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1. Introduction 
In numerous articles (see, for example, [1-6]) devoted to stock market 

trading algorithms, one basic assumption is made (explicitly or implycit-
ly): stock price changes are described by some stochastic process. The 
researchers' efforts are focused on identifying and analyzing these pro-
cessses. At the same time, earnings from trading stocks selected on the 
basis of this basic assumption are also considered as the realization of 
stochastic processes.  

Reviewing publications in this field is not the purpose of the article. It 
can be noted that the wide variety of proposed methods, problem state-
ments, and algorithms most likely indicates a certain dissatisfaction with 
both existing probabilistic models and the financial results obtained on 
their basis. Furthermore, the processes in the stock market can be consi-
dered as probabilistic with a great reserve. At the same time, it is safe to 
speak about the uncertain nature of these processes. It is precisely this un-
certainty that makes it necessary to develop new approaches that do not 
rely on assumptions about the probabilistic nature of the functioning of 
stock markets. 

In this paper, we propose a new algorithm for trading on the stock mar-
ket that does not use any probabilistic assumptions about previous stock 
prices. All of them are considered simply as fixed numerical data, entirely 
known at the end of the next working day. However, the algorithm for 
determining stocks for trading on the next business day uses a standard 
random number generator, so that the daily income received is a "legiti-
mate" random variable. And if in one day we can talk about mathematical 
expectation and other traditional probabilistic parameters, then when deter-
mining the accumulated values of this random variable for a quarter, a year, 
and over long periods of time, these amounts demonstrate very good con-
vergence under different implementations of the specified correct random 
process. Since these amounts take on noticeable positive values (based on 
a small number of traded shares), we can talk not only about the stability 
of the proposed trading algorithm, but also about its effectiveness. 

The work is structured as follows. Section 2 provides a brief description 
of the S&P-500 stock market and provides a general flowchart of the quar-
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terly trading algorithm (QTA) over a fixed period of time (in this case, one 
quarter). The main algorithms included in the QTA are: 

А. A new clustering algorithm that does not build the only "most cor-
rect" graph partition into subgraphs, but offers a family of such partitions 
from which you can choose one using a variety of considerations. In parti-
cular, the method does not reject partitions with a very large ratio of the 
powers of the parts, when this is an objective property of the systems under 
consideration. The algorithm is applied to a well-known market graph [7], 
which is constructed based on known stock prices in previous days. The 
found subgraphs correspond to groups of stocks with similar behavior (in 
the sense of proximity to the unit of correlation coefficients between 
sequences of stock prices). 

В. A new algorithm of real trading on the stock market, which involves 
the use of two different schemes depending on earnings in previous days. 
The proposed algorithm can be called flexible (a well-known term in nu-
merous situations not related to the stock market).  

The both algorithms are described in detail in section 3. 
Section 4 describes the general trading scheme for 20 years (1995-2014, 

80 quarters) with simultaneous parallel use of several identical QTA, 
whose results of over 20 years are called variants. 

The experimental results of the proposed general trading scheme are 
presented in Section 5.  

In conclusion possible modifications of the proposed approach and its 
basic algorithms are specified, as well as some areas of further research 
and the key findings are given. 

 
2. The S&P 500 stock market and  

the structure of the quarterly trading algorithm 
Let's start with the concepts and definitions necessary for a formal 

description of the stock market. The paper considers a fragment of the US 
stock market – S&P-500 (500 largest companies in the USA). Daily data 
on stock prices at the close of trading was used for 20 years and one month 
– from 12/01/1994 to 12/31/2014. Individual quarters were considered as 
the main periods. The number of working days per quarter is in the range 
of 58-64.  
The composition of the shares has changed over the years, but these 
changes were quite rare (no more than 10 shares left the market per quarter 
and the same number of new ones appeared, but in most cases, it was 1-4 
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companies). In addition, all constructions in this section belong to one 
quarter (there are 80 quarters all in all). 

Let t be the fixed working day of a given quarter (t = 0, 1, 2, ..., p−1). It 
seems natural to assume that all stocks traded on the S&P-500 market be-
fore day t, as well as their closing prices, are known starting from day x, 
on l business days preceding day t (including the first business day 0). The-
refore, at the beginning of the quarter, the days of the previous quarter are 
included in the number l of the preceding days. The number l is 15. The 
choice of the number l, as well as all other parameters used in the proposed 
general algorithm, will be discussed below, in section 5.1. It is equally na-
tural to assume that stock prices on day t and all subsequent days are un-
known.  

As stated in the introduction, no assumptions are made about the proba-
bilistic characteristics of stock prices known before t-day. They are consi-
dered only as set constants. 

The enlarged flowchart in Fig. 1 shows the QTA. The output of the 
QTA is the income S received in this quarter (it can be negative). 

 

 
 

Fig. 1. The enlarged flowchart of the QTA 
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Before proceeding to the description of the blocks of the presented 
flowchart, let's take a closer look at the time sequence of operations perfor-
med over two business days. This sequence is shown in the Table 1. 

 
Table 1. Time flowchart of the trading algorithm 

 
Initialization 
Data preparation 
Clusterization 
Highlighting promising stocks 
Forward and backward trading algorithm 
The algorithm of real trading 
Recalculation of accumulated results 
Moving on to the next day 

 
 

 
The importance of this table lies in the fact that it is the actual sequence 

of operations performed that is associated with the uncertainty of the stock 
market. It is not possible to find out the income from operations on day t 
until all previous operations are completed. And when performing all these 
operations, the value of the shares at the end of trading is unknown and, 
therefore, the future gain or loss on that day is unknown. This is discussed 
in more detail in subsection 3.4. Initialization is performed only on the first 
business day of the quarter (it is convenient to take its number as 0). 

 
3. Description of the algorithms of the QTA flowchart 

Further, the basic algorithms of the QTA flowchart in Fig. 1 are des-
cribed in subsections 3.0 – 3.7. We will describe them in the same order in 
which they are executed in the specified flowchart. Let's pay attention to 
the fact that all the current results of all blocks of the algorithm are saved 
and can be used in further operations. 

3.0. Initialization. The initial day number t = 0 and the integer para-
meter sg = 1 are set. Two accumulative scalar quantities V(t) and S(t) are 
determined. Both at t = 0 are initialized with zeros. The number of parallel 

Trading ends on 
day t-1 

Trading starts on 
day t 

Trading ends on 
day t 
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runs that are performed with the same initial data using the same algorithm 
is indicated by K. Since the algorithm uses a standard random seed, the 
results are different. The next three blocks 1 – 3 are executed in parallel for 
each index i = 1, ..., K. In this paper, K = 5. 

 
3.1. Data preparation. The input for block 1 is the prices of all stocks 

available on the market (at the time of the termination of trading day before 
the business day with the number t) for the preceding l business days (see 
Fig. 1 and Table 1). The output of this block is:  

а) The matrix D of the distances between stock prices for l business 
days (the number 1 – rij is taken as the distance, where rij is the correlation 
coefficient between the i-th and j-th stock prices for the last l days). Thus, 
for correlated stocks, the distance is close to 0, and for strongly dissimilar 
stocks, it is close to 2. 

b) A graph G constructed using this matrix, the vertices of which corres-
pond to the considered set of stocks, and each vertex is connected to the 4 
nearest ones by a specified distance. Note that this definition does not 
imply that the degree of each vertex is 4, but only that it is at least 4. 

Here, just for clarity, is a well–known algorithm for constructing this 
graph, usually called the neighborhood graph (in relation to the stock 
market, this graph is called the market graph). 

