𝑢− 𝑝𝑖)× 𝜁 ′ (𝛾𝑠
𝑖 ;ℎ𝑖)

×

⎛⎝ 1∑︀𝑛𝑠

𝑖=1
1

(𝑢−𝑝𝑖)×𝜁′(𝛾𝑠
𝑖 ;ℎ𝑖)

⎞⎠⎤⎦ (47)
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Figure 5: Equilibrium characteristics as a function of market concentration, under
𝑛𝑏 = 32, 𝐻 = 16, 𝑐 = 100, 𝑢 = 200.
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Figure 6: Equilibrium characteristics as a function of market concentration, under
𝑛𝑏 = 50, 𝐻 = 48, 𝑐 = 100, 𝑢 = 200.
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Figure 7: Equilibrium characteristics as a function of market concentration, under
𝑛𝑏 = 24, 𝐻 = 48, 𝑐 = 100, 𝑢 = 200.
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Figure 8: Equilibrium characteristics as a function of market concentration, under
𝑛𝑏 = 43, 𝐻 = 48, 𝑐 = 100, 𝑢 = 200.
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Number of buyers
Pure strategy

equilibrium profiles

Number of pure strategy

equilibrium

2 (2; 1), (1; 2) 2

3 (3; 1), (2; 2), (1; 3) 3

4 (2; 2) 1

5 (3; 3) 1

6 (3; 3) 1

7 (4; 3), (3; 4) 2

8 (5; 3), (4; 4), (3; 5) 3

9 (5; 4), (4; 5) 2

10 (6; 4), (5; 5), (4; 6) 3

11 (6; 5), (5; 6) 2

12 (6; 6) 1

13 (6; 6) 1

14 (7; 6), (6; 7) 2

15 (8; 6), (7; 7), (6; 8) 3

16 (8; 7), (7; 8) 2

17 (9; 7), (8; 8), (7; 9) 3

18 (10; 7), (9; 8), (8; 9), (7; 10) 4

19 (10; 8), (8; 10) 2

20 (10; 9), (9; 10) 2

25
(13; 10), (12; 11), (11; 12),

(10; 13)
4

30 (14; 14) 1

50 (23; 23) 1

100
(47; 44), (46; 45), (45; 46),

(44; 47)
4

Table 3: Equilibrium profiles in sellers capacity game as a function of 𝑛𝑏, under 𝑛𝑠 = 2,
𝑢 = 1, 𝑐 = 0.
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0 1 2 3 4 5 6 7

0 (0; 0) (0; 1) (0; 2) (0; 3) (0; 4) (0; 5) (0; 6) (0; 7)

1 (1; 0)
(0.9641;
0.9641)

(0.9103;
1.8796)

(0.83;
2.706)

(0.7222;
3.3882)

(0.5917;
3.8538)

(0.4559;
4.0341)

(0.3619
3.9785)

2 (2; 0)
(1.8796;
0.9103)

(1.7172;
1.7172)

(1.497;
2.3568)

(1.2296;
2.7643)

(0.9425;
2.8902)

(0.6916;
2.7643)

(0.5647;
2.6062)

3 (3; 0)
(2.706;
0.83)

(2.3568;
1.497)

(1.9294;
1.9294)

(1.4612;
2.0815)

(1.0158;
1.9621)

(0.6841;
1.6973)

(0.5527;
1.5402)

4 (4; 0)
(3.3882;
0.7222)

(2.7643;
1.2296)

(2.0815;
1.4612)

(1.4128;
1.4128)

(0.853;
1.1582)

(0.4949;
0.8692)

(0.3753;
0.7412)

5 (5; 0)
(3.8538;
0.5917)

(2.8902;
0.9425)

(1.9621;
1.0158)

(1.1582;
0.853)

(0.5728;
0.5728)

(0.252;
0.3353)

(0.1536;
0.2408)

6 (6; 0)
(4.0341;
0.4559)

(2.7643;
0.6916)

(1.6973;
0.6841)

(0.8692;
0.4949)

(0.3353;
0.252)

(0.0925;
0.0925)

(0.026;
0.0356)

7 (7; 0)
(3.9785;
0.3619)

(2.6062;
0.5647)

(1.5402;
0.5527)

(0.7412;
0.3753)

(0.2408;
0.1536)

(0.0356;
0.026)

(0; 0)

Table 5: Payoff matrix for sellers game with capacities: 𝑛𝑏 = 7, 𝑛𝑠 = 2, 𝑢 = 1, 𝑐 = 0.
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