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1 Introduction

The U.S. tort system provides $172 billion in gross compensation to the plain-

ti↵s each year. A significant portion of this compensation represents lawyers’

fees and other costs of producing evidence (Engstrom, 2014).1 Although the

production of evidence is a core component of any civil justice system and

the cost of producing evidence influences the actual compensation received

by the victims, previous theoretical work on civil litigation abstracts from

the analysis of the optimal production of evidence.2 Our paper contributes

to the law and economics literature by presenting the first application of

mechanism design to the optimal design of the civil justice system.3 The

fundamental goals of the civil justice system and the optimal production of

evidence are considered in our design. We demonstrate that the optimal

civil justice mechanism minimizes the social welfare loss associated with an

accident by providing access to justice to the victims and maximal compen-

sation to the victims confronting liable injurers at the minimum expected

1In civil litigation, the cost of producing evidence encompasses the litigation costs

and the lawyers’ fees. Litigation costs include the costs associated with the production

of information by each party and the legal discovery process (i.e., the formal process of

exchanging information between parties about the evidence and witnesses that will be

presented at trial). They also include the costs associated with the additional production

of information at trial. Litigation costs represent approximately $5.2 billion (Engstrom,

2014). Lawyers’ fees represent approximately one-third of the plainti↵’s gross or net

compensation.
2For seminal work on litigation, see Shavell (1982), Png (1983), Bebchuk (1984), Rein-

ganum and Wilde (1986), Schweizer (1989) and Spier (1992, 1994). For seminal work on

care taking and litigation, see Png (1987) and Landeo et al. (2007). For seminal work on

third-party funding of litigation, see Daughety and Reinganum (2014) and Landeo and

Nikitin (2018).
3More specifically, previous literature has applied mechanism-design tools to study

specific civil justice institutions such as the English and American rule for allocation of

litigation costs. In contrast, our paper studies the optimal design of the whole civil justice

system.
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cost of producing evidence. In contrast to previous work, our comprehen-

sive approach allows us to characterize optimal cost-allocation rules under

an optimal production of evidence. We demonstrate that a tort reform that

implements the proposed mechanism in real-world settings is feasible.

We study the design of the optimal civil justice system in an environment

characterized by two-sided private information and two players, a victim and

an injurer. Without loss of generality, we focus on direct-revelation civil jus-

tice mechanisms where the victim and the injurer truthfully report their

types (Myerson, 1981, 1979). We identify the properties that must be satis-

fied by an optimal civil justice system to ensure access to justice and maximal

compensation to the victims at the minimum expected cost of producing ev-

idence. Our analysis demonstrates that the cost of producing evidence, the

probability of confronting liable injurers, and the society’s concern regarding

the victim’s compensation determine the optimal civil justice system.4 We

show that, when the optimal production of evidence is implemented, full

revelation of private information is achieved by investigating just a subset of

legal cases. Our findings suggest that the cost-allocation rule applied in the

American civil justice system, where each party pays their own cost of pro-

ducing evidence, is not always socially optimal. The English rule, where the

liable injurer or the victim confronting a non-liable injurer pays all the cost

of producing evidence, is the optimal cost-allocation rule when the likelihood

of liable injurers is moderate and the society’s concern about restoring the

victim’s welfare is su�ciently high. In contrast to ine�cient real-world civil

litigation procedures, under the optimal mechanism, all victims get access

to justice, the victims who confront liable injurers get maximal compen-

sation, and evidence is produced at the minimum expected social cost by

investigating just a subset of the legal cases.

The civil justice system is modeled as follows. We assumes that a neg-

4The probability of confronting liable injurers will henceforth be referred to as “prob-

ability of liable injurers”
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ative event (an accident) caused by the injurer generated damages to the

victim, and that the injurer might be liable or legally responsible for these

damages and hence, might be required to pay compensation to the victim.

The damage level, which is private information, represents the victim’s type.

Our setting allows for a continuum of damage levels. The injurer’s liability,

which is also private information, represents the injurer’s type, non-liable and

liable types. The types are independently distributed, and the distributions

are commonly known.

A welfare-maximizing direct-revelation civil justice mechanism with a

truth-telling equilibrium can be described as follows. A victim initiates the

civil procedure by deciding to participate in the mechanism and the injurer

is compelled to participate.5 Both parties are required to report their types.

The mechanism produces evidence, perfectly reveals the types, and ends with

transfers from the liable injurers to the victims.

The social planner’s civil justice design problem consists of a mathemati-

cal optimization problem. The objective function is represented by the social

welfare loss associated with an accident, which includes the expected harm

from an accident, the expected cost of producing evidence, the expected

infringement of the victim’s right of access to justice or right to fully par-

ticipate in the legal system (Landeo and Nikitin, 2018), and the expected

infringement of the right of the victim confronting a liable injurer to be fully

compensated. The players’ constraints ensure the victim’s participation in

the mechanisms and the parties’ truthful report of types.

We begin our analysis with a benchmark model where the cost of pro-

ducing evidence is paid by the social planner. This simplifying assumption

allows us to introduce the main component of our methodological approach.

We characterize the optimal civil justice system by adopting a two-step ap-

proach. In the first step, we identify the interim probabilities of investigation

5These features of the mechanism are aligned with the voluntary participation of the

plainti↵ and the compulsory participation of the defendant in civil litigation.
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that induce the victim to truthfully reveal his damage type. We show that

the cost of producing evidence and the probability of liable injurers deter-

mine the interim probabilities of investigation. In the second step, we verify

whether the interim probabilities of investigation also induce the liable in-

jurer to truthfully report her liability type, and apply adjustments to the

interim probabilities of investigation. We show that the optimal produc-

tion of evidence involves the investigation of just a subset of legal cases. If

the probability of liable injurers is su�ciently low, irrespective of the vic-

tim’s reported damages, then only legal cases where the injurer reports to be

non-liable might be investigated. If the probability of liable injurers is su�-

ciently high, then legal cases where the injurer reports to be non-liable and

the victim reports relatively low damages and legal cases where the injurer

reports to be liable and the victim reports relatively high damages might be

investigated.

We then demonstrate that a tort reform that implements the optimal

mechanism in real-world settings is feasible. The proposed tort reform con-

sists of adding a first stage, an “Information-Revelation Stage” to the cur-

rent civil litigation procedures. We model civil litigation using a game-

theoretic setting with two-sided incomplete information and three Bayesian

risk-neutral players, a social planner, a plainti↵ (victim) and a defendant (in-

jurer). In the first stage, the Information-Revelation Stage, the social planner

chooses a direct-revelation mechanism involving incentives to the plainti↵ to

file a lawsuit (initiate the mechanism) and incentives to the plainti↵ and de-

fendant to truthfully report their types. The social planner then informs the

reported types to the plainti↵ and the defendant, and a standard two-stage

litigation game starts. The plainti↵ makes a take-it-or-leave-it settlement of-

fer to the defendant, and the defendant decides whether to accept the o↵er.

In case of acceptance, the legal case is settled out of court; otherwise, a costly

trial occurs. We show that a direct-revelation mechanism with a truth-telling

equilibrium exists in this environment, and that this mechanism is the same
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as the optimal mechanism of the benchmark model. In equilibrium, perfect

revelation of private information is achieved by producing evidence on just

a subset of legal cases. All legal cases are settled out of court and hence, the

likelihood of trial and the corresponding litigation costs are minimized.

Next, we study the optimal civil justice design with endogenous alloca-

tion of the cost of producing evidence between the victim and the injurer.

The assumption that the social planner pays the cost of producing evidence

is relaxed. In contrast to the previous literature, the design of cost-allocation

rules takes into account the optimal production of evidence. We show that

our main qualitative findings regarding the design of the optimal production

of evidence also hold in this environment. New insight regarding the appli-

cation of the two most common cost-allocation institutions, the English and

the American rules, are derived. Under the English rule, the liable injurer

or the victim confronting a non-liable injurer pays all the cost of producing

evidence. Under the American rule, which is applied in the American civil

justice system, each party pays her own cost of producing evidence. We show

that the American rule is not always socially optimal. When the likelihood of

liable injurers is moderate and the society’s concern regarding the victim’s

compensation is su�ciently high, the English rule is the socially-optimal

rule. Our analysis underscores the robustness of our benchmark model find-

ings regarding the optimal production of evidence, and the tractability of

our framework to study more complex civil justice systems.

Important policy implications are derived from our paper. Our analysis

demonstrates that the optimal civil justice mechanism shares some of the

features present in the American civil litigation system but also underscores

other relevant factors for the design of optimal civil justice institutions. In

contrast to the American civil justice system where the production of evi-

dence occurs in all the legal cases that are filed, we show that, in the op-

timal civil justice system, the truthful revelation of private information is

achieved by devoting society’s resources to the investigation of only a sub-
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set of legal cases. When the production of evidence is optimal, the social

planner achieves the core goal of providing access to justice and maximal

compensation to the victims at the minimum cost of producing evidence.

The extension to our benchmark model provides additional policy implica-

tions. When the allocation of the cost of producing evidence is endogenous,

we demonstrate that the optimal cost allocation does not always correspond

to the cost-allocation rule applied in the American civil justice system.

The closest to our work is the very small theoretical literature on the

design of civil litigation institutions using a mechanism-design approach.6

Schweizer (1989) studies a game-theoretic model of litigation with two-sided

incomplete information. Mechanism-design tools are also used to explore

whether the ine�cient equilibrium under which litigation is not avoided with

certainty is due to the take-it-or-leave-it bargaining procedure adopted in the

game-theoretic model. The framework assumes that the litigants’ outside op-

tion is to proceed to trial where the private information is perfectly revealed

and the English rule for cost allocation is applied. The findings suggest that

there are more important factors that preclude e�ciency, and that the e�-

cient outcome does not always exist. Spier (1994) analyzes the e↵ects of Rule

68 for cost allocation between a plainti↵ and a defendant on the likelihood

of out-of-court settlement using a game-theoretic model of one-sided incom-

plete information.7 Mechanism design is then applied to a two-sided private

information setting to study the optimal cost-allocation rule that maximizes

the probability of settlement. The framework assumes that the litigants’

outside option is to go to trial, where the private information is perfectly

revealed and the American rule for cost-allocation is applied. The results

6For brevity, this section summarizes only the papers that are closely related to our

work.
7Under Rule 68, cost allocation depends on the pretrial settlement o↵ers. When a

litigant rejects an out-of-court settlement o↵er and gets a less favorable judgment at trial,

she must compensate the other litigant for certain costs incurred after the o↵er was made.
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suggest that the optimal rule for the allocation of the pretrial litigation costs

resembles Rule 68.

Klement and Neeman (2005) investigate the optimal cost-allocation rule

that minimizes the rate of litigation subject to maintaining deterrence using

one-sided private-information framework and a mechanism-design approach.

This paper also assumes that the litigants’ outside option is to proceed to

trial and that the defendant’s private information is perfectly revealed at

trial. Their findings suggest that the optimal cost-allocation mechanism

involves instruments that resemble the English rule. Demougin and Fluet

(2006) use a mechanism-design approach to study the optimal standard of

proof rule for determining negligence that maximizes deterrence, and find

that “the more-likely-than-not” rule induces maximal care-taking incentives

for potential injurers.8

These papers di↵er significantly from our work. Schweizer’s (1989) appli-

cation of mechanism design is limited to exploring a specific outcome asso-

ciated with his game-theoretic environment. The focus of Spier (1994) and

Klement and Neeman (2005) is on the design of cost-allocation rules that

maximize the likelihood of out-of-court settlement. Demougin and Fluet’s

(2006) paper is centered on the design of optimal standard of evidence rules.

In contrast to our work, the design of civil justice institutions in these pa-

pers does not consider the optimal production of evidence. Importantly,

these previous applications of mechanism design abstract from the funda-

mental goals of the civil justice system of providing access to justice and full

compensation to the victims confronting liable injurers.

Another strand of this literature is related to the application of mecha-

nism design to the design of criminal law institutions. Silva (2019) studies

truth-telling mechanisms for groups of suspects where only one is guilty, and

8Under the “more-likely-than-not” rule, a defendant is considered liable when the court

determines that it is “more likely than not” that she did not fulfill the social standard of

care. A degree of certainty above 50% is generally applied.
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finds that the optimal mechanism involves leniency for confession before in-

vestigation. Siegel and Strulovici (2023) investigate optimal deterrence with

direct-revelation mechanisms for harmful acts committed by single injurers.

They study two deterrence settings, and demonstrate that the optimal mech-

anisms resemble criminal law institutions such as plea bargaining and binary

verdicts. None of these papers study optimal civil justice institutions.

Our work is also connected to the theoretical literature on the economic

analysis of civil litigation (Shavell 1982, Bebchuk 1984, Reinganum and

Wilde 1986, Png 1987, Spier 1992, Landeo et al. 2007). Applied economic

models of pretrial settlement bargaining have been developed to explain the

sources of negotiation breakdown in civil litigation and to propose reforms

aimed at improving the e�ciency of civil litigation institutions. Primarily

game theory has influenced these studies. A limitation of this approach is

that the e↵ectiveness of a specific litigation institution might be a↵ected by

the features of the bargaining model. In particular, the properties of the

litigation institution are sensitive to the timing of the game. Importantly,

the design of the litigation institutions does not take into account the opti-

mal production of evidence. We extend this literature by providing the first

general application of mechanism design to the study of optimal civil justice

institutions under an optimal production of evidence.

The rest of the article is organized as follows. Section 2 presents the main

assumptions and notation used in the benchmark model, and describes the

social planner’s civil justice design problem. Section 3 presents the analysis

of the benchmark model, shows that the goals of the civil justice system can

be achieved by producing evidence in just a subset of legal cases, and provides

a real-world application. Section 4 studies the optimal civil justice design

under endogenous allocation of the cost of producing evidence between the

injurer and the victim, and shows that the cost-allocation rule applied in

the American civil justice system is not always socially optimal. Section 5

provides concluding remarks. Formal proofs are presented in the Appendices.
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2 Civil Justice System

This section introduces the stylized civil justice system studied in this paper.

We presents the basic notation, describe the direct-revelation civil justice

mechanism with a truth-telling equilibrium, and discusses the social plan-

ner’s civil justice design problem.

2.1 Basic Notation

Our framework involves two-sided private information and two risk-neutral

players, a victim V and an injurer I. A negative event (an accident) caused

by the injurer generated damages A to the victim, and that the injurer

might be liable or legally responsible for these damages and hence, might

be required to pay compensation to the victim. Damages A 2 [0, Ā] rep-

resent the victim’s type, where A = 0 and A = Ā refer to the lowest and

highest damages experienced by the victim, respectively. A is distributed

with probability density function g(A) and cumulative distribution function

G(A), and g(A) > 0 8A 2 [0, Ā]. Liability L 2 {0, 1} represents the injurer’s

type, where L = 0 denotes a non-liable type and L = 1 denotes a liable type.

The probability of liable injurers is p 2 (0, 1). The victim’s and the injurer’s

types are private information and the distributions of types are commonly

known. The victim’s and injurer’s types are stochastically independent.9

The social planner’s goal is to ensure the victim’s access to justice or par-

ticipation in the civil justice system (Landeo and Nikitin, 2018) and maximal

compensation to the victims confronting liable injurers.10 The social plan-

ner’s adjudication of compensation to the victim is based on the injurer’s

liability type. We denote this criterion as the social planner’s adjudication

criterion. For any realization of A 2 [0, Ā], if the injurer is liable (L = 1),

9Our findings also hold in environments with non-independent types that do not allow

the social planner to use one player’s information to learn about the other player’s type.
10See Section 2.3.2 for details about the social welfare loss function.
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then the victim should be compensated with transfer A; otherwise, no com-

pensation should be granted.11 The victim and the injurer have limited

financial resources. We denote the victim’s and the injurer’s financial re-

sources as WV
> 0 and W

I
> Ā.12

The social planner’s problem is derived from the fact that she does not

know the victim’s and the injurer’s types. The optimal civil justice design

should allow the social planner to accomplish her goal by revealing the par-

ties’ types at the minimum social cost of producing evidence.

2.2 Civil Justice Mechanisms

Without loss of generality, we focus our attention on a special class of civil

justice mechanisms, the direct-revelation civil justice mechanisms with a

truth-telling equilibrium (Myerson, 1981, 1979). This mechanism can be

described as follows. The victim initiates the civil procedure by deciding to

participate in the mechanism and the injurer is compelled to participate.13 If

the victim decides to participate, both parties are required to simultaneously

and confidentially report their types, (rV , rI) to the social planner, where

r
V 2 [0, Ā] and r

I 2 {0, 1} denote the victim’s and the injurer’s reports,

respectively.

Although the players’ types are private information, the social planner

can produce evidence at a cost to investigate the reported types. We assume

that the technology allows the social planner to perfectly learn the types.

The costly technology for the production of evidence is described by a pair

11In other words, we implicitly assume that the social planner uses an exogenous social

standard of care for liability determination.
12The last assumption indicates that although the injurer has limited financial resources,

his financial resources su�ce to compensate a victim of type A 2 [0, Ā], i.e., he is not

judgment proof.
13These features of the mechanism are aligned with the voluntary participation of the

plainti↵ and the compulsory participation of the defendant in civil litigation.
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of cost functions. We denote C0(A) as the cost of producing evidence when

the injurer’s type is non-liable and the victim’s type is A, and C1(A) as the

cost of producing evidence when the injurer’s type is liable and the victim’s

type is A.14 We assume that Ci(0) > 0 (i = 0, 1), and 8A 2 [0, Ā], @Ci(A)
@A > 0

(i = 0, 1).15 We allow for C0(A) � C1(A) and C0(A) < C1(A). We denote

q(rV , rI) as the probability of investigation.

We assume that the social planner can also impose a fine f
i 2 [0, f̄ i]

when party i’s report ri is found to be untruthful (i = I, V ). Given that the

victim and the injurer have limited financial resources, f̄ i  W
i (i = V, I).

The transfers and fines that result from the production of evidence are as

follows. First, when the reports are not investigated, the injurer transfers rV

to the victim if rI = 1. Second, when the reports are investigated and found

to be truthful (rV = A and r
I = L), the injurer transfers r

V to the victim

if rI = 1. Third, when the reports are investigated and the injurer’s report

is found to be untruthful (rI 6= L), the injurer pays fine f
I 2 [0, f̄ I ] to the

social planner, and the social planner transfers rV to the victim if L = 1.16

Fourth, when the reports are investigated and the victim’s report is found

to be untruthful (rV 6= A), the victim does not receive any transfers and

pays fine f
V 2 [0, f̄V ] to the social planner.17 Fifth, when the reports are

14In Section 3, the benchmark model, we assume that the cost of producing evidence

is paid by the social planner. In Section 4, we endogenize the allocation of the cost of

producing evidence between the injurer and the victim.
15The victim has an incentive to untruthfully report higher damages to get higher

compensation. As a result of the higher investigation complexity when damages are higher,

stronger investigation e↵orts and higher costs might be required.
16For mathematical tractability, the rule consists of just imposing a fine to the untruthful

injurer. We show that in equilibrium, the fine is the maximal, f̄I . Given that the injurer

is financially constrained, f̄I = W
I
. Alternatively, we could define the maximal fine as

W
I � A, charge this fine to the liable injurer and require the liable injurer to pay the

compensation A. Notice that the two rules produce the same incentive to the injurer in

terms of expected loss, and hence, are equivalent.
17The component of the rule consisting on not providing any compensation to the victim
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investigated and the victim’s and injurer’s reports are found to be untruthful

(rV 6= A and r
I 6= L), the victim does not receive any transfers, and the

victim and the injurer pay fines f
V 2 [0, f̄V ] and f

I 2 [0, f̄ I ] to the social

planner.

Two types of constraints must be imposed to ensure participation in

the mechanism and truthful reports: individual-rationality constraints and

incentive-compatibility constraints. To simplify the notation, we denote the

probability of investigation q(rV , rI) when the injurer reports to be non-

liable and the victim reports to be type A as q0(A) 2 [0, 1], and the proba-

bility of investigation q(rV , rI) when the injurer reports to be liable and the

victim reports to be type A as q1(A) 2 [0, 1].18 First, a victim’s individual-

rationality constraint is required to ensure that the victim will be willing

to participate in the civil justice mechanism. Second, victim’s and injurer’s

incentive-compatibility constraints are required to ensure that the players

will be willing to truthfully report their types.19

In sum, in the class of direct-revelation civil justice mechanisms with a

truth-telling equilibrium, the victim initiates the civil procedure by deciding

to participate in the mechanism, the injurer is compelled to participate, and

both parties are required to report their types to the social planner. The

mechanism produces evidence at a cost, perfectly reveals the types, and ends

with transfers from the liable injurers to the victims.

allows the social planner to strengthen the incentives to truthful revelation of the victim’s

types without increasing the expected social cost.
18For brevity, the lemmas are included in Appendix A.
19In other words, truthful reports must be a Bayesian Nash Equilibrium in the civil

justice game. See Section 2.3.1 for details about the players’ constraints.
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2.3 Social Planner’s Civil Justice Design Problem

The social planner’s problem of the design of the civil justice mechanism

consists of a mathematical optimization problem. The social planner should

choose the direct-revelation civil justice mechanisms with a truth-telling

equilibrium that minimizes the social welfare loss function SWL associated

with an accident. Given that the class of direct-revelation mechanisms with

a truth-telling equilibrium requires the satisfaction of constraints (1) and

(2), the social planner’s optimization problem should be expressed in terms

of the actual types.

The social welfare loss function SWL consists of several components.

First, it includes the social welfare loss associated with the expected harm

from an accident H = E[A] =
R Ā
0 Ag(A)dA. Second, it includes the social

welfare loss associated with the expected cost of producing evidence (i.e.,

expected cost of investigation) E[C(A)] =
R Ā
0 [pq1(A)C1(A) + (1� p)q0(A)C0(A)] g(A)dA. Third, it includes the social

welfare loss associated with the expected infringement of the victim’s right

of access to justice ✓E[⌘(A)], where E[⌘(A)] =
R Ā
0 ⌘(A)g(A)dA represents the

mass of victims that do not trigger the mechanism, i.e., do not get “Access

to Justice,” and ✓ � 0 represents the society’s concern regarding the victims’

right of access to justice (Landeo and Nikitin, 2018).20 Fourth, it includes

the social loss associated with the expected infringement of the right of the

victim confronting liable injurers to be fully compensated ⇤E[⇠(A)], where

E[⇠(A)] � 0 represents the magnitude of undercompensation of the victim

confronting liable injurers across victim’s types, and ⇤ � 0 represents the

society’s concern regarding restoring the welfare of victims confronting liable

20In our environment, participation in the mechanism represents “Access to Justice”

for victims. In the context of civil litigation, “access to justice” refers to the victim’s

ability to fully participate in the legal system (by filing a lawsuit agains the injurer, and

if necessary, by bringing the case to trial). See Landeo and Nikitin (2018) for a formal

definition of access to justice.
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injurers to the level they experienced before the accident.

Definition 1. The social welfare loss function SWL is defined as follows.

SWL = H + E[C(A)] + ✓E[⌘(A)] + ⇤E[⇠(A)] =

=

Z Ā

0
Ag(d)dA+

Z Ā

0
[pq1(A)C1(A) + (1� p)q0(A)C0(A)] g(A)dA+

+✓

Z Ā

0
⌘(A)g(A)dA+ ⇤

Z Ā

0
⇠(A)g(A)dA.

The social planner’s problem is to minimize the SWL by choosing the

optimal probabilities of investigation, q0(A) and q1(A), subject to the vic-

tim’s and injurer’s constraints. iIntuitively, the social planner’s goal is to

provide access to justice to the victim and restore the welfare of the victim

confronting liable injurers to the level she experienced before the accident

by inducing the victim and the injurer to truthfully reveal their private in-

formation at the minimum cost of producing evidence.

3 Benchmark Model

We begin our analysis by assuming that the social planner pays the cost of

producing evidence. This simplified assumption allows us to introduce the

main component of our methodological approach. (In Section 4, we study

the optimal civil justice with endogenous allocation of the cost of producing

evidence between the victim and the injurer, and characterizing the optimal

cost-allocation rule.)

3.1 Players’ Constraints

The set of players’s constraint first includes the victim’s individual-rationality

(participation) constraint, pA � 0 8A 2 [0, Ā], which is trivially satisfied

8A 2 [0, Ā]. Hence, the victim has always an incentive to participate and the
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mechanism is always triggered.21 Second, it includes the victim’s incentive-

compatibility constraint. Lemma 1 in Appendix A shows that it su�ces to

consider the victim’s incentive-compatibility constraint for the lowest dam-

age type, A = 0: the victim’s expected payo↵ when she truthfully reports her

type should be greater than or equal to her expected payo↵ when she untruth-

fully reports a higher type: 0 � p(1�q1(A0))A0� [pq1(A0)+(1�p)q0(A0)]f̄V

8A0 2 [0, Ā]. This constraint should hold 8A0 2 [0, Ā]. Hence, the victim’s

incentive-compatibility constraint is equal to: 8A 2 [0, Ā],

[pq1(A) + (1� p)q0(A)]f̄V � p(1� q1(A))A. (1)

Third, it includes the the incentive-compatibility constraints for the liable

and non-liable injurers: the injurer’s expected loss when he truthfully re-

ports his type should be lower than or equal to his expected loss when

she untruthfully reports his type. Lemma 2 shows that the liable injurer’s

incentive-compatibility constraint is equal to:

Z Ā

0
Ag(A)dA  f̄

I

Z Ā

0
q0(A)g(A)dA. (2)

Finally, the non-liable injurer’s incentive compatibility constraint is equal to:

0 � �
Z Ā

0

⇥
(1� q1(A))A+ q1(A)f I

⇤
g(A)dA,

which is trivially satisfied 8A 2 [0, Ā] and 8f I 2 [0, f̄ I ]. Hence, the non-liable

injurer will always truthfully report his type. As demonstrated in Appendix

A (Lemmas 1 and 2), the application of maximal fines f̄V and f̄
I allows the

social planner to save resources on investigation. Given that the victim and

the injurer have limited financial resources, f̄V = W
V and f̄

I = W
I
.
22

21Remember that, when the victim triggers the mechanism, the injurer is compelled to

participate. Hence, an injurer’s individual-rationality constraint is not required.
22Remember that the injurer and the victim are financially constrained, and that W I

>

Ā and W
V

> 0, by assumption. If f̄V and f̄
I could go to +1, the incentive-compatibility
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3.2 Social Planner’s Civil Justice Design Problem

Note first that the term H is exogenous. Second, given that the victim’s

individual-rationality constraint is trivially satisfied for A 2 [0, Ā], the victim

always has an incentive to trigger the mechanism, i.e., the victim always fully

participates in the legal system. As a consequence, the victim always gets

access to justice and hence, E[⌘(A)] = 0. Third, given that the social planner

pays the cost of producing evidence, the victims confronting liable injurers

are fully compensated and their welfare is restored and hence, E[⇠(A)] = 0.23

Hence, the social planner’s problem is reduced to minimize the expected

cost of producing evidence E[C(A)]:

min
q0(A),q1(A)

⇢Z Ā

0
[pq1(A)C1(A) + (1� p)q0(A)C0(A)] g(A)dA

�

subject to the victim’s incentive-compatibility constraint (1), [pq1(A)+ (1�
p)q0(A)]f̄V � p(1 � q1(A))A 8A 2 [0, Ā], the liable injurer’s incentive-

compatibility constraint (2),
R Ā
0 Ag(A)dA  f̄

I
R Ā
0 q0(A)g(A)dA, and the

feasibility constraints for the probabilities of investigation, 0  qi(A)  1

(i = 0, 1).

We adopt a two-step approach to characterize the optimal probabilities of

investigation. In the first step, we characterize the interim probabilities of in-

vestigation q0(A) and q1(A) that satisfy the victim’s incentive-compatibility

constraints (1) and (2) would be satisfied for q0(A) and q1(A) approaching zero. In other

words, when the victim and the injurer have unlimited financial resources, the truthful

revelation of types is achieved at zero social cost of producing evidence.
23Formally, E[⇠(A)] = p

R Ā
0 ↵1q1(A)C1(A)g(A)dA, where ↵1 represents the victim’s

share of the cost of producing evidence when the injurer reports to be liable. Given

that the social planner pays the cost of producing evidence, ↵1 = 0. In Section 6, we

study the optimal allocation of the cost of producing evidence. We use an extension of

our benchmark model consisting on endogenizing the allocation of the cost of producing

evidence. In this setting, the victim might share the cost of producing evidence, ↵1 � 0.

As a result, the victim might not be fully compensated and hence, E[⇠(A)] � 0.

18



constraint (1) and the feasibility constraints for the probability of investi-

gation. In the second step, we verify whether the interim probability of

investigation q0(A) also satisfies the liable injurer’s incentive-compatibility

constraint (2). If not, adjustments to the interim probabilities of investiga-

tion q0(A) and q1(A) are implemented.24 The next sections outline the main

steps in the characterization of the optimal production of evidence. Formal

proofs and description of the numerical example are presented in Appendices

A and B.

3.3 Interim Probabilities of Investigation: Step 1

We characterize the interim probabilities of investigation q0(A) and q1(A)

that satisfy the victim’s incentive-compatibility constraint (1) and feasibility

constraints for the probabilities of investigation, 0  qi(A)  1 (i = 0, 1).25

3.3.1 Analysis of Type-A Victim

The social planner’s problem involves optimization across victim’s types.

Given that the victim’s incentive-compatibility constraint is specified for a

particular type A, it is appropriate to start the analysis with the social

planner’s optimization problem for an individual type-A victim.

Denote the expected cost of producing evidence associated with a type-A

victim as E[C] = pq1(A)C1(A) + (1 � p)q0(A)C0(A). The social planner’s

problem is:

min
q0(A),q1(A)

{pq1(A)C1(A) + (1� p)q0(A)C0(A)}

24Mathematically, the social planner’s problem consists of a linear programming prob-

lem, i.e., the objective function and the constraints are linear (Vohra, 2011). The order

of the analysis of linear constraints does not a↵ect the solution of the problem.
25For brevity, the main text of the paper only includes the main propositions. The

additional propositions, lemmas and claims are included in Appendix A.
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subject to the victim’s incentive-compatibility constraint (1) and the feasibil-

ity constraints 0  qi(A)  1 (i = 0, 1). Claim 1 in Appendix A shows that

the victim’s incentive-compatibility constraint holds as an equality. Hence,

the victim’s incentive compatibility constraint (1) becomes:

(pf̄V + pA)q1(A) + (1� p)f̄V
q0(A) = pA. (3)

Solving for q0(A):

q0(A) = �p(f̄V +A)

(1� p)f̄V
q1(A) +

pA

(1� p)f̄V
.

Therefore,

E[C] =
1

f̄V
{q1[pC1(A)f̄V � pC0(A)(f̄V +A)] + pAC0(A)}

and
@E[C]

@q1(A)
=

[pC1(A)f̄V � pC0(A)(f̄V +A)]

f̄V
.

When [pC1(A)f̄V �pC0(A)(f̄V +A)]
f̄V < 0, which is equivalent to A >

�C1(A)
C0(A) �

1
�
f̄
V , @E[C]

@q1(A) < 0; when [pC1(A)f̄V �pC0(A)(f̄V +A)]
f̄V = 0, which is equivalent to

A =
�C1(A)
C0(A) � 1

�
f̄
V , @E[C]

@q1(A) = 0; and, when [pC1(A)f̄V �pC0(A)(f̄V +A)]
f̄V > 0,

which is equivalent to A <
�C1(A)
C0(A) � 1

�
f̄
V , @E[C]

@q1(A) > 0.