Algorithm for constructing a neighborhood graph 
The input of this algorithm is a distance matrix D of size n × n (n 

denotes the number of objects in the system under consideration – in this 
case, the number of shares traded on the day t−1 and on the previous 14 
days).  

Step 1. Let's define an integer matrix A of size n × n and let all the ele-
ments aij be equal to 0.  

Step 2. For each i = 1, ..., n, we perform the following operations. 
2.1. Let us determine the indices i1, i2, i3, i4, k1..., ks from the distance 

matrix D, such that   
                 𝑑𝑑𝑖𝑖𝑖𝑖1  ≤ 𝑑𝑑𝑖𝑖𝑖𝑖2 ≤ 𝑑𝑑𝑖𝑖𝑖𝑖3  ≤ 𝑑𝑑𝑖𝑖𝑖𝑖4= 𝑑𝑑𝑖𝑖𝑖𝑖1= … = 𝑑𝑑𝑖𝑖𝑖𝑖𝑠𝑠,                    (1) 

and all other elements of the i-th row of the matrix D are strictly larger than 
those written out in column (1). Thus, objects i1, i2, i3, i4, k1..., ks are the 
closest to object i. In this case, objects with numbers k1, ..., ks are located 
at the same distance from object i. Note that the very presence of objects 
k1, ..., ks occupying places after the fourth in the chain (1) is not guaranteed: 
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objects satisfying the required inequalities may simply not exist. At the 
same time, the existence of objects i1, i2, i3, i4 occupying the first four places 
in the chain (1) is guaranteed (in case n > 4). 

2.2. For all j = i1, i2, i3, i4, k1…, ks let aij = 1 and aji = 1. 
The output of the algorithm is the adjacency matrix of the neighborhood 

graph. It can be clearly seen that the constructed graph does not depend on 
specific numbering satisfying the above conditions. 

 
3.2. Clusterization. The described algorithm is related to a group of 

clustering algorithms defined by a certain index of centrality or between-
ness of a given undirected graph. In this case, we are talking about the in-
dex of the betweenness of edges of the graph. Although the graph decom-
position method proposed in [7] deals with a certain index that can be 
attributed to betweenness indexes, still differs significantly from the algo-
rithms of the mentioned group. Let's look at this in more detail. First, let's 
briefly outline the Newman-Girvan algorithm [9], one of the first algo-
rithms from the mentioned group. 

Each edge of the original graph is assigned an integer value that changes 
during the algorithm. It can be called an edge load. The operations of the 
Newman-Girvan algorithm are as follows: 

1. Set the current load in each edge to zero. 
2. Randomly select two network vertices. 
3. Find the path between the vertices found in the previous step. If no 

such path exists, go to 7; otherwise, go to 4. 
4. Add to the loads of all edges included in the path found in step 3, one 

at a time. 
5. If the number of passes of steps 2-4 is large enough (for example, the 

number of edges with maximum load did not change during the second half 
of the passes or the number of passes was equal to the preset number), then 
proceed to the next step 6; otherwise, return to step 2. (The possibility of 
different implementations of this step is obvious.) 

6. Remove an arbitrary edge with maximum load and proceed to step 1. 
7. Stop. The network is divided into two connectivity components, 

which correspond to the desired groups. 
The essence of the matter is this. If the graph has two subsets of vertices 

(groups or communities) connected by a small number of edges, then all 
shortest paths between vertices from these groups must pass along one of 
these few edges. Thus, the edges connecting the different groups have a 
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high degree of betweenness. The removal of these edges leads to the sepa-
ration of groups from each other, and, consequently, to the identification 
of the desired community structure. The obvious disadvantage of this 
algorithm is the need to repeatedly return to step 1 when finding a single 
dichotomy. In this case, all the information found in the previous steps 
about the accumulated load values in the ribs disappears. This disadvantage 
is indicated by the authors themselves, along with the remark that remo-
ving not only the edge with the maximum load, but also the edges with the 
next largest loads, can lead to erroneous results. 

An alternative approach was proposed in [9], addressing the same 
indicator in the edge load (referred to therein as frequency) while elimina-
ting the aforementioned limitation. The key idea is that, within the same 
iteration, the algorithm does not identify a single edge with the maximum 
load but rather determines a graph cut, in which all edges exhibit the 
maximum load. Furthermore, after identifying the first dichotomy, it is not 
necessary to reset all load values − the process continues with the already 
accumulated loads until the next dichotomy is found, and so forth. As a 
result, rather than constructing a single dichotomy per iteration, the 
algorithm generates a family of dichotomies. In simple cases, all these 
dichotomies coincide, whereas in more complex scenarios (such as those 
observed in financial markets), that's not so. 

The proposed clustering algorithm is described below. Its inputs are a 
graph G and a matrix D (see Subsection 3.1). The set of stocks is divided 
into r clusters (r = 12). The following provides a detailed description of the 
clustering algorithm. 

 
1. Initialization. Definition of the required parameters. As stated abo-

ve, the number of clusters is set to 12. The initial clustering consists of a 
single element − the original graph G. The number of subgraphs is assu-
med to be 1, and the number of the last subgraph in the clustering 
under construction is also 1. 

2. Selection of the next subgraph from the already constructed family. 
The subgraph with the maximum number of vertices is selected (arbitrary, 
if there are several of them). 

3. Construction of a family of dichotomies for the subgraph chosen 
in Step 2. This procedure is described in detail in Subsection 3.2.1. 

4. Selection of a dichotomy from the family obtained in Step 3. The 
selection procedure is discussed in Subsection 3.2.2. 
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5. Construction of a new clustering. The subgraph selected in Step 2 
is replaced by the subgraph from the dichotomy chosen in Step 4 that con-
tains a greater number of vertices. It retains the same index as the replaced 
subgraph. Additionally, the other subgraph from the dichotomy (identified 
in Step 4) is incorporated into the clustering and assigned the last index 
n+1, where n is the number of subgraphs in the previous clustering. 

6. Updating the number of subgraphs. The index is updated as n = 
n+1, ensuring that n now is equal to the number of subgraphs in the newly 
formed clustering. 

7. Verification of the inequality n < r. If the condition holds, the algo-
rithm returns to Step 2. Otherwise, the desired clustering is completed. The 
initial graph G is now partitioned into r disjoint subgraphs, and the algo-
rithm stops. 

The output of the presented algorithm consists of three sets: 
a) A set of clusters (subsets of the vertex set of the original graph); 
b) A set of numerical values representing the density of each construc-
ted cluster; 
c) A set of numerical values representing the cardinality of each const-
ructed cluster. 
 
3.2.1. Algorithm for constructing a family of dichotomies (ACFD) 
This subsection presents one of the fundamental algorithms used in the 

proposed general trading algorithm. The ACFD constructs a family of di-
chotomies F. It consists of an initialization stage and a main stage, which 
involves T-fold sequential repetition of a general step. The parameter T is 
one of the predefined parameters of the ACFD, and in this case, T=500. 
Below, we proceed with its formal description.  

A. Initialization. Each edge ej of a given graph P is assigned a random-
ly generated integer fj in the range from 1 to g (inclusive), sampled using a 
standard generator of uniformly distributed random variables (which is 
used here for the first time). The parameter g is also predefined within the 
ACFD, and in this study, it is set to g = 5. The value fj  is referred to as the 
load on the corresponding edge (or edge load). The maximum of the ran-
domly assigned values fj  is denoted as Fmax. The output of the initialization 
stage is a set of load values assigned to all edges of the given graph P. It is 
important to note that P is one of the subgraphs of the original graph G. 
During the first execution of the ACFD, the graph P coincides with the 
graph G. 
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B. Main Stage. The inputs to the main stage include:  
a) The given graph P;  
b) The current set of load values assigned to all edges of graph P;  
c) The current maximum value Fmax.  
The output of the main stage is described below, immediately following 

the description of its steps. The flowchart of the main stage is presented in 
Fig. 2. The steps of the algorithm at this stage are detailed below. 

