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1 Introduction: Background and motivation

Data clustering is a major approach in data analysis and machine learning. It is oriented
toward finding homogeneous groups of entities, aka clusters, conventionally represented as
numerical multidimensional points. Clusters can be further used straightforwardly as they
are in such applications as image or market segmentation, or they can be used as building
blocks for further generalizations in such applications as annotation of text collections.

The most popular clustering method is k-means (see Table 1 in [18]), a procedure for
alternating minimization of a least squares criterion. This criterion can be expressed by the

following formula
K 1%
L(S,c) = Z Z Z(l‘w — ). (1)

k=1 i€S;, v=1

Here S = {51, 52, ..., Sk} is a partition of the N-element entity set I, whose parts Sy
are clusters to be found. Each entity ¢ € I is represented by a V-dimensional vector z; =
(xi1, T, ..., Ty ), Whereas each cluster Sy is represented by its V-dimensional center ¢ =
(Ck1, Ck2y -y CrY ), also to be found. It is assumed that the data are represented by an entity-
to-feature N x V data matrix X whose rows correspond to entities i = 1,2,,,, N and columns
to features v = 1,2,..., V. Entry (i,v) in such a table is a real x;, representing the value of
feature v at the entity i.

The criterion in (1) is to be minimized so that the centers ¢, should be positioned in such
a way that the clusters S, are formed by points x; "around" them.

Globally minimizing the criterion (1) is prohibitively difficult. The k-means method
minimizes criterion (1) with respect to either S or ¢, alternatingly. It starts with a randomly
chosen set of K entities considered as the initial centers, ¢ = (1, ¢a, ..., ¢k ). Then it works in
iterations consisting of two steps each. Step 1 (cluster update): each entity i is assigned to
its nearest center ¢y, these form the current Si. Step 2 (center update): new centers ccy, are
computed as the average vectors for Sy, so that cc, = .. s, Ti /N, where Ni is the number
of elements in Sy. It is easy to prove that Step 1 finds an optimal S, at a given ¢;. Similarly,
Step 2 finds optimal cc; at the given Sj. After the iteration is finished, the new centers are
compared with the previous ones. If some cc, and ¢, are not equal, up to the computation
error, another iteration is run starting from ccy, as ¢, k = 1,2, ..., K. Otherwise, the process
is finished and found Sk, ¢ and L(S, ¢) are treated as the output of the algorithm.

This process is simple and intuitive. However, there are two issues: in a frequent situation
where there is little knowledge of the phenomenon under study, how can one define: (a) the
number of clusters K and (b) the initial centers ¢;? No good answer has come out so far,
in spite of multiple attempts; those interested may wish to consult recent reviews in 7] and
[14].

Meanwhile, there is an approach to both issues that is based on the properties of the
least-squares criterion (1), unlike many others mentioned in |7, 14]. This approach involves

the following "Pythagorean” decomposition of the data scatter 7' = 3. SV 22 on the
sum of criterion L(S,¢) in (1) and the complementary criterion F'(S,c¢),
T = L(5,¢) + F(S,0) @)
where
K
F(S,¢) =Y Nif{ckci). (3)
k=1



where Nj is the number of entities in Sg, k = 1,2, ..., K. This is proven in, say, [18, 26].

Since T' does not depend on S, the complementary criterion F'(.S,¢) in (3) is to be maxi-
mized to minimize L(S, ¢), according to (2). Although the criterion F'(S,¢) does depend on
the location of the origin, unlike the original criterion L(S,¢), the change does not depend
on S. The complementary criterion is the sum of individual cluster contributions, Ny (cx, ).
To maximize them, clusters should be as populous as possible and as far away from the origin
as possible.

A greedy approach to this is to find clusters one-by-one, in sequence, by maximizing
the cluster contribution. Originally coined in [17]| as a "separate-and-conquer” procedure, a
current version of this approach is described in [26] as "anomalous clustering”.

This is the core of the clustering algorithm BANCO [26]: the algorithm selects the largest
anomalous clusters and uses their centers to initialize k-means clustering iterations.

Although not necessarily successful at synthetic datasets with generated Gaussian clusters
[4], this strategy leads to decent results in applications such as reconstruction of the history
of genomes [19], analysis of socially responsible strategies of large companies [26], or modeling
of the dynamics of off-coastal phenomenon upwelling [20].

The goal of this paper is to extend this approach to interval data clustering. Interval
data are data with structural values, sometimes referred to as "symbolic data" [1]. Interval
data emerge when units of observation, the entities, are not individual objects but rather
categories of them. Such are data of fungi (mushroom) species (842 of them are listed in [9])
or research production categorized over dominating themes such as mathematics, mechanical
engineering, or law [21]. An interval data value is an interval (z,x3), which is a set of all
reals  such that x; < x < 2,.

Clustering methods for interval data are being developed as extensions of those for con-
ventional numeric data. Probably, the very first clustering method for interval data was
described in [3]. Several others followed, such as |2] for probabilistic clustering, [22, 27| for
fuzzy clustering, [24] for similarity clustering, [28] with a genetic algorithm, and [16] with
overlap distance. Extensions of k-means clustering to the interval data were considered in
[3, 23, 25]. We specifically rely on the method developed in [25] because it involves a cluster-
specific feature-weighting scheme. Feature weighting in k-means clustering started by paper
[12] and was further extended in [5, 8]. In these methods, feature weights w, were to satisfy
the normalizing condition,

v
> w, =1 (4)
v=1

According to [25], in interval clustering, any feature is to have two weights, w,; for the bottom
ends of feature intervals and w,o for the tops. The normalizing condition is transformed here
into equation

v
valwvg = 1 (5)
v=1

We are going to use both normalization conditions.



2 Least squares clustering for interval data

2.1 Least squares criteria

Consider an N x V data table X = (z;,) where N is the number of objects, or entities; V,
the number of features, and z;, is the value of feature v at entity 7 represented by an interval
Tiy = (Tiv1, Tive) Where x;,1 is the left, and x;,2) the right end of the interval. Our goal is
to partition the entity set in K non-overlapping subsets Si, S, ..., Sk, each represented by a
center ¢, = (cg,) whose components are intervals as well, ¢, = (Cro1, Cr2), £ = 1,2, ..., K,
v=1,2,...,V. The goodness-of-fit criterion for clustering is

S C, w ZZZ W1 xzvl Ckvl) +UJ <x2v2 Ckv2) ) <6)

k=1 ieS) v=1

where Ss and xs and ¢s, with indices, are defined above, whereas wy,; and wy,» are feature
weights, possibly cluster-specific. The exponent 3 is a user-defined parameter to re-scale the
effect of the weights on the distances which are parts of criterion (6):

mzla CUl Z w,, wwl Ckvl) ) x227 Cv2 Z w,, xw? Ckv?) (7)

The weights are supposed to be positive and satisfy the normalization condition in (5).

This criterion, to be minimized with respect to Sy and interval-valued ¢, w,, k = 1,2, ..., K.
is, basically, the clustering criterion defined by equation (7) in [25].

It should be mentioned that criterion (6) extends the corresponding least-squares criterion
for conventional data tables. A conventional data table, denoted here by Y = (y;,), has real
values y;, of features v = 1,2,...,V at objects 1 = 1M, 2,..., N as its entries. A convenient
form of the least squares criterion is

(S, c,w) ZZZU} Yiv — Ckv (8)

k=1 1i€S; v=1

introduced and explored by Huang et al. [12].

2.2 Optimal centers

Let us derive some properties of the optimal solutions for criterion (6) by using the first order
optimality conditions. First of all, one can state that the optimal centers here are within-
cluster gravity centers whose components are the within-cluster averages of the corresponding
components in the data table. Indeed, the partial derivative of L(S, ¢) with respect to ¢y is

ZQw Tipl — Cko1)(—1).

1€SE

ackvl

Making this equal to zero, one arrives at equation ), Sk(:zrwl — k1) = 0 by dropping off all
the constant factors. This implies Zie s, Tivl = Niciy1 where N is the number of elements
in cluster Si. Therefore, cp,1 = Zie s, Tivl /N, which is the average value of all the lower
boundaries of the intervals within cluster S;. Similar equation for the upper boundaries of
the centers, crp2) =D e s, Tiv2 /Ny, can be derived analogously.
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2.3 Optimal weights

To find optimal feature weights in criterion (6) under condition (5), let us consider the
corresponding Lagrange function:

1%
M = L(S,c,w) — (5(H Wyl * Wy — 1).
v=1

The partial derivative of M with regard to w,; is equal to

J

Wy1

= 0.

K
OMwvl = Z Z Bl (i — Crn)? —

k=1 i€Sk

The last equation holds according to the first-order necessary condition for optimality. This
equation leads to the following solution:

5 B
B Zk:l ZiESk (xwl - Ck:'ul)

A similar solution can be found for w,s analogously. To determine ¢, one may use equation
(7). Indeed,

1

4 5 il 5 B
=1
]1;[1 (5 ZkK:I Ziesk (Tiv1 — Ckv1>2> " <5 ZkK:1 ZieSk (Tive — Ckv2>2>

This implies:

6=0 {H [Z Z(%‘m - Ckv1>2] [Z (%2 - Ckv2)2] }

By substituting this into formulas for the weights, we finally obtain:

1
B

{H}j:l [Zf:l Ziesk (i1 — Ckv1>2] [Z?:l ZiGSk (@iv2 — C’W2)2} }2%/

9
25:1 Ziesk (Tiv1 — Cho1)? 9)

Wy1 =

1
B

{Hl‘)/:l [25:1 EiESk (SUm - Ckvl)Q] [Zf:l ZieSk (%2 - Ckv2)2] }2%/
S Y ies, (Tiv2 = Crua)?

(10)

Wy2 =

These formulas imply that the weights w” in the criterion (6) do not depend on f at all.
This means that the criterion may be equivalently formulated by using just w weights by
themselves. The normalizing condition (5) is the cause.



2.4 Convenient weights

To add flexibility to our analysis, we propose using one more definition of feature weights
inherited from the paper by Huang et al. [12] in which the weights have been subject to
the conventional normalization condition (4), summing to unity, so that the coefficients in
the criterion do depend on 3. Let us consider those values, derived for the conventional, not
interval-based, criterion in (8):

= (ZK Zp(s(’::l —Cy 1)2) _ )

1

-z o]}

v=1 | k=1 i€S,

where

It is not difficult to check that these weights do satisfy the normalizing condition (4).
Applied to interval data. these formulas can be rewritten as follows:

1

hvlz( B C) )[H,hv2:< L) > (12)
Zk:1 Ziesk (%1 - Ckv1)2 Zk:l Zz‘esk (xm - Ckv2)2

Here

1

P(S,c)—{ﬁ liz (i1 = Cran) ] [iz ) ”V (13)

v=1 1 i€Sk 14€S,

3 Algorithms

3.1 Algorithm IKM

Here is the algorithm IKM from [25] adapted to the case at which initial cluster centers are
found with a different algorithm.

Input: Data matrix X, the number of clusters K, weight exponent (3, initial cluster centers
in interval format.
Output: Clusters Si and their interval centers ¢, k = 1,2, ..., K.

1. Data pre-processing:

(a) Compute the grand mean vectors for the left and right interval boundaries, re-
spectively, g; and gs.

(b) Centering: Subtract interval vector [g1, ¢g2] from all the rows of the data matrix.

(¢) Normalization: Divide the feature left and right bound values over their standard
deviations.

2. Initialization:

(a) Weights: Put unity for all the weight values.

8



(b) Centers: At each k, k = 1,2, ..., K take a random row of X as the initial center
Ck.

(c) Clusters: Initialize K empty clusters.
3. Loop until convergence:

(a) Cluster update:
i. For each object ¢ = 1, ..., N compute its distances to the cluster centers;
ii. Each object is assigned to its nearest center.
(b) Center update: current ¢; boundaries are computed as the within-cluster averages
of the corresponding boundaries.
(¢) Weight update:
e Global feature weights are computed according to formulas (9), (10) (optimal)
or (12) (convenient).

e Cluster-specific weights are computed according to cluster-specific versions of
formulas (9), (10):

1
v v
{Hv:l [Ziesk (i — Ck,l,v)z] [Ziesk(aji,?,v - Ck72,v)2} }
Vi1 =
’ Ziesk (%‘,173‘ - Ck,l,j)Q
1
1% v
{Hv:l [P ies, (@inw — ck10)?] [Pies, (Tizw — Ck,z,v)z]}
vk727j - Y

Ziesk (931',2,]' - $k,2,j)2

as the optimal ones, or (12) as those convenient.