The interim probabilities of investigation for type-A victim should also

satisfy the feasibility constraints 0  qi(A)  1 (i = 0, 1). Suppose that

A >
�C1(A)
C0(A) � 1

�
f̄
V and therefore, @E[C]

@q1(A) < 0. The interim q1(A) is a corner

solution with q1(A) taking the maximal value constrained by the feasibil-

ity constraint q1(A)  1 and the victim’s incentive-compatibility constraint

holding as an equality, equation (3). Solving for q1(A), we get q1(A) =
�

1
pA+pf̄V

�
[pA�(1�p)f̄V

q0(A)]. q1(A) takes the maximal value when q0(A) =

0: q1(A) = A
A+f̄V . Hence, the interim probabilities of investigation for a vic-

tim of type A are q0(A) = 0 and q1(A) = A
A+f̄V < 1.

Suppose that A =
�C1(A)
C0(A) � 1

�
f̄
V and therefore, @E[C]

@q1(A) = 0. Claim 2

shows that, when A =
�C1(A)
C0(A) � 1

�
f̄
V , the interim probabilities of investiga-

tion q0(A) and q1(A) involve infinitely many values, q0(A) 2
⇥
0,
� p
1�p

�
A
f̄V

⇤
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and q1(A) 2
⇥
0, A

A+f̄V

⇤
.
26 We consider here the minimum value for q0(A)

and the corresponding q1(A) such that constraint (3) and the feasibility con-

straints are satisfied. Hence, the interim probabilities of investigation for a

victim of type A are q0(A) = 0 and q1(A) = A
A+f̄V < 1.

Suppose now that A <
�C1(A)
C0(A) � 1

�
f̄
V and therefore, @E[C]

@q1(A) > 0. The

interim q1(A) is a corner solution with q1(A) taking the minimal value con-

strained by the feasibility constraint q1(A) � 0 and equation (3). We need

to check whether q1(A) = 0 satisfies the victim’s incentive-compatibility

constraint. Evaluating equation (3) at q1(A) = 0 and solving for q0(A)

yields q0(A) =
� p
1�p

�
A
f̄V . We also need to verify whether q0(A) satisfies

the feasibility constraints. Define A
0(p) ⌘

� 1�p
p

�
f̄
V
. Claim 4 verifies that

q0(A) =
� p
1�p

�
A
f̄V  1 only when A 

� 1�p
p

�
f̄
V = A

0(p). Hence, two

mutually-exclusive cases are possible. If A  A
0(p), then the interim prob-

abilities of investigation are q0(A) =
� p
1�p

�
A
f̄V and q1(A) = 0. If A > A

0(p),

then q0(A) = 1. The minimal feasible q1(A) is the one that corresponds

to q0(A) = 1. Evaluating equation (3) at q0(A) = 1 and solving for q1(A)

yields q1(A) = 1 � f̄V

p(f̄V +A)
. Hence, the interim probabilities of investiga-

tion are q0(A) = 1 and q1(A) = 1 � f̄V

p(f̄V +A)
. The feasibility constraints

0  q1(A)  1 hold 8A 2 [0, Ā] and 8p 2 (0, 1).

Proposition 1 characterizes the interim probabilities of investigation.

Proposition 1. Suppose p 2 (0, 1). The interim probabilities of investi-

gation for a victim of type A are as follows. (1) If A �
�C1(A)
C0(A) � 1

�
f̄
V
, then

q0(A) = 0 and q1(A) = A
f̄V +A

. (2) If A <
�C1(A)
C0(A)�1

�
f̄
V
and A 

� 1�p
p

�
f̄
V =

A
0(p), then q0(A) =

� p
1�p

�
A
f̄V and q1(A) = 0. (3) If A <

�C1(A)
C0(A) �1

�
f̄
V

and

A >
� 1�p

p

�
f̄
V = A

0(p), then q0(A) = 1 and q1(A) = 1� f̄V

p(f̄V +A)
.

26Claim 2 also shows that the optimal mechanism is not unique for every p-value when

p is su�ciently high.
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3.3.2 Analysis Across Victim’s Types

We now characterize the interim probabilities of investigation across victim’s

types. If C0(A) � C1(A) 8A 2 [0, Ā], then

A �
✓
C1(A)

C0(A)
� 1

◆
f̄
V (4)

is satisfied 8A 2 [0, Ā]. Hence, by Proposition 1, the social planner incen-

tivizes the victim only through q1(A) across victim’s types. We denote this

case as Environment 1. If C0(A) < C1(A) 8A 2 [0, Ā] and Ā <
�C1(A)
C0(A)�1

�
f̄
V

8A 2 [0, Ā], then condition (4) is never satisfied. Hence, by Proposition 1,

the social planner incentivizes the victim through q0(A) across victim’s types.

We denote this case as Environment 2.27

Consider first Environment 1. Suppose C0(A) � C1(A) 8A 2 [0, Ā].

Therefore, condition A �
�C1(A)
C0(A) � 1

�
f̄
V is satisfied 8A 2 [0, Ā]. By Proposi-

tion 1, the interim probabilities of investigation are: q0(A) = 0 and q1(A) =
A

f̄V +A
< 1 8A 2 [0, Ā]. The interim probabilities of investigation hold 8

p 2 (0, 1). Consider now Environment 2. Suppose C0(A) < C1(A) 8A 2
[0, Ā] and Ā <

�C1(A)
C0(A) � 1

�
f̄
V . Therefore, condition A �

�C1(A)
C0(A) � 1

�
f̄
V is

never satisfied. By Proposition 1, if A 
� 1�p

p

�
f̄
V = A

0(p), then the interim

probabilities of investigation are q0(A) =
� p
1�p

�
A
f̄V  1 and q1(A) = 0; if

A >
� 1�p

p

�
f̄
V = A

0(p), then the interim probabilities of investigation are

q0(A) = 1 and q1(A) = 1� f̄V

p(A+f̄V )
< 1.

Define p
0 ⌘ f̄V

f̄V +Ā
. By Claim 5, if p  p

0, then Ā  A
0(p). Therefore,

every A 2 [0, Ā] is lower than or equal to A
0(p). If p > p

0, then Ā > A
0(p).

Therefore, A 2 [0, Ā] can be greater than or lower than A
0(p). Hence,

27Claim 3 shows that there are multiple cases. The relationship among Ā,
�C1(A)
C0(A)�1

�
f̄
V

and
� 1�p

p

�
f̄
V determines multiple combinations of cases and hence, multiple states of the

world or environments. We study Case 2(b)i. here. This case occurs when C0(A) < C1(A)

8A 2 [0, Ā], Ā < min
�� 1�p

p

�
f̄
V
,
�C1(A)
C0(A)�1

�
f̄
V
 
and

�C1(A)
C0(A)�1

�
f̄
V 

� 1�p
p

�
f̄
V . Formal

analysis of the other environments is available from the authors upon request.
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two mutually-exclusive p-segments are possible. p-Segment 1: If p 2 [0, p0],

then the interim probabilities of investigation are q0(A) =
� p
1�p

�
A
f̄V  1

and q1(A) = 0 8A 2 [0, Ā]. p-Segment 2: If p 2 (p0, 1], then the interim

probabilities of investigation are as follows. If A  A
0(p), then q0(A) =

� p
1�p

�
A
f̄V  1 and q1(A) = 0. If A > A

0(p), then q0(A) = 1 and q1(A) = 1�
f̄V

p(A+f̄V )
> 0. Claims 4 and 6 verify that the feasibility constraint q0(A)  1

is satisfied. It simple to show that the feasibility constraints q0(A) � 0 and

0  q1(A)  1 are also satisfied.

Proposition 2 characterizes the interim probabilities of verification across

victim’s types for Environments 1 and 2. It also shows that Environment 2

encompasses two p-segments, p-Segment 1 and p-Segment 2.

Proposition 2. The interim probabilities of investigation for Environ-

ments 1 and 2 across victim’s types are as follows.

1. Environment 1: If C0(A) � C1(A) 8A 2 [0, Ā], then the interim

probabilities of investigation are: q0(A) = 0 and q1(A) = A
f̄V +A

< 1

8A 2 [0, Ā] and 8p 2 (0, 1).

2. Environment 2: If C0(A) < C1(A) 8A 2 [0, Ā] and Ā <
�C1(A)
C0(A) �

1
�
f̄
V 8A 2 [0, Ā], then the interim probabilities of investigation are as

follows. (a) p-Segment 1: If p 2 (0, p0], then the interim probabilities of

investigation are q0(A) =
� p
1�p

�
A
f̄V and q1(A) = 0 8A 2 [0, Ā]. (b) p-

Segment 2: If p 2 (p0, 1), then the interim probabilities of investigation

are q0(A) =
� p
1�p

�
A
f̄V and q1(A) = 0 8A 2 [0, A0(p)], and q0(A) = 1

and q1(A) = 1� f̄V

p(A+f̄V )
8A 2 (A0(p), Ā].

Intuitively, to incentivize the victim to truthfully reveal her type while

economizing on investigation costs, the social planner should take into ac-

count the cost of producing evidence, the likelihood of liable injurers and the

victim’s damages.
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3.4 Optimal Production of Evidence: Step 2

This section verifies whether the interim probabilities of investigation also

satisfy the liable injurer’s incentive-compatibility constraint (2). If not, ad-

justments to the interim probabilities of investigation are implemented. The

probabilities of investigation that satisfy constraints (1) and (2) are denoted

as optimal probabilities of investigation and represent the optimal produc-

tion of evidence.

As discussed in the Appendix, there are two possible procedures to adjust

the interim probabilities of investigation, Procedures 1 and 2. Procedure 1

consists of an increase in q0(A) and a decrease in q1(A) until the liable in-

jurer’s incentive-compatibility constraint (2) is satisfied as an equality while

keeping the victim’s incentive-compatibility constraint (1) satisfied as an

equality. Procedure 2 consists of an increase in q0(A) without decreasing

q1(A) until the liable injurer’s incentive-compatibility constraint is satisfied

as an equality while keeping the victim’s incentive-compatibility constraint

(1) satisfied. As stated in Corollary 1, Procedures 1 and 2 can be applied

to Environment 1, and only Procedure 2 can be applied in Environment 2.

Propositions 3 and 4 show that the application of adjustment procedures

should start at the lowest A, and that Procedure 1 is more e�cient that

Procedure 2 and hence, when both procedures can be applied, Procedure 1

should be applied first.

For brevity, only the analysis of Environment 1 will be presented here.

(The analysis for Environment 2 is presented in the Appendix.) Next, we

identify the p-segments and identify the procedures that should be applied.

Our findings suggest that there are three states of the world in each Envi-

ronment involving low, moderate and high probabilities of liable injurers p.

We then implement the adjustment procedures, and characterize the optimal

production of evidence for each state of the world. Our analysis demonstrates

that complete revelation of private information is achieved by focusing the
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society’s investigation e↵orts on just a subset of legal cases.28

Remember that Environment 1 occurs when C0(A) � C1(A) 8A 2 (0, Ā].

We characterize the optimal probabilities of investigation. We first verify

whether the liable injurer’s incentive-compatibility constraint (2) is satisfied:

Z Ā

0
Ag(A)dA  f̄

I

Z Ā

0
q0(A)g(A)dA. (2)

As Proposition 2 states, the interim probabilities of investigation are: 8p 2
(0, 1) and 8A 2 [0, Ā], q0(A) = 0 and q1(A) = A

f̄V +A
. Given that q0(A) = 0

8A 2 [0, Ā], constraint (2) is never satisfied. Hence, the application of an

adjustment procedure to increase q0(A) is required. Given that q1(A) > 0

8A 2 [0, Ā], Procedure 1, the most e�cient procedure, can be implemented

across A-values. Procedure 1 starts from the lowest values of A. The so-

cial planner increases q0(A) and reduces q1(A) while keeping the victim’s

incentive-compatibility constraint (1) satisfied as an equality. The proce-

dure continues until the liable injurer’s incentive-compatibility constraint

(2) is satisfied as an equality. If the liable injurer’s incentive-compatibility

constraint is still not satisfied after exhausting the implementation of Pro-

cedure 1, then Procedure 2 should be implemented.

Claim 4 in Appendix A shows that, 8p 2 (0, 1), q0(A) =
� p
1�p

�
A
f̄V 

1 () A  A
0(A). By Claim 5, Ā > A

0(p) () p > p
0. By Claim

6, q0(A) =
� p
1�p

�
A
f̄V  1 8A 2 [0, Ā] if p  p

0. Therefore, to satisfy the

feasibility constraint q0(A)  1, Procedure 1 can be exhausted 8A 2 [0, Ā]

only when p  p
0. The next corollary summarizes this result.

Corollary 3. When p  p
0
, the application of Procedure 1 can be ex-

hausted 8A 2 [0, Ā]. When p > p
0
, the implementation of Procedure 1 can

be exhausted only 8A 2 [0, A0(p)].

28For brevity, the main text of the paper only includes the propositions. The lemmas

and claims are included in Appendix A.
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3.4.1 p-Segments

This section shows that the optimal production of evidence depends on the

probability of liable injurers p. Specifically, it demonstrates that there are

three p-segments in Environment 1 that di↵er in the application of the ad-

justment procedures, and hence, in the optimal probabilities of investigation:

p-Segment 1 where p 2 (0, p̃], p-Segment 2.1 where p 2 (p̃, p̄] and p-Segment

2.2 where p 2 (p̄, 1). Proposition 5 identifies a su�cient condition for the ex-

istence of these three p-segments in Environment 1. Define ḡ = maxA{g(A)}
and g = minA{g(A)}.

Proposition 5. Suppose C0(A) � C1(A) 8A 2 (0, Ā], C0(0) > C1(0)

and p 2 (0, 1). If ḡ < 2g, then there are three mutually-exclusive p-segments:

p-Segment 1 where p 2 (0, p̃], p-Segment 2.1 where p 2 (p̃, p̄], and p-Segment

2.2 where p 2 (p̄, 1).

Next, we provide an intuitive discussion. Formal analysis is presented in

Appendix A.

p-Segments 1 and 2

We first characterize p̃ and demonstrate that p 2 (0, 1) is divided into two

main segments: p-Segment 1 where p 2 (0, p̃] and p-Segment 2 where p 2
(p̃, 1).

The interim probabilities of investigation are: 8p 2 (0, 1) and 8A 2 [0, Ā],

q0(A) = 0 and q1(A) = A
f̄V +A

. Consider an injurer of type A and apply

Procedure 1. The maximal increase in q0(A) while reducing q1(A) such that

the victim’s incentive-compatibility constraint (1) is satisfied as an equality

corresponds to q1(A) = 0. Using equality (3), the corresponding q0(A) is

q0(A) =
� p
1�p

�
A
f̄V .

Define p̃ as the p-value such that, after exhausting the application of

Procedure 1 across A-values, i.e., after reducing q1(A) to zero 8A 2 [0, Ā], the
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liable injurer’s incentive-compatibility constraint evaluated at the adjusted

interim probabilities of verification is satisfied as an equality:
Z Ā

0
Ag(A)dA = f̄

I

Z Ā

0

⇣
p̃

1� p̃

⌘
A

f̄V
g(A)dA, (5)

which can be rewritten as:
Z Ā

0
Ag(A)dA =

f̄

f̄V

I⇣
p̃

1� p̃

⌘Z Ā

0
Ag(A)dA.

Hence,

p̃ =
f̄
V

f̄V + f̄ I
,

where 0 <
f̄V

f̄V +f̄I < 1. Proposition 5 shows that p̃ < p
0. Claim 6 shows

that the feasibility constraint q0(A) =
� p
1�p

�
A
f̄V  1 holds 8p 2 (0, p̃] and

8A 2 [0, Ā].

p-Segments 2.1 and 2.2

We now characterize p̄ and demonstrate that p-Segment 2, p 2 (p̃, 1), is

divided into two segments: p-Segment 2.1 where p 2 (p̃, p̄] and p-Segment

2.2 where p 2 (p̄, 1).

Suppose p 2 (p̃, 1). By Claim 6, when p 2 (p̃, p0], after exhausting

Procedure 1 8A 2 [0, Ā], the feasibility constraint for q0(A) =
� p
1�p

�
A
f̄V  1

holds 8A 2 [0, Ā]. By Claim 4, when p 2 (p0, 1), after exhausting the

application of Procedure 1, the feasibility constraint q0(A) =
� p
1�p

�
A
f̄V  1

only holds when A  A
0(p). Hence, Procedure 1 can be exhausted only

8A 2 [0, A0(p)].

Define p̄ as the p-value such that, after exhausting the application of

Procedure 1 for A 2 [0, A0(p̄)], the liable injurer’s incentive-compatibility

constraint evaluated at the adjusted interim probabilities of investigation is

satisfied as an equality, where A
0(p̄) =

� 1�p̄
p̄

�
f̄
V :

Z Ā

0
Ag(A)dA = f̄

I

 Z A0(p̄)

0

⇣
p̄

1� p̄

⌘
A

f̄V
g(A)dA+

Z Ā

A0(p̄)
0g(A)dA

�
. (6)

27



Lemma 5 shows that there exists a unique A
0(p̄) such that 0 < A

0(p̄) < Ā,

and there exists a unique p̄ such that p
0
< p̄ < 1 8A 2 [0, Ā]. The next

corollary summarizes the order relationship of p̃, p̄ and p
0.

Corollary 4. 0 < p̃ < p
0
< p̄ < 1 8A 2 [0, Ā].

3.4.2 Optimal Probabilities of Investigation

p-Segment 1

Suppose p 2 (0, p̃]. We show that Procedures 1 and 2 should be applied. Con-

sider first the application of Procedure 1. Given that p̃ < p
0, the feasibility

constraint of q0(A)  1 still holds when the implementation of Procedure

1 is exhausted 8A 2 [0, Ā]. After exhausting the application of Procedure

1 across A 2 [0, Ā], the adjusted interim probabilities of verification are

q0(A) =
� p
1�p

�
A
f̄V < 1 and q1(A) = 0. At the adjusted interim probabilities

of verification,
Z Ā

0
Ag(A)dA > f̄

I

Z Ā

0

⇣
p

1� p

⌘
A

f̄V
g(A)dA,

by the definition of p̃ and
@
�

p
1�p

�

@p > 0. Therefore, Procedure 2 should be

also application. Remember that Procedure 2 consists of increasing q0(A)

without reducing q1(A) until the liable injurer’s incentive-compatibility con-

straint is satisfied as an equality. By the feasibility constraint for q0(A),

the highest value for q0(A) is 1. Starting at the lowest values of A, the

social planner increases q0(A) to 1 for A 2 [0, A1(p)], where A
1(p) is the

A-threshold such that the liable injurer’s incentive-compatibility constraint

holds as an equality:

Z Ā

0
Ag(A)dA = f̄

I

 Z A1(p)

0
1g(A)dA+

Z Ā

A1(p)

✓
p

1� p

◆
A

f̄V
g(A)dA

�
. (8)

Lemma 4 verifies that there exists a unique A
1(p) and that A

1(p) < Ā.

Lemma 4 also verifies that there exists a unique A
1(p̃) and that A1(p̃) = 0.
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Therefore, when p = p̃,

Z Ā

0
Ag(A)dA = f̄

I

Z Ā

0

⇣
p

1� p

⌘
A

f̄V
g(A)dA,

which is aligned with the definition of p̃.

Hence, the optimal production of evidence in p-Segment 1 involves the

following optimal probabilities of investigation. For A 2 [0, A1(p)], q0(A) = 1

and q1(A) = 0. For A 2 (A1(p), Ā], q0(A) =
� p
1�p

�
A
f̄V < 1 and q1(A) = 0,

where A1(p) is determined implicitly by the liable injurer’s incentive compati-

bility constraint (2) written as an equality,
R Ā
0 Ag(A)dA = f̄

I
⇥ R A1(p)

0 g(A)dA+
R Ā
A1(p)

� p
1�p

�
A
f̄V g(A)dA

⇤
. The optimal social welfare loss for p-Segment 1 is:

SWL
1 = H + E[C(A)]1 + ✓E[⌘(A)] + ⇤E[⇠(A)] =

=

Z Ā

0
Ag(A)dA+ (1� p)⇥

⇥
 Z A1(p)

0
C0(A)g(A)dA+

Z Ā

A1(p)

✓
p

1� p

◆
A

f̄V
C0(A)g(A)dA

�
+ 0 + 0.

p-Segment 2.1

Suppose p 2 (p̃, p̄], where p̃ < p
0
< p̄. Two cases are possible. Suppose first

that p 2 (p̃, p0]. By Claim 5, if p  p
0, then Ā  A

0(p). Therefore, the

feasibility constraint q0(A)  1 holds when the implementation of Procedure

1 is exhausted 8A 2 [0, Ā]. We show that only Procedure 1 should be applied

and the application of Procedure 1 should not be exhausted 8A 2 [0, Ā].

Given that p > p̃, by the definition of p̃ and by
@( p

1�p )

@p > 0, after exhausting

the application of Procedure 1 8A 2 [0, Ā], the liable injurer’s incentive-

compatibility constraint is:

Z Ā

0
Ag(A)dA < f̄

I

Z Ā

0

⇣
p

1� p

⌘
A

f̄V
g(A)dA.
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Therefore, Procedure 1 should be exhausted only for A 2 [0, A2.1(p)], where

A
2.1(p) corresponds to A-threshold such that the liable injurer’s incentive-

compatibility constraint holds as an equality:

Z Ā

0
Ag(A)dA = f̄

I

 Z A2.1(p)

0

✓
p

1� p

◆
A

f̄V
g(A)dA+

Z Ā

A2.1(p)
0g(A)dA

�
. (9)

Lemma 5 verifies that there exists a unique A2.1(p) and that 0 < A
2.1(p) < Ā.

Suppose now that p 2 (p0, p̄]. By Claim 5, if p > p
0, then Ā > A

0(p).

Therefore, the feasibility constraint for q0(A) holds when the implementation

of Procedure 1 is exhausted only for A 2 [0, A0(p)]. Lemma 5 also verifies

that there exists a unique A
2.1(p)  A

0(p) and that 0 < A
2.1(p) < Ā.

Hence, the optimal production of evidence in p-Segment 2.1. involves

the following optimal probabilities of investigations. For A 2 [0, A2.1(p)],

q0(A) =
� p
1�p

�
A
f̄V and q1(A) = 0. For A 2 (A2.1(p), Ā], q0(A) = 0 and

q1(A) = A
f̄V +A

< 1, where A
2.1(p) is determined implicitly by the liable

injurer’s incentive compatibility constraint (2) written as an equality,
R Ā
0 Ag(A)dA = f̄

I
R A2.1(p)
0

� p
1�p

�
A
f̄V g(A)dA. The optimal social welfare loss

for p-Segment 2.1 is:

SWL
2.1 = H + E[C(A)]2.1 + ✓E[⌘(A)] + ⇤E[⇠(A)] =

=

Z Ā

0
Ag(A)dA+ (1� p)

Z A2.1(p)

0

✓
p

1� p

◆
A

f̄V
C0(A)g(A)dA+

+p

Z Ā

A2.1(p)

✓
A

f̄V +A

◆
C1(A)g(A)dA+ 0 + 0.

p-Segment 2.2

Suppose p 2 (p̄, 1). Given that p̄ > p
0, Ā > A

0(p), by Claim 5. Therefore,

the feasibility constraint for q0(A) =
� p
1�p

�
A
f̄V  1 holds when the applica-

tion of Procedure 1 is exhausted only for A 2 [0, A0(p)]. Lemma 6 shows

that, after exhausting the application of Procedure 1 for A 2 [0, A0], the
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liable injurer’s incentive-compatibility constraint is still not satisfied:

Z Ā

0
Ag(A)dA > f̄

I

 Z A0(p)

0

✓
p

1� p

◆
A

f̄V
g(A)dA+

Z Ā

A0(p)
0g(A)dA

�
.

Therefore, the social planner should apply Procedure 1 by increasing q0(A) to

1 and reducing q1(A) to 1� f̄V

p(f̄V +A)
to A > A

0(p). Lemma 6 also shows that

this adjustments should be applied 8A 2 (A0(p), A2.2(p)], where A2.2(p) cor-

responds to theA-threshold such that the liable injurer’s incentive-compatibility

constraint is satisfied as an equality:

Z Ā

0
Ag(A)dA =

= f̄
I

 Z A0(p)

0

✓
p

1� p

◆
A

f̄V
g(A)dA+

Z A2.2(p)

A0(p)
1g(A)dA+

Z Ā

A2.2(p)
0g(A)dA

�
.

(10)

Finally, Lemma 6 verifies that there exists a unique A2.2(p) such that A0(p) <

A
2.2(p) < Ā.

Hence, the optimal production of evidence in p-Segment 2.2. involves the

following optimal probabilities investigation. For A 2 [0, A0(p)], q0(A) =
� p
1�p

�
A
f̄V and q1(A) = 0. For A 2 (A0(p), A2.2(p)], q0(A) = 1 and q1(A) =

1 � f̄V

p(f̄V +A)
. For A 2 (A2.2(p), Ā], q0(A) = 0 and q1(A) = A

A+f̄ .V
, where

A
2.2(p) is determined implicitly by the liable injurer’s incentive-compatibility

constraint (2) written as an equality,
R Ā
0 Ag(A)dA = f̄

I
⇥ R A0(p)

0

� p
1�p

�
A
f̄V g(A)dA+

R A2.2(p)
A0(p) g(A)dA

⇤
and A

0(p) =
� 1�p

p

�
f̄
V . The optimal social welfare loss for

p-Segment 2.2 is:

SWL
2.2 = H + E[C(A)]2.2 + ✓E[⌘(A)] + ⇤E[⇠(A)] =

=

Z Ā

0
Ag(A)dA+ (1� p)⇥

⇥
 Z A0(p)

0

✓
p

1� p

◆
A

f̄V
C0(A)g(A)dA+

Z A2.2(p)

A0(p)
C0(A)g(A)dA

i
+
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Table 1: Optimal Production of Evidence – Environment 1

p-Segment A-Segment Optimal q0(A) Optimal q1(A)

p-Segment 1 A 2 [0, A1(p)] 1 0

p 2 (0, p̃] A 2 (A1(p), Ā]
� p
1�p

� A
f̄V 0

p-Segment 2.1 A 2 [0, A2.1(p)]
� p
1�p

� A
f̄V 0

p 2 (p̃, p̄] A 2 (A2.1(p), Ā] 0 A
f̄V +A

p-Segment 2.2 A 2 [0, A0(p)]
� p
1�p

� A
f̄V 0

p 2 (p̄, 1) A 2 (A0(p), A2.2(p)] 1 1� f̄V

p(f̄V +A)

A 2 (A2.2(p), Ā] 0 A
f̄V +A

+p

⇢Z A2.2(p)

A0(p)


1� f̄

V

p(f̄V +A)

�
C1(A)g(A)dA+

+

Z Ā

A2.2(p)

✓
A

f̄V +A

◆
C1(A)g(A)dA

�
+ 0 + 0.

Table 1 summarizes the optimal production of evidence in Environment 1.

In contrast to the American civil justice system where evidence is produced

in every filed case, and hence society’s resources are diverted from productive

activities to the costly production of evidence in every legal case, our analysis

suggests that the optimal production of evidence involves just a subset of

legal cases.

When the probability of liable injurers is su�ciently low (p  p̃), the

victim’s gains from misreporting are low. Therefore, the production of evi-

dence just in legal cases where the injurer reports to be non-liable su�ces to

incentivize the victim and the liable injurer to truthfully report their types.

When probability of liable injurers is su�ciently high (p > p̃), the victim’s

gains from misreporting are high, and these gains increase with the reported

damages. If the victim untruthfully reports relatively low damages, then the

gains from misreporting are lower. Therefore, the production of evidence

just in legal cases where the injurer reports to be non-liable su�ces to in-

centivize the victim and the liable injurer to truthfully report their types.
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If the victim untruthfully reports relatively high damages, the gains from

misreporting are higher. Given that the victim receives compensation only

from a liable injurer only, the production of evidence just in the legal cases

where the injurer reports to be liable su�ces to incentivize the victim to

truthfully report her type. In addition, given that the legal cases where the

injurer reports to be non-liable are investigated if the victim reports low

damages, the resulting aggregate probability of investigation also su�ces to

incentivize the liable injurer to truthfully report his type because the injurer

does not know the victim’s type.

3.5 An Illustration: Uniform Distribution of Damages

A simple example using a uniform distribution of damages illustrates the

results for the benchmark model. We focus on Environment 1, p-Segment

2.1 where p 2 (p̃, p̄].29 Appendix B presents formal analysis of the model

with a uniform distribution of damages and discusses the numerical example.

Suppose that the victim’s damage types A are uniformly distributed on

the interval [0, Ā], where g(A) = 1
Ā
8A 2 [0, Ā], G(A) = A

Ā
, and

R Ā
0 Ag(A)dA =

Ā
2 . The relevant threshold A

2.1(p) and p̄ can be explicitly defined: A2.1(p) =

Ā

q
(1�p)f̄V

pf̄I and, p̄ = f̄V f̄I

f̄V f̄I+Ā2 . Suppose that the cost of producing evidence

functions are C0(A) = C0 + c0A and C1(A) = C1 + c1A, where Ci > 0

and ci > 0 (i = 0, 1) are constants. The set of exogenous parameters is:

{C0, C1, c0, c1, f̄
V
, f̄

I
, Ā, p} = {1528, 690, 0.3, 0.01, 1800, 3600, 1200, 0.45}. The

condition for Environment 1 becomes C0(A) = 1528+0.3A � 690+0.01A =

C1(A) 8A 2 [0, 1200].30

Table 3 summarizes our results. Intuitively, in a state of the world where

the cost of producing evidence in legal cases where the injurer reports to be

non-liable and the victim reports damages A 2 [0, 1200] is greater than or

29See Appendix B for an example of Environment 2, p-Segment 2 where p 2 (p0, 1].
30After simplification, �838 < 0.29A 8A 2 [0, 1200].
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Table 3: Numerical Example – Optimal Production of Evidence

Environment p-Segment A-Segment Optimal q0(A)a Optimal q1(A)a

Environment 1 (0.33, 0.82] [0, 938] q0(A) = 0.213 q1(A) = 0

(p-Segment 2.1) (938, 1200] q0(A) = 0 q1(A) = 0.373

Note: aFor each A-segment, q0(A) and q1(A) are evaluated at the average A-value; p =

0.45 is used.

equal to the cost of producing evidence in legal cases where the injurer reports

to be liable and the victim reports damages A 2 [0, 1200], Environment 1

emerges. Evidence might be produced only in legal cases where the injurer

reports to be non-liable and the victim reports su�ciently low damages (A 
938). Evidence might be also produced in legal cases where the injurer

reports to be liable if the victim reports su�ciently high damages (A >

938). The expected harm from an accident, equal to the expected victim’s

damages, is H = 1200
2 = 600. The optimal expected cost of producing

evidence for p-Segment 2.1 is E[C(A)]2.1 = 343, the optimal expected cost

from the infringement of the victim’s right of access to justice is ✓E[⌘(A)] = 0

and the optimal expected cost from the infringement of the right of the

victims confronting liable injurers to be fully compensated is ⇤E[⇠(A)] = 0.