 

 
 

Fig. 2. ACFD flowchart  
 

Steps of the ACFD 
1. Using a standard generator of uniformly distributed random variab-

les, two distinct vertices of the graph are selected (this is the second and 
the last instance of random numbers utilization in the general trading 
algorithm). 
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2. Dijkstra algorithm is applied to determine the shortest path connec-
ting the two selected vertices. The length of an edge is defined as its current 
load. The path length is determined not by summing the edge lengths but 
by taking the maximum edge length along the path. It is well known that 
Dijkstra algorithm can be applied in such cases with a single modification: 
when determining the extended path, instead of summing the length of the 
initial segment and the newly added edge, the maximum of these two va-
lues is recorded. It is important to emphasize that the length of the initial 
segment is not the sum of its edge loads but the maximum load among 
those edges. 

3. The maximum edge load Fp along the shortest path p found in Step 2 
is determined. 

4. If Fp < Fmax, proceed to Step 5. Otherwise (i.e., if Fp ≥ Fmax), proceed 
to Step 6. 

5. The edge loads along the path identified in Step 2 are incremented by 
1. Then, return to Step 1. 

6. The connected components of the given graph P are determined as if 
all edges with the maximum load were removed. Note that, in reality, no 
edges are actually removed from the graph, and P remains unchanged. 

7.1. The connected component with the maximum number of vertices 
is designated as the first subgraph of the constructed dichotomy. The union 
of all remaining components (or the single remaining component, if only 
one exists) is designated as the second subgraph of the constructed dichoto-
my. 

7.2. When constructing both components, all edges of the original graph 
are preserved except those connecting vertices from the first component to 
vertices of the second component. It is evident that this procedure effecti-
vely removes a certain minimal cut of the given graph. Consequently, the 
next dichotomy of graph P is formed. It is also clear that if the original 
graph was connected, both constructed subgraphs remain connected, too. 

8. All edges of the most recently identified path in the original graph 
are incremented by 1. As a result, at least one of these edges will have a 
load equal to Fmax+1. Assign Fmax = Fmax+1. 

The current execution of the main stage is now complete. Its outputs 
are: 

a) The modified set of current edge loads in graph P; 
b) The updated maximum edge load Fmax in graph P; 
c) An additional dichotomy of the original graph. 
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Illustration of Steps 7.1, 7.2, and 8 of the main stage is presented in Fi-
gure 3. Below, we provide some explanations and comments on these 
steps. Prior to executing the comparison of loads in Step 4, three distinct 
cases − denoted as Cases A, B, and C − are considered. In Fig. 3, bold 
segments represent edges with the maximum load, while thin lines indicate 
paths connecting the vertex pair a and b.  

 

 
Case A 

 
Case B 

 
Case C 
 

Fig 3. Cuts and paths on the graph 
 

In Case A, the set of all edges with the maximum load does not consti-
tute a cut of the given graph. Consequently, the shortest path found in Step 
2 does not contain edges with the maximum load due to the minimax defi-
nition of path length. Therefore, the maximum load Fp determined in Step 
3 is less than Fmax , and the algorithm proceeds to Step 5, where the loads 
of all edges in the identified path are increased by 1. Subsequently, execu-
tion returns to Step 1 of the general stage. This consideration is central to 
the proposed algorithm. Indeed, if the maximum load Fp in the edges of the 
identified path were equal to Fmax, this would imply that the set of edges 
with load Fmax forms a cut of the graph, such that the constructed path tra-
verses an edge of this cut. If these edges did not form a cut, the minimax 
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Dijkstra algorithm would have found a path in which all edges have a load 
strictly less than Fmax. 

In Case B, the set of all edges with the maximum load does contain a 
cut of the original graph. However, the identified path does not include ed-
ges with the maximum load because its endpoints are located on the same 
side of the cut. The process thus continues analogously to Case A. 

In Case C, the set of all edges with the maximum load constitutes a cut 
of the original graph, and the endpoints of the identified path are positioned 
on opposite sides of this cut. Consequently, at least one edge along this 
path belongs to the specified cut and has a load equal to Fmax. Therefore, 
after the comparison in Step 4, the process follows a different trajectory 
(through Steps 6–8), resulting in the construction of the next dichotomy of 
the original graph at Step 7. 

Note that all the considerations in this subsection can be applied to ar-
bitrary graphs, not just to graphs modeling systems of a specific type. Once 
again, we emphasize that all edge removals are virtual, and the original 
graph P remains unchanged throughout all T executions of the main stage. 

 
3.2.2. Selection of a dichotomy. Let us introduce the necessary formal 

concepts. Let X be a certain set of vertices of the considered graph P, and 
let n denote the number of vertices in P. Define D = (dij) as the distance 
matrix between the vertices of P (i, j = 1, …, n). We assume that dij ≥ 0, dij 
= dji и dii = 0, however, the triangle inequality is not required. The elements 
of matrix D are interpreted as the degree of dissimilarity between the 
objects corresponding to vertices i and j of graph P. Let S(X) denote the 
average distance between the vertices within the set X. Formally, 

S(X) = 1
0.5×𝑝𝑝×(𝑝𝑝+1)

Σdij,                                  (2) 
where summation is taken over all unordered pairs of distinct vertices from 
the set X, and p=∣X∣. Additionally, we define S(X)=0 for single-element 
sets X. 

It is conceptually evident that the function S(X) characterizes the densi-
ty of objects within the set X and their mutual proximity. A lower value of 
S(X) indicates a higher degree of similarity among the vertices in X, and, 
consequently, among the objects they represent within the system modeled 
by graph P. 

Now, we can formulate the criterion for selecting a single dichotomy 
from the constructed set of dichotomies. Each dichotomy consists of two 
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subgraphs with vertex sets X1 and X2. Let us consider the densities S(X1) 
and S(X2). As the quality criterion of a dichotomy (X1, X2), we take the lar-
ger (i.e., the worst-case) value among the two numbers − S(X1) and S(X2). 
Accordingly, the optimal dichotomy among all available dichotomies is the 
one that minimizes this criterion. 

Let us draw attention to the fact that the assumption of setting distance 
matrix is used only at a single stage of the ACFD process − the stage of 
selecting one dichotomy from the constructed set. This naturally raises the 
question of what to do if the distance matrix is not provided. Essentially, 
some reasonable characteristic of graph density is required. Such a charac-
terristic can be taken as the ratio of the number of edges in the graph to 
their maximum possible number, 0.5×(n‒1)×n, and then applying a mini-
max approach − i.e., selecting the worst (minimum) density value from the 
two subgraphs forming the dichotomy and then choosing the dichotomy 
for which this worst value is maximized. Finally, one can select the mini-
mum number of vertices across the two subgraphs and then choose the di-
chotomy for which this value is maximized. This method expresses the 
desire to divide the graph into two parts as "equally" as possible. 

In relation to the financial market considered in this paper, a well-
known approach is naturally applicable: calculating the correlation 
coefficients rij between the price time series of two stocks i and j and 
determining the distance between them using formula (1).  