3.2 KM Algorithm

Here we consider a conventional way to the analysis of interval data. According to this
approach, every feature v is substituted by its double versions v1, corresponding to the left
boundary of the interval value, and v2, corresponding to its right boundary. We utilize a
version of k-means, k-means++, implemented in the library Scikit-Learn [15]. This version
differs from the conventional random start k-means by its initialization. According to this
approach, the first center is a randomly chosen entity. The general step: having a subset
of centers ¢ already selected, define the distance to ¢, for every entity outside of ¢, as the
minimum distance to the entities in ¢. Assign to each of the entities a probability proportional
to its distance to c¢. Choose the next center randomly according to the specified probabilities.
This version usually finds deeper minima of the least-squares criterion than the random start
initialized versions. We also apply a feature-weighted version of k-means with feature weights
updated according to formulas in (11). Both versions have the number of clusters as the input
and cluster partition S and cluster centers as output.

3.3 Anomalous clustering algorithm
3.3.1 One cluster modeling

We follow here the version described in [26] and extend it to the interval data case.

9



Consider a reduced clustering problem at which only one cluster S C [ is sought, along
with its center. Then the criteria in (8) and (6) should be reformulated, in respect, as follows:

(S, c,w) ZZU} Yiv — Cv) (14)

€S v=1

where ¢ = (¢,) is the cluster’s center and w, are feature weights, for the ordinary data case,
and

S C, w ZZ yl xwl Cvl) +w (:L"L’UQ Cv2)2)7 (15)

€S v=1

for the interval data case. Here indices 1 and 2 correspond to the left and right interval bound-
aries, respectively. The weights are supposed to be positive and satisfy the normalization
condition (5).

As mentioned in the introduction, both models yield a complementary criterion via the
corresponding Pythagorean decomposition (2).

3.3.2 Pythagorean decomposition and complementary criterion for interval data

Indeed, let us make elementary transformations of the least-squares criterion:

N
L(S, c,w) Z Z Z [wkm Tivt — Cro1)” + wka(xWQ Chuv2) ] = Z Z [wlfle?vl + wlfuﬂ?w] +

k=1 i€S; veV i=1 veV
K K
B B
E : E : § , [wkvlckvl + wkaCkv2i| —2 E E E |:wky1xivlckv1 + W0 Tiv2Chu2
k=1 1ieS veV k=1 1i€Sy veV
Equations
E Tiv1 = NiTpor, E Tiva = NiTpoo
€Sk 1€SK

hold because of the first-order necessary conditions:

oL
9 B Z QMSM(%“ — 1) (—1) = 0 => Cp1 = T
Ckol by
oL
9 B Z wavz(xiw — Cr2)(—1) = 0 => Crz2 = Tre2
Clkv2 1oy
Therefore,
_ Z Nk Z wgvlfkvl - Z Nk Z wnyEk"U27
k " - -
where
N
T(X) = Z Z [wfle?vl + w,fwxfw.}
i=1 veV

10



This is the interval data scatter.
Since T'(X) does not depend on partition S, then one may find clusters by maximizing

F(S, C) = Z Ny Z <w£v1fkv1 + wfw@w)
k v

rather than by minimizing L.
By applying a part of this criterion to a single cluster S rather than a partition S, we
obtain a single cluster criterion: maximize

F(S,) = |51 Y (T + wimen) (16)

labelnfl

Here S is a single cluster, S C I; |S|, the number of elements in S; and ¢ = >
its gravity center.

Preliminarily, matrix X is standardized by subtraction of the grand mean ¢ from each
its row, so that the origin moves into g. Conventionally, each feature is re-scaled by dividing
over its standard deviation, the square root of the variance. The cluster S is initialized by
putting there a single object, that one furthest away from 0. This very object serves as the
cluster center as well.

Given cluster S and its center ¢, the following rules apply to update the cluster and
weights.

i€S

3.3.3 Cluster update rule (CUR)

This follows the alternating optimization path: given a cluster center ¢ = (¢,) where ¢, is
the interval ¢, = (¢,1, ¢y2), the optimal rule CUR requires:

e Remove i € S from S if:
f(Sa C) > 2|S|<$z’1701>w§ + 2|S’<xi27c2>w§ - <$i1,$i1>wf - <$127$12>w5
e Add i ¢ S to S if:

f(5¢) <2[S[{win, 1), 5 4 2S[(wiz, ) + (win, Tir) o + (a2, Tiz) 0

Here:

f(S,¢) = ISl(er, ex) o + [Sle2, 2) 0

and the inner product is weighted so that, for example,

<13i1701>wf = E Woy1Tin1Col
v

11



3.3.4 Proof of the Interval Cluster Update Rule CUR

> s Y1 — Yi > ies Yit — Vil
i) = -1 Jje JjeS JJ
8 =) = 18 1) { ST S )
(18] = 1) Zjesij_yzQ Zjesij_yiQ _
ISI=1 7 ISI=1 0 g

<Zyﬂ vit, > Y —y >

JjeSs JeSs jES jEeS

w

S
<22> 25>
) -

<Z Yizs Y Uj2

2
<zyﬂ 0o v —y12> _
ﬁ
2

> +<yi17yi1>w1ﬁ +

w1

<y227 Z ng> %27 yz’2>w§ (17)
8

jeSs j€eSs jeSs

Similarly,
5.0 ((Su ) +(SumTm) ) -
jeS jeSs wf jES jeS wg
1
S| —1 ( ys\) <Z%17Zyﬂ> T <Zyﬂa2%‘2> =
j€S j€S w? j€S j€S w?
_ <zy zyﬂ> . <zyzy> 50| a8
j€S j€S w? j€S j€S b
By subtracting the last expression from the first formula, one obtains:
F(S —ir) = f(S,0) = o
’ 1S|—1
f(S,e) =2 <%’1, Z yj1> (Yi1, Yin) <yz27 Z ng> (Y2, Yin) o | (19)
jeS B jeSs B

wy Wy

This is positive if and only if:

f(S,c) =2 <yi17 Zyjl> + (Yin, Yin) o — 2 <Z/12, Zyj2> + (Yi2, Yiz) g > 0
5 8

jeS jeS
J w? J wh

that is, if
f(S,c) > 2|5] <yi1,01>wf - <yi1>yi1>wf + 2[5 <yi2762>w§ - <yi27yi2>w25

This proves one part of CUR rule. The other part, for ¢ ¢ S, is proved analogously by
considering the difference f(S +1i,c) — f(S, ¢) where ¢’ is the center of S + i

12



3.3.5 Weighting update rule (WUR)

Feature weights initialise as equal to each other. Then, given a cluster S with its (interval)
center c. new left boundary weights are computed as:

1
> wev Dot/ D] 71

Wy1 =

where
Dvl = Z(xivl - Cv1)27
i€s
the within-cluster dispersion of the interval left boundaries. A similar formula holds for
the right boundaries:

1
_1
> uey [ Dv2/ Do) 771

Wy2 =
with
Dv2 = Z(inQ - Cv2)2-
€S
To avoid division by zero, in computations each D, is added by the average variance of

feature u.
These weights satisfy the normalizing conditions:

g W10 = 17

veV

E Wg20 = 1.

veV

Our algorithm finds a cluster and its interval center by iterating the following three steps:
1. Apply WUR to obtain feature weights;
2. Apply CUR to obtain cluster S;

3. For each feature v, compute the average feature interval within S, ¢,; define cluster S
center as ¢ = (¢,).

We refer to this algorithm as EXTAN following [26].

3.3.6 Algorithm BANCO for interval data

input: Data matrix X, number of clusters K, the weight exponent [.
Output: Cluster K-part partition S and cluster centers.

1. Data preprocessing;:

(a) Compute grand means, g; and go, for both lower and upper bounds of the interval
values.

13



(b) Subtract [g1, g2] out of all the data rows.

(¢) Normalize by the standard deviations.

(d) Set k=1 and I = I. Define X (I}) as the part of matrix X obtained by removing

all the rows ¢ € I which do not belong to .

2. Iterated EXTAN:

(
(

a) Apply EXTAN to X (Iy);
b) Denote the resulting cluster by Sy and its center by c;
)

(c) Define Iy = Iy — Sy and k =k + 1.
(d) If I, # 0 go to item (1) at step 2. Otherwise, halt.

3. Return K clusters S; of maximal cardinality together with their centers cy.

4 Computation: Validation and Comparison

4.1 Two interval datasets

This paper introduces two novel interval datasets extracted from existing databases. One is
180 x 5 California Fungi dataset; the other, 76 x 6 Brazilian Science Production dataset.

4.1.1 Fungi dataset

Here we extend the 55-strong fungi dataset from [25] to include all the data available from
[9]. This data relate to 588 taxa of fungi found in California [9]. Each taxon is characterized
by 5 interval features:

—_

. pileus width,

[N}

. stipes width,

w

4. spores height, and

5. spores width,

and a target categorical feature 'species’. Unfortunately, there are only 180 taxa with this

. stipes thickness,

target feature available. They form our dataset.
Here is a list of all its 26 species categories (see Table 1).

Species Frequency | Species Frequency | Species Frequency
Agaricus 26 Inocybe 10 Stropharia | 4
Boletus 19 Suillus Laccaria 3
Amanita 16 Lactarius Coprinus 3

14
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Mycena 14 Hygrocybe | 8 Strobilurus | 3
Tricholoma | 13 Marasmius | 7 Leccinum 2
Russula 12 Pholiota 5 Hypholoma | 2
Clitocybe 10 Psilocybe 4 Tylopilus 2

Table 1: List of species categories in Fungi data.

The data for the most numerous 10 species are publicly available in the Github repository
[10].

In our experiments, we used three datasets consisting, in respect, of the three, four, or
five most numerous species in the list. They are respectively denoted as Fungi 3, Fungi 4,
Fungi 5.

4.1.2 Brazilian Scientific Production dataset

The original data table on research output by Brazilian academics is publicly available at
[21]. This data have been assembled from databases in the National Brazilian Council on
Science and Technology (CNPq) and CAPES Foundation (Coordination for the Improvement
of Higher Education Personnel). According to the site, research activities of each researcher
are characterized by 33 continuous variables and by three categorical features. These three
features are: the institution, the field of science (grand-area-predominante), and the scientific
sub-field (area predominante). The continuous features are average research output for the
years 2006, 2007 and 2008 in the following 33 items:

1. National journal

2. International Journal

3. Paper

4. Monograph

5. Book chapter

6. Other publication

7. Journal abstract

8. Conference abstract

9. Publication

10. PjD completed

11. Master Program completed
12. Special training completed
13. Bachelor degree obtained
14. UR(Utilization Review) completed

15. PhD bot completed

15



16.
17.
18.
19.
20.
21.
22.
23.
24.
25.
26.
27.
28.
29.
30.
31.
32.

33.

Master Program not completed

Special training not completed

Bachelor Program not completed

UR unfinished

Educational training completed
Educational training unfinished
Other intelligent products
Other production

Program codes registered
Program codes unregistered
Product unregistered
Technology registered
Technology unregistered
Technology work

Technology presentation

Other product-related technology

Technology

Art work

These data have been summed within institutions and scientific sub-fields to obtain a
5620 x 33 data table used in [21].
We additionally grouped together all rows within the same scientific sub-field in a field
of science, using the within-group median as the science field feature value. After this, we
removed all the features that have their bottom boundary equal to zero for all the rows. The
resulting interval data table has its size 76 x 6 and it is divided in 8 science fields (see table
below). The data table is publicly available from GitHub in [10].
In our experiments, we used three datasets consisting, in respect, of the three, four, or

five most numerous categories in the list.

Species Frequency | Species Frequency
Biology (Ciéncias Biolégicas) 13 Health Sciences (Ciéncias da Saude) 9
Social Sciences (Ciéncias Sociais Aplicadas) | 13 Earth Sciences (Ciéncias Exatas e da Terra) 8
Engineering (Engenharias) 13 Agricultural Sciences (Ciéncias Agrérias) 7

Table 2: List of categories in BSP data.
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Species Frequency | Species Frequency

Humanitarian Sciences (Ciéncias Humanas) | 10 Linguistics, Literature and Arts (Lingiiistica, Letras e Artes) | 3

Table 2: List of categories in BSP data.

4.2 Algorithms

Here are the algorithms under investigation:
1. IKM with five versions of feature weighting:

n no feature weighting;

o optimal feature weighting;
os optimal feature weighting cluster specific;

¢ convenient feature weighting;

cs convenient feature weighting cluster specific.