Hence, SWL
2.1 = 943.

Our findings regarding the optimal production of evidence suggest that,

under the optimal direct-revelation mechanism, the victims always partici-

pate in the mechanism, E[⌘(A)] = 0, the victims and the injurers truthfully

reveal their types, the victims confronting liable injurers are fully compen-

sated, E[⇠(A)] = 0, and the expected cost of producing evidence E[C(A)] is

minimal. In other words, the social planner achieves the goal of providing

access to justice to the victims and restoring the welfare of the victims con-

fronting liable injurers at the minimum expected cost of producing evidence.

It is worth noting that, in contrast to the ine�cient production of evidence

in real-life settings, the truthful revelation of private information requires
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the production of evidence only in a subset of the legal cases.

3.6 Application in Real-World Settings: Tort Reform

This section demonstrates that the proposed optimal mechanism has real-

world applications and significant policy implications. Consider a tort reform

consisting of adding a first stage, an “Information-Revelation Stage” to the

current civil litigation procedures. We model this environment by adding

this first stage to a standard model of litigation.

Consider the following game with two-sided incomplete information and

three Bayesian risk-neutral players, a social planner, a plainti↵ (victim) and

a defendant (injurer). The sequence of moves is as follows. Nature moves

first and determines the players’ types, given the probabilities distributions

described before, and privately informs the type to each player. The types

are independently distributed, and the distributions are commonly known.

Then, the Information-Revelation Stage starts. In this stage, the social

planner chooses a direct-revelation mechanism involving incentives to the

(potential) plainti↵ to file a lawsuit (initiate the mechanism by deciding to

participate) and incentives to the plainti↵ and the defendant to truthfully

report their types, i.e., the social planner chooses a direct-revelation mecha-

nism with a truth-telling equilibrium. As in the benchmark model, the social

planner produces evidence to verify the reports with probabilities q0(A) and

q1(A). C0(A) and C1(A) denote the cost of producing evidence. We assume

that C0(A) � C1(A),31 and that the social planner pays the cost of produc-

ing evidence.32 The social planner imposes fine f
i 2 [0, f̄ i] (i = P,D) in

case of misreporting.

The social planner then informs the reported types to the plainti↵ and

31This environment corresponds to Environment 1 of the benchmark model.
32Our qualitative findings also hold when the plainti↵ and the defendant pay the cost

of producing evidence.
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the defendant, and a standard two-stage litigation game starts. The plainti↵

makes a take-it-or-leave-it settlement o↵er S to the defendant, and after

observing the o↵er, the defendant decides whether to accept or reject it.

In case of acceptance, the legal case is settled out of court; otherwise, a

costly trial occurs. We assume that each party pays her own litigation costs,

K
i
> 0 (i = P,D), and that f̄P  W

P �K
P and f̄

D  W
D � (Ā+K

D).33

Compensation to the plainti↵ is granted only when the defendant is liable.

Next, we show that a direct-revelation mechanism with a truth-telling

equilibrium exists, and that this mechanism is the same as the optimal direct-

revelation mechanism of the benchmark model.

3.6.1 Litigation Game

Consider the equilibrium strategies of a litigation game of complete infor-

mation. At trial, the plainti↵ of type A gets compensation A only when the

defendant is liable. Given that each party pays their own litigation cost,

K
V and K

I , the plainti↵ gets payo↵ A �K
V when the defendant is liable,

and �K
V when the defendant is non-liable; and, the defendant gets payo↵

�(A+K
I) when he is liable, and, �K

I when he is non-liable. Consider now

the pretrial bargaining negotiations. In equilibrium, the plainti↵ of type A

makes pretrial settlement o↵er S = A+K
I to the liable defendant, an o↵er

S = K
I to the non-liable defendant; and, both types of defendants accept

the o↵er. Hence, out-of-court settlement is achieved with certainty.

3.6.2 Direct-Revelation Mechanism with Truth-Telling Equilib-

rium

We show now that the social planner’s problem, objective function and con-

straints, is the same as the benchmark model. As a result, in equilibrium,

33These assumptions ensure that the defendant is not judgement proof, and the plainti↵

has su�cient financial resources to pay her own litigation costs.
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the social planner chooses a direct-revelation mechanism with a truth-telling

equilibrium that is the same as the optimal mechanism of the benchmark

model.

Note first that, as in the benchmark model, the goal of the social planner

in this game-theoretic environment is to minimize the social welfare loss

associated with an accident by providing access to justice to the victims

and maximal compensation to the victims confronting liable injurers at the

minimum expected cost of producing evidence.

Second, we show that the relevant constraints are the same as in the

benchmark model. The plainti↵’s individual rationality (participation) con-

straint is 8A 2 [0, Ā], p(A+K
I) � 0, which is trivially satisfied 8A 2 [0, Ā].

The plainti↵’s incentive-compatibility constraint is as follows. Given that

the plainti↵ of type zero will have the strongest gain from misreporting, it

su�ces to evaluate her incentives. When the plainti↵ truthfully reveals her

type, her expected payo↵ is KI . When she misreport her type, her expected

payo↵ is [p(1 � q1(A))A] � {[pq1(A) + (1 � p)q0(A)]f̄V } + K
I
. Hence, the

plainti↵’s incentive-compatibility constraint is [p(1� q1(A))A]� {[pq1(A) +

(1� p)q0(A)]f̄V }+K
I  K

I
. After simplification,

[pq1(A) + (1� p)q0(A)]f̄V � p(1� q1(A))A, (1)

which is the same as in the benchmark model. The liable defendant’s incentive-

compatibility constraint is as follows. When the liable defendant truthfully

reports his type, his expected loss is
R Ā
0 Ag(A)dA + K

I
. When he misre-

ports his type, his expected loss is f̄
I
R Ā
0 q0(A)g(A)dA + K

I . Hence, the

liable defendant’s incentive-compatibility constraint is
R Ā
0 Ag(A)dA+K

I 
f̄
I
R Ā
0 q0(A)g(A)dA+K

I
. After simplification,

Z Ā

0
Ag(A)dA  f̄

I

Z Ā

0
q0(A)g(A)dA, (2)

which is the same as in the benchmark model. Finally, the non-liable defen-

dant’s incentive-compatibility constraint is �K
I �
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� �
⇢R Ā

0

⇥
(1� q1(A))A+ q1(A)f I

⇤
g(A)dA+K

I

�
. After simplification, 0 �

�
R Ā
0

⇥
(1� q1(A))A+ q1(A)f I

⇤
g(A)dA, which is the same as in the bench-

mark model, and is trivially satisfied 8A 2 [0, Ā] and 8f I 2 [0, f̄ I ]. Therefore,

as in the benchmark model, the relevant constraints are constraint (1) and

(2).

Hence, the social planner’s problem consists of choosing the probabilities

of investigation q0(A) and q1(A) that minimize the expected cost of produc-

ing evidence subject to the victim’s incentive-compatibility constraint (1)

and the liable injurer’s incentive-compatibility constraint (2). Given that

the social planner’s problem is the same as in the benchmark model, the

equilibrium probabilities of investigation q0(A) and q1(A) correspond to the

optimal mechanism of the benchmark model.

Our previous analysis demonstrates that the optimal mechanism of the

benchmark model has real-world applications and hence, significant policy

implications. Under the proposed tort reform, perfect revelation of private

information is achieved by producing evidence on just a subset of legal cases.

In equilibrium, all cases are settled out of court and hence, the likelihood of

trial and the corresponding litigation cost are minimized.

4 Optimal Civil Justice Design with Endoge-

nous Cost Allocation

We extend our benchmark model by endogenizing the allocation of the cost

of producing evidence between the victim and the injurer. In contrast to the

previous literature on civil justice, we characterize the optimal cost-allocation

rule under an optimal production of evidence. Our analysis demonstrates

that the key insights of the benchmark model regarding the optimal produc-

tion of evidence extend to this setting. We also derive important new insights
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regarding the role of the cost of producing evidence and the society’s con-

cern about restoring the victim’s welfare on the optimal cost allocation. Our

findings suggest that the cost-allocation rule applied in the American civil

justice system, where each party pays his own cost of producing evidence, is

not always the socially-optimal cost-allocation rule.

Our benchmark framework assumes that the social planner pays the cost

of producing evidence. We assume now that the victim and the injurer

might pay a share of the cost of producing evidence. Denote ↵i such that

0  ↵i  1 as the victim’s share of Ci(A) (i = 0, 1). We also assume that

W
I
> max{C0(Ā), Ā + C1(Ā)} and W

V
> max{C0(Ā), C1(Ā)}.34 All the

other assumptions of the benchmark model hold here.

The next sections outline the main steps in the characterization of the

optimal production of evidence qi(A) and the optimal allocation of the cost

of producing evidence ↵i (i = 0, 1).35 The proof of the main Proposition

(Proposition 12) is presented in Appendix A. Formal analysis of the optimal

mechanism and additional proofs are included in Appendix C. Description

of the numerical example is presented in Appendix D.36

4.1 Players’ Constraints

As in the benchmark model, the victim’s incentive-compatibility constraint,

8A,A
0 2 [0, Ā],

p(A� ↵1q1(A)C1(A))� (1� p)↵0q0(A)C0(A) �

34The first assumption indicates that although the injurer has limited financial resources,

his financial resources su�ce to pay the cost of evidence production and to compensate the

victim, i.e., he is not judgment proof. The second assumption indicates that although the

victim has limited financial resources, her financial resources su�ce to pay the evidence

production cost, i.e., she is not judgment proof.
35Although qi(A,↵0,↵1) (i = 0, 1), to simplify notation, we use qi(A) (i = 0, 1) across

sections.
36For brevity, the main text of the paper only includes the main proposition.
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� p(1� q1(A
0))A0 � [pq1(A

0) + (1� p)q0(A
0)]f̄V

and the liable injurer’s incentive-compatibility constraint

Z Ā

0
Ag(A)dA+ (1� ↵1)

Z Ā

0
q1(A)C1(A)g(A)dA  f̄

I

Z Ā

0
q0(A)g(A)dA

are not trivially satisfied. In contrast to the benchmark model, the victim’s

individual rationality constraint, 8A 2 [0, Ā],

pA� [p↵1q1(A)C1(A) + (1� p)↵0q0(A)C0(A)] � 0

and the non-liable injurer’s incentive-compatibility constraint

(1� ↵0)

Z Ā

0
q0(A)C0(A)g(A)dA 

Z Ā

0
[(1� q1(A))A+ q1(A)f̄ I ]g(A)dA

are also not trivially satisfied.

4.2 Social Planner’s Civil Justice Design Problem

Given that now the victim might share the cost of producing evidence,

E[⇠(A)] = p
R Ā
0 ↵1q1(A)C1(A)g(A)dA � 0. It represents the expected in-

fringement of the right of the victims confronting liable injurers to be fully

compensated or the victims’ expected undercompensation.

The social planner’s problem is to minimize the SWL function by choos-

ing the optimal production of evidence qi(A) and the optimal allocation

of the cost of producing evidence ↵i (i = 0, 1), subject to the victim’s

incentive-compatibility constraint, the victim’s individual-rationality con-

straint, the liable injurer’s incentive-compatibility constraint, the non-liable

injurer’s incentive-compatibility constraint, and the feasibility constraints

0  qi(A)  1 and 0  ↵i  1 (i = 0, 1).

Note first, the term H is exogenous. Second, given that the victims con-

fronting liable injurers might pay a share of the cost of producing evidence,

they might not be fully compensated and their welfare might not be totally
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restored, i.e., E[⇠(A)] � 0. Third, given that the victim’s individual ratio-

nality constraint is not trivially satisfied, some victims might decide not to

participate, i.e., E[⌘(A)] � 0. Therefore, the social planner’s problem is:

min
q0(A,↵0,↵1),q1(A,↵0,↵1),↵0,↵1

⇢Z Ā

0
[pq1(A)C1(A) + (1� p)q0(A)C0(A)] g(A)dA+

+✓

Z Ā

0
⌘(A)g(A)dA+ ⇤p

Z Ā

0
↵1q1(A)C1(A)g(A)dA

�

subject to the victim’s incentive-compatibility constraint, the victim’s individual-

rationality constraint, the liable injurer’s incentive-compatibility constraint,

the non-liable injurer’s incentive-compatibility constraint, and the feasibility

constraints 0  qi(A)  1 and 0  ↵i  1 (i = 0, 1). Importantly, in the

optimal mechanism, by ensuring that the victim’s individual-rationality con-

straint is satisfied, the victims will fully participate in the legal system and

get access to justice and ⌘(A) will be zero 8A 2 [0, Ā]. By also ensuring that

the victim’s share of the cost of producing evidence ↵1 is optimal, maximal

compensation to the victims confronting liable injurers will be ensured in

the optimal mechanism. Hence, the main goal of the civil justice system of

access to justice and maximal compensation to the victims confronting liable

injurers is achieved at the minimum cost of producing evidence.

The methodology proposed in the benchmark model can be extended to

accommodate this more complex framework. The characterization of the

optimal production of evidence q0(A) and q1(A) and the optimal allocation

of the cost of producing evidence ↵0 and ↵1 now requires a five-step proce-

dure. In the first four steps, presented in Appendix C, we characterize the

interim probabilities of investigation taking the shares of the cost of produc-

ing evidence as given but including the feasibility constraints 0  ↵i  1

(i = 0, 1). In the fifth step, presented in the next section, we use the interim

probabilities of investigation to characterize the optimal probabilities of in-
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vestigation and the optimal shares of the cost of producing evidence.37 Our

findings suggest that, in addition to the cost of producing evidence and the

probability of liable injurers, the optimal mechanism also depends on the

society’s concern about restoring the victim’s welfare ⇤.

4.3 Optimal Cost Allocation and Optimal Production

of Evidence

We characterize the optimal cost allocation and the optimal production of

evidence. Our focus is on Environment 1, p-Segment 2.1.38 We first char-

acterize the optimal cost allocation, i.e., the optimal ↵i (i = 0, 1). We then

characterize the optimal production of evidence by evaluating A
2.1(p,↵1) at

the optimal ↵1. The next corollary summarizes the interim probabilities of

investigation obtained in Steps 1–4, and underscores that only ↵1 a↵ects the

interim probabilities of investigation.

Corollary 6. Suppose C0(A) � C1(A)(1 + ⇤) 8A 2 (0, Ā], C0(0) >

C1(0)(1 + ⇤) and p 2 (p̃, p̄]. The interim probabilities of investigation are

as follows. For A 2 [0, A2.1(p,↵1)], q0(A) =
� p
1�p

�
A
f̄V and q1(A) = 0. For

A 2 (A2.1(p,↵1), Ā], q0(A) = 0 and q1(A) = A
f̄V +A

< 1. A
2.1(p,↵1) is deter-

mined implicitly by the liable injurer’s incentive compatibility constraint writ-

ten as an equality,
R Ā
0 Ag(A)dA + (1 � ↵1)

R Ā
A2.1(p,↵1)

A
f̄V +A

C1(A)g(A)dA =

f̄
I
R A2.1(p,↵1)
0

� p
1�p

�
A
f̄V g(A)dA.

Given that the victim’s individual-rationality constraint is satisfied at the

interim probabilities of investigation 8↵i (i = 0, 1), ✓E[⌘(A)] = 0. There-

fore, the function E[C(A)] + ✓E[⌘(A)] + ⇤E[⇠(A)], evaluated at the interim

37Given that this is a linear-programming problem, the order on the analysis of con-

straints does not a↵ect the characterization of the optimal instruments.
38The analysis of the optimal mechanisms for the other two p-segments of Environment

1 and for Environment 2 is available from the authors upon request.
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probabilities of investigation becomes:

E[C(A)] + ⇤E[⇠(A)] =

=


p

Z Ā

A2.1(p,↵1)

✓
A

f̄V +A

◆
C1(A)g(A)dA+

+(1� p)

Z A2.1(p,↵1)

0

✓
p

1� p

◆
A

f̄V
C0(A)g(A)dA

�
+

+p⇤

Z Ā

A2.1(p,↵1)
↵1

✓
A

f̄V +A

◆
C1(A)g(A)dA,

whereA2.1(p,↵1) is implicitly defined by the liable injurer’s incentive-compatibility

constraint holding as an equality:

Z Ā

0
Ag(A)dA+ (1� ↵1)

Z Ā

A2.1(p,↵1)

✓
A

f̄V +A

◆
C1(A)g(A)dA =

= f̄
I

Z A2.1(p,↵1)

0

✓
p

1� p

◆
A

f̄V
g(A)dA.

After simplification,

E[C(A)] + ⇤E[⇠(A)] =

= p(1 + ⇤↵1)

Z Ā

A2.1(p,↵1)

✓
A

f̄V +A

◆
C1(A)g(A)dA+

+p

Z A2.1(p,↵1)

0

A

f̄V
C0(A)g(A)dA.

Given that the E[C(A)] + ⇤E[⇠(A)] does not depend on ↵0, any ↵0 2 [0, 1]

is optimal. Therefore, the social planner’s problem is reduced to:

min
↵12[0,1]

{E[C(A)] + ⇤E[⇠(A)]}.

The characterization of the optimal ↵1 involves several steps. We outline

the main steps here. The proof of Proposition 13 in Appendix A provides

formal analysis.
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Although A
2.1 is a function of p and ↵1, i.e., A2.1(p,↵1), to simplify the

notation, we use A
2.1 in (most parts of) the analysis, and denote E[C(A)] +

⇤E[⇠(A)] as S.
@S

@↵1
=

= p

Z Ā

A2.1

A

A+ f̄V
C1(A)g(A)dA⇥

⇥

2

4
�A2.1

f̄V C0(A2.1) + A2.1

A2.1+f̄V C1(A2.1) + ⇤
⇣

A2.1

f̄V
p

1�p f̄
I + A2.1

A2.1+f̄V C1(A2.1)
⌘

A2.1

f̄V
p

1�p f̄
I + (1� ↵1)

A2.1

A2.1+f̄V C1(A2.1)

3

5 .

Proposition 13 shows that the sign of @S
@↵1

is ambiguous and depends on ⇤.

In other words, any su�cient conditions that solve this ambiguity should

include ⇤.

We use the function ⇤0(↵1), defined as the ⇤-function that results from

equating @S
@↵1

to zero,

⇤0(↵1) =
A2.1

f̄V C0(A2.1)� A2.1

A2.1+f̄V C1(A2.1)

A2.1

f̄V
p

1�p f̄
I + A2.1

A2.1+f̄V C1(A2.1)
,

to find su�cient conditions on ⇤ such that the ambiguity of the sign of @S
@↵1

is solved. Next, we need to evaluate the sign of @⇤
0(↵1)
@↵1

:

@⇤0(↵1)

@↵1
=
@⇤0(↵1)

@A2.1

@A
2.1

@↵1
,

where @A2.1

@↵1
< 0. Proposition 12 shows that the sign of @⇤

0(↵1)
@A2.1 is ambiguous,

and therefore, the sign of @⇤
0(↵1)
@↵1

is also ambiguous. Hence, additional suf-

ficient conditions are required. We show that when @C1(A)
@A > µ 8A 2 [0, Ā],

@⇤0(↵1)
@A2.1 < 0 and hence, @⇤

0(↵1)
@↵1

> 0; when @C1(A)
@A < µ 8A 2 [0, Ā], @⇤

0(↵1)
@A2.1 >

0 and hence, @⇤0(↵1)
@↵1

< 0; and, when @C1(A)
@A = µ 8A 2 [0, Ā], @⇤0(↵1)

@A2.1 = 0

and hence, @⇤
0(↵1)
@↵1

= 0.39 To complete the analysis, we show that
@ @S

@↵1
@⇤ > 0,

and define the ⇤-thresholds ⇤̄0 ⌘ max↵1 ⇤
0(↵1) and ⇤

0 ⌘ min↵1 ⇤
0(↵1).

39
µ represents a threshold for @C1(A)

@A , and is formally characterized in Proposition 12.
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We can now characterize the three main mutually-exclusive ⇤-segments,

Cases 1–3, and the optimal ↵1 for each case. (1) Case 1: If ⇤ < ⇤0, then

⇤ < ⇤0(↵1) 8↵1 2 [0, 1], by the definition of ⇤0. Therefore, @S
@↵1

< 0, by

the definition of ⇤0(↵1) and
@ @S

@↵1
@⇤ > 0. Hence, the optimal ↵1 = 1. (2)

Case 2: If ⇤ > ⇤̄0, then ⇤ > ⇤0(↵1) 8↵1 2 [0, 1], by the definition of ⇤̄0.

Therefore, @S
@↵1

> 0, by the definition of ⇤0(↵1) and
@ @S

@↵1
@⇤ > 0. Hence, the

optimal ↵1 = 0. (3) Case 3: If ⇤ 2 [⇤0
, ⇤̄0], then ⇤ < ⇤0(↵1) for some

↵1 2 [0, 1] and/or ⇤ > ⇤0(↵1) for some ↵1 2 [0, 1], by the ambiguity of

the sign of @⇤0(↵1)
@↵1

due to the ambiguity of the sign of @⇤0(↵1)
@A2.1 . Hence, we

need to use the additional su�cient conditions on µ to solve the ambiguity

of the sign of @⇤
0(↵1)
@↵1

. We characterize three mutually-exclusive cases: Case

3(a) where @C1(A)
@A > µ and hence, @⇤

0(↵1)
@↵1

> 0; Case 3(b) where @C1(A)
@A < µ

and hence, @⇤0(↵1)
@↵1

< 0; and, Case 3(c) where @C1(A)
@A = µ, and hence,

@⇤0(↵1)
@↵1

= 0. Consider, for instance, Case 3(b). Proposition 12 shows that,

when ⇤ 2 (⇤0
, ⇤̄0), there exists an optimal ↵1 2 (0, 1) for each ⇤ 2 (⇤0

, ⇤̄0),

i.e., ↵1(⇤) 2 (0, 1) = argmin↵12[0,1]{S}.40 Proposition 12 summarizes the

optimal cost allocation.41

Proposition 12. Suppose C0(A) � C1(A)(1 + ⇤) 8A 2 (0, Ā], C0(0) >

C1(0)(1 + ⇤) and p 2 (p̃, p̄]. The optimal cost allocation is as follows.

1. If ⇤ < ⇤0
, then any ↵0 2 [0, 1] and ↵1 = 1 are optimal.

2. If ⇤ > ⇤̄0
, then any ↵0 2 [0, 1] and ↵1 = 0 are optimal.

3. If ⇤ 2 [⇤0
, ⇤̄0], then three cases are possible.

(a) Suppose
@C1(A)
@A > µ 8A 2 [0, Ā].

i. If ⇤ = ⇤0
, then any ↵0 2 [0, 1] and ↵1 = 1 are optimal.

40This case corresponds to 3(b)iii in Proposition 12.
41⇤̂ represents a threshold for ⇤, and is formally characterized in Proposition 12.
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ii. If ⇤ = ⇤̄0
, then any ↵0 2 [0, 1] and ↵1 = 0 are optimal.

iii. If ⇤ 2 (⇤0
, ⇤̄0), then two cases are possible.

A. If ⇤ 2 (⇤0
, ⇤̂), then any ↵0 2 [0, 1] and ↵1 = 1 are

optimal.

B. If ⇤ 2 [⇤̂, ⇤̄0), then any ↵0 2 [0, 1] and ↵1 = 0 are opti-

mal.

(b) Suppose
@C1(A)
@A < µ 8A 2 [0, Ā].

i. If ⇤ = ⇤0
, then any ↵0 2 [0, 1] and ↵1 = 1 are optimal.

ii. If ⇤ = ⇤̄0
, then any ↵0 2 [0, 1] and ↵1 = 0 are optimal.

iii. If ⇤ 2 (⇤0
, ⇤̄0), then any ↵0 2 [0, 1] and ↵1(⇤) 2 (0, 1) are

optimal.

(c) Suppose
@C1(A)
@A = µ 8A 2 [0, Ā].

i. If ⇤ = ⇤0
, then any ↵0 2 [0, 1] and ↵1 = 1 are optimal.

ii. If ⇤ = ⇤̄0
, then any ↵0 2 [0, 1] and ↵1 = 0 are optimal.

iii. If ⇤ 2 (⇤0
, ⇤̄0), then any ↵0 2 [0, 1] and any ↵1 2 [0, 1] are

optimal.

Given that neither E[C(A)] nor ⇤E[⇠(A)] depend on ↵0, any ↵0 2 [0, 1] is

optimal across cases. Consider now the optimal ↵1. By Claim 11, @E[C(A)]
@↵1

<

0 and @⇤E[⇠(A)])
@↵1

� 0. When ⇤ < ⇤0 (Case 1), the e↵ect of ↵1 on E[⇠(A)]

less than o↵sets the e↵ect of ↵1 on E[C(A)].42 Hence, the overall e↵ect of

↵1 on S is negative and the optimal ↵1 = 1. intuitively, when the society’s

concern about restoring the welfare of a victim confronting a liable injurer

is su�ciently low, social welfare loss is minimized by allocating the cost

of producing evidence only to the victim, only to the injurer, or to both

the victim and the injurer when the injurer is non-liable (any ↵0 2 [0, 1]

42Hence, @S
@↵1

< 0.
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is optimal), and by allocating the cost of producing evidence only to the

victim when the injurer is liable (↵1 = 1). Hence, neither the American

rule where each party pays her own cost of producing evidence (↵i 2 (0, 1),

i = 0, 1) nor the English rule where the victim pays all the cost of producing

evidence when the injurer is non-liable and the injurer pays all the cost of

producing evidence when he is liable (↵0 = 1 and ↵1 = 0) are the optimal

cost-allocation rules. We denote the optimal rule as “Alternative rule.”43

When ⇤ > ⇤̄0 (Case 2), the e↵ect of ↵1 on E[⇠(A)] more than o↵sets the

e↵ect of ↵1 on E[C(A)].44 Hence, the overall e↵ect of ↵1 on S is positive and

the optimal ↵1 = 0. Intuitively, when the society’s concern about restoring

the the welfare of a victim confronting a liable injurer is su�ciently high,

social welfare loss is minimized by allocating the cost of producing evidence

only to the victim, only to the injurer, or to both the victim and the injurer

when the injurer is non-liable (any ↵0 2 [0, 1] is optimal), and by allocating

the cost of producing evidence only to the injurer when the injurer is liable

(↵1 = 0). Given that any ↵0 2 [0, 1] is optimal, the social planner can

allocate the cost of producing evidence only to the victim when the injurer

is not liable (↵0 = 1). The optimal cost-allocation rule involving ↵0 = 1

and ↵1 = 0 resembles the English rule.45 When ⇤ 2 [⇤0
, ⇤̄0] (Case 3), the

e↵ect of ↵1 on E[⇠(A)] less than o↵sets, more than o↵sets or is equal to the

e↵ect of ↵1 on E[C(A)].46 Hence, the overall e↵ect of ↵1 on S is negative,

positive or equal to zero, and the optimal ↵1 = 1 or ↵1 = 0 or ↵1 2 (0, 1).

For an illustration of the American rule as the optimal cost-allocation rule

in our framework, consider Case 3(b)iii where ⇤ 2 (⇤0
, ⇤̄0) and @C1(A)

@A < µ.

Proposition 12 shows that, for each ⇤ 2 (⇤0
, ⇤̄0), the e↵ect of ↵1 on E[⇠(A)]

is lower (greater) than the e↵ect of ↵1 on E[C(A)] when ↵1 is lower (greater)

43Similar findings apply to Cases 3(a)i, 3(a)iii.A, 3(b)i and 3(c)i of Proposition 12.
44Hence, @S

@↵1
> 0.

45Similar findings apply to Cases 3(a)ii, 3(a)iii.B, 3(b)ii, and 3(c)ii of Proposition 12.
46Hence, @S

@↵1
< 0, @S

@↵1
> 0 or @S

@↵1
= 0.
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than the optimal ↵1. Hence, the optimal ↵1(⇤) 2 (0, 1). Given that any

↵0 2 [0, 1] is optimal, the social planner can choose any ↵0 2 (0, 1). The

optimal cost-allocation rule involving ↵i 2 (0, 1) (i = 0, 1) resembles the

American rule.47

Important policy implications are derived. Our findings suggest that the

cost of producing evidence and the society’s concern about fully restoring

the victim’s welfare are determinant in the characterization of the optimal

cost-allocation rule. In contrast to previous work on cost-allocation rules in

civil litigation, we find that the English rule is not always the optimal cost-

allocation rule. This result might be explained by the general features of our

framework that allow us to study the design of optimal cost-allocation rules

under an optimal production of evidence. Importantly, our results suggest

that the cost-allocation rule applied in the American civil justice system, the

American rule, is not always the socially-optimal rule. We provide conditions

under which the American, the English rule or the Alternative rule might be

socially optimal.48

4.4 An Illustration: Uniform Distribution of Damages

A simple example using a uniform distribution of damages illustrates the

results for the model with endogenous cost allocation. We focus on Envi-

ronment 1, p-Segment 2.1 where p 2 (p̃, p̄]. Appendix D presents formal

analysis of the model with a uniform distribution of damages and discusses

the numerical example.

As in Section 4.4, suppose that the victim’s damage types A are uni-

formly distributed on the interval [0, Ā],49 Suppose also that 41% of C0(A)

47Similarly, in Case 3(c)iii of Proposition 12, the American rule might be optimal.
48As in the case of the benchmark model, a tort reform that implements the optimal

mechanism in real-world settings is feasible. Formal analysis and proofs are available from

the authors upon request.
49The relevant thresholds A2.1(p,↵1) and p̄(↵1) cannot be explicitly defined and hence,
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Table 4: Numerical Example – Optimal Cost Allocation and Optimal Production of

Evidence

⇤ < ⇤0 ⇤ 2 [⇤0
, ⇤̄0] ⇤ > ⇤̄0

Cost Allocation ↵0 = 0 ↵0 = 0.41 ↵0 = 1

↵1 = 1 ↵1 = 0.41 ↵1 = 0

(Alternat. Rule) (American Rule) (English Rule)

Prod. of Evidencea A 2 [0, 938] A 2 [0, 962] A 2 [0, 976]

q0(A) = 0.213 q0(A) = 0.218 q0(A) = 0.222

q1(A) = 0 q1(A) = 0 q1(A) = 0

A 2 (938, 1200] A 2 (962, 1200] A 2 (976, 1200]

q0(A) = 0 q0(A) = 0 q0(A) = 0

q1(A) = 0.373 q1(A) = 0.371 q1(A) = 0.377

Social Welfare Loss 959.94 962.14 960.06

H 600.00 600.00 600.00

E[C(A)] 342.86 353.59 360.06

✓E(⌘(A)] 0 0 0

⇤E(⇠(A)] 17.08 8.55 0

Note: aFor each A-segment, q0(A) and q1(A) are evaluated at the average A-value and

p = 0.45.
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and C1(A) corresponds to the cost of producing evidence associated with

the victim, and 59% of C0(A) and C1(A) corresponds to the cost of pro-

ducing evidence associated with the injurer.50 The cost of producing ev-

idence functions and the set of exogenous parameters used in Section 5.3

also hold here. In addition, we use three ⇤-values: ⇤ 2 {0.30, 0.40, 0.50}.
In this numerical example, @C1(A)

@A < µ and therefore, @⇤0(↵1)
@↵1

< 0. Hence,

⇤0 = ⇤0(↵ = 1) = 0.396 and ⇤̄0 = ⇤0(↵1 = 0) = 0.402. The expected harm

from an accident, equal to the expected victim’s damages, is H = 1200
2 = 600

across ⇤-values. Table 4 summarizes the main results. Columns 2, 3 and 4

are constructed using ⇤ 2 {0.30, 0.40, 0.50}.
Consider Column 2. The state of the world where ⇤ = 0.30 < 0.396 =

⇤0 corresponds to Case 1 of Proposition 13 where the optimal ↵0 2 [0, 1]

and the optimal ↵1 = 1. Hence, the optimal cost-allocation rule is the

Alternative rule.51 Consider Column 3. The state of the world where ⇤ =

0.40 2 (0.396, 0.402) = (⇤, ⇤̄0) corresponds to Case 3(b)iii of Proposition

12 where the optimal ↵0 2 [0, 1] and the optimal ↵1(↵1) 2 (0, 1). Given

that ⇤ = 0.40, ↵1(0.40) = 0.41. By assumption, 41% of Ci(A) corresponds

to the cost of producing evidence associated with the victim (i = 0, 1).