Thus, the output of Block 2 (clustering) in the flowchart of the QTA 
(Fig. 2) consists of:  
а) a set of clusters;   
b) the mean pairwise distances between elements within each cluster;  
с) the number of elements in each cluster. 
It should be emphasized that we are dealing with K realizations of these 

sets. All of them collectively serve as input to Block 3, where the algorithm 
determines the best cluster within each realization. 

 
3.3. Highlighting promising sets of shares. The following is done in 

each of the K cluster groups. 
1. All clusters with fewer than 20 or more than 200 elements (shares) 

or an average distance greater than 0.6 (with a possible maximum of 2) are 
deleted. 

2. The remaining clusters in the group are compared according to two 
criteria: the number of elements (maximization) and the average distance 
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(minimization). The optimal cluster is selected using the ideal point me-
thod.  

Therefore, there are K sets of shares that are considered promising (see 
subsection 3.4 below). If there are simply no clusters satisfying the condi- 
tions of item 1 in the i-th group, then the i-th set of promising stocks is de-
clared empty. This fact is taken into account in blocks 5 and 6 when calcu-
lating the one-day gain or loss. Such situations actually occur in many 
neighborhoods. The situation when for some days t all perspective sets turn 
out to be empty is not excluded. 

Note that the same stocks may be included in different prospective sets. 
 
3.4. Choosing a trading algorithm. This section is mandatory before 

moving on to forward trading (see Table 1). Before discussing the 
operations of Block 4, which is one of the key QTA blocks, it is necessary 
to introduce the relevant concepts. 

3.4.1. Forward and backward algorithms of daily trading. The main 
idea in developing various stock market trading algorithms was to assume 
that the processes were repeatable for at least one day. A certain set of 
stocks with fairly similar behavior is determined for several days preceding 
day t (which can be called a set of promising stocks) and it is assumed that 
the prices of promising stocks will change monotonously. Formally, this 
means that one of three situations is possible for each promising stock: 

А: c(t‒2) > с(t–1),                                              
B: с(t‒2) < с(t–1),  
C: с(t‒2) = с(t–1),  

and at the same time, the direction of price change in cases A and B will 
remain the same, i.e. in case A it turns out that 

c(t‒2) > с(t–1) > с(t),                                   (3a) 
and in case B, it turns out that  

с(t‒2) < с(t–1) < с(t),                                   (3b) 
where с(t) denotes the stock price at market closing on day t. 

It is not assumed that the second inequalities in (3a) and (3b) will be 
fulfilled for all promising stocks, but it is assumed that they will be fulfilled 
for most of them.  

Without discussing the various methods of determining promising 
stocks, let's pay special attention to the fact that the values of c(t‒2) and 
c(t–1) at the close of trading on day t–1 are known, but the price of c(t) is 
naturally not. This is the uncertainty of the stock market. 
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The trading algorithm, which can be called forward, is connected with 
the simple reasoning carried out. Each stock from group A is sold at the 
opening of the market on day t and is bought at the closing of the market 
on day t at the price c(t), which will be known on day t. Each stock from 
the group B is bought at the market opening on day t and sold at the market 
closing on day t at the price c(t), which will be known on day t. For stocks 
from group C (which are very few or none at all) nothing is being done. 

Indeed, in most cases, a forward algorithm generates revenue. However, 
not always. Let's look at these situations in more detail. Let inequalities 
(3a) and (3b) be replaced by inequalities (4a) and (4b): 

c(t‒2) > с(t–1) < с(t),                                    (4a) 
с(t‒2) < с(t–1) > с(t).                                    (4b) 

A trading algorithm can be associated with this situation, which is 
naturally called an backward one. Each stock from group A is bought at 
the opening of the market on day t and sold at the closing of the market on 
day t at the price c(t), which will be known on day t. Each stock from group 
B is sold at the market opening on day t and bought at the market closing 
on day t at the price c(t), which will be known on day t.  

A simple fact immediately follows from formulas (3) and (4).  
Statement 1. Under any circumstances, the total gain from the forward 

and backward algorithms is always zero. 
At first glance, inequalities (4) might seem relatively rare. However, 

this is not the case. In complex stock market conditions, the price evolution 
process becomes chaotic. Drawing on a hydraulic analogy, one could say 
that inequalities (3) correspond to waves, while inequalities (4) give rise to 
so-called “dead swell,” which is more dangerous for ships than even large 
waves. Negative outcomes when applying the forward algorithm occur 
quite frequently; moreover, the absolute magnitude of losses in these 
instances far exceeds the gains observed during more regular intervals. All 
these ef-fects will be demonstrated using real data from the S&P-500 stock 
market in subsection 5.2. 

Of course, we do not know in advance which scenario will unfold on 
any given day. Nevertheless, it is possible to propose a certain heuristic, 
whose sole justification is the consistently positive results that it has produ-
ced over the 20-year period described in section 2. Experimental findings 
are provided in section 5. 

Before proceeding further, we will illustrate the application of both al-
gorithms in simple model scenarios. 
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Example 1. Demonstration of gains and losses under the forward and 
in-verse algorithms. 

Case 1. Let the price of a certain stock be c(t−2)=5, c(t−1)=3, c(t)=2. 
Forward algorithm. The stock is sold on the morning of day t at the pre-

vious evening price of 3 and bought at the current evenings price of 2. The 
stock remains in the same hands, yielding a profit of +1. 

Backward algorithm. The stock is bought on the morning of day t at the 
previous evening price of 3 and sold at the current evening price of 2. The 
profit in this case is −1. 

Case 2. Let the price of a certain stock be c(t−2)=3, c(t−1)=4, c(t)=6. 
Forward algorithm. The stock is bought on the morning of day t at the 

pre-vious evening price of 4 and sold at the current evening price of 6. The 
profit is +2. 

Backward algorithm. The stock is sold on the morning of day t at the 
pre-vious evening price of 4 and then bought at the current evening price 
of 6. The stock remains in the same hands, resulting in a profit of −2. 

Case 3. Let the price of a certain stock be c(t−2)=5, c(t−1)=2, c(t)=3. 
Forward algorithm. The stock is sold on the morning of day t at the pre-

vious evening price of 2 and bought at the current evening price of 3. The 
stock remains in the same hands, and the profit is −1. 

Backward algorithm. The stock is bought on the morning of day t at 
the previous evening price of 2 and sold at the current evening price of 3. 
The profit in this scenario is +1. 

Case 4. Let the price of a certain stock be c(t−2)=2, c(t−1)=5, c(t)=3. 
Forward algorithm. The stock is bought on the morning of day t at the 

pre-vious evening price of 5 and sold at the current evening’s price of 3. 
The profit is −2. 

Backward algorithm. The stock is sold on the morning of day t at the 
pre-vious evening price of 5 and then bought at the current evenings price 
of 3. The stock remains in the same hands, resulting in a profit of +2. 

 
3.4.2. Description of the proposed heuristic (Block 4). Recall that 

by the start of day t, the accumulated quantities V(t) and S(t) are known for 
t−1, t−2, …, 0 (these are calculated in Block 6 immediately after the comp-
letion of each day operations). Consider the four most recent known values 
V(t−1), V(t−2), V(t−3), V(t−4) and check the following four inequalities: 

V(t−1) < −100, V(t−2) < −100, V(t−3) < −100, V(t−4) < −100.    (5) 
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If all these inequalities are satisfied, then from day t until the end of the 
quarter, the backward algorithm will be used to determine the trading 
algo-rithm, and condition (5) will no longer be checked. Otherwise, on day 
t, the forward algorithm will be executed. Subsequently, at each step until 
the end of the quarter, a similar check will be performed under the same 
out-puts. Note that the same value sg is used for all promising sets available 
on a given day. 