2. IKM preceded by Banco (BIKM), with various versions of feature weighting each.
3. KM with three versions of feature weighting

n no feature weighting;
¢ convenient feature weighting;
cs convenient feature weighting cluster specific.

4. KM preceded by Banco (BKM) with three versions of feature weighting each

4.3 Assessment of results

To evaluate and compare obtained clustering results, we use two popular metrics of simi-
larity between partitions: 1) Adjusted Rand Index (ARI) [13], and 2) Normalised Mutual
Information (NMI) [6].

To define the Adjusted Rand Index, one uses what is referred to as contingency table in
statistics. Given two partitions, S = {S1, S, ..., Sk} and T' = {13, T5, ..., T}, a contingency
table is a two-way table whose rows correspond to parts Sy (k = 1,2,...,K) of S, and its
columns, to parts 7; (I =1,2,..., L) of T. The (k,1)-th entry is ny, = |S,r NT;|, the frequency
of (k,l) co-occurrence. The so-called marginal row a and marginal column b are defined by
ar =S i = | S| and by = > g = |Ti).

The Adjusted Rand Index is defined as:

2 (3) — [k (D X DI/ (5)
a b a b
3020 (9) + 22 (D1 = 120 (%) 20 (D1/(5)]
Considering partition S as the ground truth, whereas partition 7" - the found clusters, ARI
value gives an estimation of the similarity between the two. The closer the value of ARI to

unity, the better the match between the partitions; ARI=1 if and only if S = T'. If one of
the partitions consists of just one part, the set I itself, then ARI=0.

ARI(S,T) = (20)
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The NMI index is defined by using the concept of entropy. The entropy of partition S is
defined as H(S) = — S0, p(k)log(p(k)) where p(k) = |Sk|/N = a(k)/N is the probability
that an object picked at random falls into Sy. Given a partition T, H(T') is defined similarly.
The mutual information (MI) between S and T is defined as:

MI(S,T) =3 py m%% (21)

where pg; = ng /N is the probability that a random object falls into both Sy and 7} (k =
1,2,...,K; 1=1,2,...,L). The normalised mutual information is defined as

MI(S, T)
max(H(S), H(T))

NMI ranges between 0 and 1. Its values close to zero indicate random clustering results,
whereas the closer NMI to unity the better is the match between S and 7'

NMI = (22)

4.4 Computational results
4.4.1 K-means clustering preceded by Banco

For the sake of convenience, we present computational results of our k-means algorithms
preceded by Banco in two tables. Table 3 presents results for computations at which both
Banco and k-means, in both versions, IKM and KM, used the same feature weighting scheme.
Table 4 presents results for computations at which Banco and k-means used different feature
weighting schemes. The entries in both tables are ARI index values separated by slash from
NMI index values. Both indexes show the degree of cluster recovery by the corresponding
clustering algorithm.

Name Fungi 3 | Fungi 4 | Fungi 5 | BSP 3 | BSP_4 | BSP 5
BIKMn | .62 /.56 | .59 / .64 | .47 /.58 | .78 / .78 | .69 / .79 | .50 / .57
BIKMc | .81 /.76 | .75 /.74 | .57 / .67 | .85/ .87 | .72 /.75 | .57 / .68
BIKMo | .81 /.76 | .58 /.60 | .40 / .51 | .85 / .87 | .76 / .81 | .57 / .67
BIKMcs | .81 /.76 | 42/ .49 | .44 / .57 | .92 / .92 | .65 /.70 | .55 / .66
BIKMos | .81 /.76 | .47 /.53 | .37 /.50 | .92 /.92 | .69 /.79 | .49 / .59
BKMn 77/ .70 | 64 /.69 | 50 /.61 | .73 /.75 | .65 / .78 | .50 / .57
BKMc .85 /.82 | .78 /.78 | .5b8 / .68 | .85 / .87 | .68 / .77 | .61 /.71
BKMcs | .73 /.69 | 45/ .52 | 49 /.61 | .92 /.92 | .62 /.73 | .61 /.71

Table 3: Values of ARI/NMI indexes at the datasets under investigation ob-
tained by k-means clustering algorithms preceded by Banco: the same
feature weighting schemes).
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Name Fungi 3 | Fungi 4 | Fungi 5 | BSP_3 | BSP 4 | BSP 5
BnlKMc | .81 /.76 | .75 /.74 | .54 / .63 | .85 / .87 | .68 /.74 | .50 / .57
BonlKMo | .81 /.76 | .75 /.74 | .56 / .65 | .85 / .87 | .71 /.79 | .50 / .57
BnlKMcs | .81 /.76 | .67 /.70 | .49 /.58 | .92 /.92 | .71 /.79 | .51 / .58
BnlKMos | .81 /.76 | .64 / .69 | .49 /.59 | .92 /.92 | .69 /.79 | .50 / .57
BeIKMn | .47 /.53 | 44 / 52 | 43/ .54 | .85/ .87 | .64 /.69 | .54 / .65
BcIKMo | .81 /.76 | .78 /.77 | .57 / .66 | .85 / .87 | .68 / .74 | .68 / .77
BclKMos | .81 /.76 | 47 / .53 | .50 / .62 | .92 / .92 | .64 /.69 | .61 /.70
BolKMn | .51 /.55 | 42 /.51 | 43 /.54 | .78 /.78 | .69 /.79 | .49 / .62
BolKMc¢ | .81 /.76 | .58 / .63 | .43 /.55 | .85 / .87 | .68 /.75 | .53 / .62
BolKMcs | .64 /.62 | 42 /.49 | .34 /.49 | 92 /.92 | .72 /.79 | 47 / .58
BnKMec .81 /.76 | .75 /.74 | .50 / .60 | .85 / .87 | .68 /.74 | .50 / .57
BnKMes | .81 /.76 | .67 /.70 | .49 /.59 | .92 /.92 | .61 / .68 | .50 / .57
BcKMn 52 /.54 | 64/.69 | .49 /.60 | .73 /.75 | .67 /.78 | .57 /.70
BoKMn .56 /.62 | 44 /.52 | .38 /.50 | .73 /.75 | .65 /.78 | .51 / .65
BoKMc 81 /.76 | .59 /.60 | .38 /.50 | .85/ .87 | .72 /.79 | .53 / .62
BnKMcs | .55/ .58 | 45 /.52 | .38 /.50 | .92 /.92 | .65 /.70 | .51 / .64

Table 4: Values of ARI/NMI indexes at the datasets under investigation obtained
by k-means clustering algorithms preceded by Banco: different feature
weighting options).

Let us point out general features of the tables.

Values of the indexes, ARI and NMI, generally, agree: the larger values of ARI correspond to larger
values of NMI. Therefore, we are going to consider only ARI values for further analyses.

Index values are greater, at both data tables, at the 3-part partition, and are much smaller at the
5-part partition, so that they are at medium levels at 4-part partitions. This goes in line with our
expectations: the greater the granularity of a partition, the more difficult to reproduce that with
clustering.

Now we can turn to specifics of our algorithms.

In contrast to our expectations, the variability in weighting options between Banko and K-means, in
general, yields no better results. The maxima of ARI in Table 3 overall are greater than those in
Table 4 for both Fungi and BSP. Specifically, for Fungi 3, 4, 5, the maxima in Table 3 are 0.85,
0.78, 0. 58, respectively, whereas those in Table 4 are somewhat smaller: 0.81, 0.75, 0.56, respectively.
Similarly, the maxima for BSP 3, 4, in table 3, 0.92, 0.76, are respectively better than those in
Table 4, 0.92, 0.72. The only exception from this rule occurs at BSP _5: The value in Table 4, 0.68 is
greater than that in Table 3, 0.61.

Using our feature weighting schemas does bring forth the best results. For example, the maximum
ARI value of 0.92 has been reached at clustering set BSP 3 with algorithm BoIKMecs at which both
Banko and K-means used feature weighting schemes. It should be noted that the same ARI value can
be reached with the generic Banko, with no weight adjustments at all, by using BnIKMcs, BnIKMos
and BmKMcs. Each of these, however, involves a cluster-specific feature-weighting scheme.

Our last observation concerns relation between two approaches to clustering interval data: a genuine
one and a naive one. Our genuine approach leads to a series of IKM algorithms, whereas our naive
approach — dismissing intervals altogether and just doubling the number of features — leads to a series
of KM algorithms. They both show more or less similar results. Sometimes it is the KM series which
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wins, as, for example, at recovery of Fungi 3, Fungi 4, and Fungi 5 partitions. Here the best recovery
results are shown by the algorithm BcKMec out of KM series: its ARI values 0.85, 0.78, and 0.58 are
the maxima over the respective partitions. In contrast, the winner at BSP_ 4 is BoIKMo (ARI=0.76),
and at BSP_5, the BcIKMo (ARI=0.68). These observations show that interval modeling needs a
deeper insight to make it more effective.

It remains to take a look at performances of Banco-preceded k-means methods in comparison with the
conventional multi-start k-means clustering at which the final cluster solution is selected from results of
multiple runs of k-means starting from random initial centers each.

alg \ dataset | Fungi 3 Fungi 4 Fungi 5 BSP 3 BSP 4 BSP 5

IKMn 7/ .40/ 17| 64 /.43 /.10 | 54 /.38 /.07 | 1.00 / .56 /.23 | .73 / .55 /.13 | .58 / .43 / .09
IKMc .85 /.39 /.26 | .78 /.49 /.16 | .59 /.40 /.10 | 1.00 / 44 / .20 | .72 / 43 /.17 | .63 / .35 / .13
IKMo 85 /.42 /.25 | .78 /.46 /.16 | .59 /.40 /.08 | 1.00 / .49 / .25 | .76 / .45/ .18 | .68 /.32 / .14
IKMecs 90 /.40 /.24 | .76 /.33 /.15 | .58 /.37 /.09 | 1.00 / 48 /.20 | .74 / .44 / .15 | .67 / .33 / .12
IKMos .86 /.40 /.21 | .82 /.42 /.14 | .56 /.38 /.09 | 1.00 / 46 / .22 | .73 / .45/ .15 | .67 / .34 / .11
KMn 81 /.54/.13 | 64 /.51 /.10 | .55/ .41 /.07 | 1.00 / .57 /.22 | .69 / .57 /.12 | .61 / .44 / .08
KMc .85 /.40 /.29 | .78 /.45/.15 | 62/.40 /.09 | 1.00 / 45 /.21 | .72 / .48 / .17 | .68 / .36 / .13
KMecs .86 /.15 /.14 | .78 /.43 /.14 | 59 /.36 /.09 | 1.00 / .32 /.29 | .72 /.33 /.24 | .71 /.05 / .14

Table 5: ARI index at the datasets under investigation after a hundred random-start runs of the corresponding k-means
algorithms. Every entry consists of three values: the maximum, the mean, and the standard deviation of the
ARI values.

Table 5 represents results found at 100 random-start runs of our IKM and KM algorithms. The value
B has been adjusted each time in such a way that the best recovery results are achieved (see Appendix C.)
Each entry contains three ARI index values, the maximum, the average and the standard deviation. For
example, the very first entry on top of the table, .77/.40/.17, reports that at a hundred runs of the generic
IKM algorithm, with no feature weighting involved, the maximum ARI index value was 0.77, the average
0.40, and the standard deviation from the average, 0.17.

Table 6 shows similar results for the NMI index.

The ARI values, presented in Table 5, show that the best partition recovery results almost always are
greater than the best results achieved with Banco-preceded algorithms. But the difference is not that large:
it is a fraction of the standard deviation value, usually of the order of 0.2-0.3 of that.