Hence, when the optimal ↵0 = 0.41 and the optimal ↵1 = 0.41, this cost-

allocation rule corresponds to the American Rule. Consider Column 4. The

state of the world where ⇤ = 0.50 > 0.402 = ⇤̄0 corresponds to Case 2 of

Proposition 12 where the optimal ↵0 2 [0, 1] and the optimal ↵1 = 0. Hence,

when the optimal ↵0 = 1 and the optimal ↵1 = 0, this cost-allocation rule

they can be characterized only numerically. The MATLAB software is used to construct

this numerical example.
50Remember that Ci(A) refers to the cost of producing evidence when the injurer reports

type i and the victim reports damages A 2 [0, Ā] (i = 0, 1), i.e., the cost of producing

evidence for both parties involved in a legal case.
51Given that ↵1 = 1, the term of the liable injurer’s incentive-compatibility constraint

that depends on ↵1 cancels out. Hence, the optimal probabilities of investigation presented

in Section 5.3 also hold here.
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corresponds to the English Rule. It is worth notice that when ⇤ is su�ciently

high, the welfare of the victims confronting liable injurers is fully restored,

E[⇠(A)]2.1 = 0.

In sum, although a framework involving an endogenous allocation of the

cost of producing evidence obviously raises some new and interesting issues,

the main insights derived from our benchmark model, the methodology, and

the implication for the design of optimal civil justice institutions remain

relevant. In contrast to the previous literature, the design of the cost alloca-

tion rule takes into account the optimal production of evidence. Our analysis

demonstrates that the optimal mechanism shares some features present in the

American civil litigation system but also underscores other relevant factors

for the design of optimal civil justice institutions. Our results demonstrate

the robustness of our previous findings and the tractability of our framework

to study complex civil justice institutions.

5 Summary and Conclusions

This paper presents the first application of mechanism design to the design of

the civil justice system. The fundamental goals of the civil justice system and

the optimal production of evidence are considered in our design. The opti-

mal civil justice mechanism minimizes the social welfare loss associated with

an accident by providing access to justice to the victims and maximal com-

pensation to the victims confronting liable injurers at the minimum expected

cost of producing evidence. In contrast to previous work, our comprehen-

sive approach allows us to characterize optimal cost-allocation rules under

an optimal production of evidence. We demonstrate that a tort reform that

implements the optimal mechanism in real-world settings is feasible. The

proposed tort reform consists of adding an “Information-Revelation Stage”

to the current civil litigation procedures. In equilibrium, perfect revelation
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of private information is achieved by producing evidence on just a subset of

legal cases. Out-of-court settlement is achieved with certainty and hence,

the likelihood of trial and the corresponding litigation costs are minimized.

Important policy implications are derived. We show that the optimal

civil litigation mechanisms have features that parallel many of those in the

American civil justice system but also underscores other relevant factors for

the design of optimal civil justice institutions. In contrast to ine�cient real-

world civil litigation procedures, under the optimal civil justice mechanism,

full revelation of private information is achieved by producing evidence in

just a subset of legal cases. We show that the cost-allocation rule applied in

the American civil justice system is not always socially optimal.

Additional relevant extension can be investigated. For instance, our

framework can be extended to study the optimal civil justice design under

an endogenous negligence rule (see Landeo and Nikitin, 2024). In this set-

ting, the probability of liable injurers will be endogenous and determined by

the social standard of care and the potential injurers’ care-taking decisions

(precaution) given their precaution-cost types. Our methodology is also ap-

plicable to study this more complex environment. In the optimal civil justice

design, truthful revelation of private information is achieved by investigating

just a subset of legal cases. Importantly, under the optimal negligence rule,

only a subset of potential injurers decide to be negligent. These findings

suggest that our results regarding the optimal production of evidence are

robust, and the assumption regarding liability types is appropriate. This,

and other extensions, remain fruitful areas for future research.
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Appendix A

This Appendix presents the main proofs of propositions and lemmas, the
technical aspects related to the adjustments to the interim probabilities of
investigation, and the formal analysis of Environment 2. (Additional formal
analysis is presented in the Supplementary Material, Appendices B, C, and
D.)

Lemma 1. Suppose p 2 (0, 1). The victim’s incentive-compatibility con-

straint is [pq1(A) + (1� p)q0(A)]f̄V � p(1� q1(A))A, 8A 2 [0, Ā].

Proof. By truthfully reporting her type, a victim with type A 2 [0, Ā] gets
pA. No victim has an incentive to report a lower type. When the victim
reports a type A

0
> A (A0 2 (0, Ā]), the victim gets A

0 instead of A only
when the injurer is liable and investigation does not occur, and gets zero
compensation and pays fine f

V when investigation occurs. The victim’s
expected payo↵ is equal to:

[p(1� q1(A
0))A0 + (1� p)(1� q0(A

0))0] + [pq1(A
0)(0) + (1� p)q0(A

0)(0)]�

�[pq1(A
0) + (1� p)q0(A

0)]fV =

= [p(1� q1(A
0))A0]� {[pq1(A0) + (1� p)q0(A

0)]fV },
where the term in brackets represents the expected gains from misreporting,
and the term in curly brackets represents the expected loss from misreport-
ing. Therefore, the incentive-compatibility constraint for a victim with type
A is:

pA � [p(1� q1(A
0))A0]� {[pq1(A0) + (1� p)q0(A

0)]fV }.

By setting f
V 2 [0, f̄V ] as high as possible, the social planner will spend

less resources on verification. Given that the victim has limited financial
resources, f̄V = W

V . Therefore,

pA � [p(1� q1(A
0))A0]� [pq1(A

0) + (1� p)q0(A
0)]f̄V

.

This inequality can be rewritten as:

p(A0 �A)  {pq1(A0)A0 + [pq1(A
0) + (1� p)q0(A

0)]f̄V }.

If this constraint holds for a victim with the lowest type (A = 0), then it
also holds for any A 2 (0, Ā]. Therefore, it su�ces to consider the victim’s
incentive-compatibility constraint for the lowest damage type: For A = 0
and A

0 2 (0, Ā],

pA
0  {pq1(A0)A0 + [pq1(A

0) + (1� p)q0(A
0)]f̄V },
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which can be written as:

0 � p(1� q1(A
0))A0 � [pq1(A

0) + (1� p)q0(A
0)]fV

.

Rearranging terms:

[pq1(A
0) + (1� p)q0(A

0)]fV � p(1� q1(A
0))A0

.

This constraint should hold 8A0 2 [0, Ā]. Hence, the victim’s incentive-
compatibility constraint can be expressed in terms of iA: 8A 2 [0, Ā],

[pq1(A) + (1� p)q0(A)]f̄V � p(1� q1(A))A. (1)

⌅
Lemma 2. Suppose p 2 (0, 1). The liable injurer’s incentive-compatibility

constraint is
R Ā
0 Ag(A)dA  f̄

I
R Ā
0 q0(A)g(A)dA.

Proof. When a liable injurer truthfully reports his type, the injurer pays
E[A] and gets an expected payo↵ equal to:

�E[A] = �
Z Ā

0
Ag(A)dA,

By pretending to be non-liable, a liable I gets an expected payo↵ equal to:

E[(1� q0(A))(0)]� E[q0(A)f I ] = �f
I

Z Ā

0
q0(A)g(A)dA.

Therefore, the liable injurer’s incentive-compatibility constraint is:

�
Z Ā

0
Ag(A)dA � �f

I

Z Ā

0
q0(A)g(A)dA,

which can be rewritten as:
Z Ā

0
Ag(A)dA  f

I

Z Ā

0
q0(A)g(A)dA.

By setting f
I 2 [0, f̄ I ] as high as possible, the social planner will economize

on verification e↵orts. Given that the injurer has limited financial resources,
f̄
I = W

I . Hence, the liable injurer’s incentive-compatibility constraint is:

Z Ā

0
Ag(A)dA  f̄

I

Z Ā

0
q0(A)g(A)dA. (2)
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⌅

Claim 1. Suppose p 2 (0, 1). The victim’s incentive-compatibility constraint

for a victim of type A 2 [0, Ā] holds as an equality at the interim probabilities

of investigation 0  qi(A)  1 (i = 0, 1).

Proof. Suppose p 2 (0, 1). We show by contradiction. The victim’s incentive-
compatibility constraint can be rewritten as (pf̄V +pA)q1(A)+(1�p)f̄V

q0(A) �
pA. Suppose that the constraint holds as a strict inequality, (pf̄V + pA)q1 +
(1�p)f̄V

q0(A) > pA, and that q0(A) and q1(A) are the interim probabilities
of investigation, i.e., they minimize E[C] = pq1(A)C1(A)+(1�p)q0(A)C0(A).
The constraint is not satisfied at q0(A) = 0 and q1(A) = 0. Hence, at
least one qi(A) > 0 (i = 0, 1). First, suppose that q1(A) > 0. It suf-
fices to show that a reduction in q1(A) still satisfies the constraint. Define
 ⌘ (pf̄V + pA)q1(A) + (1� p)f̄V

q0(A)� pA > 0. Assume that q1(A) is re-
duced by  

2(pf̄V +pA)
. The constraint is now

�
pf̄

V +pA)(q1(A)�  
2(pf̄V +pA)

�
+

(1�p)f̄V
q0(A) = pA+ � 

2 = pA+ 
2 > pA. Hence, a reduction in q1(A) still

satisfies the constraint but reduces the expected cost of producing evidence.
Contradiction follows. Second, suppose q0(A) > 0. It su�ces to show that
a reduction in q0(A) still satisfies the constraint. Assume that q0(A) is re-
duced by  

2(1�p)f̄V . The constraint is now
�
pf̄

V +pA)q1+(1�p)f̄V (q0(A)�
 

2(1�p)f̄V

�
= pA +  �  

2 = pA +  
2 > pA. Hence, a reduction in q0(A)

still satisfies the constraint but reduces the expected cost of producing evi-
dence. Contradiction follows. We conclude that the incentive-compatibility
constraint for victim of type A holds as an equality. ⌅

Claim 2. Suppose A =
�C1(A)
C0(A) � 1

�
f̄
V

and p 2 (0, 1). The optimal mecha-

nism is not unique for every p-value when p >
f̄V

f̄V +f̄I .

Proof.

1. We identify the set of interim probabilities of investigation. The maxi-
mal q0(A) and q1(A) such that (3) is satisfied are obtained by evaluat-
ing (3) at q1(A) = 0 and q0(A) = 0, respectively. The interim probabil-
ities of investigation are q0(A) 2

⇥
0,
� p
1�p

�
A
f̄V

⇤
and q1(A) 2

⇥
0, A

A+f̄V

⇤
.

2. We show that the optimal mechanism is not unique for every p when

p >
f̄V

f̄V +f̄I .
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We structure the continuum of q0(A) and q1(A)as follows. We know

that q1(A) 2 [0, A
A+f̄V ]. Define  ⌘ q1(A)

A
A+f̄V

such that  2 [0, 1]. Hence,

q1(A) =  
A

A+f̄V , and any value of  2 [0, 1] corresponds to a value of

q1(A) consistent with the set of interim q1(A).

Given constraint (3),

q0(A) =
pA

(1� p)f̄V
� p(f̄V +A)

(1� p)f̄V
 

A

A+ f̄V
=

pA

(1� p)f̄V
(1�  )

When  = 1, the interim probabilities of investigation are the same
as the ones in the case where A �

�C1(A)
C0(A) � 1

�
f̄
V . When  = 0,

the interim probabilities of investigation are the same as the ones in
the case where A <

�C1(A)
C0(A) � 1

�
f̄
V . When  2 (0, 1), the interim

probabilities of investigation correspond to the ones that satisfy (3)
and the feasibility constraints.

It is simple to show that for p 2 (0, p̃], the optimal mechanism is unique
for each p. Specifically, q0(A) and q1(A) are the same as the ones for

the cases where A �
�C1(A)
C0(A) � 1

�
f̄
V and A <

�C1(A)
C0(A) � 1

�
f̄
V . Take

the case of p = f̄V

f̄V +f̄I . The optimal mechanism is unique for this p-

value: q0(A) = pA
(1�p)f̄V and q1(A) = 0 8A 2 [0, Ā]. The liable injurer’s

incentive-compatibility constraint is satisfied as equality:

Z Ā

0
Ag(A)dA = f̄

I

Z Ā

0

pA

(1� p)f̄V
g(A)dA.

Consider p = f̄V

f̄V +f̄I + ", where " > 0, a small number. If an adjust-

ment 8A 2 [0, Ā], consisting of increasing q0(A) and decreasing q1(A)
such that the liable injurer’s incentive-compatibility constraint while
keeping the victim’s incentive-compatibility holding as an equality, is
implemented, the liable injurer’s incentive-compatibility constraint is:

Z Ā

0
Ag(A)dA < f̄

I

Z Ā

0

pA

(1� p)f̄V
g(A)dA
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Hence, the adjustment should be implemented only for A 2 [0, A⇤],
where A⇤ is determined by the incentive-compatibility constraint writ-

ten as an equality for p = f̄V

f̄V +f̄I + ✏:

Z Ā

0
Ag(A)dA =

= f̄
I

"Z A⇤

0

pA

(1� p)f̄V
g(A)dA+

Z Ā

A⇤

pA

(1� p)f̄V
(1�  )g(A)dA

#

In the optimal mechanism, q0(A) =
� p
1�p

�
A
f̄V and q1(A) = 0 for A 2

[0, A⇤]; q0(A) =
� p
1�p

�
A
f̄V (1�  ) and q1(A) =  

A
A+f̄V for A 2 (A⇤

, Ā].
Therefore, each  -value generates an optimal mechanism. Given that
there are infinitely many  -values ( 2 [0, 1]), the optimal mechanism

is not unique for p = f̄V

f̄V +f̄I + ✏. A similar approach can be used to

evaluate any p 2
� f̄V

f̄V +f̄I , 1
�
.

⌅

Claim 3. Suppose p 2 (0, 1). Across victim’s types, the interim probabilities

of investigation encompass multiple cases.

Proof.

1. Suppose that C0(A) � C1(A) 8A 2 [0, Ā]. Therefore, A �
⇣

C1(A)
C0(A) �

1
⌘
f̄
V 8A 2 [0, Ā]. Hence, by Proposition 1, the interim probabilities

of investigation are: When A 2 [0, Ā],

8
<

:
q0(A) = 0

q1(A) = A
f̄V +A

< 1.

2. Suppose that C0(A) < C1(A) 8A 2 [0, Ā]. Therefore, A �
⇣

C1(A)
C0(A) �

1
⌘
f̄
V or A <

⇣
C1(A)
C0(A) � 1

⌘
f̄
V .

(a) Suppose A �
⇣

C1(A)
C0(A) � 1

⌘
f̄
V . Therefore, by Proposition 1, the

interim probabilities of investigation are: When A 2
h⇣

C1(A)
C0(A) �
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1
⌘
f̄
V
, Ā

i
,

8
<

:
q0(A) = 0

q1(A) = A
f̄V +A

< 1.

(b) SupposeA <

⇣
C1(A)
C0(A)�1

⌘
f̄
V . Therefore,

⇣
C1(A)
C0(A)�1

⌘
f̄
V 

⇣
1�p
p

⌘
f̄
V

or
⇣

C1(A)
C0(A) � 1

⌘
f̄
V
>

⇣
1�p
p

⌘
f̄
V .

i. Suppose
⇣

C1(A)
C0(A) � 1

⌘
f̄
V 

⇣
1�p
p

⌘
f̄
V and

A < min
n⇣

1�p
p

⌘
f̄
V
,

⇣
C1(A)
C0(A) � 1

⌘
f̄
V
o
. Therefore, by Propo-

sition 1, the interim probabilities of investigation are: When

A 2
h
0,min

n⇣
1�p
p

⌘
f̄
V
,

⇣
C1(A)
C0(A) � 1

⌘
f̄
V
o⌘

,

8
<

:
q0(A) =

� p
1�p

�
A
f̄V  1

q1(A) = 0.

ii. Suppose
⇣

C1(A)
C0(A) � 1

⌘
f̄
V

>

⇣
1�p
p

⌘
f̄
V and A 

� 1�p
p

�
f̄
V .

Therefore, by Proposition 1, the interim probabilities of in-

vestigation are: When A 2
h
0,
⇣

1�p
p

⌘
f̄
V
i
,

8
<

:
q0(A) =

� p
1�p

�
A
f̄V  1

q1(A) = 0.

iii. Suppose
⇣

C1(A)
C0(A) � 1

⌘
f̄
V

>

⇣
1�p
p

⌘
f̄
V and A >

� 1�p
p

�
f̄
V .

Therefore, by Proposition 1, the interim probabilities of in-

vestigation are: When A 2
⇣⇣

1�p
p

⌘
f̄
V
,

⇣
C1(A)
C0(A) � 1

⌘
f̄
V
⌘
,

8
<

:
q0(A) = 1

q1(A) = 1� f̄V

p(A+f̄V )
< 1.

⌅

Define A
0(p) ⌘

� 1�p
p

�
f̄
V
.
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Claim 4.
� p
1�p

�
A
f̄V  1 8p 2 (0, 1) () A  A

0(p).

Proof. 8p 2 (0, 1),
� p
1�p

�
A
f̄V  1 if A 

⇣
1�p
p

⌘
f̄
V = A

0(p). The same logic

applies to the proof that 8p 2 (0, 1), A 
⇣

1�p
p

⌘
f̄
V = A

0(p) if
� p
1�p

�
A
f̄V  1.

⌅

Proposition 1. Suppose p 2 (0, 1). The interim probabilities of investiga-

tion for a victim of type A are as follows.

1. If A �
�C1(A)
C0(A) � 1

�
f̄
V
, then q0(A) = 0 and q1(A) = A

f̄V +A
.

2. If A <
�C1(A)
C0(A) � 1

�
f̄
V

and A 
� 1�p

p

�
f̄
V = A

0(p), then q0(A) =� p
1�p

�
A
f̄V and q1(A) = 0.

3. If A <
�C1(A)
C0(A) � 1

�
f̄
V

and A >
� 1�p

p

�
f̄
V = A

0(p), then q0(A) = 1 and

q1(A) = 1� f̄V

p(f̄V +A)
.

Proof. Let E[C] = pq1(A)C1(A)+(1�p)q0(A)C0(A) be the expected cost of
producing evidence associated with a victim’s of type A. The social planner’s
problem is as follows.

min
q0(A),q1(A)

{pq1(A)C1(A) + (1� p)q0(A)C0(A)}

subject to the victim’s incentive-compatibility constraint (1) and the feasi-
bility constraints 0  q0(A)  1 and 0  q1(A)  1. Claim 1 shows that the
victim’s incentive-compatibility constraint holds as an equality. Hence, the
victim’s incentive compatibility constraint (1) becomes:

(pf̄V + pA)q1(A) + (1� p)f̄V
q0(A) = pA. (3)

The optimization problem is now reduced to a minimization with an equality
constraint. Solving for q0(A):

q0(A) = �p(f̄V +A)

(1� p)f̄V
q1(A) +

pA

(1� p)f̄V
.

Substituting q0(A) in the objective function,

E[C] =
1

f̄V
{q1[pC1(A)f̄V � pC0(A)(f̄V +A)] + pAC0(A)}.
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Hence,
@E[C]

@q1(A)
=

[pC1(A)f̄V � pC0(A)(f̄V +A)]

f̄V
.

When pC1(A)f̄V �pC0(A)(f̄V +A)
f̄V < 0, which is equivalent to A >

�C1(A)
C0(A)�1

�
f̄
V ,

@E[C]
@q1(A) < 0; when pC1(A)f̄V �pC0(A)(f̄V +A)

f̄V = 0, which is equivalent to A =
�C1(A)
C0(A) � 1

�
f̄
V , @E[C]

@q1(A) = 0; and, when pC1(A)f̄V �pC0(A)(f̄V +A)
f̄V > 0, which is

equivalent to A <
�C1(A)
C0(A) � 1

�
f̄
V , @E[C]

@q1(A) > 0.

We now characterize the interim probabilities of investigation for a victim
of type A by incorporating the feasibility constraints 0  q0(A)  1 and

0  q1(A)  1 in the analysis. Suppose A >
�C1(A)
C0(A) � 1

�
f̄
V , @E[C]

@q1(A) < 0.

The interim q1(A) is a corner solution with q1(A) taking the maximal value
constrained by q1(A)  1 and equation (3). Solving for q1(A), we get q1(A) =�

1
pA+pf̄V

�
[pA� (1� p)f̄V

q0(A)]. Note that q1(A) takes the maximal value if

q0(A) = 0: q1(A) = A
A+f̄V . Hence, the interim probabilities of investigation

for a victim of type A are q0(A) = 0 and q1(A) = A
A+f̄V < 1.

Suppose that A =
�C1(A)
C0(A) � 1

�
f̄
V and therefore, @E[C]

@q1(A) = 0. Claim 2

shows that, when A =
�C1(A)
C0(A) � 1

�
f̄
V , the interim probabilities of investiga-

tion q0(A) and q1(A) involve infinitely many values, q0(A) 2
⇥
0,
� p
1�p

�
A
f̄V

⇤

and q1(A) 2
⇥
0, A

A+f̄V

⇤
. Claim 2 also shows that the optimal mechanism is

not unique for p su�ciently high. We consider here the minimum value for
q0(A) and the corresponding q1(A) such that constraint (3) and the feasibil-
ity constraints are satisfied. Hence, the interim probabilities of investigation
for a victim of type A are q0(A) = 0 and q1(A) = A

A+f̄V < 1.

Suppose now that A <
�C1(A)
C0(A) � 1

�
f̄
V , @E[C]

@q1(A) > 0. The interim q1(A)

is a corner solution with q1(A) taking the minimal value constrained by
q1(A) � 0 and equation (3). We need to check whether q1 = 0 satisfies
the victim’s incentive-compatibility constraint. Evaluating equation (3) at
q1(A) = 0 and solving for q0(A) yields q0(A) =

� p
1�p

�
A
f̄V . We also need to

verify whether q0(A) satisfies the feasibility constraints. By Claim 4, q0(A) =� p
1�p

�
A
f̄V  1 when A 

� 1�p
p

�
f̄
V = A

0(p). Hence, two mutually-exclusive

cases are possible. If A 
� 1�p

p

�
f̄
V = A

0(p), then the interim probabilities of
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investigation are q0(A) =
� p
1�p

�
A
f̄V and q1(A) = 0. If A >

� 1�p
p

�
f̄
V = A

0(p),

then the minimal feasible q1(A) is the one that corresponds to q0(A) = 1.
Evaluating equation (3) at q0(A) = 1 and solving for q1(A) yields q1(A) =

1� f̄V

p(f̄V +A)
. Hence, the interim probabilities of investigation are q0(A) = 1

and q1(A) = 1� f̄V

p(f̄V +A)
< 1. ⌅

Define p
0 ⌘ f̄V

f̄V +Ā
.

Claim 5. Ā > A
0(p) () p > p

0
.

Proof. If Ā >
� 1�p

p

�
f̄
V = A

0(p), solving for p, p >
f̄V

f̄V +Ā
= p

0
. The same

logic applies to the proof that p > p
0 =) Ā > A

0(p). ⌅

Claim 6.
� p
1�p

�
A
f̄V  1 8A 2 [0, Ā] if p  p

0
.

Proof. Given that
� p
1�p

�
A
f̄V is increasing in A,

� p
1�p

�
A
f̄V  1 8A 2 [0, Ā] if

this holds for the highest value of A. Hence,
� p
1�p

�
Ā
f̄V  1 if p  f̄V

f̄V +Ā
= p

0
.

⌅
Proposition 2. The interim probabilities of investigation for Environments

1 and 2 across victim’s types are as follows.

1. Environment 1: If C0(A) � C1(A) 8A 2 [0, Ā], then the interim

probabilities of investigation are: q0(A) = 0 and q1(A) = A
f̄V +A

< 1

8A 2 [0, Ā] and 8p 2 (0, 1).

2. Environment 2: If C0(A) < C1(A) 8A 2 [0, Ā] and Ā <
�C1(A)
C0(A) �

1
�
f̄
V 8A 2 [0, Ā], then the interim probabilities of investigation are as

follows.

(a) p-Segment 1: If p 2 (0, p0], then the interim probabilities of in-

vestigation are q0(A) =
� p
1�p

�
A
f̄V and q1(A) = 0 8A 2 [0, Ā].

(b) p-Segment 2: If p 2 (p0, 1), then the interim probabilities of in-

vestigation are q0(A) =
� p
1�p

�
A
f̄V and q1(A) = 0 8A 2 [0, A0(p)],

and q0(A) = 1 and q1(A) = 1� f̄V

p(A+f̄V )
8A 2 (A0(p), Ā].

Proof.
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1. Suppose C0(A) � C1(A) 8A 2 [0, Ā]. Therefore, A �
�C1(A)
C0(A) � 1

�
f̄
V

is satisfied 8A 2 [0, Ā]. By Proposition 1, the interim probabilities of
investigation are: q0(A) = 0 and q1(A) = A

f̄V +A
< 1 8A 2 [0, Ā]. The

interim probabilities of investigation hold 8 p 2 (0, 1).

2. Suppose C0(A) < C1(A) 8A 2 [0, Ā] and Ā <
�C1(A)
C0(A) � 1

�
f̄
V . There-

fore, A �
�C1(A)
C0(A) � 1

�
f̄
V is never satisfied. By Proposition 1, if A 

� 1�p
p

�
f̄
V = A

0(p) or equivalently, if p  f̄V

f̄V +A
, then the interim prob-

abilities of investigation are q0(A) =
� p
1�p

�
A
f̄V  1 by Claim 5, and

q1(A) = 0; if A >
� 1�p

p

�
f̄
V = A

0(p), or equivalently, if p >
f̄V

f̄V +A
, then

the interim probabilities of investigation are q0(A) = 1 and q1(A) =

1 � f̄V

p(A+f̄V )
< 1. When p  p

0, Ā  A
0(p) by Claim 4. Therefore,

every A 2 [0, Ā] is lower than or equal to A
0. When p > p

0, Ā > A
0(p)

by Claim 4. Therefore, A 2 [0, Ā] can be greater than or lower than
A

0. Hence, two mutually-exclusive p-segments are possible:

(a) p-Segment 1: If p 2 (0, p0], the interim probabilities of investi-
gation are q0(A) =

� p
1�p

�
A
f̄V  1 by Claim 5, and q1(A) = 0

8A 2 [0, Ā].

(b) p-Segment 2: If p 2 (p0, 1): The interim probabilities of investi-
gation are as follows.

i. If A  A
0(p), then q0(A) =

� p
1�p

�
A
f̄V  1 by Claim 5, and

q1(A) = 0.

ii. If A > A
0(p), then q0(A) = 1 and q1(A) = 1� f̄V

p(A+f̄V )
> 0.

The interim probabilities of investigation in Environment 2 hold 8A 2
[0, Ā] and 8 p 2 (0, 1).

⌅

Adjustments to the Interim Probabilities of Investigation

This section discusses technical aspects of the application of adjustments
to the interim probabilities of investigation to satisfy the liable injurer’s

incentive-compatibility constraint (2),
R Ā
0 Ag(A)dA  f̄

I
R Ā
0 q0(A)g(A)dA.

First, we define the two possible adjustment procedures, and denote them
as Procedures 1 and 2.
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Definition 2. Procedure 1 consists of an increase in q0(A) and a decrease in

q1(A) until the liable injurer’s incentive-compatibility constraint (2) is sat-

isfied as an equality while keeping the victim’s incentive-compatibility con-

straint (1) satisfied as an equality. Procedure 2 consists of an increase in

q0(A) without decreasing q1(A) until the liable injurer’s incentive-compatibility

constraint (2) is satisfied as an equality while keeping the victim’s incentive-

compatibility constraint (1) satisfied.

In Environment 1, the interim q0(A) is always zero. Hence, constraint
(2) is never satisfied and an adjustment is required. Given that the interim
q1(A) > 0, Procedures 1 and 2 can be implemented. In Environment 2, even
when q0(A) > 0, f I is limited to f̄

I . Therefore, constraint (2) might not
be satisfied and an adjustment might be required. When p 2 (0, p0] and
A 2 [0, Ā], although the interim q0(A) < 1, the interim q1(A) = 0. Hence,
only Procedure 2 can be implemented. When p 2 (p0, 1], an adjustment
can be applied only for relatively low A-values. Specifically, when A 2
(0, A0(p)], even when the interim q0(A) < 1, the interim q1(A) = 0. Hence,
only Procedure 2 can be implemented. When A 2 (A0(p), Ā], although the
interim q1(A) > 0, the interim q0(A) = 1. Hence, neither Procedure 1 nor
Procedure 2 can be implemented. The next corollary summarizes this result.

Corollary 1. Procedures 1 and 2 can be applied in Environment 1. Only

Procedure 2 can be applied in Environment 2.

Second, we study the e�ciency of the adjustment procedures. Consider a
victim of type A. Remember that E[C] = pq1(A)C1(A)+ (1� p)q0(A)C0(A)
represents the expected cost of producing evidence associated with a vic-
tim of type A. Let u

I
0|1 = f̄

I
q0(A) represent the liable injurer’s expected

loss for misreporting associated with a victim of type A,
@uI

0|1
@q0(A) represent

the change in the liable injurer’s expected loss for misreporting due to an
increase in q0(A), and @E[C]

@q0(A) represent the change in the expected cost of pro-
ducing evidence due to an increase in q0 while keeping the victim’s incentive-
compatibility constraint satisfied. Next, we define the e�ciency of Procedure
i, ⌦i(A) (i = 1, 2).

Definition 3. Consider a victim of type A. E�ciency of Procedure i is

defined as ⌦i(A) =

@uI
0|1

@q0(A)
@E[C]

@q0(A)

.

Intuitively, a high ⌦i(A) indicates a high increase in u
I
0|1 and/or a low

increase in E[C] due to an increase in q0(A). Hence, the procedure with
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the highest ⌦i(A) exhibits the highest level of e�ciency in incentivizing the
liable injurer through an increase in q0(A). Lemma 3 characterizes ⌦1(A)
and ⌦2(A).

⌦1(A) =
f̄
I

(1� p)C0(A)� (1� p) C1(A)�
1+ A

f̄V

�
.

⌦2(A) =
f̄
I

(1� p)C0(A)
.