Formally, this procedure is expressed by modifying the quantity sg de-
fined in Block 0. If conditions (5) are satisfied, sg is set to −1 for the re-
mainder of the quarter; otherwise, sg=1. The value of sg is the output of 
Block 4 of the algorithm under consideration. In determining sg, the values 
of V(t) previously obtained in Block 6 are used. 

The rationale behind the proposed heuristic is that if four consecutive 
negative values arise under the forward algorithm, it may be assumed that 
subsequent negative returns will predominantly decrease. By virtue of Sta-
tement 1 in subsection 3.4.1, this implies that returns from the backward 
algorithm will increase accordingly. Examples using real data will be pre-
sented in Section 5. 

 
3.5. The real trading algorithm. The inputs to this algorithm, whose 

flowchart is shown in Fig. 1, are K sets of promising stocks identified in 
Block 3, along with the value of sg obtained in Block 4. For each non- 
empty set of promising stocks, the operations described at the beginning of 
subsection 3.4 are performed: 

When sg=1, each stock from group A is sold at the market opening on 
day t and repurchased at the market close on day t at the price c(t), which 
is determined on day t. Each stock from group B is purchased at the market 
opening on day t and sold at the market closing on day t at the price c(t), 
which is determined on day t. 

When sg=−1, each stock from group A is purchased at the market ope-
ning on day t and sold at the market close on day t at the price c(t). Each 
stock from group B is sold at the market opening on day t and repurchased 
at the market close on day t at the price c(t). 

The output of Block 5 is the collection of K stock sets together with the 
respective purchase and sale prices for each stock at the opening and clo-
sing of trading on day t. 
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3.6. Recalculation of accumulated gains/losses. In Block 6, the first 
step is a straightforward operation that sums the gains/losses realized from 
actual trading on day t (see Block 5). For empty sets of prospective stocks, 
no calculation is performed. The gains/losses from each stock are counted 
as many times as that stock appeared in the identified non-empty promising 
sets. Denote the resulting sum by U(t). Let us return to the quantities V(τ) 
and S(τ) introduced in Block 1. These have already been determined for all 
τ<t (recall that for τ=0, they are initialized to zero in Block 0). 

We set: 
V(t) = V(t−1) + U(t), S(t) = S(t−1) + U(t), if sg = 1,       (6a) 

V(t) = V(t−1) − U(t), S(t) = S(t−1) + U(t), if sg = −1.     (6b) 
An important clarification is in order. The values S(t) represent the actu-

al profits/losses obtained using the proposed QTA. In contrast, the values 
V(t) are purely virtual. They correspond to the profits/losses that would 
have been obtained if only the forward trading algorithm been used. Note 
that the signs for the new values of S(t) coincide. This arises from the fact 
that the gains U(t) themselves are calculated using different formulas. 

    
3.7. End of the Period. In Block 7, which differs from the other blocks 

in that it is a logic block, the system either proceeds to the next day t+1 or 
terminates the QTA. In the latter case, the real profit S(t) accumulated over 
the quarter constitutes the output of the QTA. 

 
4. General trading scheme 

The QTA is applied sequentially to each of the 80 quarters. As noted 
earlier, for each quarter and each trading day, only the stock price data for 
preceding days and certain already computed quantities (see formulas (5) 
and (6)) are used. The trading results for each quarter, for each year, and 
the principal outcome − the sequence of accumulated annual returns − are 
collectively referred to as a variant. These variants are denoted by letters 
a, b, c, d, …. Recall that all variants were computed using the same initial 
data (i.e., daily closing stock prices) and the same software. The difference 
in the results is determined solely by multiple use of a standard random 
number generator when selecting vertex pairs as input to Dijkstra algo-
rithm (see subsection 3.2.1).  
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5. Experimental results 
5.1. Parameter selection. It should be noted that the developed algo-

rithms make use of numerous parameters, as mentioned in the description 
of the QTA. Their selection is justified by little more than common sense. 
This is because the present work makes no attempt to simulate the process-
ses of price formation or trading on the stock market; Instead, all the algo-
rithms analyze already known, fixed real-world data from previous days. 
The only justification for choosing one set of parameters over another is 
the potential for obtaining positive outcomes. Some experimental results − 
subject to natural qualifications − can be regarded as favorable. These are 
presented in Section 5. 

 
5.2. Examples of the flexible algorithm in operations. Below we 

present detailed experimental data for variant a. First, let us consider in 
which quarters the flexible algorithm was actually applied, i.e., in which 
quarters inequalities (5) were satisfied. The use of the backward algorithm 
can either increase or decrease the profit for a given quarter compared to 
the forward algorithm. 

The quarters that produced negative or positive outcomes (referring 
solely to the sign of the difference between the results of the backward and 
forward algorithms) are listed in Table 2. 

 
Table 2. Use of the flexible algorithm 

Sign Number of 
quarters List 

− 15 
1995_2, 1997_1, 1998_1, 1998_3, 1998_4, 
2001_2, 2002_2, 2003_1, 2003_4, 2004_1, 
2006_4,    2010_1,    2011_2,    2011_3,    2012_2 

+ 33 

1998_1, 1999_4, 2000_2, 2000_4, 2002_4, 
2003_2, 2003_3, 2004_3, 2004_4, 2005_2, 
2005_3, 2005_4, 2013_1, 2007_1, 2007_2, 
2007_3, 2007_4, 2008_1, 2008_2, 2008_3, 
2009_1, 2009_2, 2009_4, 2010_2, 2010_3, 
2010_4, 2011_1, 2011_4, 2013_1, 2013_2, 
2013_4,    2014_1,    2014_3 
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Note that in the remaining 32 quarters (out of 80), the backward algo-
rithm was not used. 

We now provide examples of value accumulation in selected quarters 
from the positive group. It is worth noting the various sign combinations 
of the accumulated sum (apart from the case of positive virtual 
accumulation and negative actual accumulation). By construction, such a 
scenario can only occur in quarters belonging to the negative group. The 
days on which a transition from the forward algorithm to the backward 
algorithm took place are underlined in Table 3. 

 
Table 3. Examples of switching between algorithms 

2003_3 2007_1 
 0     0        0        0 
 1    55.39    55.40    55.40 
 2   -72.77   -17.38   -17.38 
 3  -200.98  -218.36  -218.36 
 4    69.23  -149.13  -149.13 
 5   -14.06  -163.19  -163.19 
 6    81.46   -81.72   -81.72 
 7   -47.68  -129.41  -129.41 
 8    57.02   -72.39   -72.39 
 9   -37.41  -109.80  -109.80 
10    40.58   -69.22   -69.22 
11    55.60   -13.61   -13.61 
12  -103.93  -117.54  -117.54 
13   -81.01  -198.55  -198.55 
14   -55.10  -253.66  -253.66 
15   -51.38  -305.05  -305.05 
16   -29.80  -334.85  -275.24 
17   -49.23  -384.08  -226.01 
18     3.79  -380.30  -229.80 
19     4.14  -376.15  -233.94 
20     1.57  -374.59  -235.51 
21     0.28  -374.31  -235.79 
22   -22.38  -396.68  -213.41 
23    -2.04  -398.72  -211.38 
24     3.00  -395.72  -214.38 
25    -0.39  -396.11  -213.99 
26    -8.55  -404.65  -205.44 
27    18.51  -386.15  -223.95 
28    -1.76  -387.91  -222.19 
29    19.66  -368.25  -241.84 
30   -24.27  -392.52  -217.58 