This allows us to conclude that using Banco for initialization of k-means algorithms modified for interval
data is highly beneficial. It involves just a single run of the algorithm instead of a multitude of random-start
runs leading to many solutions. Usually, the ground truth is unknown, so the user, in the latter case, faces
a cumbersome task of selection of a most appropriate solution.

alg \ dataset | Fungi 3 Fungi 4 Fungi 5 BSP_3 BSP 4 BSP 5

IKMn 70 /.39 /.14 | 69 /.52 /.08 | .65 /.50 /.06 | 1.00 / .63 /.19 | .85 /.66 / .12 | .74 / .56 / .07
IKMc .82 /.42 /.23 | .78 /.57 /.12 | 68 /.52 /.08 | 1.00 /.53 / .17 | .81/ .54 / .15 | .71 / .50 / .10
IKMo 82/.44 /21| 78 /.55 /.12 | .68 /.52 /.07 | 1.00 / .59 / 21 | .81 / .57 / .16 | .77 / A7 / .12
IKMecs .88 /.43 /.20 | .78 /.45 /.13 | .68 /.49 /.08 | 1.00 / .56 / .18 | .81 / .56 / .13 | .74 / .49 / .10
IKMos 82 /.42 /.17 | .81 /.52 /.11 | .66 /.50 /.07 | 1.00 / .54 / .18 | .85 / .57 / .13 | .74 / .51 / .10

Continued on next page
Table 6: NMI index at the datasets under investigation after a hundred random-start runs of the corresponding k-means
algorithms. Every entry consists of three values: the maximum, the mean, and the standard deviation of the

NMI values.
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KMn 76 /.54 /.09 | 69 /.59 /.08 | .65/.53/.06|1.00/.63/.18 | .78 /.69 /.11 | .72/ .60 / .07
KMc 82/.42 /.25 | .78 /.54 /.12 | .69 /.53 /.08 | 1.00 /.55 /.19 | .84 / .60 / .14 | .77 / .50 / .10
KMcs 82/.22 /15| .78 /.53 /.11 | .67 /.49 /.08 | 1.00 / 43/ 24 | .84/ 48 /.21 | 75/ 22/ .14

Table 6: NMI index at the datasets under investigation after a hundred random-start runs of the corresponding k-means
algorithms. Every entry consists of three values: the maximum, the mean, and the standard deviation of the
NMI values.

5 Conclusion

Interval data is an important class of complex structure data. Clustering is an important data science
approach recently extended to interval data with a most popular tool, k-means clustering. On par with many
advantages, k-means suffers from some shortcomings. One of them is lack of instruments for choosing initial
cluster centers. This paper proposes using anomalous clusters as adequate center bearers. This approach is
consistent with the meaning of the least squares criterion. As follows from equation (2), to minimize it, one
needs to find most numerous anomalous clusters. We propose a method, Banco, for one-by-one finding most
anomalous clusters, so that k-means computations start with the centers of K most numerous of them.

Also, we propose several competing feature weighting schemes to use within the k-means clustering
framework.

We introduce two novel interval datasets with innate cluster structure. One of them. Fungi, further
extends the dataset used in previously [25] from 55 specimen to 180. The other, is a categorisation of the
data related to research output of Brazilian scientists into a 76 x 6 tata table. Both datasets have external
categories assigned to them: taxa, for fungies, and research domains, for research outputs.

We take sets of three or four or five the most numerous categories out of the two data tables — six sets
altogether, and compare various versions of k-means approach with respect to their ability to recover the
category structures from the data. The level of recovery is assessed by conventional indexes of similarity
between the innate partition and that found by an algorithm, the ARI and NMI coefficients.

The variety of clustering algorithms under investigation stems from three divisions. One of the divisions
comes from the view of interval data. One, genuine, view takes the intervals as feature values. The other,
a naive view, removes the intervals altogether, by considering interval data as a double data table at which
every interval feature is represented by two conventional features, one for the left, the other for the right
boundary of the interval. Another division relates to the fact whether our Banco algorithm is involved or not.
The third division concerns the way we assign weights to features. There are three ways for feature weighting:
constant weights, optimally adjusted weights, and conventionally adjusted weights. Further differences emerge
depending on whether Banco algorithm and follow-up k-means algorithm involve the same or different feature
weighting schemas.

Our experimental computations show that using Banco algorithm for initialization is beneficial for clus-
tering. Other findings concern more specific properties, as for example, our observation that using the same
weighting scheme at both Banco and k-means overall leads to better results than using different weighting
schemes.

Further work should obtain better insights into the nature of interval data, perhaps by using within-
interval distributions, to obtain superior cluster recovery results.

All the data tables and the code of the algorithms from this article, as well as testing results are publicly
available in the GitHub repository [11].

Appendices

A Fungi dataset 5 clusters

index | genera name spores 1d spores 2d pileus width | stipes long stipes thick
0 Agaricus moronii [.06, .075] [.04, .05] [600, 1200] [200, 700] [150, 300]
1 Agaricus subrutilescens [.04, .06] [.035, .045] [600, 1400] [600, 1600] [100, 200]
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11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
o1
92
53
54
55
o6
o7

Agaricus
Agaricus
Agaricus
Agaricus
Agaricus
Agaricus
Agaricus
Agaricus
Agaricus
Agaricus
Agaricus
Agaricus
Agaricus
Agaricus
Agaricus
Agaricus
Agaricus
Agaricus
Agaricus
Agaricus
Agaricus
Agaricus
Agaricus
Agaricus
Amanita,
Amanita
Amanita
Amanita
Amanita
Amanita
Amanita
Amanita
Amanita
Amanita
Amanita,
Amanita
Amanita
Amanita
Amanita
Amanita,
Boletus

Boletus

Boletus

Boletus

Boletus

Boletus

Boletus

Boletus

Boletus

Boletus

Boletus

Boletus

Boletus

Boletus

Boletus

Boletus

smithianus
sylvicola

semotus
perobscurus
pattersonae
micromegathus
lilaceps
hondensis
fuscovelatus
diminutivus
deardorffensis
xanthodermus
comtulus

arorae
incultorum
augustus

benesii

bernardii
fissuratus
subrufescens
brunneofibrillosus
californicus
campestris
bitorquis
vernicoccora
velosa

vaginata
smithiana
phalloides
pantherina
pachycolea
ocreata

muscaria
gemmata
constricta
calyptratoides
calyptroderma
augusta

aprica

novinupta

rex veris
Rubropulcherrimus
Butyriautumniregius
Calorubripes

X. mendocinensis
X. subtomentosus
X. atropurpureus
orovillus

smithii
Calofrustosus
Aureocitriniporus
Rubroeastwoodiae
X. dryophilus

X. diffractus
Butyripersolidus
S. amygdalinus

.07, .09]
[.055, .065]
[.045, .055]
[.065, .08]
.07, .09]
[.045, .05]
.05, .065]
[.04, .06]
[.07, .08]
[.04, .05]
[.04, .06]
[.05, .06]
[.04, .05]
[.045, .05]
[.07, .08]
[.075, .105]
[.05, .06]
[.055, .07]
[.065, .09]
[.055, .065]
.05, .065]
.05, .075]
[.055, .08]
.05, .065]
.09, .12]
[.085, .12
[.08, .115]
[.105, .12]
[.07, .12]
[.095, .13]
[.115, .14]
[.09, .125]
[.09, .13]
[.08, .13]
[.095, .095]
[.098, .14]
[.08, .11]
[.08, .12]
[.08, .13]
.07, .085]
[.125, .18]
[.13, .155]
[.13, .155]
[.12, .165]
[12, .15]
[.1, .15]
[11, .15]
[.055, .065]
[.135, .135]
[11, .14]
[12, .135]
[11, .15]
[.115, .16]
[115, .14]
[.115, .135]
[11, .14]
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.05, .055]
[.035, .04]
.03, .035]
[.045, .05]
.06, .065]
[.03, .035]
.04, .05]
.03, .045]
.05, .06]
.03, .04]
[.035, .045]
.04, .055]
.03, .035]
.03, .035]
.05, .06]
.05, .065]
.03, .04]
[.055, .065)
[.045, .06]
[.04, .045]
[.035, .04]
.04, .055]
[.035, .05
.04, .055]
.06, .08
[.07, .11]
[.075, 1]
[.065, .09
.06, .1]
.07, .095]
1, .12]
.07, .09]
[.065, .095)
[.065, .09
[115, .115]
[.065, .089)
[.05, .06]
[.06, .08]
.06, .085]
[.055, .06]
.04, .05]
.05, .06]
.04, .05]
[.045, .055]
[.045, .06]
.04, .05]
.04, .06]
[.035, .04]
.16, .16]
.04, .05]
[.0375, .045]
[.035, .06]
.05, .065]
.04, .06]
[.035, .045]
.05, .065]

700, 1200]
[600, 1200]
200, 600]
800, 1200]
[500, 1500]
[250, 400]
800, 2000]
[700, 1400]
350, 800]
[150, 250]
[700, 1900]
[500, 1700]
[250, 400]
300, 800]
250, 600]
[600, 3200]
[400, 800]
700, 1600]
[600, 2100]
[600, 1300]
[400, 1500]
[400, 1100]
[500, 1000]
[500, 1500]
[800, 2000]
[500, 1100]
550, 1000]
[700, 1400]
350, 1500]
[400, 1500]
800, 1800
[500, 1300]
[600, 3900]
[300, 1100]
[600, 1200]
[300, 1000]
800, 2500]
[400, 1200]
500, 1500]
[500, 1400]
[900, 1800
[900, 1700]
800, 1500]
[600, 1600]
[500, 1000]
[400, 1200]
[400, 1100]
800, 1500]
[700, 1500]
[700, 1500]
[400, 800]
[1000, 2200]
[400, 1200]
[400, 900]
[700, 1400]
[400, 1000]

[500, 1200]
[600, 1200]
300, 700]
[600, 1200]
[600, 1500]
[250, 450]
[900, 1900]
[800, 1400]
[400, 1000]
[300, 600]
[800, 1500]
[400, 1400]
300, 500]
[400, 900]
[150, 350]
[1000, 3700]
[500, 1100]
[400, 700]
[400, 1400]
[600, 1200]
[400, 1500]
[300, 700]
[300, 600]
[400, 1000]
700, 2500]
[400, 1100]
[600, 1300]
[700, 1700]
[400, 1800]
700, 1100]
[1000, 2500]
[1000, 2200]
[700, 1600]
[400, 1400]
[900, 1700]
[500, 1450]
[1000, 2000]
[500, 1500]
350, 900]
[600, 1200]
[500, 1000]
[700, 1400]
[500, 900]
[600, 1500]
[500, 1000]
[400, 800]
500, 1000]
[500, 900]
[700, 1500]
[500, 1000]
[400, 700]
[700, 1400]
[400, 800]
[500, 1000]
[500, 900]
[400, 700]

200, 300]
[150, 200]
[40, 80|
[150, 200]
250, 350]
40, 70]
300, 500]
[150, 250]
[100, 200]
[25, 35|
200, 350]
[100, 350]
[40, 70|
[50, 250]
[100, 150]
[600, 600]
[100, 200]
300, 450]
[100, 350]
[150, 250]
[150, 250]
[40, 100]
[100, 200]
200, 400]
400, 400]
[100, 250]
[120, 200]
200, 400]
[100, 300]
[100, 250]
[100, 300]
[150, 300]
200, 300]
[100, 200]
[100, 200]
60, 200]
[150, 400]
[100, 200]
350, 350]
[150, 350]
200, 600]
[800, 800]
300, 400]
300, 500]
[150, 250]
[100, 200]
[100, 300]
250, 450]
350, 700]
250, 350]
[100, 300]
[1300, 1300]
[100, 250]
[100, 150]
300, 600]
[150, 300]