Both ⌦1(A) and ⌦2(A) apply to Environment 1, and only ⌦2(A) applies
to Environment 2. Lemma 3 shows that when C0(0) > C1(0), ⌦1(A) > 0
exists 8A 2 [0, Ā].

Lemma 3. (1) Suppose C0(A) � C1(A) 8A 2 ([0, Ā]. If and only if C0(0) >
C1(0), ⌦1(A) > 0 exists. (2) If and only if C0(0) > 0, ⌦2(A) > 0 exists.

Proof. We first characterize ⌦1 and ⌦2. By Definition 4, ⌦i(A) =

@uI
0|1

@q0(A)
@E[C]

@q0(A)

.

E[C] = pq1(A)C1(A) + (1� p)q0(A)C0(A) and
@uI

0|1
@q0(A) = f̄

I
. Consider Proce-

dure 1.
@E[C]

@q0(A)
=

@E[C]

@q0(A)
+

@E[C]

@q1(A)

@q1(A)

@q0(A)
.

The direct e↵ect of an increase in q0(A), DE, is

DE =
@E[C]

@q0(A)
= (1� p)C0(A) > 0.

@E[C]

@q1(A)
= pC1(A).

Given equation (3), (pf̄V + pA)q1(A) + (1� p)f̄V
q0(A) = pA,

@q1(A)

@q0(A)
= � (1� p)

p
�
1 + A

f̄V

� .

Therefore, the indirect e↵ect of an increase in q0(A), IE, is

IE =
@E[C]

@q1(A)

@q1(A)

@q0(A)
= pC1(A)

"
� (1� p)

p
�
1 + A

f̄V

�
#
< 0.
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The overall e↵ect of an increase in q0(A), @E[C]
@q0(A) , is:

@E[C]

@q0(A)
= (1�p)C0(A)+pC1(A)

"
� (1� p)

p
�
1 + A

f̄V

�
#
= (1�p)

"
C0(A)� C1(A)�

1 + A
f̄V

�
#
.

Hence,

⌦1(A) =
f̄
I

(1� p)
h
C0(A)� C1(A)�

1+ A
f̄V

�
i .

Consider Procedure 2.

@E[C]

@q0(A)
= (1� p)C0(A) = DE.

Hence,

⌦2(A) =
f̄
I

(1� p)C0(A)
.

1. Suppose C0(A) � C1(A) 8A 2 (0, Ā] and C0(0) > C1(0). We show that

⌦1(A) =
f̄
I

(1� p)
h
C0(A)� C1(A)�

1+ A
f̄V

�
i > 0

exists 8A 2 [0, Ā].

(a) When A > 0,

0 <

✓
1 +

A

f̄V

◆
=

f
V

f̄V +A
< 1.

Therefore,

C0(A) >
C1(A)⇣
1 + A

f̄V

⌘ ,
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by C0(A) � C1(A) 8A 2 (0, Ā]. Hence,

⌦1(A) =
f̄
I

(1� p)
h
C0(A)� C1(A)�

1+ A
f̄V

�
i > 0

exists.

(b) When A = 0,
�
1 + A

f̄V

�
= 1. Hence,

⌦1(A) =
f̄
I

(1� p)(C0(0)� C1(0))
> 0

exists if and only if C0(0) > C1(0).

2. Suppose C0(0) > 0. We show that ⌦2(A) > 0 exists.

⌦2(A) =
f̄
I

(1� p)C0(A)
> 0

exists 8A 2 [0, Ā] if and only if C0(0) > 0 and @C0(A)
@A > 0 by assump-

tion.

⌅

Intuition follows. In Procedure 1, the e↵ect of an increase in q0(A) on
E[C] involves a positive direct e↵ect through q0(A) and a negative indirect
e↵ect through q1(A). The direct e↵ect more than o↵sets the indirect e↵ect
and hence, the overall e↵ect is positive. Lemma 3 also shows that when
C0(0) > 0, ⌦2 > 0 exists 8A 2 [0, Ā]. Intuitively, in Procedure 2, the overall
e↵ect of an increase in q0(A) on E[C] involves just a positive direct e↵ect
through q0(A).

Next, we compare the e�ciency of both procedures for a victim of type
A in Environment 1. Suppose C0(A) � C1(A) 8A 2 (0, Ā], C0(0) > C1(0)
and C0(0) > 0,

⌦1(A) =
f̄
I

(1� p)C0(A)� (1� p) C1(A)�
1+ A

f̄V

�
>

f̄
I

(1� p)C0(A)
= ⌦2(A).

In words, for a victim of type A, Procedure 1 is the most e�cient adjustment
procedure.
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Third, we provide formal analysis of the application of Procedures 1
and 2 across victim’s types, and identify the e�ciency-superior procedure in
Environment 1.52

Proposition 3 identifies a su�cient condition under which the applica-
tion of Procedure 1 should start at the lowest value of A, and shows that
Procedure 2 should always start at the lowest value of A.53

Proposition 3. (1) Suppose C0(A) � C1(A) 8A 2 (0, Ā] and C0(0) >

C1(0). If
@

C1(A)
C0(A)

@A  0 8A 2 [0, Ā], then the implementation of Procedure 1

should start at the lowest value of A. (2) Suppose C0(0) > 0. Tthe imple-

mentation of Procedure 2 should start at the lowest value of A.

Proof.

1. Suppose C0(A) � C1(A) 8A 2 (0, Ā], C0(0) > C1(0) and
@

C1(A)
C0(A)

@A  0
8A 2 [0, Ā]. ⌦1(A) can be written as:

⌦1(A) =
f̄
I

(1� p)C0(A)


1� C1(A)

C0(A)
�
1+ A

f̄V

�
� .

Denote


1� C1(A)

C0(A)
�
1+ A

f̄V

�
�
as  (A).

@⌦1(A)

@A
=

=
f̄
I

1� p


1

C0(A)

✓
� 1

( (A))2

◆
@ (A)

@A
+

1

 (A)

✓
� 1

(C0(A))2

◆
@C0(A)

@A

�
,

where @C0(A)
@A > 0, by assumption of the model, and

@ (A)

@A
= �

@
C1(A)
C0(A)

@A

1�
1 + A

f̄V

� � C1(A)

C0(A)


� 1
�
1 + A

f̄V

�2
1

f̄V

�
> 0

52Remember that only Procedure 2 can be implemented in Environment 2.
53Proposition 3 shows that the sign of @⌦1(A)

@A is ambiguous. Therefore, Procedure 1

could also start at the highest value of A. For consistency of the methodology across

procedures, we decided to impose a condition such that @⌦1(A)
@A < 0.
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because
@

C1(A)
C0(A)

@A  0, by assumption. Hence, @⌦1(A)
@A < 0.

2. Suppose C0(0) > 0.

⌦2(A) =
f̄
I

(1� p)C0(A)
.

@⌦2(A)

@A
= �

f̄
I @C0(A)

@A

(1� p)(C0(A))2
< 0,

because @C0(A)
@A > 0 by assumption of the model.

⌅

Intuition follows. In Environment 1, when
@

C1(A)
C0(A)

@A  0 8A 2 [0, Ā],
⌦1(A) increases when A decreases. Across environments, ⌦2(A) increases
when A decreases. Hence, the social planner should start the application of
Procedure i (i = 1, 2) at the lowest levels of A where Procedure i is more
e�cient. The next remark summarizes this result.

Proposition 4 identifies a necessary and su�cient condition for the ef-
ficiency superiority of Procedure 1 across victim’s types in Environment 1
where both procedures can be applied.

Proposition 4. Suppose C0(A) � C1(A) 8A 2 (0, Ā], C0(0) > C1(0),

C0(0) > 0 and
@

C1(A)
C0(A)

@A  0 8A 2 [0, Ā]. If and only if C0(A) � C0(0) <

C1(A)f̄V

A+f̄V 8A 2 [0, Ā], Procedure 1 is more e�cient than Procedure 2 across

victim’s types.

Proof. Suppose C0(A) � C1(A) 8A 2 [0, Ā], C0(0) > C1(0), C0(0) > 0,
@

C1(A)
C0(A)

@A  0 and C0(A)�C0(0) <
C1(A)f̄V

A+f̄V 8A 2 [0, Ā]. Given that @⌦2(A)
@A < 0,

it su�ces to compare ⌦2(A) for A = 0 and ⌦1(A) for A 2 [0, Ā].

⌦1(A) =
f̄
I

(1� p)
h
C0(A)� C1(A)f̄V

A+f̄V

i >
f̄
I

(1� p)C0(0)
= ⌦2(0)

if and only if C0(A)� C0(0) <
C1(A)f̄V

A+f̄V . ⌅
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Intuition follows. In Environment 1, when C0(A)� C0(0) <
C1(A)f̄V

A+f̄V for

A 2 [0, Ā], the e�ciency of Procedure 1 for any A 2 [0, Ā] is strictly higher
than the highest level of e�ciency of Procedure 2 (which occurs when A = 0).
Hence, the social planner should exhaust the implementation of Procedure
1, i.e., should increase q0(A) and reduce q1(A) across victim’s types, before
applying Procedure 2. The next corollary summarizes this result.

Corollary 2. In Environment 1 where Procedures 1 and 2 can be applied,

Procedure 1 should be applied first.

Proposition 5. Suppose C0(A) � C1(A) 8A 2 (0, Ā], C0(0) > C1(0) and

p 2 (0, 1). There are three p-segments: p-Segment 1 where p 2 (0, p̃], p-

Segment 2.1 where p 2 (p̃, p̄], and p-Segment 2.2 where p 2 (p̄, 1).

Proof. Suppose C0(A) � C1(A) 8A 2 (0, Ā], C0(0) > C1(0) and p 2 (0, 1).

1. We show that p 2 (0, 1) is divided into two main p-segments, denoted
as p-Segment 1 and p-Segment 2. To accomplish this, we need to
show that there exists a unique p-threshold, denoted as p̃ such that
0 < p̃ < 1.

(a) In the main text of the paper, we define p̃ as the p-threshold such
that, after exhausting Procedure 1 8A 2 [0, Ā], the liable injurer’s
incentive-compatibility constraint is satisfied as an equality.

Z Ā

0
Ag(A)dA = f̄

I

Z Ā

0

⇣
p̃

1� p̃

⌘
A

f̄V
g(A)dA.. (5)

(b) We need to show that p̃ < p
0. Otherwise, Procedure 1 could not

be exhausted 8A 2 [0, Ā]. Equation (5) can be rewritten as:

Z Ā

0
Ag(A)dA =

f̄

f̄V

I⇣
p̃

1� p̃

⌘Z Ā

0
Ag(A)dA.

Hence,

0 <
f̄
V

f̄V + f̄ I
= p̃.

Given that f̄ I
> Ā by assumption,

p̃ <
f̄
V

f̄V + Ā
= p

0
,

where p
0
< 1.
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(c) Finally, we need to show the uniqueness of p̃. Given that
@( p

1�p )

@p

is strictly increasing in p, the threshold p̃ such that, after ex-
hausting Procedure 1 8A 2 [0, Ā], the liable injurer’s incentive-
compatibility constraint holds as an equality is unique.

Hence, p 2 (0, 1) is divided into two main p-segments, p-Segment 1
where p 2 (0, p̃] and p-Segment 2 where p 2 (p̃, 1).

2. We show that p-Segment 2 where p 2 (p̃, 1) is divided into two addi-
tional p-segments, p-Segment 2.1 where p 2 (p̃, p̄] and p-Segment 2.2
where p 2 (p̄, 1). To accomplish this, we need to show that there exists
a unique p-threshold, denoted as p̄, such that p̃ < p̄ < 1.

(a) In the main text of the paper, we define p̄ as the p-value such
that, after exhausting the implementation of Procedure 1 for A 2
[0, A0(p̄)], the liable injurer’s incentive-compatibility constraint
evaluated at the adjusted interim probabilities of investigation is
satisfied as an equality:

Z Ā

0
Ag(A)dA = f̄

I

 Z A0(p̄)

0

⇣
p̄

1� p̄

⌘
A

f̄V
g(A)dA+

Z Ā

A0(p̄)
0g(A)dA

�
,

(6)
where A0(p̄) =

� 1�p̄
p̄

�
f̄
V . We show now that there exists a unique

p̄ such that p
0
< p̄ < 1. Therefore, p-Segment 2 is divided into

two p-segments, denoted as p-Segment 2.1 and p-Segment 2.2.
Given that A0(p) is a strictly decreasing function of p, there is a
one-to-one correspondence between A

0(p) and p. Therefore, we
can show the existence and uniqueness of p̄ by showing that there
exists a unique A

0(p̄) =
� 1�p̄

p̄

�
f̄
V
< Ā.

Define  (x) ⌘ f̄
I
R x
0

A
x g(A)dA for x 2 (0, Ā]. First, we show that

limx!0 (x) = 0. Given that dg(A)
dA � 0, g(A)  g(x) 8A  x.

Therefore, 8A  x:

lim
x!0

 (x) = lim
x!0

f̄
I

Z x

0

A

x
g(A)dA  lim

x!0
f̄
I

Z x

0

A

x
g(x)dA =

= lim
x!0

f̄
I

✓Z x

0

A

x
dA

◆
g(x) = f̄

I lim
x!0

x
2

2x
g(x) = 0.
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Given that  (x) > 0, 8x 2 (0, Ā],

lim
x!0

 (x) = 0.

Hence,
R Ā
0 Ag(A)dA > limx!0 (x) = 0. Second,

 (Ā) = f̄
I
R Ā
0

A
Ā
g(A)dA = f̄I

Ā

R Ā
0 Ag(A)dA. Therefore,

R Ā
0 Ag(A)dA <  (Ā). Third, we show that there exists a unique

x = A
0(p̄) < Ā such that

R Ā
0 Ag(A)dA =  (x). We show that

 (x) is a di↵erentiable function on x and therefore a continuous
function, and a strictly increasing function on x. By assumption
@g(A)
@A � 0,

@ (x)

@x
= f̄

I

✓
�
Z x

0

A

x2
g(A)dA+ g(x)

◆
�

� f̄
I

✓
�
Z x

0

A

x2
g(x)dA+ g(x)

◆
=

= f̄
I
g(x)

✓
1� x

2

2x2

◆
> 0.

Therefore, there exists a unique value of x = A
0(p̄) < Ā such that

Z Ā

0
Ag(A)dA = f̄

I

Z A0(p̄)

0

A

A0(p̄)
g(A)dA.

Hence, there exists a unique p̄.

(b) We need to show that p̄ > p
0. Otherwise, Procedure 1 could

be exhausted 8A 2 [0, Ā]. A
0(p̄) = (1�p̄)f̄V

p̄ . Therefore, p̄ =
f̄V

f̄V +A0(p̄)
. A0(p̄) < Ā, by Part 2(a) of this proof. Hence,

p̄ =
f̄
V

f̄V +A0(p̄)
>

f̄
V

f̄V + Ā
= p

0
,

by Claim 4. Given that p̃ < p
0 by Part 2(a) of this proof, p̄ > p̃

and hence, p̄ > p
0 by Part 1(b) of this proof.
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(c) We show that p̄ < 1. A0(p̄) = (1�p̄)f̄V

p̄ . Hence, p̄ = f̄V

f̄V +A0(p̄)
< 1.

Hence, p-Segment 2 where p 2 (p̃, 1) is divided into two p-segments,
p-Segment 2.1 where p 2 (p̃, p̄] and p-Segment 2.2 where p 2 (p̄, 1).

⌅

Proposition 6. Suppose C0(A) < C1(A) 8A 2 [0, Ā], Ā <
�C1(A)
C0(A) � 1

�
f̄
V

and p 2 (0, 1). There are three p-segments: p-Segment 1.1 where p 2 (0, p̃],
p-Segment 1.2 where p 2 (p̃, p0] and p-Segment 2 where p 2 (p0, 1).

Proof. Suppose C0(A) < C1(A) 8A 2 [0, Ā], Ā <
�C1(A)
C0(A) � 1

�
f̄
V and

p 2 (0, 1).

1. We show that p-Segment 1 where p 2 (0, p0] is divided into two p-
segments, p-Segment 1.1 where p 2 (0, p̃] and p-Segment 1.2 where
p 2 (p̃, p0]. To accomplish this, we need to show that there exists a
unique p-threshold, denoted as p̌, such that 0 < p̌ < p

0
.

(a) In the main text of the paper, we define p̌ as the p-threshold
such that the liable injurer’s incentive-compatibility constraint,
evaluated at the interim probabilities of verification, is satisfied
as an equality.

Z Ā

0
Ag(A)dA = f̄

I

Z Ā

0

⇣
p̌

1� p̌

⌘
A

f̄V
g(A)dA. (7)

Equation (7) can be rewritten as:

Z Ā

0
Ag(A)dA =

f̄

f̄V

I⇣
p̌

1� p̌

⌘Z Ā

0
Ag(A)dA.

Hence,

0 <
f̄
V

f̄V + f̄ I
= p̌.

Given that f̄ I
> Ā by assumption,

p̌ <
f̄
V

f̄V + Ā
= p

0
,
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where p
0
< 1. Note that p̌ = p̃. Part 2(c) of Proposition 5 also

hold here and therefore, the p-threshold is unique.

Hence p-Segment 1 where p 2 (0, p0] is divided into two main
p-Segments, denoted as p-Segment 1.1 where p 2 (0, p̃] and p-
Segment 1.2 where p 2 (p̃, p0].

(b) We need to show that p-Segment 1.2 where p 2 (p̃, p0] is not di-
vided into additional p-segments. To accomplish this goal, we
need to show that there does not exist a threshold p

0
where p̃ <

p
0
< p

0 such that the liable injurer’s incentive-compatibility con-
straint, evaluated at the interim probabilities of investigation or at
the adjusted interim probabilities of investigation after applying
Procedure 2, is satisfied as an equality.

When p 2 (p̃, p0], the liable injurer’s incentive compatibility con-
straint, evaluated at the interim probabilities of investigation, is
satisfied as a strict inequality:

Z Ā

0
Ag(A)dA <

Z Ā

0

⇣
p

1� p

⌘
A

f̄V
g(A)dA,

by the definition of p̃ and
@( p

1�p )

@p > 0. Therefore, there does

not exist p̃ < p
0
< p

0 such that the liable injurer’s incentive-
compatibility constraint, evaluated at the interim probabilities of
investigation or at the adjusted interim probabilities of investiga-
tion after applying Procedure 2, is satisfied as an equality.

Hence, p-Segment 1.2 where p 2 (p̃, p0] is not divided into addi-
tional p-segments.

Hence, p 2 (0, p0] is divided into two p-segments, p-Segment 1.1 where
p 2 (0, p̃] and p-Segment 1.2 where p 2 (p̃, p0].

2. We show that p-Segment 2 where p 2 (p0, 1) is not divided into addi-
tional p-segments. To accomplish this goal, we need to show that there
does not exist a threshold p

00
where p

0
< p

00
< 1 such that the liable

injurer’s incentive-compatibility constraint, evaluated at the interim
probabilities of investigation or at the adjusted interim probabilities of
investigation after applying Procedure 2, is satisfied as an equality.
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Suppose p 2 (0, 1). By the definition of p̃,

Z Ā

0
Ag(A)dA =

Z A0(p)

0

⇣
p̃

1� p̃

⌘
A

f̄V
g(A)dA+

Z Ā

A0(p)

⇣
p̃

1� p̃

⌘
A

f̄V
g(A)dA,

where
� p̃
1�p̃

�
A
f̄V < 1 8A 2 [0, Ā], by p̃ < p

0 and Claim 5.

Suppose p 2 (p0, 1).

Z A0(p)

0

⇣
p̃

1� p̃

⌘
A

f̄V
g(A)dA+

Z Ā

A0(p)

⇣
p̃

1� p̃

⌘
A

f̄V
g(A)dA <

<

Z A0(p)

0

⇣
p

1� p

⌘
A

f̄V
g(A)dA+

Z Ā

A0(p)
1g(A)dA,

by
@( p

1�p )

@p > 0 and
� p̃
1�p̃

�
A
f̄V < 1 8A 2 [0, Ā].

As a result, when p 2 (p0, 1), the liable injurer’s incentive compatibility
constraint, evaluated at the interim probabilities of investigation, is
satisfied as a strict inequality:

Z Ā

0
Ag(A)dA <

Z A0(p)

0

⇣
p

1� p

⌘
A

f̄V
g(A)dA+

Z Ā

A0(p)
1g(A)dA.

Therefore, there does not exist p
0

< p
00

< 1 such that the liable
injurer’s incentive-compatibility constraint, evaluated at the interim
probabilities of investigation or at the adjusted interim probabilities of
investigation after applying Procedure 2, is satisfied as an equality.

Hence, p-Segment 2 where p 2 (p0, 1) is not divided into additional
p-segments.

⌅

Lemma 4. Suppose C0(A) � C1(A) 8A 2 (0, Ā], C0(0) > C1(0) and p 2
(0, p̃]. There exists a unique 0  A

1(p) < Ā.

Proof. Suppose C0(A) � C1(A) 8A 2 (0, Ā], C0(0) > C1(0) and p 2
(0, p̃]. In the main text of the paper, we define A

1(p) as the A-threshold
such that, after exhausting Procedure 1 8A 2 [0, Ā] and increasing q0(A)
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to 1 by applying Procedure 2 8A 2 [0, A1(p)], the liable injurer’s incentive-
compatibility constraint holds as an equality:

Z Ā

0
Ag(A)dA = f̄

I

 Z A1(p)

0
1g(A)dA+

Z Ā

A1(p)

⇣
p

1� p

⌘
A

f̄V
g(A)dA

�
. (8)

We show the existence and uniqueness of A1(p) and that A1(p) < Ā.

1. Suppose p 2 (0, p̃]. We show that, after exhausting the application
of Procedure 1 8A 2 [0, Ā], the liable injurer’s incentive-compatibility
constraint is still not satisfied when p 2 (0, p̃) and hence, Procedure 2
should be applied starting with the lowest A-value.

Given that p < p
0, by Claim 4, A < A

0(p) and therefore, Procedure 1
can be exhausted 8A 2 [0, Ā].

(a) Suppose p 2 (0, p̃). At the adjusted interim probabilities of veri-
fication,

Z Ā

0
Ag(A)dA > f̄

I

Z Ā

0

⇣
p

1� p

⌘
A

f̄V
g(A)dA,

by the definition of p̃ and
@
�

p
1�p

�

@p > 0.

(b) Suppose p = p̃. At the adjusted interim probabilities of verifica-
tion, Z Ā

0
Ag(A)dA = f̄

I

Z Ā

0

⇣
p

1� p

⌘
A

f̄V
g(A)dA,

by the definition of p̃.

2. Suppose p 2 (0, p̃]. We show that there exists a unique A
1(p) < Ā

such that Procedure 2 is applied by increasing q0(A) to 1 only for A 2
[0, A1(p)], and the liable injurer’s incentive-compatibility constraint is
satisfied as an equality.
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Define  (y) for y 2 [0, Ā] as follows:

 (y) ⌘ f̄
I

 Z y

0
g(A)dA+

Z Ā

y

pA

(1� p)f̄V
g(A)dA

�
.

Note that

 (y) = f̄
I

 Z A1(p)

0
g(A)dA+

Z Ā

A1(p)

pA

(1� p)f̄V
g(A)dA

�

when y = A
1(p). We show y = A

1(p) < Ā exists and is unique.

(a) Suppose p 2 (0, p̃). We show the existence and uniqueness of
A

1(p) such that 0 < A
1(p) < Ā.

Z Ā

0
Ag(A)dA >  (0) = f̄

I

Z Ā

0

pA

(1� p)f̄V
g(A)dA,

Z Ā

0
Ag(A)dA <  (Ā) = f̄

I

Z Ā

0
g(A)dA = f̄

I

and
@ (y)

@y
= f̄

I


g(y)� py

(1� p)f̄V
g(y)

�
> 0.

 (y) is di↵erentiable and therefore is continuous. It is also strictly
increasing in y. Hence, there exists a unique y = A

1(p) 2 (0, Ā)
such that

Z Ā

0
Ag(A)dA = f̄

I

 Z A1(p)

0
1g(A)dA+

Z Ā

A1(p)

pA

(1� p)f̄V
g(A)dA

�
.

(b) Suppose p = p̃. We show the existence and uniqueness of A1(p)
and that A1(p) = 0. Evaluate  (y) at y = 0.

 (0) = f̄
I

 Z 0

0
g(A)dA+

Z Ā

0

pA

(1� p)f̄V
g(A)dA

�
.
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By the definition of p̃,
R Ā
0 Ag(A)dA =  (0) when p = p̃. There-

fore,

Z Ā

0
Ag(A)dA = f̄

I

 Z 0

0
1g(A)dA+

Z Ā

0

pA

(1� p)f̄V
g(A)dA

�
.

Hence, A1(p̃) = 0.

⌅

Lemma 5 Suppose C0(A) � C1(A) 8A 2 (0, Ā], C0(0) > C1(0) and p 2
(p̃, p̄]. There exists a unique 0  A

2.1(p) < Ā.

Proof. Suppose C0(A) � C1(A) 8A 2 [0, Ā] and p 2 (p̃, p̄].

In the main text of the paper, we define A
2.1(p) as the A-threshold such

that, after exhausting Procedure 1 8A 2 [0, A2.1(p)], the liable injurer’s
incentive-compatibility constraint holds as an equality:

Z Ā

0
Ag(A)dA = f̄

I
h Z A2.1(p)

0

pA

(1� p)f̄V
g(A)dA+

Z Ā

A2.1(p)
0g(A)dA

i
. (9)

We show the existence and uniqueness of A2.1(p) and that 0  A
2.1(p) < Ā.

1. Suppose p 2 (p̃, p0]. By Claim 4, A  A
0(p) and therefore, Procedure

1 can be exhausted 8A 2 [0, Ā].

By the definition of p̃,

Z Ā

0
Ag(A)dA = f̄

I

Z Ā

0

p̃A

(1� p̃)f̄V
g(A)dA

Given that p 2 (p̃, p0], p > p̃. By
@
�

p
1�p

�

@p > 0:

f̄
I

Z Ā

0

pA

(1� p)f̄V
g(A)dA > f̄

I

Z Ā

0

p̃A

(1� p̃)f̄V
g(A)dA.

The last inequality can be rewritten as:

f̄
I
p

(1� p)f̄V

Z Ā

0
Ag(A)dA >

f̄
I
p̃

(1� p̃)f̄V

Z Ā

0
Ag(A)dA. (1A)
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Define  (z) for z 2 [0, Ā].

 (z) ⌘
Z z

0
Ag(A)dA.

 (0) = 0,  (Ā) =
R Ā
0 Ag(A)dA.

@ (z)

@z
= zg(z) > 0.

 (z) is di↵erentiable and therefore,  (z) is continuous. It is also
strictly increasing in z. Therefore,

f̄
I
p

(1� p)f̄V
 (0) = 0 <

f̄
I
p̃

(1� p̃)f̄V

Z Ā

0
Ag(A)dA. (2A)

Inequality (1A) can be expressed as:

f̄
I
p

(1� p)f̄V
 (Ā) >

f̄
I
p̃

(1� p̃)f̄V

Z Ā

0
Ag(A)dA.

By (1A) and (2A), there exists a unique z = A
2.1(p) 2 (0, Ā) such that

f̄
I
p

(1� p)f̄V
 (A2.1(p)) =

f̄
I
p̃

(1� p̃)f̄V

Z Ā

0
Ag(A)dA.

By the definition of  (z) and z = A
2.1(p),

f̄
I
p

(1� p)f̄V

Z A2.1(p)

0
Ag(A)dA =

f̄
I
p̃

(1� p̃)f̄V

Z Ā

0
Ag(A)dA,

which can be written as:

f̄
I

Z A2.1(p)

0

⇣
p

1� p

⌘
A

f̄V
g(A)dA = f̄

I

Z Ā

0

⇣
p̃

1� p̃

⌘
A

f̄V
g(A)dA.

Therefore, by the definition of p̃

Z Ā

0
Ag(A)dA = f̄

I

Z A2.1(p)

0

⇣
p

1� p

⌘
A

f̄V
g(A)dA.
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Hence, there exists a unique 0 < A
2.1(p) < Ā such that

Z Ā

0
Ag(A)dA = f̄

I
h Z A2.1(p)

0

pA

(1� p)f̄V
g(A)dA+

Z Ā

A2.1(p)
0g(A)dA

i
.

2. Suppose p 2 (p0, p̄]. By Claim 4, Ā > A
0(p) and therefore, Procedure

1 can be exhausted only 8A 2 [0, A0(p)].

We need to show that A2.1(p)  A
0(p) when p 2 (p0, p̄] and therefore,

Procedure 1 can be exhausted 8A 2 [0, A2.1(p)]. As a result, Part 1 of
this proof also holds when p 2 (p0, p̄].

To accomplish this goal, we first show that A
2.1(p) < A

0(p) when
p 2 (p0, p̄). Second, we show that A2.1(p) = A

0(p) when p = p̄.

Define m ⌘ (1�p)f̄V

p = A
0(p) and  (m) as:

 (m) ⌘ f̄
I

Z m

0

A

m
g(A)dA,

where  (m) is the right-hand side of the liable injurer’s incentive com-
patibility constraint when Procedure 1 is exhausted 8A 2 [0, A0(p)].

By assumption, g(A) is non-decreasing in A. Therefore,

@ (m)

@m
= f̄

I


g(m)�

Z v

0

A

m2
g(A)dA

�
�

� f̄
I
g(m)


1� 1

m2

Z m

0
Ag(A)dA

�
=

f̄
I
g(m)

2
> 0.

@ (m)

@p
=
@ (m)

@m

@m

@p
= � f̄

I
g(m)

2

f̄
V

p2
< 0.

(a) Suppose p 2 (p0, p̄). By Part 1 of this proof, when p 2 (p̃, p0],

Z Ā

0
Ag(A)dA = f̄

I

Z A2.1(p)

0

⇣
p

1� p

⌘
A

f̄V
g(A)dA.
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Given @ (m)
@p < 0, when p 2 (p0, p̄),

Z Ā

0
Ag(A)dA = f̄

I

Z A2.1(p)

0

⇣
p

1� p

⌘
A

f̄V
g(A)dA <

< f̄
I

Z A0(p)

0

⇣
p

1� p

⌘
A

f̄V
g(A)dA.

Hence, A2.1(p) < A
0(p) when p 2 (p0, p̄).

(b) Consider p = p̄. By the definition of p̄,

Z Ā

0
Ag(A)dA = f̄

I

 Z A0(p̄)

0

⇣
p̄

1� p̄

⌘
A

f̄V
g(A)dA+

Z Ā

A0(p̄)
0g(A)dA

�
.

By the definition of A2.1(p), when p = p̄,

Z Ā

0
Ag(A)dA = f̄

I

Z A2.1(p̄)

0

⇣
p̄

1� p̄

⌘
A

f̄V
g(A)dA+

Z Ā

A2.1(p̄)
0g(A)dA

�
.

Hence, A2.1(p) = A
0(p) when p = p̄.

⌅
Lemma 6. Suppose C0(A) � C1(A) 8A 2 (0, Ā], C0(0) > C1(0) and p 2
(p̄, 1). There exists a unique A

2.2(p) such that A
0
< A

2.2(p) < Ā.