 0     0        0        0 
 1    19.84    19.84    19.84 
 2     3.30    23.14    23.14 
 3    -3.34    19.80    19.80 
 4    22.72    42.52    42.52 
 5    93.32   135.84   135.84 
 6    40.27   176.11   176.11 
 7     1.72   177.83   177.83 
 8   -24.80   153.03   153.03 
 9     4.60   157.63   157.63 
10    35.10   192.73   192.73 
11   -28.44   164.29   164.29 
12   -48.89   115.40   115.40 
13   -66.46    48.94    48.94 
14   -45.60     3.34     3.34 
15  -178.24  -174.90  -174.90 
16     5.63  -169.28  -169.28 
17    -0.62  -169.89  -169.89 
18     1.14  -168.75  -168.75 
19    46.11  -122.64  -214.86 
20    47.90   -74.73  -262.76 
21    30.53   -44.21  -293.29 
22   -15.34   -59.55  -277.95 
23     0.27   -59.28  -278.22 
24    60.50     1.22  -338.71 
25   -29.20   -27.98  -309.51 
26    12.21   -15.77  -321.73 
27    24.06     8.29  -345.78 
28   -29.72   -21.44  -316.06 
29   110.33    88.89  -426.39 
30    31.46   120.36  -457.85 
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31    -4.28  -396.80  -213.29 
32   -18.84  -415.64  -194.45 
33   -13.48  -429.12  -180.97 
34    44.68  -384.44  -225.65 
35     4.38  -380.06  -230.03 
36    12.14  -367.93  -242.17 
37   -76.43  -444.36  -165.74 
38    34.29  -410.07  -200.03 
39     0.06  -410.01  -200.09 
40    -1.64  -411.65  -198.44 
41    39.54  -372.11  -237.98 
42    57.71  -314.41  -295.69 
43    90.75  -223.66  -386.44 
44    24.23  -199.43  -410.67 
45   -27.08  -226.50  -383.59 
46    39.65  -186.86  -423.24 
47   -58.98  -245.84  -364.25 
48   -69.64  -315.48  -294.62 
49   119.56  -195.91  -414.18 
50   -63.61  -259.52  -350.57 
51    13.02  -246.50  -363.60 
52    -0.38  -246.88  -363.21 
53   -74.14  -321.03  -289.07 
54   -14.06  -335.09  -275.00 
55   -59.55  -394.64  -215.45 
56    -1.46  -396.11  -213.99 
57    63.70  -332.40  -277.69 
58   -54.26  -386.66  -223.44 
59   -97.76  -484.41  -125.68 
60    55.80  -428.61  -181.48 
61    82.44  -346.18  -263.92 
62   -67.65  -413.82  -196.27 
63   -70.00  -483.82  -126.27 

31   -20.32   100.04  -437.54 
32    25.94   125.98  -463.48 
33  -112.26    13.72  -351.21 
34     3.19    16.90  -354.40 
35    25.24    42.15  -379.64 
36    31.44    73.58  -411.08 
37   106.36   179.94  -517.44 
38   -80.72    99.22  -436.72 
39   -44.77    54.45  -391.95 
40   115.45   169.90  -507.40 
41   305.51   475.41  -812.91 
42  -419.52    55.89  -393.39 
43  -111.83   -55.93  -281.56 
45    25.45  -106.74  -230.75 
46     0.00  -106.74  -230.75 
47  -211.47  -318.22   -19.28 
48  -166.62  -484.84   147.34 
49    79.61  -405.23    67.73 
50   -96.14  -501.37   163.87 
51   -94.26  -595.63   258.13 
52    59.04  -536.59   199.09 
53   147.68  -388.91    51.41 
54   -25.28  -414.19    76.69 
55     0.39  -413.80    76.30 
56     6.11  -407.69    70.19 
57    31.74  -375.95    38.45 
58   134.71  -241.24   -96.26 
59   -61.34  -302.58   -34.92 
60   -67.15  -369.73    32.23 

 
 

2008_3 2011_4  
 0     0        0        0 
 1    73.17    73.17    73.17 
 2   -41.09    32.08    32.08 
 3     5.86    37.95    37.95 
 4     0.00    37.95    37.95 
 5  -729.20  -691.25  -691.25 
 6  -132.32  -823.58  -823.58 
 7   -24.97  -848.54  -848.54 
 8   229.02  -619.52  -619.52 

0     0        0        0 
1  -824.32  -824.32  -824.32 
2   247.09  -577.23  -577.23 
3   361.88  -215.35  -215.35 
4  -339.87  -555.22  -555.22 
5  -427.53  -982.75   -27.69 
6     2.53  -980.22   -30.22 
7    -6.10  -986.32   -24.12 
8   -33.19 -1019.50   -90.93 
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 9    97.31  -522.22  -716.83 
10  -240.99  -763.21  -475.84 
11   664.27   -98.94 -1140.11 
12   -41.81  -140.75 -1098.31 
13   -23.41  -164.16 -1074.89 
14  -186.12  -350.27  -888.78 
15   176.02  -174.25 -1064.80 
16  -563.39  -737.64  -501.41 
17    29.37  -708.27  -530.78 
18   -10.28  -718.55  -520.50 
19  -477.57 -1196.12   -42.93 
20    96.52 -1099.60  -139.46 
21  -125.61 -1225.20   -13.85 
22    52.84 -1172.37   -66.68 
23    57.92 -1114.45  -124.60 
24    -4.23 -1118.68  -120.37 
25    19.06 -1099.62  -139.43 
26   -38.93 -1138.55  -100.50 
27  -322.29 -1460.83   221.78 
28   158.88 -1301.95    62.90 
29   -84.93 -1386.88   147.82 
30    14.18 -1372.70   133.65 
31  -160.47 -1533.16   294.11 
32   123.65 -1409.51   170.46 
33  -232.76 -1642.27   403.22 
34   264.68 -1377.59   138.54 
35    74.79 -1302.80    63.75 
36    -1.05 -1303.85    64.80 
37   -19.63 -1323.47    84.42 
38  -201.26 -1524.74   285.69 
39   -29.53 -1554.26   315.21 
40    19.30 -1534.96   295.91 
41   155.18 -1379.78   140.73 
42  -174.29 -1554.07   315.02 
43   -38.74 -1592.80   353.75 
44    54.28 -1538.53   299.48 
45  -295.99 -1834.51   595.46 
46  -219.47 -2053.99   814.94 
47    -5.24 -2059.23   820.18 
48  -251.12 -2310.36  1071.31 
49  -114.83 -2425.19  1186.14 
50   140.81 -2284.38  1045.33 
51    32.28 -2252.10  1013.05 
52  -546.24 -2798.34  1559.29 
53  -384.09 -3182.43  1943.38 
54  -230.89 -3413.32  2174.27 
55  -475.68 -3889.00  2649.94 