58 | Boletus regineus [115, .135] | [.035, .045] | [700, 1400] | [700, 1300 | [300, 400]
59 Boletus Aureoflaviporus [.12, .15] [.05, .06] [600, 1100] [600, 1200] | [100, 200]
60 | Boletus edulis [12,.17] | [.04, .06] [700, 2500] | [700, 2000] | [300, 800]
61 Mycena purpureofusca [.07, 1] [.05, .06] [70, 300] [300, 700] [10, 40]
62 | Mycena | pura .06, .085] | [.03, .04] [150, 450] | [200, 600 | [20, 70]
63 | Mycena | overholtsii [055,.07] | [03,.035] | [200,600] | [1500, 1500] | [150, 150]
64 Mycena oregonensis [.065, .085] | [.03, .035] [20, 80] [100, 250] [100, 100]
65 Mycena maculata [.075, .095] | [.05, .055] [150, 400] [200, 900] [15, 40]
66 Mycena haematopus [.075,.09] | [.045, .055] | [100, 300] [250, 700] [20, 30]
67 Mycena galericulata [.085, .105] | [.06, .075] [200, 500] [300, 1400] | [20, 50]
68 Mycena nivicola [.085, .115] | [.05, .06] [150, 300] [250, 900] [20, 30]
69 Mycena californiensis [.075,.09] | [.04, .045] [70, 200] [200, 700] [10, 20]
70 Mycena aurantiomarginata [.075,.09] | [.04, .055] [100, 200] [250, 700] [10, 20]
71 Mycena amicta [.08,.095] | [.04, .05] [50, 150] [300, 700] [10, 30]
72 Mycena tenerrima [.08, .105] | [.04, .06] [20, 40] [40, 100] [10, 10]
73 Mycena acicula [.085, .115] | [.03, .04] [20, 80] [100, 500] [5, 5]
74 Mycena capillaripes [.08, .11] [.04, .065] [100, 200] [400, 600] [10, 20]
75 | Tricholoma | sejunctum [05,.08] | [035,.055] | [400,900] | [300, 1000] | [100, 150]
76 Tricholoma | saponaceum [.05, .065] | [.035,.045] | [400, 900] [450, 800] [150, 200]
77 | Tricholoma | muricatum [.045, .06] | [.03,.035] | [500,1200] | [300, 600] | [100, 350]
78 | Tricholoma | moseri [065,.1] | [.035,.05] | [200,450] | [200,500] | [50, 100]
79 | Tricholoma | imbricatum 055, .07] | [.04, .05] [600, 1500] | [500, 1000] | [200, 350]
80 | Tricholoma | dryophilum [05,.06] | [.04,.0425] | [500, 1500] | [600, 1300] | [100, 450]
81 Tricholoma | fracticum [.055, .075] | [.04, .055] [500, 1000] [300, 800] [150, 250]
82 Tricholoma | atroviolaceum [.075,.09] | [.05, .06] [350, 900] [400, 800] [150, 300]
83 | Tricholoma | vernaticum 085, .11] | [.04, .06] 400, 1400] | [500, 1300] | [200, 350]
84 Tricholoma | murrillianum [.05, .07] [.045, .055] [500, 2500] [400, 1500] [100, 600]
85 | Tricholoma | equestre [06,.075] | [035,.05] | [500, 1300] | [400, 800] | [150, 300]
86 Tricholoma | griseoviolaceum [.05, .07] [.035, .05] [400, 1100] [600, 1400] | [100, 200]
87 Tricholoma | myomyces [.05, .075] | [.035,.045] | [150, 500] [250, 500] [50, 100]

B Fungi dataset 180 species
index | genera name spores 1d spores 2d pileus width | stipes long stipes thick
0 Agaricus | moronii [.060, .075] | [.040, .050] | [ 600, 1200] | [ 200, 700] | [ 150, 300]
1 Agaricus xanthodermus [.050, .060] | [.040, .055] | [ 500, 1700] | [ 400, 1400] | [ 100, 350]
2 Agaricus subrutilescens [.040, .060] | [.035, .045] | | 600, 1400] | [ 600, 1600] | [ 100, 200]
3 Agaricus | smithianus .070, .090] | [.050, .055] | [ 700, 1200] | [ 500, 1200] | [ 200, 300]
4 Agaricus sylvicola [.055, .065] | [.035, .040] | [ 600, 1200] | [ 600, 1200] | [ 150, 200]
5 Agaricus | semotus [.045, .055] | [.030,.035] | [ 200, 600] | [300,700] | [ 40, 80|
6 Agaricus | perobscurus 065, .080] | [.045, .050] | [ 800, 1200] | [ 600, 1200] | [ 150, 200]
7 Agaricus pattersonae [.070, .090] | [.060, .065] | [ 500, 1500] | [ 600, 1500] | [ 250, 350]
8 Agaricus micromegathus [.045, .050] | [.030, .035] | [ 250, 400] [ 250, 450] [ 40, 70]
9 Agaricus | lilaceps .050, .065] | [.040, .050] | [ 800, 2000] | [ 900, 1900] | [ 300, 500]
10 | Agaricus | fuscovelatus 070, .080] | [.050, .060] | [ 350, 800] | [ 400, 1000] | [ 100, 200]
11 | Agaricus | diminutivus 040, .050] | [.030, .040] | [ 150, 250] | [ 300, 600] | [ 25, 35|
12 Agaricus deardorffensis [.040, .060] | [.035, .045] | [ 700, 1900] | [ 800, 1500] | [ 200, 350]
13 Agaricus hondensis [.040, .060] | [.030, .045] | [ 700, 1400] | [ 800, 1400] | [ 150, 250]
14 Agaricus comtulus [.040, .050] | [.030, .035] | [ 250, 400] [ 300, 500] [ 40, 70]
15 Agaricus arorae [.045, .050] | [.030, .035] | [ 300, 800] [ 400, 900] [ 50, 250]
16 | Agaricus | fissuratus 065, .090] | [.045, .060] | [ 600, 2100] | [ 400, 1400] | [ 100, 350]
17 Agaricus incultorum [.070, .080] | [.050, .060] | [ 250, 600] [ 150, 350] [ 100, 150]
18 | Agaricus | benesii 050, .060] | [.030, .040] | [400,800] | [ 500, 1100] | [ 100, 200]
19 | Agaricus | bernardii [.055, .070] | [.055, .065] | [ 700, 1600] | [ 400, 700] | [ 300, 450]
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20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
o1
52
93
o4
95
56
o7
58
99
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75

Agaricus
Agaricus
Agaricus
Agaricus
Agaricus
Agaricus
Amanita
Amanita,
Amanita,
Amanita
Amanita
Amanita
Amanita
Amanita
Amanita
Amanita
Amanita
Amanita,
Amanita,
Amanita
Amanita
Amanita
Boletus
Boletus
Boletus
Boletus
Boletus
Boletus
Boletus
Boletus
Boletus
Boletus
Boletus
Boletus
Boletus
Boletus
Boletus
Boletus
Boletus
Boletus
Boletus
Clitocybe
Clitocybe
Clitocybe
Clitocybe
Clitocybe
Clitocybe
Clitocybe
Clitocybe
Clitocybe
Clitocybe
Coprinus
Coprinus
Coprinus
Hygrocybe
Hygrocybe

augustus
subrufescens
brunneofibrillosus
californicus
campestris
bitorquis
pachycolea
vernicoccora
vaginata
smithiana
phalloides
pantherina
ocreata

velosa

muscaria
gemmata
constricta
calyptratoides
calyptroderma
augusta

aprica

novinupta

C. frustosus
orovillus
Rubropulcherrimus
Butyriautumniregius
X. subtomentosus
smithii

edulis

X. mendocinensis
X. atropurpureus
Calorubripes
Rubroeastwoodiae
rex-veris

X. diffractus
Butyripersolidus
S. amygdalinus
regineus
Aureoflaviporus
Aureocitriniporus
X. dryophilus
tarda
sclerotoidea
odora

nebularis
glacialis

P. flaccida
rivulosa
deceptiva

nuda

albirhiza
calyptratus
comatus
sterquilinus
flavifolia
coccinea

[.075,
[.055,
[.050,
[.050,
[.055,
[.050,
[.115,
[.090,
[.080,
[.105,
[.070,
[.095,
[.090,
[.085,
[.090,
[.080,
[.095,
[.098,
[.080,
[.080,
[.080,
[.070,
[.110,
[.055,
[.130,
[.130,
[.100,
[.135,
[.120,
[.120,
[.110,
[.120,
[.110,
[.125,
[.115,
[.115,
[.110,
[115,
[.120,
[.120,
[.115,
[.055,
[.075,
[.050,
[.055,
[.055,
[.040,
[.040,
[.060,
[.060,
[.050,
[.000,
[.120,
[.175,
[.070,
[.070,
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105]
.065]
.065]
.075]
.080]
.065]
140]
120]
115]
120]
120]
130]
125]
120]
130]
130]
.095]
140]
110]
120]
130]
.085]
140]
.065]
155]
155]
150]
135]
170]
150]
150]
165]
150]
180]
140]
135]
140]
135]
150]
135]
.160]
.080]
.075]
.070]
.085]
.070]
045]
.050]
.075]
.080]
.060]
.190]
.160]
225]
.090]
.095]

[.050,
[.040,
[.035,
[.040,
[.035,
[.040,
[.100,
[.060,
[.075,
[.065,
[.060,
[.070,
[.070,
[.070,
[.065,
[.065,
[115,
[.065,
[.050,
[.060,
[.060,
[.055,
[.040,
[.035,
[.050,
[.040,
[.040,
[.160,
[.040,
[.045,
[.040,
[.045,
[.035,
[.040,
[.040,
[.035,
[.050,
[.035,
[.050,
[.037,
[.050,
[.035,
[.100,
[.030,
[.035,
[.035,
[.034,
[.020,
[.035,
[.040,
[.025,
[.095,
[.070,
110,
[.040,
[.040,

065
045
040]
055
050]
055
120]
.080]
.100]
.090]
.100]
095
.090]
110]
095
.090]
15|
089
.060]
.080]
085
.060]
050]
040]
.060]
.050]
.050]
160]
.060]
.060]
.060]
055
.060]
050]
.060]
045
065
045
.060]
045
065
.040]
.100]
050]
045
045
034]
.030]
040]
050]
035
110]
.080]
135
055
050]

[ 600, 3200]
[ 600, 1300]
[ 400, 1500]
[ 400, 1100]
[ 500, 1000]
[ 500, 1500]
[ 800, 1800]
[ 800, 2000]
[ 550, 1000]
[ 700, 1400]
[ 350, 1500]
[ 400, 1500]
[ 500, 1300]
[ 500, 1100]
[ 600, 3900]
[ 300, 1100]
[ 600, 1200]
[ 300, 1000]
[ 800, 2500]
[ 400, 1200]
[ 500, 1500]
[ 500, 1400]
[ 700, 1500]
[ 800, 1500]
[ 900, 1700]
[ 800, 1500]
[ 400, 1200]
[ 700, 1500]
[ 700, 2500]
[ 500, 1000]
[ 400, 1100]
[ 600, 1600]
[ 1000, 2200]
[ 900, 1800]
[ 400, 900]
[ 700, 1400]
[ 400, 1000]
[ 700, 1400]
[ 600, 1100]
[ 400, 800]
[ 400, 1200]
[ 200, 600]
[ 100, 300]
[ 250, 700]
[ 500, 2500]
[ 200, 600]
[ 200, 900]
[ 200, 400]
[ 120, 500]
[ 400, 1400]
[ 200, 900]
[ 400, 700]
[ 500, 1400]
[ 300, 600]
[ 150, 350]
[ 250, 500]

[ 1000, 3700]
[ 600, 1200]
[ 400, 1500]
[ 300, 700]
[ 300, 600]
[ 400, 1000]
[ 1000, 2500]
[ 700, 2500]
[ 600, 1300]
[ 700, 1700]
[ 400, 1800]
[ 700, 1100]
[ 1000, 2200]
[ 400, 1100]
[ 700, 1600]
[ 400, 1400]
[ 900, 1700]
[ 500, 1450]
[ 1000, 2000]
[ 500, 1500]
[ 350, 900]
[ 600, 1200]
[ 500, 1000]
[ 500, 900]
[ 700, 1400]
[ 500, 900]
[ 400, 800]
[ 700, 1500]
[ 700, 2000]
[ 500, 1000]
[ 500, 1000]
[ 600, 1500]
[ 700, 1400]
[ 500, 1000]
[ 500, 1000]
[ 500, 900]
[ 400, 700]
[ 700, 1300]
[ 600, 1200]
[ 400, 700]
[ 400, 800]
[ 150, 500]
[ 100, 400]
[ 300, 700]
[ 500, 1500]
[ 200, 600]
[ 300, 700]
[ 200, 400]
[ 150, 400]
[ 300, 650]
[ 200, 600]
[ 600, 1000]
[ 800, 2000]
[ 400, 900]
[ 200, 400]
[ 250, 550]

[ 600, 600]
[ 150, 250]
[ 150, 250]
[ 40, 100]
[ 100, 200]
[ 200, 400]
[ 100, 300]
[ 400, 400]
[ 120, 200]
[ 200, 400]
[ 100, 300]
[ 100, 250]
[ 150, 300]
[ 100, 250]
[ 200, 300]
[ 100, 200]
[ 100, 200]
[ 60, 200]
[ 150, 400]
[ 100, 200]
[ 350, 350]
[ 150, 350]
[ 250, 350]
[ 250, 450]
[ 800, 800]
[ 300, 400]
[ 100, 200]
[ 350, 700]
[ 300, 800]
[ 150, 250]
[ 100, 300]
[ 300, 500]
[ 1300, 1300]
[ 200, 600]
[ 100, 150]
[ 300, 600]
[ 150, 300]
[ 300, 400]
[ 100, 200]
[ 100, 300]
[ 100, 250]
[ 30, 70]

[ 40, 80]

[ 50, 120]
[ 150, 400]
[ 100, 150]
[ 40, 60]

[ 40, 80]

[ 30, 50]

[ 100, 250]
[ 50, 120]
[ 50, 70]