Proof. Suppose C0(A) � C1(A) 8A 2 (0, Ā], C0(0) > C1(0) and p 2 (p̄, 1).
In the main text of the paper, we define A

2.2(p) as the A-threshold such
that, after exhausting Procedure 1 for A 2 [0, A0(p)] and increasing q0(A)
to 1 by applying Procedure 1 to A 2 (A0(p), A2.2(p)], the liable injurer’s
incentive-compatibility constraint holds as an equality:

Z Ā

0
Ag(A)dA =

= f̄
I

 Z (1�p)f̄V

p

0

pA

(1� p)f̄V
g(A)dA+

Z A2.2(p)

(1�p)f̄V

p

1g(A)dA+

Z Ā

A2.2(p)
0g(A)dA

�
.

(10)
We show existence and uniqueness of A2.2(p) and that A

0
< A

2.2(p) < Ā,

where A
0 = (1�p)f̄V

p .
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1. Define v and  (v) for p 2 (0, 1) and v 2 (0, Ā], respectively, as follows.

v ⌘ (1� p)f̄V

p
= A

0(p).

 (v) ⌘ f̄
I

 Z v

0

A

v
g(A)dA+

Z Ā

v
g(A)dA

�
.

(a) We show that, after exhausting the application of Procedure 1
8A 2 [0, A0(p)], the liable injurer’s incentive compatibility con-
straint is still not satisfied, and hence, Procedure 1 should be
applied to A > A

0(p).

To accomplish this goal, we show that inequality (3A) holds:

Z Ā

0
Ag(A)dA > f̄

I

Z (1�p)f̄V

p

0

pA

(1� p)f̄V
g(A)dA. (3A)

By the definition of p̄:

Z Ā

0
Ag(A)dA = f̄

I

Z (1�p̄)f̄V

p̄

0

p̄A

(1� p̄)f̄V
g(A)dA. (6)

We show that the right-hand-side of equation (6) is decreasing in
p for p 2 (p̄, 1).

@

⇣
f̄
I
R (1�p)f̄V

p

0
pA

(1�p)f̄V g(A)dA
⌘

@p
=
@

⇣
f̄
I
R v
0

A
v g(A)dA

⌘

@v

@v

@p
.

By assumption, g(A) is non-decreasing in A. Therefore,

@

⇣ R v
0

A
v g(A)dA

⌘

@v
= g(v)�

Z v

0

A

v2
g(A)dA �

� g(v)� g(v)

Z v

0

A

v2
dA =

1

2
g(v) > 0.

By the definition of v,

@v

@p
= � f̄

V

p2
< 0.
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Therefore,

@

⇣
f̄
I
R (1�p)f̄V

p

0
pA

(1�p)f̄V g(A)dA
⌘

@p
< 0.

Hence, when p 2 (p̄, 1),

Z Ā

0
Ag(A)dA > f̄

I

Z (1�p)f̄V

p

0

pA

(1� p)f̄V
g(A)dA.

(b) We show that, if q0(A) is increased to 1 by applying Procedure

1 to A 2
� (1�p)f̄V

p , Ā
⇤
, the liable injurer is satisfied as a strict

inequality and hence, q0(A) should be increased to 1 by applying

Procedure 1 to A >
(1�p)f̄V

p but A < Ā.

To accomplish this goal, we show that inequality (4A) holds:

Z Ā

0
Ag(A)dA <

< f̄
I

 Z (1�p)f̄V

p

0

pA

(1� p)f̄V
g(A)dA+

Z Ā

(1�p)f̄V

p

1g(A)dA

�
. (4A)

By the definitions of v and  (v), inequality (4A) can be expressed
as: Z Ā

0
Ag(A)dA <  (v).

Evaluating  (v) at v = Ā:

Z Ā

0
Ag(A)dA < f̄

I

Z Ā

0

A

Ā
g(A)dA.

We show that  (v) is di↵erentiable and therefore continuous, and
that  (v) strictly decreasing in v:

@ (v)

@v
= f̄

I

✓
�
Z v

0

A

v2
g(A)dA+

v

v
g(v)� g(v)

◆
=
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= �f̄
I

Z v

0

A

v2
g(A)dA < 0.

Therefore, 8v 2 (0, Ā]

Z Ā

0
Ag(A)dA < f̄

I

✓Z v

0

A

v
g(A)dA+

Z Ā

v
g(A)dA

◆
=  (v),

which can be written as:

Z Ā

0
Ag(A)dA <

< f̄
I

 Z (1�p)f̄V

p

0

pA

(1� p)f̄V
g(A)dA+

Z Ā

(1�p)f̄V

p

g(A)dA

�
.

2. We show that there exists a unique u = A
2.2(p) 2

�
A

0(p), Ā
�
such that

Z Ā

0
Ag(A)dA = f̄

I

 Z (1�p)f̄V

p

0

pA

(1� p)f̄V
g(A)dA+

Z A2.2(p)

(1�p)f̄V

p

g(A)dA

�
.

Define  (u) for u 2
⇥ (1�p)f̄V

p , Ā
⇤
:

 (u) ⌘ f̄
I

Z u

(1�p)f̄V

p

g(A)dA.

 ( (1�p)f̄V

p ) = 0 and  (Ā) = f̄
V
R Ā

(1�p)f̄V

p

g(A)dA.

By assumption, g(A) > 0. Therefore,

@ (u)

@u
= f̄

I
g(u) > 0.

 (u) is di↵erentiable and therefore continuous, and is strictly increasing
in u.
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Hence, there exists a unique u = A
2.2(p) 2

�
A

0(p), Ā
�
such that

Z Ā

0
Ag(A)dA = f̄

I

 Z (1�p)f̄V

p

0

pA

(1� p)f̄V
g(A)dA+ (A2.2(p))

�
,

which can be rewritten as:

Z Ā

0
Ag(A)dA = f̄

I

 Z (1�p)f̄V

p

0

pA

(1� p)f̄V
g(A)dA+

Z A2.2(p)

(1�p)f̄V

p

g(A)dA

�
.

Environment 2: Optimal Production of Evidence – Step

2

Remember that Environment 2 occurs when C0(A) < C1(A) 8A 2 [0, Ā] and

Ā <
�C1(A)
C0(A) � 1

�
f̄
V . We characterize the optimal probabilities of investiga-

tion.
Proposition 2 shows that there are two main p-segments in Environment

2, p-Segment 1 where p 2 (0, p0] and p-Segment 2 where p 2 (p0, 1). It
also shows that the interim probabilities of investigation are as follows. p-
Segment 1: q0(A) =

� p
1�p

�
A
f̄V  1 and q1(A) = 0 8A 2 [0, Ā]. p-Segment 2:

q0(A) =
� p
1�p

�
A
f̄V  1 and q1(A) = 0 for A 2 [0, A0(p)], and q0(A) = 1 and

q1(A) = 1� f̄V

p(A+f̄V )
for A 2 (A0(p), Ā]. p0 = f̄V

f̄V +Ā
and A

0(p) =
� 1�p

p

�
f̄
V .

We first verify whether the liable injurer’s incentive-compatibility con-
straint (2) is satisfied:

Z Ā

0
Ag(A)dA  f̄

I

Z Ā

0
q0(A)g(A)dA. (2)

Given that q0(A) > 0 across p- and A-values but f
I is restricted to f̄

I ,
constraint (2) might be satisfied only for su�ciently high p-values.54 Hence,
adjustments to the interim probabilities of investigation to increase q0(A)
while keeping the victim’s incentive compatibility constraint (1) satisfied
might need to be implemented for low p-values. Finally note that, when

54Note that q0(A) =
� p
1�p

� A
f̄V  1 for p 2 (0, p0] across A-values and for p 2 (p0, 1) and

low A-values, and q0(A) = 1 for p 2 (p0, 1) and high A-values. Note also that
@( p

1�p )

@p > 0.
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p 2 (0, p0], q1(A) = 0 8A 2 [0, Ā], and when p 2 (p0, 1], q1(A) = 0 8A 2
[0, A0(p)]. Therefore, only Procedure 2 should be applied in those cases.55

Corollary 5. In p-Segment 1 when A 2 [0, Ā] and p-Segment 2 when

A 2 [0, A0(p)], only Procedure 2 can be implemented.

5.0.1 Characterization of p-Segments

This section shows that the optimal production of evidence depends on the
probability of liable injurers p. Proposition 6 demonstrates that there are
three mutually-exclusive p-segments in Environment 2 that di↵er in the im-
plementation of the adjustment procedures, and hence, in the optimal proba-
bilities of investigation: p-Segment 1.1 where p 2 (0, p̌], p-Segment 1.2 where
p 2 (p̌, p0] and p-Segment 2 where p 2 (p0, 1). It also shows that p̌ = p̃.

Proposition 6. Suppose C0(A) < C1(A) 8A 2 [0, Ā], Ā <
�C1(A)
C0(A) � 1

�
f̄
V

and p 2 (0, 1). There are three p-segments: p-Segment 1.1 where p 2 (0, p̃],
p-Segment 1.2 where p 2 (p̃, p0] and p-Segment 2 where p 2 (p0, 1).

Next, we provide an intuitive discussion. Appendix A presents a formal
proof.

Characterization of p̌: p-Segments 1.1 and 1.2

Suppose p 2 (0, p0]. This section characterizes p̌ and demonstrates that p-
Segment 1 is divided into two segments: p-Segment 1.1 where p 2 (0, p̌] and
p-Segment 1.2 where p 2 (p̌, p0].

Define p̌ as the p-value such that the liable injurer’s incentive-compatibility
constraint evaluated at the interim probabilities of verification is satisfied as
an equality:

Z Ā

0
Ag(A)dA = f̄

I

Z Ā

0

⇣
p̌

1� p̌

⌘
A

f̄V
g(A)dA, (7)

which can be rewritten as:

Z Ā

0
Ag(A)dA =

f̄

f̄V

I⇣
p̌

1� p̌

⌘Z Ā

0
Ag(A)dA.

55Remember that Procedure 2 consists of increasing q0(A) without reducing q1(A) until

constraint (2) is satisfied as an equality while keeping constraint (1) satisfied.
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Hence,

p̌ =
f̄
V

f̄V + f̄ I
,

where 0 <
f̄V

f̄V +f̄I < 1. Finally note that

p̌ =
f̄
V

f̄V + f̄ I
= p̃,

and p̃ < p
0, by Proposition 5.

Hence, p̃ divides p-Segment 1 into two main segments p-Segments, p-
Segment 1.1 where p 2 (0, p̃] and p-Segment 1.2 where p 2 (p̃, p0]. Propo-
sition 6 verifies that p-Segment 1.2 and p-Segment 2 are not divided into
additional p-segments.

5.0.2 Optimal Probabilities of Investigation

p-Segment 1.1

Suppose p 2 (0, p̃]. The interim probabilities of investigation are q0(A) =� p
1�p

�
A
f̄V  1 and q1(A) = 0 8A 2 [0, Ā]. In case of requiring adjustments,

only Procedure 2 could be applied. At the interim probabilities of verifica-
tion: Z Ā

0
Ag(A)dA > f̄

I

Z Ā

0

⇣
p

1� p

⌘
A

f̄V
g(A)dA,

by the definition of p̃ and
@
�

p
1�p

�

@p > 0. Therefore, Procedure 2 should be
implemented. Starting at the lowest value of A, the social planner should
increase q0(A) to 1 without reducing q1(A) only for A 2 [0, A1.1(p)], where
A

1.1(p) is theA-threshold such that the liable injurer’s incentive-compatibility
constraint holds as an equality:

Z Ā

0
Ag(A)dA = f̄

I
h Z A1.1(p)

0
1g(A)dA+

Z Ā

A1.1(p)

⇣
p

1� p

⌘
A

f̄V
g(A)dA

i
.

Hence, A1.1(p) = A
1(p). Lemma 4 verifies that there exists a unique A

1(p)
and that A1(p) < Ā. Lemma 4 also verifies that there exists a unique A

1(p̃)
and that A1(p̃) = 0. Therefore, when p = p̃,

Z Ā

0
Ag(A)dA = f̄

I

Z Ā

0

⇣
p

1� p

⌘
A

f̄V
g(A)dA,
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which is aligned with the definition of p̃.
Hence, the optimal production of evidence for p-Segment 1.1 involves the

following optimal probabilities of investigation: q0(A) = 1 and q1(A) = 0
for A 2 [0, A1(p)], and q0(A) =

� p
1�p

�
A
f̄V and q1(A) = 0 for A 2 (A1(p), Ā],

where p̃ = f̄V

f̄V +f̄I and A
1(p) is implicitly defined using the liable injurer’s

incentive-compatibility constraint holding as an equality,
R Ā
0 Ag(A)dA =

f̄
I
⇥ R A1(p)

0 g(A)dA+
R Ā
A1(p)

� p
1�p

�
A
f̄V g(A)dA

i
. The optimal social welfare loss

function for p-Segment 1.1 is:

SWL
1.1 = H + E[C(A)]1.1 + ✓E[⌘(A)] + ⇤E[⇠(A)] =

=

Z Ā

0
Ag(A)dA+

+(1� p)

 Z A1(p)

0
C0(A)g(A)dA+

Z Ā

A1(p)

✓
p

1� p

◆
A

f̄V
C0(A)g(A)dA

�
+0+0.

p-Segment 1.2

Suppose p 2 (p̃, p0]. The interim probabilities of investigation are q0(A) =� p
1�p

�
A
f̄V  1 and q1(A) = 0 8A 2 [0, Ā]. In case of requiring adjustments,

only Procedure 2 could be applied.
Given that p > p̃, at the interim probabilities of verification:

Z Ā

0
Ag(A)dA < f̄

I

Z Ā

0

⇣
p

1� p

⌘
A

f̄V
g(A)dA

by the definition of p̃ and
@
�

p
1�p

�

@p > 0. Therefore, the implementation of
Procedure 2 is not required. At the optimal probabilities of investigation,
the liable injurer’s incentive-compatibility constraint is satisfied as a strict
inequality.

Hence, the optimal production of evidence for p-Segment 1.2 involves
the following optimal probabilities of investigation: q0(A) =

� p
1�p

�
A
f̄V and

q1(A) = 0 8A 2 [0, Ā], where p0 = f̄V

f̄V +Ā
. The optimal social welfare loss for

p-Segment 1.2 is:

SWL
1.2 = H + E[C(A)]1.2 ++✓E[⌘(A)] + ⇤E[⇠(A)] =

=

Z Ā

0
Ag(A)dA+ (1� p)

Z Ā

0

✓
p

1� p

◆
A

f̄V
C0(A)g(A)dA+ 0 + 0.
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p-Segment 2

Suppose p 2 (p0, 1). The interim probabilities of investigation are: q0(A) =� p
1�p

�
A
f̄V < 1 and q1(A) = 0 for A 2 [0, A0(p)], and q0(A) = 1 and q1(A) =

1 � f̄V

p(A+f̄V )
for A 2 (A0(p), Ā], where p

0 = f̄V

f̄V +Ā
and A

0(p) =
� 1�p

p

�
f̄
V .

In case of requiring adjustments, only Procedure 2 could be applied for A 2
[0, A0(p)].

Given that p > p̃, at the interim probabilities of verification:

Z Ā

0
Ag(A)dA <

Z A0(p)

0

⇣
p

1� p

⌘
A

f̄V
g(A)dA+

Z Ā

A0(p)
1g(A)dA,

by the definition of p̃ and
@
�

p
1�p

�

@p > 0. Therefore, the implementation of
Procedure 2 is not required. At the optimal probabilities of investigation,
the liable injurer’s incentive-compatibility constraint is satisfied as a strict
inequality.

Hence, the optimal production of evidence for p-Segment 2 involves the
following optimal probabilities of investigation: q0(A) =

� p
1�p

�
A
f̄V and q1(A) =

0 for A 2 [0, A0(p)], and q0(A) = 1 and q1(A) = 1 � f̄V

p(A+f̄V )
for A 2

(A0(p), Ā], where A
0(p) =

� 1�p
p

�
f̄
V and p

0 = f̄V

f̄V +Ā
. The optimal social

welfare loss for p-Segment 2 is:

SWL
2 = H + E[C(A)]2 + ✓E[⌘(A)] + ⇤E[⇠(A)] =

=

Z Ā

0
Ag(A)dA+ (1� p)

 Z A0(p)

0

✓
p

1� p

◆
A

f̄V
C0(A)g(A)dA+

+

Z Ā

A0(p)
C0(A)g(A)dA

�
+ p

Z Ā

A0


1� f̄

V

p(f̄V +A)

�
C1(A)g(A)dA+ 0 + 0.

Table 2 summarizes the optimal production of evidence for each p-segment
in Environment 2. Similar to Environment 1, our analysis suggests that the
optimal production of evidence involves just a subset of legal cases.

When the probability of liable injurers is su�ciently low (p  p
0), the

victim’s gains from misreporting are low. Therefore, the production of evi-
dence just in legal cases where the injurer reports to be non-liable su�ces to
incentivize the victim and the liable injurer to truthfully report their types.
When the probability of liable injurers is su�ciently high (p > p

0), the vic-
tim’s gains from misreporting are high and these gains increase with the
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Table 2: Optimal Production of Evidence – Environment 2

p-Segment A-Segmenta Optimal q0(A) Optimal q1(A)

p-Segment 1.1 A 2 [0, A1(p)] 1 0

p 2 (0, p̃] A 2 (A1(p), Ā]
� p
1�p

� A
f̄V 0

p-Segment 1.2 A 2 [0, Ā]
� p
1�p

� A
f̄V 0

p 2 (p̃, p0]

p-Segment 2 A 2 [0, A0(p)]
� p
1�p

� A
f̄V 0

p 2 (p0, 1) A 2 (A0(p), Ā] 1 1� f̄V

p(f̄V +A)

Note: a
A

1.1(p) = A
1(p) 8p 2 [0, p̃].

reported damages. If the victim untruthfully reports relatively low damages,
the gains from misreporting are lower. Therefore, the production of evidence
just in legal cases where the injurer reports to be non-liable su�ces to in-
centivize the victim and the liable injurer to truthfully report their types.
If the victim untruthfully reports relatively high damages, the gains from
misreporting are higher. Therefore, the production of evidence in the legal
cases where the injurer reports to be non-liable and legal cases where the
injurer reports to be liable is required to incentivize the victim to truthfully
report her type.

Proof of Proposition 12. Although A
2.1 is a function of p and ↵1, i.e.,

A
2.1(p,↵1), to simplify the notation, we use A2.1 in (most parts of) the proof.

To simplify the notation, we also denote E[C(A)] + ⇤E[⇠(A)] as S. Finally,

we denote @Ci(A)
@A as C 0

i(A) (i = 0, 1).

Consider first the characterization of the optimal ↵0 first. The S function
does not depend on ↵0. Hence, across cases, any ↵0 2 [0, 1] is optimal.

Consider now the characterization of the optimal ↵1. The proof consists of
several steps.

1. Evaluate the sign of @S
@↵1

. By the Chain Rule,

@S

@↵1
=

=


A

2.1

f̄V
pC0(A

2.1)g(A2.1)� p(1 + ⇤↵1)
⇣

A
2.1

A2.1 + f̄V

⌘
C1(A

2.1)g(A2.1)

�
⇥
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⇥@A
2.1

@↵1
+

Z Ā

A2.1

p⇤
⇣

A

A+ f̄V

⌘
C1(A)g(A)dA,

where

@A
2.1

@↵1
= �

R Ā
A2.1

A
A+f̄V C1(A)g(A)dA


A2.1

f̄V
p

1�p f̄
I + (1� ↵1)

A2.1

Â1+f̄V
C1(A2.1)

�
g(A2.1)

.

@S
@↵1

can be rewritten as:

@S

@↵1
= p

Z Ā

A2.1

A

A+ f̄V
C1(A)g(A)dA⇥

⇥

2

4�
A2.1

f̄V C0(A2.1)� (1 + ⇤↵1)
A2.1

A2.1+f̄V C1(A2.1)

A2.1

f̄V
p

1�p f̄
I + (1� ↵1)

A2.1

A2.1+f̄V C1(A2.1)
+ ⇤

3

5 =

= p

Z Ā

A2.1

A

A+ f̄V
C1(A)g(A)dA

�
⇣

A2.1

f̄V C0(A2.1)� A2.1

A2.1+f̄V C1(A2.1)
⌘

A2.1

f̄V
p

1�p f̄
I + (1� ↵1)

A2.1

Â1+f̄V
C1(A2.1)

+

+
⇤
⇣

A2.1

f̄V
p

1�p f̄
I + A2.1

A2.1+f̄V C1(A2.1)
⌘

A2.1

f̄V
p

1�p f̄
I + (1� ↵1)

A2.1

Â1+f̄V
C1(A2.1)

�
.

Consider the numerator of the expression in brackets. Analyze the sign
of the first term in parenthesis:
✓
A

2.1

f̄V
C0(A

2.1)� A
2.1

A2.1 + f̄V
C1(A

2.1)

◆
>

A
2.1

f̄V
(C0(A

2.1)�C1(A
2.1)) >

>
A

2.1

f̄V
(C0(A

2.1)� (1 + ⇤)C1(A
2.1)) > 0.

Therefore, the term �
⇣

A2.1

f̄V C0(A2.1) � A2.1

A2.1+f̄V C1(A2.1)
⌘

< 0. This

term can be larger or smaller than the positive second term of the nu-

merator, ⇤
⇣

A2.1

f̄V
p

1�p f̄
I + A2.1

A2.1+f̄V C1(A2.1)
⌘
, by absolute value. Hence,

the sign of @S
@↵1

is ambiguous, and depends on ⇤. In other words, any
su�cient conditions that solve this ambiguity should include ⇤.
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2. Define ⇤0(↵1) as the ⇤-function that results from equating @S
@↵1

to zero.

⇤0(↵1) will be used to find su�cient conditions and characterize ↵1 in
Step 6 of this proof.

Equate @S
@↵1

to zero, solve for ⇤ and denote this function of ↵1 as ⇤(↵1):

⇤0(↵1) =
A2.1

f̄V C0(A2.1)� A2.1

A2.1+f̄V C1(A2.1)

A2.1

f̄V
p

1�p f̄
I + A2.1

A2.1+f̄V C1(A2.1)
.

3. Evaluate the sign of @⇤
0(↵1)
@↵1

. ⇤0(↵1) depends on ↵1 through A
2.1(p,↵1)

only. By the Chain Rule,

@⇤0(↵1)

@↵1
=
@⇤0(↵1)

@A2.1

@A
2.1

@↵1
.

@A
2.1

@↵1
= �

R Ā
A2.1

A
A+f̄V C1(A)g(A)dA


A2.1

f̄V

� p
1�p

�
f̄ I + (1� ↵1)

A2.1

A2.1+f̄V C1(A2.1)

�
g(A2.1)

< 0.

Evaluate now the sign of @⇤
0(↵1)

@A2.1 . ⇤0(↵1) can be rewritten as:

⇤0(↵1) =
(A2.1 + f̄

V )C0(A2.1)� f̄
V
C1(A2.1)

(A2.1 + f̄V )
� p
1�p

�
f̄ I + f̄V C1(A2.1)

.

Define  ⌘ p
1�p f̄

I .

@⇤0(↵1)

@A2.1
=

=
[C0(A2.1) + (A2.1 + f̄

V )C 0
0(A

2.1)� f̄
V ][(A2.1 + f̄

V ) + f̄
V
C1(A2.1)]

[(A2.1 + f̄V ) + f̄V C1(A2.1)]2
�

� [ + f̄
V
C

0
1(A

2.1)][(A2.1 + f̄
V )C0(A2.1)� f̄

V
C1(A2.1)]

[(A2.1 + f̄V ) + f̄V C1(A2.1)]2
.

This expression can be rewritten as:

@⇤0(↵1)

@A2.1
=
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=
C1(A2.1)f̄V (C0(A2.1) + ) + (A2.1 + f̄

V )2C 0
0(A

2.1) 

[(A2.1 + f̄V ) + f̄V C1(A2.1)]2
+

+
(A2.1 + f̄

V )f̄V
C

0
0(A

2.1)C1(A2.1)

[(A2.1 + f̄V ) + f̄V C1(A2.1)]2
�

� [(A2.1 + f̄
V )f̄V

C
0
1(A

2.1)(C0(A2.1) + )]

[(A2.1 + f̄V ) + f̄V C1(A2.1)]2
.

Terms in the first two lines are positive and the term in brackets (third

line) is negative. Therefore, the sign of @⇤0(↵1)
@A2.1 is ambiguous. Hence,

the sign of @⇤
0(↵1)
@↵1

is ambiguous.

Solve the ambiguity of the sign of @⇤
0(↵1)
@↵1

by findings su�cient condi-

tions on C
0
(A). Take the numerator of @⇤

0(↵1)
@A2.1 , equate it to zero, and

solve for C 0
1(A

2.1). Therefore, when

C
0
1(A

2.1) =

C1(A2.1)f̄V (C0(A2.1) + p
1�p f̄

I)

(A2.1 + f̄V )f̄V (C0(A2.1) + p
1�p f̄

I)
+

+
(A2.1 + f̄

V )2C
0

0(A
2.1) p

1�p f̄
I + (A2.1 + f̄

V )f̄V
C

0

0(A
2.1)C1(A2.1)

(A2.1 + f̄V )f̄V (C0(A2.1) + p
1�p f̄

I)
,

@⇤0(↵1)
@A2.1 = 0. Define µ as

µ =
C1(A)f̄V (C0(A) + p

1�p f̄
I)

(A+ f̄V )f̄V (C0(A) + p
1�p f̄

I)
+

+
(A+ f̄

V )2C 0
0(A) p

1�p f̄
I + (A+ f̄

V )f̄V
C

0
0(A)C1(A)

(A+ f̄V )f̄V (C0(A) + p
1�p f̄

I)
.

When @C1(A)
@A > µ 8A 2 [0, Ā], the numerator of @⇤0(↵1)

@A2.1 is negative.

Therefore, @⇤
0(↵1)

@A2.1 < 0 and hence, @⇤
0(↵1)
@↵1

> 0.
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When @C1(A)
@A < µ 8A 2 [0, Ā], the numerator of @⇤0(↵1)

@A2.1 is positive.

Therefore, @⇤
0(↵1)

@A2.1 > 0 and hence, @⇤
0(↵1)
@↵1

< 0.

When @C1(A)
@A = µ 8A 2 [0, Ā], the numerator of @⇤0(↵1)

@A2.1 is equal to

zero. Therefore, @⇤
0(↵1)

@A2.1 = 0 and hence, @⇤
0(↵1)
@↵1

= 0.

4. Define ⇤̄0 ⌘ max↵1 ⇤
0(↵1) and ⇤

0 ⌘ min↵1 ⇤
0(↵1).

5. Evaluate the sign of
@ @S

@↵1
@⇤ .

@
@S
@↵1

@⇤
= p

Z Ā

A2.1

A

A+ f̄V
C1(A)g(A)dA⇥

⇥


(A2.1 + f̄
V ) p

1�p f̄
I + f̄

V
C1(A2.1)

(A2.1 + f̄V ) p
1�p f̄

I + (1� ↵1)f̄V C1(A2.1)

�
> 0.

6. Find su�cient conditions and characterize the optimal ↵1. Steps 3–
5 of this proof are used to characterize three mutually-exclusive ⇤-
segments, Cases 1–3.56

Case 1: If ⇤ < ⇤0, then ⇤ < ⇤0(↵1) 8↵1 2 [0, 1], by the definition

of ⇤0. Therefore, @S
@↵1

< 0, by the definition of ⇤0(↵1) and
@ @S

@↵1
@⇤ > 0.

Hence, the optimal ↵1 = 1.

Case 2: If ⇤ > ⇤̄0, then ⇤ > ⇤0(↵1) 8↵1 2 [0, 1], by the definition

of ⇤̄0. Therefore, @S
@↵1

> 0, by the definition of ⇤0(↵1) and
@ @S

@↵1
@⇤ > 0.

Hence, the optimal ↵1 = 0.

Case 3: If ⇤ 2 [⇤0
, ⇤̄0], then ⇤ < ⇤0(↵1) for some ↵1 2 [0, 1] and/or

⇤ > ⇤0(↵1) for some ↵1 2 [0, 1], by the ambiguity of the sign of

56In Cases 1 and 2, we do not use the result about the sign of @⇤0(↵1)
@↵1

. Hence, additional

conditions to solve the ambiguity of the sign of @⇤0(↵1)
@↵1

are not required. Additional

conditions are only required in Case 3.
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@⇤0(↵1)
@↵1

due to the ambiguity of the sign of @⇤0(↵1)
@A2.1 (Step 3 of this

proof). Hence, additional su�cient conditions are required.

Next, we characterize three mutually-exclusive cases such that @⇤0(↵1)
@↵1

is lower than, equal to or greater than zero, Cases 3(a), 3(b) and 3(c).
We use the conditions on µ derived in Step 3 of this proof.

(a) If @C1(A)
@A > µ 8A 2 [0, Ā], then, @⇤

0(↵1)
@A2.1 < 0. Therefore, @⇤

0(↵1)
@↵1

>

0.

i. If ⇤ = ⇤0, then ⇤ < ⇤0(↵1) for ↵1 2 (0, 1] and ⇤ = ⇤0(↵1)
for ↵1 = 0, by the definition of ⇤0. Therefore, @S

@↵1
< 0 for

↵1 2 (0, 1] and @S
@↵1

= 0 for ↵1 = 0, by the definition of

⇤0(↵1). Hence for ⇤ = ⇤, argmin↵12[0,1]{S} = 1.

ii. If ⇤ = ⇤̄0, then ⇤ > ⇤0(↵1) for ↵1 2 [0, 1) and ⇤ = ⇤0(↵1)
for ↵1 = 1, by the definition of ⇤̄0. Therefore, @S

@↵1
> 0 for

↵1 2 [0, 1) and @S
@↵1

= 0 for ↵1 = 1, by the definition of

⇤0(↵1). Hence for ⇤ = ⇤̄, argmin↵12[0,1]{S} = 0.

iii. If ⇤ 2 (⇤0
, ⇤̄0), then ⇤ < ⇤0(↵1) for some ↵1 2 [0, 1] and ⇤ >

⇤0(↵1) some other ↵1 2 [0, 1], by the definitions of ⇤0 and ⇤̄0.
Therefore, @S

@↵1
< 0 for some ↵1 2 (0, 1] and @S

@↵1
> 0 for some

other ↵1 2 [0, 1], by the definition of ⇤0(↵1). Given that S

is a continuous function of ↵1 2 [0, 1], by the Extreme Value
Theorem, an optimal ↵1 exists. Next, we evaluate whether
there exists corner and/or interior optimal ↵1.

We start by showing that ↵1 2 (0, 1) is not an optimal ↵1.

By the continuity of ⇤0(↵1) and @⇤0(↵1)
@↵1

> 0, there exists a

unique ↵
0

1 2 (0, 1) such that ⇤ = ⇤0(↵
0

1). Given that ⇤0(↵1)
is strictly increasing in ↵1, when ↵1 2 (0,↵

0

1), ⇤ > ⇤0(↵1) and
therefore, @S

@↵1
> 0; and, when ↵1 2 (↵

0

1, 1), ⇤ < ⇤0 and there-

fore, @S
@↵1

< 0. As a result, ↵
0

1 2 (0, 1) = argmax↵12[0,1]{S}.
Hence, an optimal corner ↵1 = 0 and/or ↵1 = 1 must exist.
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Next, we find additional su�cient conditions and characterize
the corner optimal ↵1.