 9  -212.70 -1232.20   121.77 
10  -286.47 -1518.67   408.23 
11  -586.64 -2105.31   994.88 
12  -347.13 -2452.44  1342.01 
13  -168.37 -2620.82  1510.38 
14   388.70 -2232.11  1121.68 
15     0.00 -2232.11  1121.68 
16  -416.53 -2648.64  1538.21 
17  -286.30 -2934.95  1824.51 
18   434.81 -2500.14  1389.70 
19   -14.77 -2514.91  1404.47 
20  -183.02 -2697.93  1587.49 
21   740.47 -1957.46   847.02 
22  -453.23 -2410.68  1300.25 
23   528.46 -1882.23   771.79 
24   -89.06 -1971.29   860.85 
25   -56.72 -2028.00   917.57 
26    46.55 -1981.45   871.01 
27  -722.88 -2704.33  1593.89 
28  -152.51 -2856.84  1746.40 
29   247.57 -2609.27  1498.83 
30  -168.99 -2778.26  1667.82 
31   -68.64 -2846.90  1736.46 
32  -119.63 -2966.53  1856.10 
33   192.70 -2773.83  1663.40 
34     8.27 -2765.56  1655.13 
35   -13.22 -2778.79  1668.35 
36    59.36 -2719.43  1608.99 
37    -0.21 -2719.64  1609.20 
38     2.69 -2716.95  1606.52 
39     0.00 -2716.95  1606.52 
40     0.00 -2716.95  1606.52 
41    43.91 -2673.04  1562.61 
42   -58.64 -2731.68  1621.25 
43     9.32 -2722.36  1611.92 
44     9.54 -2712.82  1602.39 
45   -41.62 -2754.44  1644.01 
46    -6.42 -2760.86  1650.43 
47  -131.31 -2892.17  1781.74 
48 -191.43  -3083.60  1973.16 
49     0.00 -3083.60  1973.16 
50   187.49 -2896.10  1785.67 
51     0.00 -2896.10  1785.67 
52   -18.22 -2914.32  1803.88 
53    60.84 -2853.48  1743.04 
54   -40.26 -2893.74  1783.31 
55  -637.00 -3530.75  2420.31 
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56  1002.92 -2886.08  1647.03 
57  -339.10 -3225.18  1986.13 
58    89.15 -3136.03  1896.98 
59  -106.24 -3242.27  2003.22 
60    27.52 -3214.75  1975.69 
61    96.61 -3118.13  1879.08 
62  -372.78 -3490.92  2251.87 
63  -476.44 -3967.35  2728.30 

56   -23.09 -3553.84  2443.41 
57    -5.72 -3559.56  2449.13 
58    40.24 -3519.32  2408.89 
59     8.80 -3510.53  2400.09 
60  -150.79 -3661.32  2550.89 
61  -219.53 -3880.85  2770.42 
62  -173.38 -4054.24  2943.80 

 
5.3. Accumulated sums for the 1995–2014 period. A complete overview 

of the quarterly, annual, and cumulative results over the 20-year span for 
variants a, b, c, d is presented in Tables 4. Despite minor negative outcomes 
in certain quarters and even some entire years, the final column demonstrates 
a pattern of rapid growth in all the variants. 

 
 

Table 4. Trading results of flexible algorithm for four variants 
Variant a 

  1 quarter 2 quarter 3 quarter 4 quarter Year 
income 

Accum. 
income 

1995 194 -201 193 25 211 211 
1996 417 146 554 385 1502 1713 
1997 -1331 -165 266 848 -382 1331 
1998 345 1447 -1487 -782 -477 854 
1999 94 268 295 250 907 1761 
2000 291 727 809 84 1911 3672 
2001 -384 -829 1617 1310 1714 5386 
2002 608 -975 1206 1429 2268 7654 
2003 -430 137 -126 -196 -615 7039 
2004 -640 184 73 179 -204 6835 
2005 -234 -99 327 254 248 7083 
2006 417 541 5 -279 684 7767 
2007 32 156 1317 330 1835 9602 
2008 2259 1048 2728 911 6946 16548 
2009 -52 -261 1128 -34 781 17329 
2010 -609 281 439 -227 -116 17213 
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2011 -60 -821 -1803 2943 259 17472 
2012 203 -400 1152 -314 641 18113 
2013 32 -193 773 -439 173 18286 
2014 -2 157 -17 577 715 19001 

 
Variant b 

  1 quarter 2 quarter 3 quarter 4 quarter Year 
income 

Accum. 
income 

1995 145 -285 128 150 138 138 
1996 340 153 630 184 1307 1445 
1997 -1467 51 125 876 -415 1030 
1998 46 1339 -1234 -951 -800 230 
1999 177 -464 423 107 243 473 
2000 561 1138 622 -182 2139 2612 
2001 -672 -1313 1304 1924 1243 3855 
2002 792 -734 1111 1123 2292 6147 
2003 763 138 -58 -351 492 6639 
2004 -322 271 163 -106 6 6645 
2005 -157 -74 199 170 138 6783 
2006 641 -97 5 -329 220 7003 
2007 -704 -312 1243 446 673 7676 
2008 1568 960 4177 43 6748 14424 
2009 2760 -234 792 115 3433 17857 
2010 -501 335 140 101 75 17932 
2011 -363 -1161 -2054 3615 37 17969 
2012 -1 -168 936 -306 461 18430 
2013 -209 -153 578 438 654 19084 
2014 33 -47 -85 965 866 19950 
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Variant c 

  1 quarter 2 quarter 3 quarter 4 quarter Year 
income 

Accum. 
income 

1995 142 -477 -301 116 -520 -520 
1996 193 143 561 190 1087 567 
1997 209 -505 65 643 412 979 
1998 288 962 973 -160 2063 3042 
1999 53 149 -424 414  192 3234 
2000 272 1064 879 -1223 992 4226 
2001 -11 -1311 1424 1433 1535 5762 
2002 745 -750 1395 1600 2990 8752 
2003 -403 416 -41 -626 -654 8098 
2004 -686 136 45 -193 -698 7400 
2005 -171 -162 254 54 -26 7374 
2006 298 326 -632 94 86 7460 
2007 -314 -59 910 599 1136 8596 
2008 1829 1342 2887 686 6744 15340 
2009 1960 835 -446 -666 1683 17032 
2010 293 714 331 -237 1101 18124 
2011 -247 -1477 -93 3058 1241 19365 
2012 -150 303 1108 -1066 195 19560 
2013 103 -526 -338 -472 -1233 18327 
2014 237 432 -264 13 418 18747 

 
Variant d 

  1 quarter 2 quarter 3 quarter 4 quarter Year 
income 

Accum. 
income 

1995 184 -293 -232 -19 -360 -360 
1996 345 44 795 66 1250 890 
1997 902 -343 -6 1093 1646 2546 
1998 207 1007 4 -104 1114 3660 
1999 -11 355 465 138 947 4607 
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2000 723 1279 720 -501 2221 6828 
2001 -572 -928 1295 1253 1048 7876 
2002 971 -601 1172 1207 2749 10625 
2003 36 107 331 -603 -129 10496 
2004 -988 328 -767 -259 -1686 8810 
2005 -205 -382 376 -267 -478 8332 
2006 305 398 101 -329 475 8807 
2007 -90 -263 1383 308 1338 10145 
2008 1737 1294 2671 441 6143 16288 
2009 2779 -234 -153 -139 2253 18541 
2010 313 646 661 208 1828 20369 
2011 -240 -1338 575 3283 2280 22649 
2012 -203 455 1183 -256 1179 23828 
2013 -193 -48 438 -277 -80 23748 
2014 139 -310 597 -391 35 23783 

 
The data in Tables 4a–4d point to a similar pattern in the evolution of 

accumulated returns across different calculation variants. Once again, it 
should be emphasized that the quantitative results presented in these tables 
were obtained using the same software and the same input data. The only 
differences stem from the use of a standard random number generator in 
the clustering algorithm. 

A visual representation of these results is provided in Fig. 4a – 4d. The 
summary visual data for all four variants are presented in Fig. 5. Table 5 
presents the general quantitative data (in contrast to Tables 4, quarterly 
data are not included). The variants can be implemented simultaneously, 
and the overall profit is the sum of the individual profits from these vari-
ants. 