[ 100, 150]
[ 60, 100]
[ 40, 60]

[ 50, 100]




76
7
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131

Hygrocybe
Hygrocybe
Hygrocybe
Hygrocybe
Hygrocybe
Hygrocybe
Hypholoma
Hypholoma
Inocybe
Inocybe
Inocybe
Inocybe
Inocybe
Inocybe
Inocybe
Inocybe
Inocybe
Inocybe
Laccaria
Laccaria
Laccaria
Lactarius
Lactarius
Lactarius
Lactarius
Lactarius
Lactarius
Lactarius
Lactarius
Leccinum
Leccinum
Marasmius
Marasmius
Marasmius
Marasmius
Marasmius
Marasmius
Marasmius
Mycena
Mycena
Mycena
Mycena
Mycena
Mycena
Mycena
Mycena
Mycena
Mycena
Mycena
Mycena
Mycena
Mycena
Pholiota
Pholiota
Pholiota
Pholiota

singeri
miniata
flavescens
conica

G. psittacinus
punicea
capnoides
fasciculare

P. sororium
pudica
griseolilacina
pallidicremea
insinuata
fraudans
citrifolia
brunnescens
I. adaequatum
corydalina
laccata
fraterna

amethysteo-occidentalis

rubrilacteus
deliciosus
argillaceifolius
alnicola
xanthogalactus
pubescens
rubidus
pallescens
scabrum
manzanitae
curreyi
calhouniae
armeniacus
plicatulus

M. copelandii
oreades

C. quercophila
maculata
haematopus
nivicola
overholtsii
pura
purpureofusca
galericulata
capillaripes
californiensis
oregonensis
amicta
tenerrima
acicula
aurantiomarginata
velaglutinosa
terrestris
squarrosa
spumosa

[.095,
[.060,
[.075,
[.090,
[.080,
[.080,
[.060,
[.065,
[.100,
[.075,
[.080,
[.075,
[.075,
[.090,
[114,
[.080,
[.090,
[.075,
[.070,
[.080,
[.075,
[.070,
[.075,
[.070,
[.070,
[.070,
[.065,
[.065,
[.090,
[.140,
[.130,
[.090,
[.090,
[.085,
[.110,
[.130,
[.070,
[.075,
[.075,
[.075,
[.085,
[.055,
[.060,
[.070,
[.085,
[.080,
[.075,
[.065,
[.080,
[.080,
[.085,
[.075,
[.065,
[.040,
[.060,
[.060,
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115]
.090]
.090]
130]
.100]
110]
.075]
.080]
140]
.100]
105]
105]
.090]
115]
114]
.105]
120]
110]
.090]
.105]
.105]
.090]
110]
.090]
.100]
.080]
.075]
.075]
.100]
180]
175]
120]
.100]
105]
145]
180]
.085]
.090]
.095]
.090]
115]
.070]
.085]
.100]
105]
110]
.090]
.085]
.095]
105]
115]
.090]
.075]
.065]
.080]
.095]

[.050,
[.040,
[.040,
[.050,
[.050,
[.050,
[.035,
[.035,
[.060,
[.045,
[.045,
[.045,
[.045,
[.055,
[.053,
[.050,
[.060,
[.050,
[.070,
[.075,
[.070,
[.060,
[.060,
[.070,
[.060,
[.060,
[.045,
[.065,
[.070,
[.050,
[.040,
[.040,
[.035,
[.030,
[.050,
[.025,
[.040,
[.030,
[.050,
[.045,
[.050,
[.030,
[.030,
[.050,
[.060,
[.040,
[.040,
[.030,
[.040,
[.040,
[.030,
[.040,
[.035,
[.035,
[.040,
[.040,

065
.060]
050]
065
.060]
.060]
050]
045
.080]
.050]
.060]
050]
050]
070]
057]
.060]
075
.060]
085
.090]
160]
075
075
.090]
.080]
065
045
075
.080]
.060]
.050]
.050]
045
040]
065
035
055
045
055
055
.060]
035
.040]
.060]
075
065
045
035
050]
.060]
040]
055
045
045
050]
055

[ 200, 500]
[ 150, 350
[ 200, 600]
[ 200, 900]
[ 150, 400]
[ 400, 1200]
[ 250, 600]
[ 200, 700]
[ 250, 650]
[ 200, 400]
[ 150, 300]
[ 120, 300]
[ 200, 400]
[ 250, 650]
[ 200, 400]
[ 300, 700]
[ 100, 100]
[ 400, 600]
[ 150, 500]
[ 150, 400]
[ 100, 650]
[ 500, 1200]
[ 500, 1300]
[ 900, 2100]
[ 600, 1300]
[ 400, 1100]
[ 300, 700]
[ 150, 450]
[ 500, 1100]
[ 500, 1400]
[ 500, 1800]
[ 40, 80]

[ 100, 300]
[ 40, 120]

[ 100, 400]
[ 50, 200]

[ 150, 400]
[ 20, 50]

[ 150, 400]
[ 100, 300]
[ 150, 300]
[ 200, 600]
[ 150, 450]
[ 70, 300]

[ 200, 500
[ 100, 200]
[ 70, 200]

[ 20, 80]

[ 50, 150]

[ 20, 40]

[ 20, 80]

[ 100, 200]
[ 300, 500]
[ 200, 800]
[ 300, 1200]
[ 200, 600]

[ 400, 1400]
[ 200, 400]
[ 350, 700]
[ 500, 1000]
[ 400, 900]
[ 300, 1400]
[ 500, 700]
[ 200, 900]
[ 400, 1000]
[ 200, 400]
[ 200, 400]
[ 250, 400]
[ 250, 500]
[ 400, 800]
[ 30, 70]

[ 400, 900]
[ 400, 800]
[ 400, 900]
[ 300, 600]
[ 150, 500]
[ 200, 1200]
[ 200, 500]
[ 300, 600]
[ 700, 1400]
[ 200, 500]
[ 300, 600]
[ 250, 400]
[ 200, 500]
[ 400, 800]
[ 800, 1400]
[ 900, 1700]
[ 150, 300]
[ 150, 400]
[ 100, 300]
[ 500, 1100]
[ 300, 800]
[ 200, 600]
[ 100, 250]
[ 200, 900]
[ 250, 700]
[ 250, 900]
[ 1500, 1500]
[ 200, 600]
[ 300, 700]
[ 300, 1400]
[ 400, 600]
[ 200, 700]
[ 100, 250]
[ 300, 700]
[ 40, 100]

[ 100, 500]
[ 250, 700]
[ 350, 600]
[ 350, 900]
[ 400, 1200]
[ 200, 600]

[ 50, 100]
[ 30, 50

[ 70, 120]
[ 50, 100]
[ 30, 50|

[ 50, 200]
[ 40, 100]
[ 40, 150]
[ 30, 80]

[ 50, 80]

[ 40, 70|

[ 30, 40]

[ 30, 60]

[ 50, 170]
[ 30, 70|

[ 100, 150]
[ 100, 200]
[ 100, 200]
[ 20, 60]

[ 20, 50]

[ 30, 120]
[ 100, 250]
[ 150, 250]
[ 200, 500]
[ 150, 250]
[ 100, 200]
[ 150, 200]
[ 40, 100]
[ 120, 200]
[ 200, 400]
[ 200, 400]
[ 10, 10]

[ 20, 50|

[ 5, 5]

[ 15, 35]

[ 10, 30]

[ 20, 50|

[ 10, 10]

[ 15, 40]

[ 20, 30]

[ 20, 30|

[ 150, 150
[ 20, 70]

[ 10, 40]

[ 20, 50|

[ 10, 20]

[ 10, 20]

[ 100, 100]
[ 10, 30]

[ 10, 10]

| 5, 5]

[ 10, 20]

[ 40, 80]

[ 50, 100]
[ 150, 150]
[ 30, 80]




132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179

Pholiota
Psilocybe
Psilocybe
Psilocybe
Psilocybe
Russula
Russula
Russula
Russula
Russula
Russula
Russula
Russula
Russula
Russula
Russula
Russula
Strobilurus
Strobilurus
Strobilurus
Stropharia,
Stropharia
Stropharia
Stropharia
Suillus
Suillus
Suillus
Suillus
Suillus
Suillus
Suillus
Suillus
Suillus
Tricholoma
Tricholoma
Tricholoma
Tricholoma
Tricholoma,
Tricholoma
Tricholoma
Tricholoma
Tricholoma
Tricholoma
Tricholoma
Tricholoma
Tricholoma
Tylopilus
Tylopilus

flammans

D. subviscida
D. coprophila
cyanescens

D. montana
brevipes
cantharellicola
olivacea
silvicola
dissimulans
densifolia
cyanoxantha
basifurcata
fragrantissima
aeruginea
sanguinea
cerolens
albipilatus
diminutivus
trullisatus

P. semiglobata
L. riparius
ambigua
coronilla
volcanalis
umbonatus
tomentosus
megaporinus
lakei
fuscotomentosus
brevipes
pungens
caerulescens
vernaticum
sejunctum
saponaceum
muricatum
moseri
imbricatum
fracticum
dryophilum
atroviolaceum
murrillianum
equestre
griseoviolaceum
myomyces

P. porphyrosporus
indecisus

[.040,
[.065,
[.110,
[.090,
[.070,
[.080,
[.075,
[.085,
[.067,
[.060,
[.070,
[.065,
[.070,
[.060,
[.060,
[.078,
[.070,
[.040,
[.045,
[.035,
[.150,
[.120,
[.100,
[.070,
[.070,
[.080,
[.080,
[.070,
[.075,
[.095,
[.075,
[.090,
[.065,
[.085,
[.050,
[.050,
[.045,
[.065,
[.055,
[.055,
[.050,
[.075,
[.050,
[.060,
[.050,
[.050,
[.145,
[.090,

.050]
.075]
140]
120]
.095]
105]
.100]
.105]
.105]
110]
.095]
.095]
.095]
.090]
.085]
.095]
.080]
.065]
.050]
.060]
200]
150]
150]
.085]
.100]
.100]
110]
.100]
.100]
115]
.100]
.100]
.095]
110]
.080]
.065]
.060]
.100]
.070]
.075]
.060]
.090]
.070]
.075]
.070]
.075]
170]
120]

[.025,
[.040,
[.070,
[.060,
[.045,
[.065,
[.065,
[.075,
[.057,
[.060,
[.055,
[.055,
[.065,
[.060,
[.050,
[.065,
[.050,
[.030,
[.025,
[.020,
[.075,
[.060,
[.060,
[.045,
[.030,
[.035,
[.030,
[.035,
[.030,
[.035,
[.030,
[.030,
[.030,
[.040,
[.035,
[.035,
[.030,
[.035,
[.040,
[.040,
[.040,
[.050,
[.045,
[.035,
[.035,
[.035,
[.060,
[.030,

.030]
045
.090]
.080]
.060]
.090]
070]
.090]
.086]
.090]
.070]
.070]
.080]
.080]
.070]
.085]
.060]
.035]
.030]
.030]
.100]
075]
.090]
055]
.035]
.040]
040]
040]
040]
045
045
.035]
040]
.060]
055]
.045]
.035]
.050]
050]
055]
.043]
.060]
055]
.050]
050]
045
075]
040]

[ 400, 800]
[ 100, 200]
[ 100, 250
[ 200, 450]
[ 70, 150]

[ 600, 1200]
[ 700, 1200]
[ 800, 1600]
[ 400, 900]
[ 500, 2000]
[ 700, 1300]
[ 400, 1500]
[ 400, 700]
[ 750, 2000]
[ 500, 900]
[ 400, 1000]
[ 400, 1100]
[ 150, 300]
[ 12, 40]

[ 40, 170]

[ 200, 400]
[ 200, 600]
[ 400, 1400]
[ 200, 500]
[ 800, 1500]
[ 200, 800]
[ 500, 1100]
[ 200, 700]
[ 400, 1200]
[ 400, 1500]
[ 350, 1000]
[ 500, 1300]
[ 600, 1300]
[ 400, 1400]
[ 400, 900]
[ 400, 900]
[ 500, 1200]
[ 200, 450
[ 600, 1500]
[ 500, 1000]
[ 500, 1500]
[ 350, 900]
[ 500, 2500]
[ 500, 1300]
[ 400, 1100]
[ 150, 500]
[ 700, 1200]
[ 600, 1300]