S(↵1,⇤) =

Z Ā

0
Ag(d)dA+

+p(1 + ⇤↵1)

Z Ā

A2.1(p,↵1)

✓
A

A+ f̄V

◆
C1(A)g(A)dA+

+p

Z A2.1(p,↵1)

0

A

f̄V
C0(A)g(A)dA.

Compare S at optimal ↵1 = 1 and optimal ↵1 = 0. Optimal
↵1 = 1 occurs when ⇤ = ⇤0, by point (i).

S(↵1 = 1,⇤ = ⇤) < S(↵1 = 0,⇤ = ⇤).

Optimal ↵1 = 0 occurs when ⇤ = ⇤̄0, by point (i).

S(↵1 = 0,⇤ = ⇤̄) < S(↵1 = 1,⇤ = ⇤̄).

Hence, either ↵1 = 0 or ↵1 = 1 can be optimal under certain
conditions on ⇤.

We now characterize the su�cient conditions on ⇤ under which
↵1 = 0 is optimal and ↵1 = 1 is optimal. First, analyze the
relationship between ⇤ and S for ↵1 = 0 and ↵1 = 1. Note
that ⇤ does not a↵ect A2.1(p,↵1).

@S(↵1 = 1,⇤)

@⇤
= p

Z Ā

A2.1(p,1)

A

A+ f̄V
C1(A)g(A)dA > 0

and
@S(↵1 = 0,⇤)

@⇤
= 0,

i.e., S(↵1 = 1,⇤) is strictly increasing in ⇤ and S(↵1 = 0,⇤)
is constant. Therefore, the two curves can cross in just one
point. Hence, by the continuity of S(↵1 = 0,⇤) and S(↵1 =
1,⇤) with respect to ⇤, there exists a unique ⇤̂ such that
S(↵1 = 1,⇤)  S(↵1 = 0,⇤) for ⇤ 2 (⇤, ⇤̂], and S(↵1 =
1,⇤) > S(↵1 = 0,⇤) for ⇤ 2 (⇤̂, ⇤̄). Hence, S(↵1 = 1,⇤) and
S(↵1 = 0,⇤) intersect at point ⇤ = ⇤̂.

97



Characterize ⇤̂. At ⇤ = ⇤̂, S(↵1 = 0, ⇤̂) = S(↵1 = 1, ⇤̂),

Z Ā

A2.1(p,0)

A

A+ f̄V
C1(A)g(A)dA+

Z A2.1(p,0)

0

A

f̄V
C0(A)g(A)dA =

= (1 + ⇤̂)

Z Ā

A2.1(p,1)

A

A+ f̄V
C1(A)g(A)dA+

+

Z A2.1(p,1)

0

A

f̄V
C0(A)g(A)dA.

Solving for ⇤̂,
⇤̂ =

=

R Ā
A2.1(p,0)

A
A+f̄V C1(A)g(A)dA+

R A2.1(p,0)
0

A
f̄V C0(A)g(A)dA

R Ā
A2.1(p,1)

A
A+f̄V C1(A)g(A)dA

�

�

R A2.1(p,1)
0

A
f̄V C0(A)g(A)dA

R Ā
A2.1(p,1)

A
A+f̄V C1(A)g(A)dA

� 1.

Hence, the optimal ↵1 are as follows.

A. If ⇤ 2 (⇤, ⇤̂], then the optimal ↵1 = 1.

B. If ⇤ 2 (⇤̂, ⇤̄), then the optimal ↵1 = 0.

(b) If @C1(A)
@A < µ 8A 2 [0, Ā], then, @⇤

0(↵1)
@A2.1 > 0. Therefore, @⇤

0(↵1)
@↵1

<

0.

i. If ⇤ = ⇤0, then ⇤ < ⇤0(↵1) for ↵1 2 [0, 1) and ⇤ = ⇤0(↵1)
for ↵1 = 1, by the definition of ⇤0. Therefore, @S

@↵1
< 0 for

↵1 2 [0, 1) and @S
@↵1

= 0 for ↵1 = 1, by the definition of

⇤0(↵1). Hence for ⇤ = ⇤0, argmin↵12[0,1]{S} = 1.
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ii. If ⇤ = ⇤̄0, then ⇤ > ⇤0(↵1) for ↵1 2 (0, 1] and ⇤ = ⇤0(↵1)
for ↵1 = 0, by the definition of ⇤̄0. Therefore, @S

@↵1
> 0 for

↵1 2 (0, 1] and @S
@↵1

= 0 for ↵1 = 0, by the definition of

⇤0(↵1). Hence for ⇤ = ⇤̄0
, argmin↵12[0,1]{S} = 0.

iii. If ⇤ 2 (⇤, ⇤̄), then ⇤ < ⇤0(↵1) for some ↵1 2 [0, 1] and ⇤ >

⇤0(↵1) some other ↵1 2 [0, 1], by the definitions of ⇤0 and ⇤̄0.
Therefore, @S

@↵1
< 0 for some ↵1 2 (0, 1] and @S

@↵1
> 0 for some

other ↵1 2 [0, 1], by the definition of ⇤0(↵1). Given that S

is a continuous function of ↵1 2 [0, 1], by the Extreme Value
Theorem, an optimal ↵1 exists. Next, we evaluate whether
there exists corner and/or interior optimal ↵1.

We show that there exists an interior ↵1 2 (0, 1) for each

⇤ 2 (⇤0
, ⇤̄0). By the continuity of ⇤0(↵1) and @⇤0(↵1)

@↵1
< 0,

there exists a unique ↵
0

1 2 (0, 1) such that ⇤ = ⇤0(↵
0

1). At
↵1 = ↵

0

1,
@S
@↵1

= 0 by the definition of ⇤0(↵1). When ↵1 2
(0,↵

0

1), ⇤ < ⇤0(↵1), by
@⇤0(↵1)
@↵1

< 0. Therefore, @S
@↵1

< 0.

When ↵1 2 (↵
0

1, 1), ⇤ > ⇤0, by @⇤0(↵1)
@↵1

< 0. Therefore,
@S
@↵1

> 0. Hence, ↵
0

1 2 (0, 1) = argmin↵12[0,1]{S}.

Given that @S
@↵1

< 0 for ↵1 2 (0,↵
0

1) and @S
@↵1

> 0 for ↵1 2
(↵

0

1, 1), a corner optimal ↵1, zero or 1, does not exist.

(c) If @C1(A)
@A = µ 8A 2 [0, Ā], then @⇤0(↵1)

@A2.1 = 0. Therefore, @⇤
0(↵1)
@↵1

=

0. Hence, ⇤0(↵1) = ⇤̄0(↵1) = ⇤0.

i. If ⇤ < ⇤0, then @S
@↵1

< 0 8↵1 2 [0, 1], by the definition of

⇤0(↵1). Hence, the optimal ↵1 = 1.

ii. If ⇤ > ⇤0, then @S
@↵1

> 0 8↵1 2 [0, 1], by the definition of

⇤0(↵1). Hence, the optimal ↵1 = 0

iii. If ⇤ = ⇤0, then @S
@↵1

= 0 8↵1 2 [0, 1], by the definition of

⇤0(↵1). Hence, any ↵1 2 [0, 1] is optimal.
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Appendix B. Benchmark Model – Uniform Dis-

tribution Model and Numerical Example

This Appendix presents the model with a uniform distribution of damages
(Section B.1) and the numerical example (Section B.2) for the benchmark
model. We focus on Environment 1, p-Segment 2.1 where p 2 (p̃, p̄], and
Environment 2, p-Segment 2 where p 2 (p0, 1].

B.1 Model with a Uniform Distribution of Damages

Assume that A is uniformly distributed over A 2 [0, Ā], where g(A) = 1
Ā

8A 2 [0, Ā], G(A) = A
Ā
, and

R Ā
0 Ag(A)dA = Ā

2 .

Thresholds p̄ and A
2.1

.– p̄ and A
2.1(p) can be explicitly defined.

Consider p̄. When p = p̄, the liable injurer’s incentive-compatibility
constraint is:

Z Ā

0
A
1

Ā
dA = f̄

I

Z (1�p̄)f̄V

p̄

0

p̄A

(1� p̄)f̄V

1

Ā
dA.

Let  = (1�p̄)f̄V

p̄ . The liable injurer’s incentive-compatibility constraint can
be written as:

Ā

2
= f̄

I 1

 

( )2

2

1

Ā
.

Solving for  :

 =
Ā

2

f̄ I
=

(1� p̄)f̄V

p̄
.

Hence,

p̄ =
f̄
V
f̄
I

f̄V f̄ I + Ā2
.

Consider A
2.1(p). Suppose p 2 (p̃, p̄]. The liable injurer’s incentive-

compatibility constraint is:

Z Ā

0
A
1

Ā
dA = f̄

I

Z A2.1(p)

0

pA

(1� p)f̄V

1

Ā
dA,
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which can be written as:

Ā

2
= f̄

I p

(1� p)f̄V

(A2.1(p))2

2

1

Ā
.

Hence,

A
2.1(p) = Ā

s
(1� p)f̄V

pf̄ I
.

Social Welfare Loss Function for Environment 1.– Given the optimal
mechanisms and the assumption regarding the distribution of damages, the
social welfare loss function is as follows.

SWL
2.1 = H(A) + (1� p)

Z A2.1(p)

0

⇣
p

1� p

⌘
A

f̄V
C0(A)g(A)dA+

+p

Z Ā

A2.1(p)

⇣
A

A+ f̄V

⌘
C1(A)g(A)dA =

=
Ā

2
+(1�p)

Z A2.1(p)

0

⇣
p

1� p

⌘
A

f̄V

C0(A)

Ā
dA+p

Z Ā

A2.1(p)

⇣
A

A+ f̄V

⌘
C1(A)

Ā
dA.

Social Welfare Loss Function for Environment 2.– Given the optimal
mechanisms and the assumption regarding the distribution of damages, the
social welfare loss function is as follows.

SWL
2 = H(A)+(1�p)

Z A0

0

pA

(1� p)f̄V
C0(A)g(A)dA+(1�p)

Z Ā

A0

C0(A)g(A)dA+

B.2 Numerical Example

The model with a uniform distribution of damages model is used to construct
this numerical example.
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Environment 1

Assume C0(A) = C0 + c0A and C1(A) = C1 + c1A. The set of exogenous
parameters is:

{C0, C1, c0, c1, f̄
V
, f̄

I
, Ā, p} = {1528, 690, 0.3, 0.01, 1800, 3600, 1200, 0.45}.

Given that Ā = 1200, H = Ā
2 = 600.

The model conditions are satisfied under this numerical example.

1. The condition for Environment 1, C0(A) � C1(A) 8A 2 [0, Ā], becomes
1528 + 0.3A � 690 + 0.01A. After simplification, 0.29A > �838 8A 2
[0, 1200].

2. The condition for Lemma 3 and first condition for Propositions 3 and
4, C0(0) > C1(0), becomes 1528 > 690.

3. The second condition for Proposition 3,
@

C1(A)
C0(A)

@A  0 8A 2 [0, Ā], be-
comes

@
C1+c1A
C0+c0A

@A
=

c1C0 � c0C1

(C0 + c0A)2
=

0.01(1528)� 0.3(690)

(1528 + 0.3A)2
=

=
�191.72

(1528 + 0.3A)2
< 0

8A 2 [0, 1200].

4. The third condition for Proposition 3, @C0(A)
@A > 0 8A 2 [0, Ā], becomes

c0 = 0.3 > 0 8A 2 [0, 1200].

5. The second condition for Proposition 4 is C0(A) � C0(0) <
C1(A)f̄V

A+f̄V

8A 2 [0, Ā]. The left-hand side of the inequality is: C0(A) � C0(0) =

c0A = 0.3A. The right-hand side of the inequality is (690+0.01A)(1800)
A+1800 .

Evaluate the left-hand side at the highest A-value and the numerator
of the right-hand side at the lowest A-value and the denominator of
the right-hand side at the highest A-value. After simplification, 360 <

414 = (690)(1800)
3000 8A 2 [0, 1200].
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For an illustration, the next sections focus on p-Segment 2.1.

Social Welfare Loss Functions.– Given the optimal mechanisms and
functional forms for C0(A) and C1(A), the social welfare loss function is
as follows.

SWL
2.1 =

Ā

2
+ (1� p)

Z A2.1(p)

0

⇣
p

1� p

⌘
A

f̄V

C0 + c0A

Ā
dA+

+p

Z Ā

A2.1(p)

⇣
A

A+ f̄V

⌘
C1 + c1A

Ā
dA =

Ā

2
+

p

f̄V Ā


C0

(A2.1)2

2
+ c0

(A2.1)3

3

�
+

p

Ā


c1

� Ā2

2
� (A2.1(p))2

2

�
+ (C1 � c1f̄

V )(Ā�A
2.1(p))�

�(C1 � c1f̄
V )f̄V [log(Ā+ f̄

V )� log(A2.1(p) + f̄
V )]

�
,

whereA2.1(p) = Ā

q
(1�p)f̄V

pf̄I .Using the set of exogenous parameters, SWL
2.1

is computed.

Numerical Example.– The relevant p-thresholds are p̃ = 1800
1800+3600 =

0.33 and p̄ = (1800)(3600)
(1800)(3600)+12002 = 0.82. Therefore, p 2 (0.33, 0.82]. In this

example, p = 0.45 and therefore, A2.1(p) = 938. Hence, the A-segments are
A 2 [0, 938] and A 2 (938, 1200]. The optimal probabilities of investigation
for each A-segment, evaluated at the average A-values, A = 469 and A =
1069, are: q0(A) =

�
0.45

1�0.45

�
469
1800 = 0.213 and q1(A) = 0; and, q0(A) = 0 and

q1(A) = 1069
1800+1069 = 0.373. Intuitively, evidence might be produced only in

legal cases where the injurer reports to be non-liable and the victim reports
su�ciently low damages (A  938). Evidence might be also produced in legal
cases where the injurer reports to be liable if the victim reports su�ciently
high damages (A > 938). The expected harm from an accident, equal to the
expected victim’s damages, is H = 1200

2 = 600. The optimal expected cost
of producing evidence for p-Segment 2.1 is E[C(A)]2.1 = 343, the optimal
expected cost from the infringement of the victim’s right of access to justice
is ✓E[⌘(A)] = 0 and the optimal expected cost from the infringement of the
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right of the victims confronting liable injurers to be fully compensated is
⇤E[⇠(A)] = 0. Hence, the social welfare loss for p-Segment 2.1 is SWL

2.1 =
H + E[C(A)]2.1 + ✓E[⌘(A)] + ⇤E[⇠(A)] = 600 + 343 + 0 + 0 = 943.

Environment 2

Assume that C0(A) = C0+c0A and C1(A) = C1+c1A. The set of exogenous
parameters is:

{C0, C1, c0, c1, f̄
V
, f̄

I
, Ā} = {500, 1200, 0.15, 0.03, 1800, 3600, 1200}.

Given that Ā = 1200, H = Ā
2 = 600.

The model conditions are satisfied under this numerical example.

1. The first condition for Environment 2, C0(A) < C1(A) 8A 2 [0, Ā],
becomes 500 + 0.15A < 1200 + 0.3A. After simplification, �700 <

0.15A, which holds 8A 2 [0, 1200].

2. The second condition for Environment 2, Ā <
�C1(A)
C0(A) �1

�
f̄
V , becomes

1200 <
�
1200+0.3A
500+0.15A � 1

�
(1800). Evaluate the numerator of the fraction

in the right-hand side of the inequality at the lowest A-value and the
denominator of the fraction in the right-hand side of the inequality at
the highest A-value: 1200 < 1376.47 =

�
1200
680 �1

�
(1800) 8A 2 [0, 1200].

3. The condition for Lemma 3 and first condition for Proposition 3, C0(0) >
0, becomes 500 > 0.

4. The second condition for Proposition 3, @C0(A)
@A > 0 8A 2 [0, Ā], be-

comes 0.15 > 0 8A 2 [0, 1200].

For an illustration, we focus on p-Segment 2 in the next two sections.

Social Welfare Loss Functions.– Given the optimal mechanisms and the
functional forms for C0(A) and C1(A), the social welfare loss function is as
follows.

SWL
2 =

Ā

2
+(1�p)

Z A0

0

pA

(1� p)f̄V

C0 + c0A

Ā
dA+(1�p)

Z Ā

A0

C0 + c0A

Ā
dA+
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Table B1: Numerical Example – Optimal Production of Evidence

Environment p-Segment A-Segment Optimal q0(A)a Optimal q1(A)a

Environment 2 (0.60, 1] [0, 735] q0(A) = 0.501 q1(A) = 0

(p-Segment 2) (735, 1200] q0(A) = 1 q1(A) = 0.084

Note: aFor each A-segment, q0(A) and q1(A) are evaluated at the average A-value; p =

0.71 is used.

+p

Z Ā

A0


1� f̄

V

p(A+ f̄V )

�✓
C1 + c1A

Ā

◆
dA =

=
Ā

2
+

p

f̄V Ā


C0

(A0)2

2
+ c0

(A0)3

3

�
+

1� p

Ā


C0(Ā�A

0)+ c0

� Ā2

2
� (A0)2

2

��
+

+
p

Ā


C1(Ā�A

0) + c1

� Ā2

2
� (A0)2

2

��
�

� f̄
V

Ā
{c1(Ā�A

0) + (C1 � c1f̄
V )[log(Ā+ f̄

V )� log(A0 + f̄
V )]}.

Using the set of exogenous parameters, SWL
2 is computed.

Numerical Example.– Table B1 summarizes our results. The relevant
p-threshold is p

0 = 1800
1800+1200 = 0.60. Therefore, p 2 (0.60, 1]. In this

example, p = 0.71 and therefore, A0(p) = 735. Hence, the A-segments are
A 2 [0, 735] and A 2 (735, 1200]. The expected harm from an accident,
equal to the expected victim’s damages, is H = 1200

2 = 600. The optimal
probabilities of investigation for each A-segment, evaluated at the average
A-values, A = 368 and A = 968 are: q0(A) =

�
0.71

1�0.71

�
368
1800 = 0.501 and

q1(A) = 0 and, q0(A) = 1 and q1(A) = 1� 1800
0.71(1800+968) = 0.084. Intuitively,

evidence might be produced only in legal cases where the injurer reports to
be non-liable and the victim reports su�ciently low damages (A  735).
Evidence might be also produced in legal cases where the injurer reports to
be non-liable and liable if the victim reports su�ciently high damages (A >

735). The expected harm from an accident, equal to the expected victim’s
damages, is H = 1200

2 = 600. The optimal expected cost of producing
evidence for p-Segment 2 is E[C(A)]2 = 157, the optimal expected cost from
the infringement of the victim’s right of access to justice is ✓E[⌘(A)] = 0 and
the optimal expected cost from the infringement of the right of the victims
confronting liable injurers to be fully compensated is ⇤E[⇠(A)] = 0. Hence,

105



the social welfare loss for p-Segment 2 is SWL
2 = H+E[C(A)]2+✓E[⌘(A)]+

⇤E[⇠(A)] = 600 + 157 + 0 + 0 = 757.
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Appendix C: Model with Endogenous Cost Al-

location

This appendix presents the formal analysis of the model with endogenous
cost allocation. It also includes the proofs of propositions (except for Propo-
sition 12), lemmas and claims. The model setup and intuitive discussion are
presented in the main text of the paper, Section 6. The proof of Proposition
12 (main proposition) is included in Appendix A.

As stated in Section 4, we assume that the victim and the injurer might
pay a share of the cost of producing evidence. Therefore, the transfers and
fines that result from the production of evidence are as follows. First, when
reports are not investigated, the injurer transfers rV to the victim if rI = 1.
Second, when the reports are investigated and found to be truthful (rV = A

and r
I = L), the injurer transfers rV to the victim if rI = 1 and pays (1�↵i)

of the cost of producing evidence Ci(A) (i = 0, 1). The victim pays ↵i of
the cost of producing evidence Ci(A) (i = 0, 1). Third, when the reports are
investigated and the injurer’s report is found to be untruthful (rI 6= L), the
injurer pays fine f

I 2 [0, f̄ I ] to the social planner, and the social planner
transfers rV to the victim if L = 1 and pays (1�↵i) of the cost of producing
evidence Ci(A) (i = 0, 1). The victim pays ↵i of the cost of producing
evidence Ci(A) (i = 0, 1). Fourth, when the reports are investigated and the
victim’s report is found untruthful, the victim does not receive any transfers
and pays fine f

V 2 [0, f̄V ] to the social planner, and the social planner pays
↵i of the cost of producing evidence Ci(A) (i = 0, 1). The injurer pays
(1 � ↵i) of the cost of producing evidence Ci(A) (i = 0, 1). Fifth, when
the reports are investigated and the victim’s and injurer’s reports are found
untruthful (rV 6= A and r

I 6= L): The victim does not receive any transfers,
the victim and the injurer pay fines f

V 2 [0, f̄V ] and f
I 2 [0, f̄ I ] to the

social planner, and the social planner pays the cost of producing evidence
Ci(A) (i = 0, 1).57

Players’ Constraints

Victim’s Individual-Rationality Constraint.– By participating in the
mechanism and truthfully reporting her type, a victim with type A gets
compensation A when the injurer is liable and pays an expected share of
the cost of verification equal to [p↵1q1(A)C1(A) + (1 � p)↵0q0(A)C0(A)].

57The social planner pays ↵i and (1 � ↵1) of the cost of producing evidence Ci(A)

(i = 0, 1).
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Her expected payo↵ is pA � [p↵1q1(A)C1(A) + (1 � p)↵0q0(A)C0(A)]. The
victim gets zero compensation if she decides not to trigger the mechanism.
Therefore, the victim’s individual-rationality constraint is: 8A 2 [0, Ā],

pA� [p↵1q1(A)C1(A) + (1� p)↵0q0(A)C0(A)] � 0.

Rearranging terms:

p(A� ↵1q1(A)C1(A))� (1� p)↵0q0(A)C0(A) � 0.

In contrast to the benchmark model, this constraint is not trivially satisfied.

Victim’s Incentive-Compatibility Constraint.– By truthfully reporting
her type, the victim with type A gets compensation p(A�↵1q1(A)C1(A))�
(1 � p)↵0q0(A)C0(A). Clearly, no victim has an incentive to report a lower
type. When the victim reports a (weakly) higher type, A

0 2 [0, Ā], she
gets a compensation A

0 � A when investigation does not occur, and gets
no compensation and pays fine f

V (which includes her share of the cost
of producing evidence ↵i) when investigation occurs. Her expected payo↵
is p(1 � q1(A0))A0 � [pq1(A0) + (1 � p)q0(A0)]fV

. Therefore, the victim’s
incentive-compatibility constraint is: 8A,A

0 2 [0, Ā],

p(A� ↵1q1(A)C1(A))� (1� p)↵0q0(A)C0(A) �

� p(1� q1(A
0)A0 � [pq1(A

0) + (1� p)q0(A
0)]fV

.

Note that, by setting the fine f
V 2 [0, f̄V ] as high as possible, the social

planner will spend less resources on investigation. Given that the victim
is financially constrained, f̄

V = W
V . Therefore, the victim’s incentive-

compatibility constraint is: 8A,A
0 2 [0, Ā],

p(A� ↵1q1(A)C1(A))� (1� p)↵0q0(A)C0(A) �

� p(1� q1(A
0))A0 � [pq1(A

0) + (1� p)q0(A
0)]f̄V

.

Liable Injurer’s Incentive-Compatibility Constraint.– When the li-
able injurer truthfully reports his type, rL = 1, he pays expected dam-
ages E[A] and a share (1 � ↵1) of the cost of producing evidence C1(A)
when investigation occurs. His expected payo↵ u1|1 is u

I
1|1 = �[E[A] +

(1�↵1)E[q1(A)C1(A)]] = �
⇥ R Ā

0 Ag(A)dA+(1�↵1)
R Ā
0 q1(A)C1(A)g(A)dA

⇤
.

By pretending to be non-liable, the liable injurer pays zero compensation
when investigation does not occur, and pays fine f

I when investigation oc-
curs. His expected payo↵ u

I
0|1 is u

I
0|1 = �[E[(1 � q0(A))0] � f

IE[q0(A)] =
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�f
I
R Ā
0 (q0(A)g(A)dA. By setting f

I 2 [0, f̄ I ] as high as possible, the so-
cial planner economizes on investigation e↵orts. Hence, the liable injurer’s
incentive-compatibility constraint:

Z Ā

0
Ag(A)dA+ (1� ↵1)

Z Ā

0
q1(A)C1(A)g(A)dA  f̄

I

Z Ā

0
q0(A)g(A)dA.

Given that the injurer has limited financial resources, f̄ I = W
I .

Non-Liable Injurer’s Incentive-Compatibility Constraint.–When the
non-liable injurer truthfully reports his type, rL = 0, he pays zero compen-
sation and pays a share (1�↵0) of the cost of producing evidence C0(A) when
investigation occurs. His expected payo↵ uI

0|0 is u
I
0|0 = �(1�↵0)E[q0(A)C0(A)] =

�(1� ↵0)
R Ā
0 q0(A)C0(A)g(A)dA. When the non-liable injurer reports to be

liable, rL = 1, he pays compensation only when investigation does not oc-
cur, and pays a fine f I when investigation occurs. His expected payo↵ u

I
1|0 is

u
I
1|0 = �[E[(1�q1(A))A]�f

IE[q1(A)] = �
R Ā
0

�
(1� q1(A))A+ q1(A)f I

 
g(A)dA.

By setting f
I 2 [0, f̄ I ] as high as possible, the social planner economizes on

investigation e↵orts. Hence, the non-liable injurer’s incentive-compatibility
constraint:

(1� ↵0)

Z Ā

0
q0(A)C0(A)g(A)dA 

Z Ā

0

�
(1� q1(A))A+ q1(A)f̄ I

 
g(A)dA.

In contrast to the benchmark model, this constraint is not trivially satisfied.

The next claim shows the relationship between victim’s incentive-compatibility
constraint in the current model and the victim’s incentive-compatibility con-
straint in the benchmark model and the victim’s individual-rationality con-
straint in the model with endogenous cost allocation. This result simplifies
the procedure used to characterize the optimal mechanism.

Claims 7. The victim’s incentive-compatibility constraint in the current

model (for given ↵0 and ↵1) holds when the victim’s incentive-compatibility

constraint in the benchmark model holds and the victim’s individual-rationality

constraint in the current model holds.

Proof. Remember that the victim’s incentive-compatibility constraint in
the benchmark model is: 8A 2 [0, Ā],

[pq1(A) + (1� p)q0(A)]f̄V � [p(1� q1(A)]A.
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This constraint can be rewritten as:

[p(1� q1(A)]A� [pq1(A) + (1� p)q0(A)]f̄V  0.

The victim’s individual-rationality constraint in the current model is:
8A 2 [0, Ā],

p(A� ↵1q1(A)C1(A))� (1� p)↵0q0(A)C0(A) � 0.

Combining the last two constraints: 8A,A
0 2 [0, Ā]

p(A� ↵1q1(A)C1(A))� (1� p)↵0q0(A)C0(A) � 0 �

� [p(1� q1(A)]A� [pq1(A) + (1� p)q0(A)]f̄V

which implies the victim’s incentive-compatibility constraint in the cur-
rent model is: 8A,A

0 2 [0, Ā],

p(A� ↵1q1(A)C1(A))� (1� p)↵0q0(A)C0(A) �

� p(1� q1(A
0))A0 � [pq1(A

0) + (1� p)q0(A
0)]f̄V

,

⌅

The next claim demonstrates that that the liable injurer’s and non-liable
injurer’s incentive-compatibility constraints cannot be simultaneously vio-
lated. Importantly, this result holds for any set {↵0,↵1, q0(A), q1(A)} that
is not optimal (qi(A) 2 [0, 1] and ↵i 2 [0, 1]. i = 0, 1). Hence, it su�ces to
focus on the liable injurer’s incentive-compatibility constraint. This result
simplifies the procedure used to characterize the optimal mechanism.

Claim 8. (1) If the the liable injurer’s incentive-compatibility constraint is

violated or satisfied as an equality, then the non-liable injurer’s incentive-

compatibility constraint is satisfied. (2) If the non-liable injurer’s incentive-

compatibility constraint is violated or satisfied as an equality, then the liable

injurer’s incentive-compatibility constraint is satisfied.

Proof. Consider Part (1). Suppose the liable injurer’s incentive-compatibility
constraint is not satisfied or is satisfied as equality:

Z Ā

0
Ag(A)dA+ (1� ↵1)

Z Ā

0
q1(A)C1(A)g(A)dA �

Z Ā

0
q0(A)f̄ I

g(A)dA.

Then, Z Ā

0
Ag(A)dA+

Z Ā

0
q1(A)(f̄ I �A)g(A)dA �
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�
Z Ā

0
Ag(A)dA+ (1� ↵1)

Z Ā

0
q1(A)C1(A)g(A)dA �

Z Ā

0
q0(A)f̄ I

g(A)dA � (1� ↵0)

Z Ā

0
q0(A)C0(A)g(A)dA.

Hence,

Z Ā

0
Ag(A)dA+

Z Ā

0
q1(A)(f̄ I�A)g(A)dA � (1�↵0)

Z Ā

0
q0(A)C0(A)g(A)dA.

Hence, the non-liable injurer’s incentive-compatibility constraint is satisfied.
Part (2) is verified using a similar approach. ⌅

Social Planner’s Civil Justice Problem

As discussed in the main text of the paper, the only two relevant components
of the social welfare function for the characterization of the optimal cost
allocation and the optimal production of evidence are E[C(A)] and ⇤E[⇠(A)].
The social planner’s problem is:

min
q0(A,↵0,↵1),q1(A,↵0,↵1),↵0,↵1

{E[C(A)] + ⇤E[⇠(A)]}.

We adopt a five-step procedure to characterize the optimal probabilities
of investigation and the optimal share of the cost of producing evidence.
The first four steps characterize the interim probabilities of verification. We
take ↵1 and ↵0 as given but include the feasibility constraints 0  ↵i  1
(i = 0, 1) in the analysis. In the last step, we use the interim probabilities
of verification to characterize the optimal ↵0 and ↵1.

In Step 1, we characterize the interim q0(A) and q1(A) that satisfy the
victim’s incentive-compatibility constraint of the benchmark model (1), and
the feasibility constraints for qi(A) and ↵i (i = 0, 1). By Claim 6, the vic-
tim’s incentive-compatibility constraint of the current model holds when the
victim’s incentive-compatibility constraint of the benchmark model and the
victim’s individual-rationality constraint of the current model hold. There-
fore, Step 1 corresponds to the first part of verification that the victim’s
incentive-compatibility constraint of the current model holds.

In Step 2, we evaluate whether the interim probabilities of investigation
satisfy the liable injurer’s incentive-compatibility constraint. By Claim 7, if
the liable injurer’s incentive-compatibility constraint is violated or satisfied
as an equality, then the non-liable injurer’s incentive-compatibility constraint
is also satisfied. If the liable injurer’s incentive-compatibility constraint is
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not satisfied under the interim probabilities of investigation characterized in
Step 1, adjustments to satisfy this constraint as an equality are implemented.
The non-liable injurer’s incentive compatibility constraint will be still sat-
isfied under the adjusted interim probabilities of investigation, by Claim 7.
If the liable injurer’s incentive-compatibility constraint is satisfied under the
interim probabilities of investigation characterized in Step 1 no further ad-
justments are required. Two mutually-exclusive cases occur. First, if the
injurer’s incentive-compatibility constraint is satisfied as an equality, then
the non-liable injurer is also satisfied and hence, no further adjustments are
required. Second, if the injurer’s incentive-compatibility constraint is satis-
fied as an inequality, then we need to verify whether the non-liable injurer is
also satisfied. If not, further adjustments to satisfy the non-liable injurer’s
incentive-compatibility constraint as an equality should be implemented. By
Claim 7, the liable injurer’s incentive-compatibility constraint will be still
satisfied under the adjusted interim probabilities of investigation.