In Table 6, the values of the correlation coefficients are given for the 
last five columns of Table 5, i.e., for the accumulated incomes of variants 
a, b, c, d and the sum of them.  
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b 
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Fig. 4. Accumulated totals and regression lines for 4 variants 
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Fig. 5. Visual data for the sum of the variants 

 
 

Table 5. Comparison of the accumulated returns for  
variants a, b, c, d, and their sum 

Year Inc. a Inc. b Inc. c Inc. d Ac. a Ac. b Ac. c Ac. d Ac. Sum 

1995 211 138 -520 -360 211 138 -520 -360 -531 
1996 1502 1307 1087 1250 1713 1445 567 890 4615 
1997 -382 -415 412 1646 1331 1030 979 2546 5886 
1998 -477 -800 2063 1114 854 230 3042 3660 7786 
1999 907 243 192 947 1761 473 3234 4607 10075 
2000 1911 2139 992 2221 3672 2612 4226 6828 17338 
2001 1714 1243 1535 1048 5386 3855 5762 7876 22879 
2002 2268 2292 2990 2749 7654 6147 8752 10625 33178 
2003 -615 492 -654 -129 7039 6639 8098 10496 32272 
2004 -204 6 -698 -1686 6835 6645 7400 8810 27852 
2005 248 138 -26 -478 7083 6783 7374 8332 29572 
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2006 684 220 86 475 7767 7003 7460 8807 31037 
2007 1835 673 1136 1338 9602 7676 8596 10145 36019 
2008 6946 6748 6744 6143 16548 14424 15340 16288 62600 
2009 781 3433 1683 2253 17329 17857 17032 18541 70759 
2010 -116 75 1101 1828 17213 17932 18124 20369 73638 
2011 259 37 1241 2280 17472 17969 19365 22649 77455 
2012 641 461 195 1179 18113 18430 19560 23828 79931 
2013 173 654 -1233 -80 18286 19084 18327 23748 79445 
2014 715 866 418 35 19001 19950 18745 23783 81479 

 
Table 6. Correlation coefficients among variants 

a, b, c, d and their sum 
 a b c d sum 
a 1 0.994 0,990 0.978 0.995 
b  1 0.986 0.979 0.994 
c   1 0.992 0.997 
d    1 0.993 

sum     1 
 

From Tables 4 – 6, it is clear that “similarity” increases with the level 
of aggregation. A comparison of cumulative results over a prolonged peri-
od demonstrates a degree of stability that, at first glance, might be unexpec-
ted in an inherently uncertain environment such as the stock market. Never-
theless, the rise in stability with greater levels of aggregation is a well-
known systemic effect. As an example, one might point to temperature va-
riations across large regions: on individual days and at specific locations, 
no discernible patterns are apparent. However, when examining longer 
time spans and broader geographic areas, stability increases − reaching as 
much as 12 °C for extended periods on a global average. It is important to 
note a significant distinction, however. The claim here does not pertain to 
the stability of the S&P 500 stock market per se; rather, it concerns the 
stability of trading outcomes derived from the proposed algorithm, 
applied to actual daily stock prices.  
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Conclusion 
1. Let us begin with the central question − how were the positive results 

obtained, and what is the proposed explanation? One might say this ques-
tion reduces to another: why, in the overwhelming majority of cases, do 
we obtain reasonable clusterings of comparable sizes? For example, with 
volumes such as: 

133     1     1     1    36    33     1    64    58     9   160     1, 
whereas sometimes (albeit very rarely) one observes highly uneven cluste-
rings, for example: 

477     1     1     2     7     1     1     2     1     1     1     1. 
Even more unexpected is that after June 30, 2014, the situation changed ab-
ruptly (literally overnight) in the opposite direction − almost all clusterings 
became similar to the latter type (which may be called “degenerate”). There 
was no apparent market crisis at that time. In essence, one could say that, 
in these cases, no meaningful clusters exist at all. Recall that clusters are 
determined by the similar price behavior of the respective stocks.  

It appears that the key lies in a sudden shift in the ratio between the fre-
quency of data collection and the rate of change of stock prices. Evidently, 
on that specific day, the operational speed of the main programs governing 
the stock market was altered. This implies that the number of transactions 
per unit time (for instance, per day) increased dramatically (by a factor of 
ten or more), whereas the stock price data used in this paper remained avai-
lable only once per day (at market closing). Consequently, the resulting 
clusterings become practically meaningless. Note that the situation would 
not improve by employing various methods to avoid small clusters; in the 
absence of a genuine cluster structure, no reliable results can be obtained 
regardless. 

What to do in this situation? One could, for example, use autocorrela-
tion coefficients to estimate the rate at which prices change, then select an 
appropriate frequency for data collection so that the ratio of these fre-
quencies (price changes versus data collection) remains roughly the same 
as it is now. There is no reason to believe that market behavior on shorter 
intervals would be fundamentally different. One may hope that, as in many 
other scenarios, a kind of fractality emerges − here not as a similarity in 
order, but as a similarity in disorder. 

Of course, achieving this would require substantial research well be-
yond the scope of the present article, yet still grounded in the approaches 
outlined herein. 
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2. The sums reported in Tables 4 and 5 may seem insignificant in the 
context of the multibillion-dollar S&P-500 stock market. However, recall 
that QTA considers no more than five sets of promising stocks, and in each 
set, only one share of each type is traded. If one were to buy and sell 
100 shares instead of just one, the returns would be multiplied by 100, and 
so on. Furthermore, the different trading variants run simultaneously, and 
the total profit equals the sum of the profits accumulated across each vari-
ant (see Table 5). Their number can be substantially increased. 

3. The idea of switching trading to a backward mode was inspired by a 
well-known scheme in optimal control theory: bringing a rocket to zero ve-
locity by alternating forward and backward thrust. In the algorithm under 
consideration, such a switch can occur at most once. The results might be 
improved by considering trading not on a quarterly basis but over longer 
intervals (e.g., years). In that case, one could employ multiple mode swit-
ches, depending on the evolving situation − one that may not fully play out 
within a single quarter. 

4. A careful reader may note the following. When trading opens on day 
𝑡𝑡, the chosen stocks prices can differ slightly from their closing prices on 
the previous day. Yet the profit expression involves differences between 
closing prices on days 𝑡𝑡−1 and 𝑡𝑡. As a result, the gains realized may differ 
marginally from those computed by the proposed algorithm. 

The correction becomes straightforward once stock prices are made 
available more frequently (see item 1 above in Conclusion). The algo-
rithms themselves require no modification.  
 

The authors extend their gratitude to Professor F. T. Aleskerov for his 
support of this work and to Professor B. G. Mirkin for his assistance in 
preparing this article. 
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В статье рассматривается один из наиболее известных примеров социаально-

экономических систем, характеризующихся значительной неопределенностью – фондовый 

рынок S&P-500, на котором торгуются акции 500 крупнейших компаний США. Никаких 

предположений о вероятностных характеристиках фондового рынка не делается. Был 

разработан гибкий алгоритм ежедневной торговли, основанный как на известных 

фиксированных данных о стоимости акций за предыдущие дни, так и на доходах и расходах, 

уже полученных с начала текущего квартала. Результаты вычислительных экспериментов 

демонстрируют устойчивый рост накопленного дохода в 1995–2014 годах, а также 

возможность использования докризисного и посткризисного периодов для надежного 

увеличения доходов от торговли акциями. 
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