[ 500, 1000]
[ 150, 400]
[ 150, 500]
[ 300, 600]
[ 100, 300]
[ 400, 600]
[ 200, 750]
[ 800, 1300]
[ 400, 1000]
[ 300, 800]
[ 300, 750]
[ 500, 1300]
[ 300, 700]
[ 700, 1500]
[ 400, 600]
[ 500, 1000]
[ 300, 700]
[ 150, 600]
[ 10, 30]

[ 150, 450]
[ 300, 800]
[ 500, 1300]
[ 700, 1700]
[ 150, 450
[ 400, 600]
[ 200, 500]
[ 500, 900]
[ 100, 200]
[ 300, 700]
[ 400, 700]
[ 150, 600]
[ 300, 800]
[ 200, 700]
[ 500, 1300]
[ 300, 1000]
[ 450, 800]
[ 300, 600]
[ 200, 500]
[ 500, 1000]
[ 300, 800]
[ 600, 1300]
[ 400, 800]
[ 400, 1500]
[ 400, 800]
[ 600, 1400]
[ 250, 500]
[ 700, 1500]
[ 600, 1200]

[ 100, 100]
[ 10, 30]

[ 10, 30]

[ 30, 60]

[ 10, 20]

[ 200, 300]
[ 250, 350]
[ 200, 350]
[ 100, 300]
[ 100, 400]
[ 200, 400]
[ 100, 300]
[ 100, 300]
[ 150, 600]
[ 100, 200]
[ 100, 250]
[ 100, 250]
[ 10, 20]

[ 5, 5]

[ 10, 20]

[ 20, 50|

[ 500, 1300]
[ 100, 200]
[ 40, 70|

[ 200, 450]
[ 50, 100]
[ 150, 300]
[ 50, 100]
[ 150, 250]
[ 200, 350]
[ 150, 350
[ 150, 200]
[ 100, 350]
[ 200, 350]
[ 100, 150]
[ 150, 200]
[ 100, 350]
[ 50, 100]
[ 200, 350]
[ 150, 250]
[ 100, 450]
[ 150, 300]
[ 100, 600]
[ 150, 300]
[ 100, 200]
[ 50, 100]
[ 150, 300]
[ 300, 450]
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C Brazilian Science Production dataset

GRANDE
AREA BIBL ORIE
Index | AREA BIBL DEMAIS OUTRAS TECN
PREDOM. PREDOM. TRABALH# CONC
0 Ciéncias Agronomia | [0. 5. [0.25 27.] [0. 7.75] [0. 20.25] [0. 20.75] [0. 10.5]
Agrérias
1 Ciéncias Ciéncia e | [0. 2.75] [0.5 19.] [0. 7.75] [0.5 16.] [0.5 16.] [0. 8.25]
Agrérias Tecnolo-
gia de
Alimentos
2 Ciéncias Engenharia | [0. 5.25] [0.75 19.5] [0. 5.] [0.5 15.375] | [0.5 15.375] | [0. 8.5]
Agrérias Agricola
3 Ciéncias Medicina [0. 2.25] [0.5 23.25] [0. 6.75] [0.25 18.75] | [0.25 18.75] | [0. 9.5]
Agrarias Veterinaria
4 Ciéncias Recursos [0. 4.75] [0.5 18.5] [0. 5.25] [0. 15.25] [0. 15.25] [0. 7]
Agrérias Florestais e
Engenharia
Florestal
5 Ciéncias Recursos [0. 1.375] [0.5 14.875] | [0. 5.625] [0.875 [1. 15.875] [0. 5.75]
Agréarias Pesqueiros 15.875]
e Engen-
haria de
Pesca
6 Ciéncias Zootecnia [0. 4.25] [0.5 28.5] [0. 6.75] [0.5 20.] [0.5 19.25] [0. 8.75]
Agréarias
7 Ciéncias Biofisica [0. 3.] [1.25 15.25] | [0. 4.] [0.667 11.] [0.667 [0. 6.375]
Biolégicas 11.125]
8 Ciéncias Biologia [0. 1.5] [1. 18] [0. 4.5] [0.75 13.25] | [0.75 13.25] | [0. 8.5]
Biolégicas Geral
9 Ciéncias Bioquimica | [0. 1.75] [0.75 18.5] [0. 5.25] [0.333 [0.333 [0. 6.]
Biolégicas 14.75] 14.75]
10 Ciéncias Botéanica [0. 1.25] [0.75 17.75] | [0. 5.] [0.75 14.75] | [0.75 14.75] | [0. 7.]
Bioldgicas
11 Ciéncias Ecologia [0. 2.25] [0.333 16.] [0. 6.25] [0.25 15.] [0.25 15.] [0. 8.25]
Biolégicas
12 Ciéncias Farmacologig [0. 1.] [0.75 18.75] | [0. 5.75] [0.417 [0.417 [0. 7.375]
Bioldgicas 15.875] 15.875]
13 Ciéncias Fisiologia [0. 1.25] [1. 19.5] [0. 4.25] [0.75 13.25] | [0.75 13.5] [0. 5.5]
Biolégicas
14 Ciéncias Genética [0. 2.] [0.875 [0. 5.75] [0.517.625] | [0.5 17.625] | [0. 9.5]
Bioldgicas 23.75]
15 Ciéncias Imunologia | [0. 1.] [1. 17.5] [0. 4.5] [0.5 17.25] [0.5 17.25] [0. 8.5]
Biolégicas
16 Ciéncias Microbiologia [0. 1.75] [1. 17.25] [0. 5.75] [0.5 15.25] [0.5 15.25] [0. 6.]
Bioldgicas
17 | Ciéncias Morfologia | [0. 1.25] [I. 16.25] [0. 4.75] [I. 16.25] [1. 17.25] [0. 7.25]
Biolégicas
18 Ciéncias Parasitologia [0. 1.] [1. 16.5] [0. 4.75] [0.333 [0.333 [0. 6.25]
Bioldgicas 13.75] 13.75]
19 Ciéncias Zoologia [0. 1.] [1. 17.875] [0. 5.125] [0.5 13.625] | [0.5 13.625] | [0. 8.]
Bioldgicas
20 Ciéncias Astronomia | [0. 1.625] [1. 12.375] [0. 2.25] [0. 6.625] [0. 6.625] [0. 3.75]
Exatas e
da Terra
21 Ciéncias Ciéncia [0. 5.] [0. 10.] [0. 6.125] [0. 13.5] [0. 13.5] [0. 6.25]
Exatas e | da  Com-
da Terra putacao
22 Ciéncias Fisica [0. 3.25] [0.417 [0. 3.75] [0. 9.25] [0. 9.375] [0. 4.375]
Exatas e 14.875]
da Terra
23 Ciéncias Geociéncias | [0. 4.875] [0. 15.25] [0. 6.5] [0. 15.5] [0. 15.75] [0. 7.75]
Exatas e
da Terra
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GRANDE
Index | AREA AREA BIB; s BIBL ORIE DEMAIS | OUTRAS | TECN

PREDOM. PREDOM. TRABALH CONC

24 | Ciéncias Matematica | [0. 2.625] | [0. 7.875] | [0. 4] [0.2510.5] | [0.25 10.5] | [0. 5.25]
Exatas e
da Terra

25 Ciéncias Oceanografial [0. 3.] [0.5 17.875] | [0. 5.875] [0. 18] [0. 18] [0. 7]
Exatas e
da Terra

26 | Ciéncias Probabilidadb [0. 2.75] [0514.25] | [0. 4] [0.25 11] [0.25 11] [0. 5.25]
Exatas e | e Es-
da Terra tatistica

27 | Ciencias Quimica [0. 3.25] [0.417 [0. 6] [0.125 15.5] | [0.125 15.5] | [0. 6.875]
Exatas e 19.875]
da Terra

28 Ciéncias Antropologial [0. 2.25] [0. 9.75] [0. 6.] [0.5 16.] [0.75 17.] [0. 10.]
Humanas

29 Ciéncias Arqueologia | [0. 2.25] [0.25 9.25] [0. 4.25] [0.75 15.5] [0.75 15.5] [0. 8]
Humanas

30 | Ciencias Ciéncia [0. 2.75] [058395] | [0. 7] 125 [L.125 [0. 9.125]
Humanas Politica 17.875] 17.75]

31 Ciéncias Educacao [0. 5.5] [0. 16.75] [0. 10.] [0. 23.75] [0. 23.75] [0. 16.25]
Humanas

32 | Ciéncias Filosofia [0. 1.5] [0.25 11.25] | [0. 6] [0.333 [0.5 17.5] [0. 10.75]
Humanas 16.75]

33 | Ciéncias Geografia | [0. 4.5] [0.333 13.5] | [0. 7.125] | [L. 17.125] | [L.125 [0. 8.75]
Humanas 17.75]

34 | Ciencias Historia [0. 2.75] [0.25 12.25] | [0. 7.25] [T. 19.5] [I. 19.5] [0. 11.25]
Humanas

35 | Ciéncias Psicologia | [0. 2.625] [0.25 [0. 8.125] [0.667 [0.667 [0. 13.5]
Humanas 17.625] 21.625) 21.75)

36 | Ciencias Sociologia | [0. 2.75] [0.25 12.75] | [0. 6.25] [0519.75] | [0.520] [0. 11.5]
Humanas

37 Ciéncias Teologia [0. 1.875] [0.125 [0. 7.75] [0.375 19.] [0.5 19.] [0. 12.125]
Humanas 13.75]

38 Ciéncias Administraggo [0. 6.25] [0.25 13.25] | [0. 10.75] [0.5 19.75] [0.5 20.] [0. 10.]
Sociais
Aplicadas

39 Ciéncias Arquitetura | [0. 4.] [0. 10.5] [0. 6.5] [0.333 18.] [0.333 18.5] | [0. 8.75]
Sociais e Urban-
Aplicadas ismo

10 | Ciencias Ciéncia da | [0. 3.75] [0. 11.125] | [0. 6.375] | [0.25 19.25] | [0.292 [0. 8.125]
Sociais Informacéo 19.25]
Aplicadas

41| Ciéncias Comunicacad [0. 3.25] [0.11.75] | [0. 8.25] [0.5 20.5] [0.708 [0. 10.375]
Sociais 20.75]
Aplicadas

42 Ciéncias Demografia | [0. 3.125] [1. 9.875] [0.125 [0.75 [0.75 16.75] | [0.375
Sociais 4.375] 16.625] 8.375]
Aplicadas

43 | Ciéncias Desenho [0. 4.75] [0.25 9] [0. 8.875] [0.510.75] | [0.583 [0. 10.875]
Sociais Industrial 20.625]
Aplicadas

14 | Ciéncias Direito [0. 1.5] [0. 11.75] [0. 12.125] | [0.5 27.25] | [0.583 [0. 9.125]
Sociais 27.25]
Aplicadas

45 | Ciéncias Economia | [0. 4.5] [0. 12.5] [0. 6.75] [0. 18.5] [0. 18.5] [0. 7.5]
Sociais
Aplicadas

16 | Ciencias Economia | [0. 4.25] 1. 14] [0. 7.5] [0. 23.5] [0. 23.5] [0. 18.5]
Sociais Doméstica
Aplicadas

47 | Ciéncias Muscologia | [0. 3.625] | [0.625 11.] | [0. 4.875] | [1.5 20.75] | [L.5 18.125] | [0.375
Sociais 13.875]
Aplicadas
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GRANDE