In Step 3, we evaluate whether the interim probabilities of investiga-
tion characterized in Step 2 satisfy the victim’s individual-rationality con-
straint. If not, adjustments are implemented. Therefore, given Claim 6, Step
3 also corresponds to second part of verification that the victim’s incentive-
compatibility constraint of the current model holds.

In Step 4, we verify whether the interim probabilities of investigation still
satisfy the victim’s and liable injurer’s incentive-compatibility constraints. If
not, adjustments are implemented. We show that the optimal probabilities of
investigation of the benchmark model correspond to the interim probabilities
of investigation of this model. In contrast to the benchmark model, the
threshold A

2.1(p,↵1) now depends on ↵1.

In Step 5, we characterize the optimal cost allocation and optimal pro-
duction of evidence. We first characterize the optimal cost allocation, ↵0 and
↵1 by evaluating E[C(A)] + ⇤E[⇠(A)] at the interim probabilities of inves-
tigation, and minimizing this function with respect to ↵0 and ↵1. We then
characterize the optimal production of evidence by evaluating the threshold
A

2.1(p,↵1) of the interim probabilities of investigation at the optimal ↵1.

Step 1: Analysis of Victim’s Incentive-Compatibility Con-

straint (Part 1)

Claim 9. Suppose p 2 (0, 1). Part 1 of the victim’s incentive-compatibility

constraint for a victim of type A 2 [0, Ā], [pq1(A) + (1 � p)q0(A)]f̄V �
[p(1�q1(A)]A holds as an equality at the interim probabilities of investigation

0  qi(A)  1 (i = 0, 1).
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Proof. The proof follows the same logic than the proof of Claim 1 of the
benchmark model. ⌅

Claim 10. Suppose p 2 (0, 1). Suppose A =
�C1(A)(1+⇤)

C0(A) � 1
�
f̄
V

or A =
�C1(A)
C0(A) � 1

�
f̄
V
. The optimal mechanism is not unique for p >

f̄V

f̄V +f̄I .

Proof. The proof follows the same logic than the proof of Claim 2 of the
benchmark model. ⌅

Following the benchmark model, we define p
0 ⌘ f̄V

f̄V +Ā
and A

0(p) ⌘
� 1�p

p

�
f̄
V
. Claims 3–5 of the benchmark model also hold here.

Proposition 7. Suppose p 2 (0, 1). The interim probabilities of investi-

gation for a victim of type A are as follows.

1. If A �
�C1(A)(1+⇤)

C0(A) � 1
�
f̄
V
, then q0(A) = 0 and q1(A) = A

f̄V +A
.

2. If A <
�C1(A)
C0(A) � 1

�
f̄
V

and A 
� 1�p

p

�
f̄
V
, then q0(A) =

� p
1�p

�
A
f̄V and

q1(A) = 0.

3. If A <
�C1(A)

� 1
�
f̄
V

and A >
� 1�p

p

�
f̄
V
, then q0(A) = 1 and q1(A) =

1� f̄V

p(f̄V +A)
.

Proof. The proof follows the same logic than the proof of Proposition 1 of
the benchmark model. ⌅

Proposition 8. The interim probabilities of investigation for Environments

1 and 2 across victim’s types are as follows.

1. Environment 1: If C0(A) � C1(A)(1+⇤), then the interim probabilities

of investigation are: q0(A) = 0 and q1(A) = A
f̄V +A

< 1 8A 2 [0, Ā]

8p 2 (0, 1).

2. Environment 2: If C0(A) < C1(A) 8A 2 [0, Ā] and Ā <
�C1(A)
C0(A) �

1
�
f̄
V 8A 2 [0, Ā], then the interim probabilities of investigation are as

follows.

113



(a) p-Segment 1: If p 2 (0, p0], then the interim probabilities of in-

vestigation are q0(A) =
� p
1�p

�
A
f̄V and q1(A) = 0 8A 2 [0, Ā].

(b) p-Segment 2: If p 2 (p0, 1), then the interim probabilities of in-

vestigation are q0(A) =
� p
1�p

�
A
f̄V and q1(A) = 0 8A 2 [0, A0(p)],

and q0(A) = 1 and q1(A) = 1� f̄V

p(f̄V +A)
8A 2 (A0(p), Ā].

Proof. The proof follows the same logic than the proof of Proposition 2 of
the benchmark model. ⌅

The next sections are focused on Environment 1, p-Segment 2.1 (p 2
(p̃, p̄]).58

Adjustment Procedures

This section discusses technical aspects of the adjustment procedures that
can be implemented on the interim probabilities of investigation to satisfy
the liable injurer’s incentive-compatibility constraint.

Following the methodology presented in the benchmark model, we first
characterize ⌦i(A) (i = 1, 2).

⌦1(A) =
f̄
I

(1� p)
h
C0(A)� C1(A)(1+↵1⇤)�

1+ A
f̄V

�
i .

⌦2(A) =
f̄
I

(1� p)C0(A)
.

Lemma 7. (1) Suppose C0(A) � C1(A)(1 + ⇤) 8A 2 (0, Ā]. If and only if

C0(0) > C1(0)(1 + ⇤), ⌦1(A) > 0 exists 8A 2 [0, Ā] and 8↵1 2 [0, 1]. (2) If

and only if C0(0) > 0, ⌦2(A) > 0 exists 8A 2 [0, Ā].

Proof. The proof follows the same logic than the proof of Lemma 3 of the
benchmark model. ⌅

58Formal analysis of p-Segment 1 and p-Segment 2.2 are available from the authors upon

request.
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Proposition 9. (1) Suppose C0(A) � C1(A)(1 + ⇤) 8A 2 (0, Ā] and

C0(0) > C1(0)(1 + ⇤). If
@

C1(A)
C0(A)

@A  0 8A 2 [0, Ā], then the implementation

of Procedure 1 should start at the lowest value of A. (2) Suppose C0(0) > 0.
The implementation of Procedure 2 should start at the lowest value of A

Proof. The proof follows the same logic than the proof of Proposition 3 of
the benchmark model. ⌅

Proposition 10. Suppose C0(A) � C1(A)(1 + ⇤) 8A 2 (0, Ā], C0(0) >

C1(0)(1+⇤), C0(0) > 0 and
@

C1(A)
C0(A)

@A  0 8A 2 [0, Ā]. If and only if C0(A)�
C0(0) <

C1(A)f̄V

A+f̄V 8A 2 [0, Ā] and 8↵1 2 [0, 1], Procedure 1 is more e�cient

than Procedure 2 across victim’s types.

Proof. The proof follows the same logic than the proof of Proposition 4 of
the benchmark model. ⌅

Step 2: Analysis of Liable Injurer’s Incentive-Compatibility

Constraint and Verification of the Non-Liable Injurer

Incentive-Compatibility Constraint

The liable injurer’s incentive-compatibility constraint, evaluated at the in-
terim probabilities of investigation, is not satisfied:

Z Ā

0
Ag(A)dA+ (1� ↵1)

Z Ā

0

✓
A

f̄V +A

◆
C1(A)g(A)dA > f̄

I

Z Ā

0
0g(A)dA.

Therefore, adjustments on the interim probabilities of investigation are re-
quired. By Claim 7, the non-liable injurer’s incentive-compatibility is satis-
fied.

The characterization of p̃, p̄, and the threshold A
2.1(p,↵1) follows the

procedure applied in the benchmark model.

Consider first p̃. Following the benchmark model, p̃ is defined as the level
of p such that, after exhausting Procedure 1 8A 2 [0, Ā], the liable injurer’s
incentive-compatibility constraint evaluated at the adjusted interim proba-
bilities of investigation is satisfied as an equality. Given that 8A 2 [0, Ā],
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q0(A) is increased from zero to ( p
1�p )

A
f̄V and q1(A) is decreased from A

f̄V +A

to zero, the relevant terms of the liable injurer’s incentive-compatibility con-
straint that define p̃ are the same as in the benchmark model:

Z Ā

0
Ag(A)dA+ (1� ↵1)

Z Ā

0
0C1(A)g(A)dA  f̄

I

Z Ā

0

✓
p̃

1� p̃

◆
A

f̄V
g(A)dA.

Hence, p̃ = f̄V

f̄V +f̄I . Proposition 11 shows that p̃ < p
0.

Consider now p̄. Following the benchmark model, p̄ is defined as the p-
value such that, after exhausting the implementation of Procedure 1 for A 2
[0, A0(p̄)], the liable injurer’s incentive-compatibility constraint evaluated at
the adjusted interim probabilities of investigation is satisfied as an equality,
where A

0(p̄) =
� 1�p̄

p̄

�
f̄
V :

Z Ā

0
Ag(A)dA+ (1� ↵1)⇥

⇥
 Z A0(p̄)

0
0(A)C1(A)g(A)dA+

Z Ā

A0(p̄)

✓
A

f̄V +A

◆
C1(A)g(A)dA

�
=

= f̄
I

 Z A0(p̄)

0

� p̄

1� p̄

� A

f̄V
g(A)dA+

Z Ā

A0(p̄)
0g(A)dA

�
.

Given that the liable injurer’s incentive-compatibility constraint now in-
cludes a term in ↵1, p̄(↵1). This p- hreshold is not the same as p̄ in the
benchmark model.

Proposition 11. Suppose C0(A) � C1(A)(1 + ⇤) 8A 2 (0, Ā], C0(0) >

C1(0)(1+⇤) and p 2 (0, 1). There are three p-segments: p-Segment 1 where

p 2 (0, p̃], p-Segment 2.1 where p 2 (p̃, p̄], and p-Segment 2.2 where p 2 (p̄, 1).

Proof. The proof follows the same logic than the proof of Proposition 5 of
the benchmark model. ⌅

Finally, consider threshold A
2.1(p). Following the benchmark model, in

p-Segment 2.1, adjustment Procedure 1 should be exhausted only for A 2
[0, A2.1(p)], where A2.1(p) corresponds to the A-threshold such that the liable
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injurer’s incentive-compatibility constraint evaluated at the adjusted interim
probabilities of investigation holds as an equality:

Z Ā

0
Ag(A)dA+ (1� ↵1)⇥

⇥
 Z A2.1(p)

0
0C1(A)g(A)dA+

Z Ā

A2.1(p)

✓
A

f̄V +A

◆
C1(A)g(A)dA

�
=

= f̄
I

 Z A2.1(p)

0

✓
p

1� p

◆
A

f̄V
g(A)dA+

Z Ā

A2.1(p)
0g(A)dA

�
.

Given that the liable injurer’s incentive-compatibility constraint now in-
cludes a term in ↵1, A2.1(p,↵1). This A-threshold is not the same as A2.1(p)
in the benchmark model.

Lemma 8. Suppose C0(A) � C1(A)(1 +⇤) 8A 2 (0, Ā], C0(0) > C1(0)(1 +
⇤) and p 2 (p̃, p̄]. There exists a unique 0  A

2.1(p,↵1) < Ā.

Proof. The proof follows the same logic than the proof of Lemma 5 of the
benchmark model. ⌅

The adjusted interim probabilities of investigation are summarized in the
main text of the paper, Corollary 1.

Next, we verify whether the non-liable incentive-compatibility constraint
is still satisfied. At the adjusted interim probabilities of investigation, the
liable injurer’s incentive-compatibility constraint is satisfied as an equality.
Hence, the non-liable injurer incentive-compatibility constraint is still satis-
fied, by Claim 7.

Step 3: Analysis of Victim’s Individual-Rationality Con-

straint and Analysis of Victim’s Incentive-Compatibility

Constraint (Part 2)

Lemma 9. Suppose C0(A) � C1(A)(1 + ⇤) 8A 2 (0, Ā], C0(0 > C1(0)(1 +
⇤) and p 2 (p̃, p̄]. The victim’s individual-rationality constraint is satisfied

under the interim probabilities of investigation presented in Step 2.
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Proof. For A 2 [0, A2.1(p,↵1)], q0(A) =
� p
1�p

�
A
f̄V and q1(A) = 0. Then, the

victim’s individual rationality constraint is: ↵0C0(A)  f̄
V
. Remember that

f̄
V = W

V and W
V

> C0(Ā) by assumption. Therefore, this constraint is
satisfied for A 2 [0, A2.1(p,↵1)] and no further adjustment is required. For
A 2 (A2.1(p,↵1), Ā], q0(A) = 0 and q1(A) = A

f̄V +A
< 1. Then, the victim’s

individual rationality constraint is: ↵1C1(A)  A + f̄
V
. Remember that

f̄
V = W

V , and by assumption, WV + A � C1(A) for A 2 [0, Ā]. Therefore,
this constraint is satisfied for A 2 (A2.1(p,↵1), Ā] and no further adjustment
is required. ⌅

Lemma 10 shows that the victim’s incentive-compatibility constraint that
can be expressed in terms of two constraints, the victim’s incentive-compatibility
constraint of the benchmark model and the victim’s individual-rationality
constraint. It also shows that the victim’s incentive-compatibility constraint
holds when both constraints hold.

Lemma 10. Suppose C0(A) � C1(A)(1+⇤) 8A 2 (0, Ā], C0(0) > C1(0)(1+
⇤) and p 2 (p̃, p̄]. The victim’s incentive compatibility constraint is satisfied

under the interim probabilities of investigation presented in Step 2.

Proof. By Lemma 9, the victim’s individual rationality constraint is satis-
fied. By Step 1 and given that additional adjustments are not implemented
in Step 3, the victim’s incentive-compatibility constraint of the benchmark
model is still satisfied. Hence, the victim’s incentive-compatibility constraint
is satisfied. ⌅.

Step 4: Verification and Further Adjustments

Given that no further adjustment was required in Step 3, the interim prob-
abilities of investigation found in Step 2 still satisfy the victim’s incentive-
compatibility constraint and the liable injurer’s incentive-compatibility con-
straint. Hence, the interim probabilities of investigation presented in Step
2 still hold: For A 2 [0, A2.1(p,↵1)], q0(A) =

� p
1�p

�
A
f̄V and q1(A) = 0; for

A 2 (A2.1(p,↵1), Ā], q0(A) = 0 and q1(A) = A
f̄V +A

< 1. A
2.1(p,↵1) is de-

termined implicitly by the liable injurer’s incentive compatibility constraint

written as equality:
R Ā
0 Ag(A)dA+

R Ā
A2.1(p,↵1)

(1� ↵1)
A

f̄V +A
C1(A)g(A)dA =

f̄
I
R A2.1(p,↵1)
0

� p
1�p

�
A
f̄V g(A)dA. The interim probabilities of investigation in

this model correspond to the optimal probabilities of investigation of the
benchmark model. In contrast to the benchmark model, now the threshold
A

2.1(p,↵1) also depends on ↵1.
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Step 5: Optimal Cost Allocation and Optimal Produc-

tion of Evidence

We characterize the optimal ↵i (i = 0, 1) and then, evaluate A
2.1(p,↵1) at

the optimal ↵1 to characterize the optimal production of evidence.
The social planner problem is min↵02[0,1],↵12[0,1]{E[C(A)] + ⇤E[⇠(A)]}.

To simplify notation, we denote E[C(A)] + ⇤E[⇠(A)] as S, and use this no-
tation in the proofs of Claim 9 and Proposition 9.

The next claim shows that E[C(A)] negatively depends on ↵1 and E[⇠(A)]
positively depends on ↵1.

Claim 11. Suppose C0(A) � C1(A)(1+⇤) 8A 2 (0, Ā], C0(0) > C1(0)(1+⇤)

and p 2 (p̃, p̄]. (1)
@E[C(A)]
@↵1

< 0. (2)
@⇤E[⇠(A)]

@↵1
> 0.

Proof. Although A
2.1(p,↵1), to simplify notation, we use A

2.1 in the proof.

1.

E[C(A)] = (1� p)

Z A2.1

0

p

1� p

A

f̄V
C0(A)g(A)dA+

+p

Z Ā

A2.1

A

A+ f̄V
C1(A)g(A) =

= p

 Z A2.1

0

A

f̄V
C0(A)g(A)dA+

Z Ā

A2.1

A

A+ f̄V
C1(A)g(A)

�
.

By the Chain Rule,
@E[C(A)]

@↵1
=

= p


A

2.1

f̄V
C0(A

2.1)g(A2.1)�
⇣

A
2.1

A2.1 + f̄V

⌘
C1(A

2.1)g(A2.1)

�
@A

2.1

@↵1
,

where

@A
2.1

@↵1
= �

R Ā
A2.1

A
A+f̄V C1(A)g(A)dA


A2.1

f̄V
p

1�p f̄
I + (1� ↵1)

A2.1

A2.1+f̄V C1(A2.1)

�
g(A2.1)

.

@E[C(A)]
@↵1

can be rewritten as:

@E[C(A)]

@↵1
= �p


C0(A2.1)

f̄V
� C1(A2.1)

A2.1 + f̄V

�
⇥
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⇥

R Ā
A2.1

A
A+f̄V C1(A)g(A)dA


1
f̄V

p
1�p f̄

I + (1� ↵1)
1

A2.1+f̄V C1(A2.1)

� .

The expression 
C0(A2.1)

f̄V
� C1(A2.1)

A2.1 + f̄V

�
> 0

by C0(A2.1) > C1(A2.1) and f̄
V
< A

2.1 + f̄
V . Hence, @E[C(A)]

@↵1
< 0.

2.

E[⇠(A)] = p

Z Ā

0
↵1q1(A)C1(A)g(A)dA = p

Z Ā

A2.1

↵1
A

A+ f̄V
C1(A)g(A)dA.

@⇤E[⇠(A)]

@↵1
=

= ⇤p

"Z Ā

A2.1

A

A+ f̄V
C1(A)g(A)dA� ↵1

A
2.1

A2.1 + f̄V
C1(A

2.1)g(A2.1)
@A

2.1

@↵1

#
,

where

@A
2.1

@↵1
= �

R Ā
A2.1

A
A+f̄V C1(A)g(A)dA


A2.1

f̄V
p

1�p f̄
I + (1� ↵1)

A2.1

A2.1+f̄V C1(A2.1)

�
g(A2.1)

< 0.

Hence, @⇤E[⇠(A)]
@↵1

> 0.

⌅

Proposition 12, included in the main text of the paper, characterizes
the optimal cost allocation (↵0,↵1). The proof is included in Appendix A.
The optimal production of evidence is characterized by simply evaluating
A

2.1(p,↵1) and p̄(↵1) at the optimal ↵1.
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D. Model with Endogenous Cost Allocation –

Uniform Distribution Model and Numerical Ex-

ample

This Appendix presents the model with a uniform distribution of damages
(Section D.1) and the numerical example (Section D.2) for the model with
endogenous cost allocation. We focus on Environment 1 and p-Segment 2.1
where p 2 (p̃, p̄].

D.1 Model with a Uniform Distribution of Damages

Assume that A is uniformly distributed over A 2 [0, Ā], where g(A) = 1
Ā

8A 2 [0, Ā], G(A) = A
Ā
, and

R Ā
0 Ag(A)dA = Ā

2 .

Thresholds p̄ and A
2.1

.– In contrast to the benchmark model, closed-form
solutions for p̄(↵1) and A

2.1(p,↵1) cannot be obtained.

Consider p̄. When p = p̄, the liable injurer’s incentive-compatibility
constraint is:

Z Ā

0
A
1

Ā
dA+(1�↵1)

Z Ā

(1�p̄)f̄V

p̄

A

A+ f̄V

C1(A)

Ā
dA = f̄

I

Z (1�p̄)f̄V

p̄

0

p̄A

(1� p̄)f̄V

1

Ā
dA,

where A
0(p̄) = p̄A

(1�p̄)f̄V . The last equation implicitly defines p̄(↵1) and

cannot be solved analytically.

Next, consider A2.1(p). Suppose p 2 (p̃, p̄]. The liable injurer’s incentive-
compatibility constraint is:

Z Ā

0

A

Ā
dA+ (1� ↵1)

Z Ā

A2.1

A

A+ f̄V

C1(A)

Ā
dA = f̄

I

Z A2.1

0

pA

(1� p)f̄V

1

Ā
dA.

The last equation implicitly defines A2.1(p,↵1) and cannot be solved analyt-
ically.
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Social Welfare Loss Function.– Given the optimal mechanism and the
assumptions regarding the uniform distribution of damages, the social wel-
fare loss function for p-Segment 2.1 is as follows.

SWL
2.1 = H(A) + E[C(A)] + ⇤E[⇠(A)],

where H(A) = E[A] =
R Ā
0 Ag(A)dA,

E[C(A)] =

Z A2.1

0

pA

(1� p)f̄V

C0(A)

Ā
dA+

Z Ā

A2.1

A

A+ f̄V

C1(A)

Ā
dA

and

E[⇠(A)] = p

Z Ā

A2.1

↵1
A

A+ f̄V

C1(A)

Ā
dA.

D.2 Numerical Example

The model with a uniform distribution of damages is used to construct this
numerical example. Although A

2.1(p,↵1), we use A
2.1 to simplify notation.

Assume C0(A) = C0(A)+c0A and C1(A) = C1+c1A.We use the same set
of exogenous parameters used for Environment 1 in the numerical example
for the benchmark model

{C0, C1, c0, c1, f̄
V
, f̄

I
, Ā, p} = {1528, 690, 0.3, 0.01, 1800, 3600, 1200, 0.45}.

In addition, we use three ⇤-values: ⇤ 2 {0.30, 0.40, 0.50}. For the three
⇤-values, Ā = 1200. Hence, H = Ā

2 = 600.

Main Model Conditions.– The model conditions are satisfied under the
sets of exogenous parameters.

• The condition for Environment 1 is C0(A) � (1+⇤)C1(A) 8A 2 [0, Ā].

1. ⇤ = 0.30: 1528 + 0.3A � (1 + 0.30)(690 + 0.01A). After simplifi-
cation, 0.29A > �631 holds 8A 2 [0, 1200].

2. ⇤ = 0.40: 1528 + 0.3A � (1 + 0.40)(690 + 0.01A). After simplifi-
cation, 0.29A > �562 holds 8A 2 [0, 1200].

3. ⇤ = 0.50: 1528 + 0.3A � (1 + 0.50)(690 + 0.01A). After simplifi-
cation, 0.29A > �493 holds 8A 2 [0, 1200].

• The condition for Lemma 9 and first condition for Propositions 9 and
10 is C0(0) > C1(0)(1 + ⇤).
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1. ⇤ = 0.30: 1528 > 690(1+ 0.30). After simplification, 1528 > 897.

2. ⇤ = 0.30: 1528 > 690(1+ 0.40). After simplification, 1528 > 966.

3. ⇤ = 0.30: 1528 > 690(1+0.50). After simplification, 1528 > 1035.

• The second condition for Proposition 9 is
@

C1(A)
C0(A)

@A  0 8A 2 [0, Ā].
Given that this condition does not include ⇤, it is the same across
⇤-values.

@
C1+c1A
C0+c0A

@A
=

c1C0 � c0C1

(C0 + c0A)2
=

0.01(1528)� 0.3(690)

(1528 + 0.3A)2
=

�191.72

(1528 + 0.3A)2
< 0

8A 2 [0, 1200].

• The third condition for Proposition 9 is @C0(A)
@A > 0 8A 2 [0, Ā]. Given

that this condition does not include ⇤, it is the same across ⇤-values:
c0 = 0.3 > 0 8A 2 [0, 1200].

• The second condition for Proposition 10 is C0(A) � C0(0) <
C1(A)f̄V

A+f̄V .
Given that this condition does not include ⇤, it is the same across
⇤-values. The left-hand side of the inequality is C0(A) � C0(0) =

c0A = 0.3A. The right-hand side of the inequality is (690+0.01A)(1800)
A+1800 .

Evaluate the left-hand side at the highest A-value, the numerator of
the right-hand side at the lowest A-value and the denominator of the
right-hand side at the highest A-value. After simplification, 360 <

414 = (690)(1800)
3000 8A 2 [0, 1200].

Thresholds p̄ and A
2.1

.– p̄(↵1) and A
2.1(p,↵1) cannot be analytically

computed.

Consider p̄. When p = p̄, the liable injurer’s incentive-compatibility
constraint is:

Z Ā

0
A
1

Ā
dA+ (1� ↵1)

Z Ā

(1�p̄)f̄V

p̄

A

A+ f̄V
(C1 + c1A)

1

Ā
dA =

= f̄
I

Z (1�p̄)f̄V

p̄

0

p̄A

(1� p̄)f̄V

1

Ā
dA.
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After computing the integrals,

Ā

2
+

(1� ↵1)

Ā

h
c1

2
(Ā2 � (A0(p̄))2) + (C1 � c1f̄

V )(Ā�A
0(p̄))�

�(C1 � c1f̄
V )f̄V (log(Ā+ f̄

V )� log(A0(p̄) + f̄
V ))

i
= f̄

I A
0(p̄)

2Ā
, (1D)

where A0(p̄) = (1�p̄)f̄V

p̄ . Equation (1D) implicitly defines p̄. Using the set of
exogenous parameters, it can be solved numerically.

Next, consider A2.1(p). Suppose p 2 (p̃, p̄]. The liable injurer’s incentive-
compatibility constraint is:

Z Ā

0

A

Ā
dA+(1�↵1)

Z Ā

A2.1

A

A+ f̄V
(C1+c1A)

1

Ā
dA = f̄

I

Z A2.1

0

pA

(1� p)f̄V

1

Ā
dA.

After computing the integrals:

Ā

2
+
1� ↵1

Ā

h
c1

2
(Ā2�(A2.1)2)+(C1�c1f̄

V )(Ā�A
2.1)�(C1�c1f̄

V )f̄V (log(Ā+f̄
V )�

� log(A2.1 + f̄
V ))

i
=

f̄
I
p(A2.1)2

2(1� p)f̄V Ā
. (2D)

Equation (2D) implicitly defines A
2.1(p,↵1). Using the set of exogenous

parameters, it can be solved numerically.

Optimal Cost-Allocation Rules.– In this numerical example,

µ =
C1(A)f̄V (C0(A) + p

1�p f̄
I)

(A+ f̄V )f̄V (C0(A) + p
1�p f̄

I)
+

(A+ f̄
V )2C 0

0(A) p
1�p f̄

I + (A+ f̄
V )f̄V

C
0
0(A)C1(A)

(A+ f̄V )f̄V (C0(A) + p
1�p f̄

I)
.

Therefore, 8A 2 [0, Ā],

µ >

C1(A)f̄V (C0(A) + p
1�p f̄

I)

(A+ f̄V )f̄V (C0(A) + p
1�p f̄

I)
=

C1(A)

A+ f̄V
.
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After simplification,
C1(A)

A+ f̄V
< µ.

Evaluate the numerator of the right-hand side of the inequality at the lowest
A-value and the denominator of the right-hand side of the inequality at the
highest A-value: C1(0)

Ā+f̄V = 690
1200+1800 = 0.23.

@C1(A)

@A
= 0.01 < 0.253 =

C1(0)

Ā+ f̄V
<

C1(A)

A+ f̄V
< µ.

Therefore, @C1(A)
@A = 0.01 < 0.23 < µ 8A 2 [0, 1200]. Hence, @C1(A)

@A < µ

8A 2 [0, 1200].

In this numerical example,

⇤0(↵1) =
(A2.1(↵1) + f̄

V )(C0 + cA
2.1(↵1))� f̄

V (C1 + c1A
2.1(↵1))

(A2.1(↵1) + f̄V ) p
1�p f̄

I + f̄V (C1 + c1A
2.1(↵1))

.

Given that @C1(A)
@A < µ 8A 2 [0, 1200], @⇤

0(↵1)
@↵1

< 0. Hence, ⇤0 = ⇤0(↵1 =

1) and ⇤̄0 = ⇤0(↵1 = 0):

⇤0 =
(A2.1(1) + f̄

V )(C0 + cA
2.1(1))� f̄

V (C1 + c1A
2.1(1))

(A2.1(1) + f̄V ) p
1�p f̄

I + f̄V (C1 + c1A
2.1(1))

= 0.396.

⇤̄0 =
(A2.1(0) + f̄

V )(C0 + cA
2.1(0))� f̄

V (C1 + c1A
2.1(0))

(A2.1(0) + f̄V ) p
1�p f̄

I + f̄V (C1 + c1A
2.1(0))

= 0.402.

The ⇤-values that apply for Cases 1, 2, and 3(b)iii of Proposition 11 are
⇤ 2 {0.30, 0.40, 0.50}, respectively. The conditions for the three cases are
satisfied.

• The condition for Proposition 11, Case 1 is ⇤ < ⇤0. It applies to Set
1 where ⇤ = 0.30 (Column 2 of Table 4). ⇤ = 0.30 < 0.396 = ⇤0.

• The first condition for Proposition 11, Case 3(b)iii is @C1(A)
@A < µ 8A 2

[0, Ā]. It applies to Set 1 where ⇤ = 0.40 (Column 3 of Table 5).

As showed before, across ⇤-values, @C1(A)
@A = 0.01 < 0.253 < µ 8A 2

[0, 1200].
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• The second condition for Proposition 11, Case 3(b)iii is ⇤ 2 (⇤0
, ⇤̄0).

It applies to Set 2 where ⇤ = 0.40 (Column 3 of Table 5). ⇤ = 0.40 2
(0.396, 0.402) = (⇤0

, ⇤̄0).

• The condition for Proposition 11, Case 2 is ⇤ > ⇤̄0. It applies to Set
3 where ⇤ = 0.50 (Column 4 of Table 4). ⇤ = 0.50 > 0.402 = ⇤̄0.

Social Welfare Loss Function.– Given the optimal mechanisms and the
functional forms for C0(A) and C1(A), SWL

2.1 is as follows.

SWL
2.1 = H + E[C(A)] + ✓E[⌘(A)] + ⇤E[⇠(A)],

where H = 600, ✓E[⌘(A)] = ✓(0) = 0 because all victims get access to justice
under the optimal mechanism,

E[C(A)] =

Z A2.1

0

pA

(1� p)f̄V
(C0+c0A)

1

Ā
dA+

Z Ā

A2.1

A

A+ f̄V
(C1+c1A)

1

Ā
dA =

=
p

(1� p)f̄V Ā


c0(A2.1)3

3
+

C0(A2.1)2

2

�
+

+
1

Ā

⇥c1
2
(Ā2 � (A2.1)2) + (C1 � c1f̄

V )(Ā�A
2.1)�

�(C1 � c1f̄
V )f̄V (log(Ā+ f̄

V )� log(A2.1 + f̄
V ))

⇤

and
E[⇠(A)] =

↵1

Ā

h
c1

2
(Ā2 � (A2.1)2) + (C1 � c1f̄

V )(Ā�A
2.1)�

�(C1 � c1f̄
V )f̄V (log(Ā+ f̄

V )� log(A2.1 + f̄
V ))

i
.

Using the set of exogenous parameters, the A2.1(p,↵1)-values and the optimal
↵1 for each ⇤-values, the optimal SWL

2.1 for each ⇤-value is computed.
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