AREA BIBL ORIE
Index | AREA BIBL DEMALIS OUTRAS TECN
PREDOM. PREDOM. TRABALH# CONC
48 | Ciéncias Plancjament$ [0. 3.5] [0.25 10.5] | [0. 6.5] [0517.75] | [0.5 18] [0. 7.5]
Sociais Urbano e
Aplicadas Regional
19 | Ciéncias Servigo So- | [0. 3.5] [0. 11.375] | [0. 8] [0583 22] | [0.667 [0. 13]
Sociais cial 22.125]
Aplicadas
50 | Ciéncias Turismo [0. 2.875] | [0.417 [0. 6] [1.75 16 [1.75 16 [0.202
Sociais 9.625] 6.375]
Aplicadas
51 Ciéncias da | Educagdo [0. 2.75] [0.25 15.75] | [0. 7.75] [0.75 17.75] | [0.75 17.75] | [0. 9.25]
Satide Fisica
52 Ciéncias da | Enfermagem/| [0. 1.5] [0. 16.] [0. 7.75] [1. 22.75] [1. 22.75] [0. 12.]
Satde
53 | Ciéncias da | Farmacia | [0. 1.25] [0.25 [0. 6.5] [0.417 [0.417 16.5] | [0. 8.75]
Satde 17.875] 16.375]
54 Ciéncias da | Fisioterapia | [0. 1.5] [0.25 11.5] [0. 6.625] [1.125 [1.125 [0. 9.125]
Saude e Terapia 14.25] 14.25]
Ocupa-
cional
55 Ciéncias da | Fonoaudiologial0. 1.375] [0.625 [0. 5.625] [1.875 [2.25 [0. 12.5]
Saide 15.25] 20.25] 20.625]
56 | Ciéncias da | Medicina | [0. 2] [0.25 24.25] | [0. 6.5] [0.2275] | [0. 22.75] | [0. 12.75]
Satide
57 Ciéncias da | Nutricdo [0. 1.75] [0.517.] [0. 7.25] [0.75 17.] [0.75 17.] [0. 8]
Satde
58 | Ciéncias da | Odontologia | [0. L.875] | [0.5 22.25] | [0. 6.375] | [0.5 21.125] | [0.5 21.125] | [0. 13.125]
Satde
50 | Ciéncias da | Saude Co- | [0. 1.625] | [0. 16.875] | [0. 7] [0.25 [0.292 [0. 11.125]
Saude letiva 19.625] 19.75]
60 Engenharias | Engenharia | [0.292 7.25] | [0.458 [0. 3.875] [0.417 [0.417 [0. 4.5]
Aeroespa- 11.625] 10.625] 10.625]
cial
61 Engenharias | Engenharia | [0. 5.5] (1. 13.] [0. 5] [0. 12.5] [0. 12.5] [0. 4.5]
Biomédica
62 Engenharias | Engenharia | [0. 8.25] [0. 15.] [0. 7] [0. 15.5] [0. 15.5] [0. 7.75]
Civil
63 Engenharias | Engenharia | [0. 6. [0. 9.25] [0. 5] [0. 11.5] [0. 11.5] [0. 4.25]
Elétrica
64 | Engenharias | Engenharia | [0. 7.75] [0. 13.25] | [0. 5.875] | [0. 13.625] | [0. 13.625] | [0. 6.5]
Mecanica
65 Engenharias | Engenharia | [0.333 [0.333 [0. 2.25] [0.375 9.5] [0.375 9.5] [0. 8.375]
Naval e | 6.625] 9.625]
Oceanica
66 Engenharias | Engenharia | [0. 8.375] [0.375 [0. 4.75] [0. 15.5] [0. 15.5] [0. 7]
Nuclear 31.75]
67 Engenharias | Engenharia | [0. 6.75] [0.667 17.5] | [0. 6.25] [0. 14.25] [0. 14.25] [0. 4.75]
Quimica
68 | Engenharias | Engenharia | [0. 7.25] [0.667 [0. 6.5] [02516,5] | [0.25 16.5] | [0. 7.75]
Sanitédria 14.25]
69 Engenharias | Engenharia | [0. 6.25] [0.5 15.75] [0. 4.75] [0. 10.5] [0. 10.5] [0. 5.5]
de Ma-
teriais e
Metalidrgica
70 Engenharias | Engenharia | [0. 5.25] [0.667 10.5] | [0. 3.75] [0. 7] [0. 7] [0. 5.75]
de Minas
71 Engenharias | Engenharia | [0. 6.75] [0.25 14.25] | [0. 7.75] [0. 16.75] [0. 16.75] [0. 7.25]
de
Produgao
72 Engenharias | Engenharia | [0. 5.625] [0.333 8.75] | [0. 3.875] [0.292 [0.292 [0. 7.25]
de Trans- 10.625] 10.625]
portes
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Index | AREA

GRANDE

PREDOM.

AREA
PREDOM.

BIBL BIBL
TRABALH

ORIE
CONC

DEMALIS

OUTRAS

TECN

73
Letras
Artes

Lingtiistica,

Artes
e

[0. 2.5]

[0. 8.75]

[0. 6.25]

[0.5 16.75]

[1. 20.75] 0.

9.5]

74
Letras
Artes

Lingiiistica,

Letras
e

[0. 2.75] [0.25

13.25] | [0. 7]

[0.75 17.25]

[0.75 18] 0.

11.5]

75
Letras
Artes

Lingiiistica,

Lingiiistica
e

[0. 2.5] [0.25

12.875]

[0. 7.375]

[I. 20.625]

[ 21] [0.

14]

D Choice of beta
D.1 Table of best beta values:

Name

Fungi 3

Fungi 4

Fungi 5

BSP_ 3

BSP 4

BSP 5

BIKMn
BIKMc
BIKMo
BIKMecs
BIKMos

1.0 | 1.0
1.1 1.1
1.0 | 1.0
1.5 2.2
2.11]1.0

1.0 | 1.0
1.1]2.5
1.0 | 2.6
2.6 2.1
1.0 | 1.1

1.0 | 1.0
1.2 | 2.2
25128
1.7 2.1
1.9 | 1.0

1.0 | 1.0
1.7 1.8
1.4 | 1.0
1.5 | 1.9
1.8 | 2.4

1.0 | 1.0
2.2 1.4
25121
1.9 1.3
1.0 | 2.4

1.0 | 1.0
1.1 1.8
1.0 | 1.1
1.2 | 2.2
1.7 | 1.0

BKMn
BKMec
BKMes

1.0 | 1.0
1.2 1.9
1.5 | 2.4

1.0 1.0
1.1] 2.4
2.6 2.8

1.0 | 1.0
1.3 2.7
1.7 | 2.7

1.0 | 1.0
1.1 1.1
1.5 | 1.7

1.0 | 1.0
1.9 | 2.3
1.1] 2.4

1.0 | 1.0
1.3 2.7
1.1] 2.4

Name

Fungi 3

Fungi 4

Fungi 5

BSP_ 3

BSP 4

BSP 5

BnIKMec
BnIKMo
BnIKMcs
BnIKMos
BelKMn
BcelKMo
BclKMos
BolKMn
BolKMc
BolKMecs

1.0 | 1.5
1.0 | 1.0
1.0 | 1.1
1.0 | 1.0
1.2 | 1.0
1.2 | 1.0
1.5 | 1.0
2.6]1.0
1.0 | 1.1
2124

1.0 | 2.2
1.0 | 1.0
1.0 | 2.8
1.0 | 1.0
1.2 | 1.0
1.1 1.0
2.6 1.1
1.0 | 1.0
1.0 | 1.1
1.0 | 2.1

1.0 | 2.3
1.0 | 1.6
1.0 | 1.2
1.0 | 1.0
1.6 | 1.0
1.3 1.8
1.3 | 2.7
2.6 1.0
2.5]1.2
1.0 | 1.4

1.0 | 1.8
1.0 | 1.0
1.0 | 2.3
1.0 | 2.4
1.5 | 1.0
1.5 | 1.0
1.5 | 2.3
1.8 | 1.0
1.4 1.8
1.4 | 2.0

1.0 | 1.7
1.0 | 1.7
1.0 | 1.5
1.0 | 2.5
1.9 | 1.0
1.9 | 1.0
1.9 | 1.0
1.0 | 1.0
1.0 | 1.7
1.0 | 2.7

1.0 1.4
1.0 | 1.0
1.0 | 2.3
1.0 | 1.0
1.1 1.0
1.2 | 1.2
1.1 1.0
1.4 | 1.0
2.01]2.1
1.0 | 2.2
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BnKMe [1.0|1.2|1.0]1.8 [1.0]20 |1.0]12][1.0]23[1.0]25
BnKMes [1.019 |1.0]1.7 |1.0|24 [1.0]1.7/1.0[20/1.0]2.7
BecKMn 1210 1410 18|10 |15|1.0|1.1]|1.0[1.3]|1.0
BoKMn [1.7|10|10]1.0 10|10 |1.0]1.0[/1.0]1.0/1.0]1.0
BoKMc¢ 2123 [1.0]12 (10|20 1.0]12/25[23/1.0]2.3
BnKMes 2124 11.0]28 |1.0|22 |1.0|1.7]1.0]25]26|2.2
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PA3PABOTKA MOJU®UKAIIUN METOOA K-CPEAHUX AJId KJIACTEPHOTO AHAJIU3A UHTEP-
BAJIbHBIX JAHHBIX C UCHOJIb30BAHUEM AHOMAJIbHBIX KJIACTEPOB [DJIEKTPOHHBII PECYPC|:
NPEMPUHT WP7/2024/01 / M. TanbiHYUK!, ®. KAPBAILO?, A. IIapuHOB?, B. Muprkun* ; HAIIL.
UCCJIEL. VYH-T «BBICIIASA IIKOJA SKOHOMMKH». — DJIEKTPOH. TEKCT. HOAH. (530 KB) — M.:
M3a. pom BITD, 2024. — (Cepust WP7 «MATEMATUYECKUE METO/IBI JJIsSI IPUHATUSA PEIIEHUI B
SKOHOMUKE, BU3HECE U OJIMTUKE» ). — 34 C.

B nocsieaee Bpemst HabIIr01a€TCS MHTEPEC K BO3MOYXKHOCTH PaCIIPOCTPAHEHUS MOITYJITPHOTO METOJIA KJIac-
TEPHOrO aHaIu3a, K-CPE/IHUX, HA TaK HA3bIBAEMbIe MHTEDPBAJbHBIE JaHHBIE. B omymanme oT cirydast OOBITHBIX
JAHHBIX, 3HAUYEHUSAMHU IIPU3HAKOB 3JIeCh SABJIAIOTCA HE OT/eJbHble YHCia, & UHTEPBaJIbl BEIECTBEHHOI OCH.
Kak u3BecTHo, oniHa u3 npobsieM MeTo/1a K-CPeJHUX — ITO HHUIINAIMIAIIN METO/IA, TO €CTh OIIPEIeJIEHNE MeC-
TOTIOJIO?KEHUST TUTIOTETUIECKIUX EHTPOB KJIACTEPOB JJTsl HAYaJ Ia UTepaIuii MeTo/Ia. XOTs Pe3YIbTAThl PADOTHI
METO/Ia CUJIbHO 3aBUCAT OT WHUIMAJJIU3AINY, HIKAKOTIO YHUBEPCAJIBHOI'O II0JIX0/1a K HACTOSAIIEMY BPEMEHU HE
CyIIeCTBYeT.

B nmammoit pabore nccseayercss BO3MOXKHOCTD UCIIOJIb30BAHISA AHOMAJIHHBIX KJIACTEPOB MJIsT MHUITHATAZAIIAN
JIJIsT METOJIA TIPU WHTEPBAJIBHBIX JAHHBIX. A MMEHHO, MBI HCIIOJIb3yeM «MHTEPBAJIbHYIO» BepCUIo mudaropos-
CKOI'O pa3JjIoKeHus pa30poca JAHHBIX Ha JIBa CJIAraeMbIX, OJIHO U3 KOTOPBIX — MUHUMHU3UPYEMBIil KpuTepuii
HAMMEHBIITNX KBaJIPATOB JIJIsi METO/a K-CPEJIHAX, & BTOPOe — JIOMOJIHUTEIbHBIN KPUTEPUil, TpeOYOMINil, UTOObI
KJIacTephl ObLIN OOJIbIIME W aHOMAJbHBIE. MBI IMOIy9YaeM TaKhe aHOMAaJIbHbIE KJIACTEPBI OJUH 3a IPYTUM U
HCITOTB3YEM TIEHTPBI CAMBIX OOJIBINNX M3 HUX IS HHUINAJIMIAINN MEeTOa K-CpeaHnX. [Ipu 95ToM BOZHUKAOT
pa3/IMYHbIE BEPCUU 33 CUET UCIOJIH30BAHUS aJAITHBHO HACTPANBAEMBIX BECOBBIX KOI(DMUIINEHTOB IPU3HAKOB.
Mp#1 noka3bIBaeM, UTO IIPEJIOKEHHBII METO/] BIIOJIHE KOHKYPEHTOCIIOCOOEH Ha IIPUMEPE JIBYX TaOJIHI] UHTEP-
BAJILHBIX JIAHHBIX, BIEPBbIE BBOJMMBIX B HAYYIHDLIH 000POT B JAHHOM TEKCTE.

KJIOYEBBIE C/IOBA: HHTEPBAJIBHBIE JAHHBIE, K-CPEAHMX, METOJ HAMMEHBIINX KBAIPATOB,
AHOMAJILHBII KJIACTEP, BECOBHIE KORPOUIUEHTHI TPU3HAKOB

LTIEMMAPTAMEHT AHAJIM3A JAHHBIX M ICKYCCTBEHHOI'O MHTEJJIEKTA, HAIIMOHAJIBHBIN UCCJIEO-
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